1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2005-2013 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include <linux/socket.h> 12 #include <linux/in.h> 13 #include <linux/slab.h> 14 #include <linux/ip.h> 15 #include <linux/ipv6.h> 16 #include <linux/tcp.h> 17 #include <linux/udp.h> 18 #include <linux/prefetch.h> 19 #include <linux/moduleparam.h> 20 #include <linux/iommu.h> 21 #include <net/ip.h> 22 #include <net/checksum.h> 23 #include "net_driver.h" 24 #include "efx.h" 25 #include "filter.h" 26 #include "nic.h" 27 #include "selftest.h" 28 #include "workarounds.h" 29 30 /* Preferred number of descriptors to fill at once */ 31 #define EFX_RX_PREFERRED_BATCH 8U 32 33 /* Number of RX buffers to recycle pages for. When creating the RX page recycle 34 * ring, this number is divided by the number of buffers per page to calculate 35 * the number of pages to store in the RX page recycle ring. 36 */ 37 #define EFX_RECYCLE_RING_SIZE_IOMMU 4096 38 #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH) 39 40 /* Size of buffer allocated for skb header area. */ 41 #define EFX_SKB_HEADERS 128u 42 43 /* This is the percentage fill level below which new RX descriptors 44 * will be added to the RX descriptor ring. 45 */ 46 static unsigned int rx_refill_threshold; 47 48 /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */ 49 #define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \ 50 EFX_RX_USR_BUF_SIZE) 51 52 /* 53 * RX maximum head room required. 54 * 55 * This must be at least 1 to prevent overflow, plus one packet-worth 56 * to allow pipelined receives. 57 */ 58 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS) 59 60 static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf) 61 { 62 return page_address(buf->page) + buf->page_offset; 63 } 64 65 static inline u32 efx_rx_buf_hash(struct efx_nic *efx, const u8 *eh) 66 { 67 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 68 return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset)); 69 #else 70 const u8 *data = eh + efx->rx_packet_hash_offset; 71 return (u32)data[0] | 72 (u32)data[1] << 8 | 73 (u32)data[2] << 16 | 74 (u32)data[3] << 24; 75 #endif 76 } 77 78 static inline struct efx_rx_buffer * 79 efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf) 80 { 81 if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask))) 82 return efx_rx_buffer(rx_queue, 0); 83 else 84 return rx_buf + 1; 85 } 86 87 static inline void efx_sync_rx_buffer(struct efx_nic *efx, 88 struct efx_rx_buffer *rx_buf, 89 unsigned int len) 90 { 91 dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len, 92 DMA_FROM_DEVICE); 93 } 94 95 void efx_rx_config_page_split(struct efx_nic *efx) 96 { 97 efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align, 98 EFX_RX_BUF_ALIGNMENT); 99 efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 : 100 ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) / 101 efx->rx_page_buf_step); 102 efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) / 103 efx->rx_bufs_per_page; 104 efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH, 105 efx->rx_bufs_per_page); 106 } 107 108 /* Check the RX page recycle ring for a page that can be reused. */ 109 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue) 110 { 111 struct efx_nic *efx = rx_queue->efx; 112 struct page *page; 113 struct efx_rx_page_state *state; 114 unsigned index; 115 116 index = rx_queue->page_remove & rx_queue->page_ptr_mask; 117 page = rx_queue->page_ring[index]; 118 if (page == NULL) 119 return NULL; 120 121 rx_queue->page_ring[index] = NULL; 122 /* page_remove cannot exceed page_add. */ 123 if (rx_queue->page_remove != rx_queue->page_add) 124 ++rx_queue->page_remove; 125 126 /* If page_count is 1 then we hold the only reference to this page. */ 127 if (page_count(page) == 1) { 128 ++rx_queue->page_recycle_count; 129 return page; 130 } else { 131 state = page_address(page); 132 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, 133 PAGE_SIZE << efx->rx_buffer_order, 134 DMA_FROM_DEVICE); 135 put_page(page); 136 ++rx_queue->page_recycle_failed; 137 } 138 139 return NULL; 140 } 141 142 /** 143 * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers 144 * 145 * @rx_queue: Efx RX queue 146 * 147 * This allocates a batch of pages, maps them for DMA, and populates 148 * struct efx_rx_buffers for each one. Return a negative error code or 149 * 0 on success. If a single page can be used for multiple buffers, 150 * then the page will either be inserted fully, or not at all. 151 */ 152 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic) 153 { 154 struct efx_nic *efx = rx_queue->efx; 155 struct efx_rx_buffer *rx_buf; 156 struct page *page; 157 unsigned int page_offset; 158 struct efx_rx_page_state *state; 159 dma_addr_t dma_addr; 160 unsigned index, count; 161 162 count = 0; 163 do { 164 page = efx_reuse_page(rx_queue); 165 if (page == NULL) { 166 page = alloc_pages(__GFP_COLD | __GFP_COMP | 167 (atomic ? GFP_ATOMIC : GFP_KERNEL), 168 efx->rx_buffer_order); 169 if (unlikely(page == NULL)) 170 return -ENOMEM; 171 dma_addr = 172 dma_map_page(&efx->pci_dev->dev, page, 0, 173 PAGE_SIZE << efx->rx_buffer_order, 174 DMA_FROM_DEVICE); 175 if (unlikely(dma_mapping_error(&efx->pci_dev->dev, 176 dma_addr))) { 177 __free_pages(page, efx->rx_buffer_order); 178 return -EIO; 179 } 180 state = page_address(page); 181 state->dma_addr = dma_addr; 182 } else { 183 state = page_address(page); 184 dma_addr = state->dma_addr; 185 } 186 187 dma_addr += sizeof(struct efx_rx_page_state); 188 page_offset = sizeof(struct efx_rx_page_state); 189 190 do { 191 index = rx_queue->added_count & rx_queue->ptr_mask; 192 rx_buf = efx_rx_buffer(rx_queue, index); 193 rx_buf->dma_addr = dma_addr + efx->rx_ip_align; 194 rx_buf->page = page; 195 rx_buf->page_offset = page_offset + efx->rx_ip_align; 196 rx_buf->len = efx->rx_dma_len; 197 rx_buf->flags = 0; 198 ++rx_queue->added_count; 199 get_page(page); 200 dma_addr += efx->rx_page_buf_step; 201 page_offset += efx->rx_page_buf_step; 202 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE); 203 204 rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE; 205 } while (++count < efx->rx_pages_per_batch); 206 207 return 0; 208 } 209 210 /* Unmap a DMA-mapped page. This function is only called for the final RX 211 * buffer in a page. 212 */ 213 static void efx_unmap_rx_buffer(struct efx_nic *efx, 214 struct efx_rx_buffer *rx_buf) 215 { 216 struct page *page = rx_buf->page; 217 218 if (page) { 219 struct efx_rx_page_state *state = page_address(page); 220 dma_unmap_page(&efx->pci_dev->dev, 221 state->dma_addr, 222 PAGE_SIZE << efx->rx_buffer_order, 223 DMA_FROM_DEVICE); 224 } 225 } 226 227 static void efx_free_rx_buffers(struct efx_rx_queue *rx_queue, 228 struct efx_rx_buffer *rx_buf, 229 unsigned int num_bufs) 230 { 231 do { 232 if (rx_buf->page) { 233 put_page(rx_buf->page); 234 rx_buf->page = NULL; 235 } 236 rx_buf = efx_rx_buf_next(rx_queue, rx_buf); 237 } while (--num_bufs); 238 } 239 240 /* Attempt to recycle the page if there is an RX recycle ring; the page can 241 * only be added if this is the final RX buffer, to prevent pages being used in 242 * the descriptor ring and appearing in the recycle ring simultaneously. 243 */ 244 static void efx_recycle_rx_page(struct efx_channel *channel, 245 struct efx_rx_buffer *rx_buf) 246 { 247 struct page *page = rx_buf->page; 248 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 249 struct efx_nic *efx = rx_queue->efx; 250 unsigned index; 251 252 /* Only recycle the page after processing the final buffer. */ 253 if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE)) 254 return; 255 256 index = rx_queue->page_add & rx_queue->page_ptr_mask; 257 if (rx_queue->page_ring[index] == NULL) { 258 unsigned read_index = rx_queue->page_remove & 259 rx_queue->page_ptr_mask; 260 261 /* The next slot in the recycle ring is available, but 262 * increment page_remove if the read pointer currently 263 * points here. 264 */ 265 if (read_index == index) 266 ++rx_queue->page_remove; 267 rx_queue->page_ring[index] = page; 268 ++rx_queue->page_add; 269 return; 270 } 271 ++rx_queue->page_recycle_full; 272 efx_unmap_rx_buffer(efx, rx_buf); 273 put_page(rx_buf->page); 274 } 275 276 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue, 277 struct efx_rx_buffer *rx_buf) 278 { 279 /* Release the page reference we hold for the buffer. */ 280 if (rx_buf->page) 281 put_page(rx_buf->page); 282 283 /* If this is the last buffer in a page, unmap and free it. */ 284 if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) { 285 efx_unmap_rx_buffer(rx_queue->efx, rx_buf); 286 efx_free_rx_buffers(rx_queue, rx_buf, 1); 287 } 288 rx_buf->page = NULL; 289 } 290 291 /* Recycle the pages that are used by buffers that have just been received. */ 292 static void efx_recycle_rx_pages(struct efx_channel *channel, 293 struct efx_rx_buffer *rx_buf, 294 unsigned int n_frags) 295 { 296 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 297 298 do { 299 efx_recycle_rx_page(channel, rx_buf); 300 rx_buf = efx_rx_buf_next(rx_queue, rx_buf); 301 } while (--n_frags); 302 } 303 304 static void efx_discard_rx_packet(struct efx_channel *channel, 305 struct efx_rx_buffer *rx_buf, 306 unsigned int n_frags) 307 { 308 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); 309 310 efx_recycle_rx_pages(channel, rx_buf, n_frags); 311 312 efx_free_rx_buffers(rx_queue, rx_buf, n_frags); 313 } 314 315 /** 316 * efx_fast_push_rx_descriptors - push new RX descriptors quickly 317 * @rx_queue: RX descriptor queue 318 * 319 * This will aim to fill the RX descriptor queue up to 320 * @rx_queue->@max_fill. If there is insufficient atomic 321 * memory to do so, a slow fill will be scheduled. 322 * 323 * The caller must provide serialisation (none is used here). In practise, 324 * this means this function must run from the NAPI handler, or be called 325 * when NAPI is disabled. 326 */ 327 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic) 328 { 329 struct efx_nic *efx = rx_queue->efx; 330 unsigned int fill_level, batch_size; 331 int space, rc = 0; 332 333 if (!rx_queue->refill_enabled) 334 return; 335 336 /* Calculate current fill level, and exit if we don't need to fill */ 337 fill_level = (rx_queue->added_count - rx_queue->removed_count); 338 EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries); 339 if (fill_level >= rx_queue->fast_fill_trigger) 340 goto out; 341 342 /* Record minimum fill level */ 343 if (unlikely(fill_level < rx_queue->min_fill)) { 344 if (fill_level) 345 rx_queue->min_fill = fill_level; 346 } 347 348 batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page; 349 space = rx_queue->max_fill - fill_level; 350 EFX_BUG_ON_PARANOID(space < batch_size); 351 352 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, 353 "RX queue %d fast-filling descriptor ring from" 354 " level %d to level %d\n", 355 efx_rx_queue_index(rx_queue), fill_level, 356 rx_queue->max_fill); 357 358 359 do { 360 rc = efx_init_rx_buffers(rx_queue, atomic); 361 if (unlikely(rc)) { 362 /* Ensure that we don't leave the rx queue empty */ 363 if (rx_queue->added_count == rx_queue->removed_count) 364 efx_schedule_slow_fill(rx_queue); 365 goto out; 366 } 367 } while ((space -= batch_size) >= batch_size); 368 369 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, 370 "RX queue %d fast-filled descriptor ring " 371 "to level %d\n", efx_rx_queue_index(rx_queue), 372 rx_queue->added_count - rx_queue->removed_count); 373 374 out: 375 if (rx_queue->notified_count != rx_queue->added_count) 376 efx_nic_notify_rx_desc(rx_queue); 377 } 378 379 void efx_rx_slow_fill(unsigned long context) 380 { 381 struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context; 382 383 /* Post an event to cause NAPI to run and refill the queue */ 384 efx_nic_generate_fill_event(rx_queue); 385 ++rx_queue->slow_fill_count; 386 } 387 388 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue, 389 struct efx_rx_buffer *rx_buf, 390 int len) 391 { 392 struct efx_nic *efx = rx_queue->efx; 393 unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding; 394 395 if (likely(len <= max_len)) 396 return; 397 398 /* The packet must be discarded, but this is only a fatal error 399 * if the caller indicated it was 400 */ 401 rx_buf->flags |= EFX_RX_PKT_DISCARD; 402 403 if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) { 404 if (net_ratelimit()) 405 netif_err(efx, rx_err, efx->net_dev, 406 " RX queue %d seriously overlength " 407 "RX event (0x%x > 0x%x+0x%x). Leaking\n", 408 efx_rx_queue_index(rx_queue), len, max_len, 409 efx->type->rx_buffer_padding); 410 efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY); 411 } else { 412 if (net_ratelimit()) 413 netif_err(efx, rx_err, efx->net_dev, 414 " RX queue %d overlength RX event " 415 "(0x%x > 0x%x)\n", 416 efx_rx_queue_index(rx_queue), len, max_len); 417 } 418 419 efx_rx_queue_channel(rx_queue)->n_rx_overlength++; 420 } 421 422 /* Pass a received packet up through GRO. GRO can handle pages 423 * regardless of checksum state and skbs with a good checksum. 424 */ 425 static void 426 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf, 427 unsigned int n_frags, u8 *eh) 428 { 429 struct napi_struct *napi = &channel->napi_str; 430 gro_result_t gro_result; 431 struct efx_nic *efx = channel->efx; 432 struct sk_buff *skb; 433 434 skb = napi_get_frags(napi); 435 if (unlikely(!skb)) { 436 struct efx_rx_queue *rx_queue; 437 438 rx_queue = efx_channel_get_rx_queue(channel); 439 efx_free_rx_buffers(rx_queue, rx_buf, n_frags); 440 return; 441 } 442 443 if (efx->net_dev->features & NETIF_F_RXHASH) 444 skb_set_hash(skb, efx_rx_buf_hash(efx, eh), 445 PKT_HASH_TYPE_L3); 446 skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ? 447 CHECKSUM_UNNECESSARY : CHECKSUM_NONE); 448 449 for (;;) { 450 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, 451 rx_buf->page, rx_buf->page_offset, 452 rx_buf->len); 453 rx_buf->page = NULL; 454 skb->len += rx_buf->len; 455 if (skb_shinfo(skb)->nr_frags == n_frags) 456 break; 457 458 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf); 459 } 460 461 skb->data_len = skb->len; 462 skb->truesize += n_frags * efx->rx_buffer_truesize; 463 464 skb_record_rx_queue(skb, channel->rx_queue.core_index); 465 466 gro_result = napi_gro_frags(napi); 467 if (gro_result != GRO_DROP) 468 channel->irq_mod_score += 2; 469 } 470 471 /* Allocate and construct an SKB around page fragments */ 472 static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel, 473 struct efx_rx_buffer *rx_buf, 474 unsigned int n_frags, 475 u8 *eh, int hdr_len) 476 { 477 struct efx_nic *efx = channel->efx; 478 struct sk_buff *skb; 479 480 /* Allocate an SKB to store the headers */ 481 skb = netdev_alloc_skb(efx->net_dev, 482 efx->rx_ip_align + efx->rx_prefix_size + 483 hdr_len); 484 if (unlikely(skb == NULL)) { 485 atomic_inc(&efx->n_rx_noskb_drops); 486 return NULL; 487 } 488 489 EFX_BUG_ON_PARANOID(rx_buf->len < hdr_len); 490 491 memcpy(skb->data + efx->rx_ip_align, eh - efx->rx_prefix_size, 492 efx->rx_prefix_size + hdr_len); 493 skb_reserve(skb, efx->rx_ip_align + efx->rx_prefix_size); 494 __skb_put(skb, hdr_len); 495 496 /* Append the remaining page(s) onto the frag list */ 497 if (rx_buf->len > hdr_len) { 498 rx_buf->page_offset += hdr_len; 499 rx_buf->len -= hdr_len; 500 501 for (;;) { 502 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, 503 rx_buf->page, rx_buf->page_offset, 504 rx_buf->len); 505 rx_buf->page = NULL; 506 skb->len += rx_buf->len; 507 skb->data_len += rx_buf->len; 508 if (skb_shinfo(skb)->nr_frags == n_frags) 509 break; 510 511 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf); 512 } 513 } else { 514 __free_pages(rx_buf->page, efx->rx_buffer_order); 515 rx_buf->page = NULL; 516 n_frags = 0; 517 } 518 519 skb->truesize += n_frags * efx->rx_buffer_truesize; 520 521 /* Move past the ethernet header */ 522 skb->protocol = eth_type_trans(skb, efx->net_dev); 523 524 skb_mark_napi_id(skb, &channel->napi_str); 525 526 return skb; 527 } 528 529 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index, 530 unsigned int n_frags, unsigned int len, u16 flags) 531 { 532 struct efx_nic *efx = rx_queue->efx; 533 struct efx_channel *channel = efx_rx_queue_channel(rx_queue); 534 struct efx_rx_buffer *rx_buf; 535 536 rx_queue->rx_packets++; 537 538 rx_buf = efx_rx_buffer(rx_queue, index); 539 rx_buf->flags |= flags; 540 541 /* Validate the number of fragments and completed length */ 542 if (n_frags == 1) { 543 if (!(flags & EFX_RX_PKT_PREFIX_LEN)) 544 efx_rx_packet__check_len(rx_queue, rx_buf, len); 545 } else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) || 546 unlikely(len <= (n_frags - 1) * efx->rx_dma_len) || 547 unlikely(len > n_frags * efx->rx_dma_len) || 548 unlikely(!efx->rx_scatter)) { 549 /* If this isn't an explicit discard request, either 550 * the hardware or the driver is broken. 551 */ 552 WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD)); 553 rx_buf->flags |= EFX_RX_PKT_DISCARD; 554 } 555 556 netif_vdbg(efx, rx_status, efx->net_dev, 557 "RX queue %d received ids %x-%x len %d %s%s\n", 558 efx_rx_queue_index(rx_queue), index, 559 (index + n_frags - 1) & rx_queue->ptr_mask, len, 560 (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "", 561 (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : ""); 562 563 /* Discard packet, if instructed to do so. Process the 564 * previous receive first. 565 */ 566 if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) { 567 efx_rx_flush_packet(channel); 568 efx_discard_rx_packet(channel, rx_buf, n_frags); 569 return; 570 } 571 572 if (n_frags == 1 && !(flags & EFX_RX_PKT_PREFIX_LEN)) 573 rx_buf->len = len; 574 575 /* Release and/or sync the DMA mapping - assumes all RX buffers 576 * consumed in-order per RX queue. 577 */ 578 efx_sync_rx_buffer(efx, rx_buf, rx_buf->len); 579 580 /* Prefetch nice and early so data will (hopefully) be in cache by 581 * the time we look at it. 582 */ 583 prefetch(efx_rx_buf_va(rx_buf)); 584 585 rx_buf->page_offset += efx->rx_prefix_size; 586 rx_buf->len -= efx->rx_prefix_size; 587 588 if (n_frags > 1) { 589 /* Release/sync DMA mapping for additional fragments. 590 * Fix length for last fragment. 591 */ 592 unsigned int tail_frags = n_frags - 1; 593 594 for (;;) { 595 rx_buf = efx_rx_buf_next(rx_queue, rx_buf); 596 if (--tail_frags == 0) 597 break; 598 efx_sync_rx_buffer(efx, rx_buf, efx->rx_dma_len); 599 } 600 rx_buf->len = len - (n_frags - 1) * efx->rx_dma_len; 601 efx_sync_rx_buffer(efx, rx_buf, rx_buf->len); 602 } 603 604 /* All fragments have been DMA-synced, so recycle pages. */ 605 rx_buf = efx_rx_buffer(rx_queue, index); 606 efx_recycle_rx_pages(channel, rx_buf, n_frags); 607 608 /* Pipeline receives so that we give time for packet headers to be 609 * prefetched into cache. 610 */ 611 efx_rx_flush_packet(channel); 612 channel->rx_pkt_n_frags = n_frags; 613 channel->rx_pkt_index = index; 614 } 615 616 static void efx_rx_deliver(struct efx_channel *channel, u8 *eh, 617 struct efx_rx_buffer *rx_buf, 618 unsigned int n_frags) 619 { 620 struct sk_buff *skb; 621 u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS); 622 623 skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len); 624 if (unlikely(skb == NULL)) { 625 struct efx_rx_queue *rx_queue; 626 627 rx_queue = efx_channel_get_rx_queue(channel); 628 efx_free_rx_buffers(rx_queue, rx_buf, n_frags); 629 return; 630 } 631 skb_record_rx_queue(skb, channel->rx_queue.core_index); 632 633 /* Set the SKB flags */ 634 skb_checksum_none_assert(skb); 635 if (likely(rx_buf->flags & EFX_RX_PKT_CSUMMED)) 636 skb->ip_summed = CHECKSUM_UNNECESSARY; 637 638 efx_rx_skb_attach_timestamp(channel, skb); 639 640 if (channel->type->receive_skb) 641 if (channel->type->receive_skb(channel, skb)) 642 return; 643 644 /* Pass the packet up */ 645 netif_receive_skb(skb); 646 } 647 648 /* Handle a received packet. Second half: Touches packet payload. */ 649 void __efx_rx_packet(struct efx_channel *channel) 650 { 651 struct efx_nic *efx = channel->efx; 652 struct efx_rx_buffer *rx_buf = 653 efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index); 654 u8 *eh = efx_rx_buf_va(rx_buf); 655 656 /* Read length from the prefix if necessary. This already 657 * excludes the length of the prefix itself. 658 */ 659 if (rx_buf->flags & EFX_RX_PKT_PREFIX_LEN) 660 rx_buf->len = le16_to_cpup((__le16 *) 661 (eh + efx->rx_packet_len_offset)); 662 663 /* If we're in loopback test, then pass the packet directly to the 664 * loopback layer, and free the rx_buf here 665 */ 666 if (unlikely(efx->loopback_selftest)) { 667 struct efx_rx_queue *rx_queue; 668 669 efx_loopback_rx_packet(efx, eh, rx_buf->len); 670 rx_queue = efx_channel_get_rx_queue(channel); 671 efx_free_rx_buffers(rx_queue, rx_buf, 672 channel->rx_pkt_n_frags); 673 goto out; 674 } 675 676 if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM))) 677 rx_buf->flags &= ~EFX_RX_PKT_CSUMMED; 678 679 if ((rx_buf->flags & EFX_RX_PKT_TCP) && !channel->type->receive_skb && 680 !efx_channel_busy_polling(channel)) 681 efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh); 682 else 683 efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags); 684 out: 685 channel->rx_pkt_n_frags = 0; 686 } 687 688 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue) 689 { 690 struct efx_nic *efx = rx_queue->efx; 691 unsigned int entries; 692 int rc; 693 694 /* Create the smallest power-of-two aligned ring */ 695 entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE); 696 EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); 697 rx_queue->ptr_mask = entries - 1; 698 699 netif_dbg(efx, probe, efx->net_dev, 700 "creating RX queue %d size %#x mask %#x\n", 701 efx_rx_queue_index(rx_queue), efx->rxq_entries, 702 rx_queue->ptr_mask); 703 704 /* Allocate RX buffers */ 705 rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer), 706 GFP_KERNEL); 707 if (!rx_queue->buffer) 708 return -ENOMEM; 709 710 rc = efx_nic_probe_rx(rx_queue); 711 if (rc) { 712 kfree(rx_queue->buffer); 713 rx_queue->buffer = NULL; 714 } 715 716 return rc; 717 } 718 719 static void efx_init_rx_recycle_ring(struct efx_nic *efx, 720 struct efx_rx_queue *rx_queue) 721 { 722 unsigned int bufs_in_recycle_ring, page_ring_size; 723 724 /* Set the RX recycle ring size */ 725 #ifdef CONFIG_PPC64 726 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU; 727 #else 728 if (iommu_present(&pci_bus_type)) 729 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU; 730 else 731 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU; 732 #endif /* CONFIG_PPC64 */ 733 734 page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring / 735 efx->rx_bufs_per_page); 736 rx_queue->page_ring = kcalloc(page_ring_size, 737 sizeof(*rx_queue->page_ring), GFP_KERNEL); 738 rx_queue->page_ptr_mask = page_ring_size - 1; 739 } 740 741 void efx_init_rx_queue(struct efx_rx_queue *rx_queue) 742 { 743 struct efx_nic *efx = rx_queue->efx; 744 unsigned int max_fill, trigger, max_trigger; 745 746 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 747 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue)); 748 749 /* Initialise ptr fields */ 750 rx_queue->added_count = 0; 751 rx_queue->notified_count = 0; 752 rx_queue->removed_count = 0; 753 rx_queue->min_fill = -1U; 754 efx_init_rx_recycle_ring(efx, rx_queue); 755 756 rx_queue->page_remove = 0; 757 rx_queue->page_add = rx_queue->page_ptr_mask + 1; 758 rx_queue->page_recycle_count = 0; 759 rx_queue->page_recycle_failed = 0; 760 rx_queue->page_recycle_full = 0; 761 762 /* Initialise limit fields */ 763 max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM; 764 max_trigger = 765 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page; 766 if (rx_refill_threshold != 0) { 767 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U; 768 if (trigger > max_trigger) 769 trigger = max_trigger; 770 } else { 771 trigger = max_trigger; 772 } 773 774 rx_queue->max_fill = max_fill; 775 rx_queue->fast_fill_trigger = trigger; 776 rx_queue->refill_enabled = true; 777 778 /* Set up RX descriptor ring */ 779 efx_nic_init_rx(rx_queue); 780 } 781 782 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue) 783 { 784 int i; 785 struct efx_nic *efx = rx_queue->efx; 786 struct efx_rx_buffer *rx_buf; 787 788 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 789 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue)); 790 791 del_timer_sync(&rx_queue->slow_fill); 792 793 /* Release RX buffers from the current read ptr to the write ptr */ 794 if (rx_queue->buffer) { 795 for (i = rx_queue->removed_count; i < rx_queue->added_count; 796 i++) { 797 unsigned index = i & rx_queue->ptr_mask; 798 rx_buf = efx_rx_buffer(rx_queue, index); 799 efx_fini_rx_buffer(rx_queue, rx_buf); 800 } 801 } 802 803 /* Unmap and release the pages in the recycle ring. Remove the ring. */ 804 for (i = 0; i <= rx_queue->page_ptr_mask; i++) { 805 struct page *page = rx_queue->page_ring[i]; 806 struct efx_rx_page_state *state; 807 808 if (page == NULL) 809 continue; 810 811 state = page_address(page); 812 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, 813 PAGE_SIZE << efx->rx_buffer_order, 814 DMA_FROM_DEVICE); 815 put_page(page); 816 } 817 kfree(rx_queue->page_ring); 818 rx_queue->page_ring = NULL; 819 } 820 821 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue) 822 { 823 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, 824 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue)); 825 826 efx_nic_remove_rx(rx_queue); 827 828 kfree(rx_queue->buffer); 829 rx_queue->buffer = NULL; 830 } 831 832 833 module_param(rx_refill_threshold, uint, 0444); 834 MODULE_PARM_DESC(rx_refill_threshold, 835 "RX descriptor ring refill threshold (%)"); 836 837 #ifdef CONFIG_RFS_ACCEL 838 839 int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb, 840 u16 rxq_index, u32 flow_id) 841 { 842 struct efx_nic *efx = netdev_priv(net_dev); 843 struct efx_channel *channel; 844 struct efx_filter_spec spec; 845 const __be16 *ports; 846 __be16 ether_type; 847 int nhoff; 848 int rc; 849 850 /* The core RPS/RFS code has already parsed and validated 851 * VLAN, IP and transport headers. We assume they are in the 852 * header area. 853 */ 854 855 if (skb->protocol == htons(ETH_P_8021Q)) { 856 const struct vlan_hdr *vh = 857 (const struct vlan_hdr *)skb->data; 858 859 /* We can't filter on the IP 5-tuple and the vlan 860 * together, so just strip the vlan header and filter 861 * on the IP part. 862 */ 863 EFX_BUG_ON_PARANOID(skb_headlen(skb) < sizeof(*vh)); 864 ether_type = vh->h_vlan_encapsulated_proto; 865 nhoff = sizeof(struct vlan_hdr); 866 } else { 867 ether_type = skb->protocol; 868 nhoff = 0; 869 } 870 871 if (ether_type != htons(ETH_P_IP) && ether_type != htons(ETH_P_IPV6)) 872 return -EPROTONOSUPPORT; 873 874 efx_filter_init_rx(&spec, EFX_FILTER_PRI_HINT, 875 efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0, 876 rxq_index); 877 spec.match_flags = 878 EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO | 879 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT | 880 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT; 881 spec.ether_type = ether_type; 882 883 if (ether_type == htons(ETH_P_IP)) { 884 const struct iphdr *ip = 885 (const struct iphdr *)(skb->data + nhoff); 886 887 EFX_BUG_ON_PARANOID(skb_headlen(skb) < nhoff + sizeof(*ip)); 888 if (ip_is_fragment(ip)) 889 return -EPROTONOSUPPORT; 890 spec.ip_proto = ip->protocol; 891 spec.rem_host[0] = ip->saddr; 892 spec.loc_host[0] = ip->daddr; 893 EFX_BUG_ON_PARANOID(skb_headlen(skb) < nhoff + 4 * ip->ihl + 4); 894 ports = (const __be16 *)(skb->data + nhoff + 4 * ip->ihl); 895 } else { 896 const struct ipv6hdr *ip6 = 897 (const struct ipv6hdr *)(skb->data + nhoff); 898 899 EFX_BUG_ON_PARANOID(skb_headlen(skb) < 900 nhoff + sizeof(*ip6) + 4); 901 spec.ip_proto = ip6->nexthdr; 902 memcpy(spec.rem_host, &ip6->saddr, sizeof(ip6->saddr)); 903 memcpy(spec.loc_host, &ip6->daddr, sizeof(ip6->daddr)); 904 ports = (const __be16 *)(ip6 + 1); 905 } 906 907 spec.rem_port = ports[0]; 908 spec.loc_port = ports[1]; 909 910 rc = efx->type->filter_rfs_insert(efx, &spec); 911 if (rc < 0) 912 return rc; 913 914 /* Remember this so we can check whether to expire the filter later */ 915 efx->rps_flow_id[rc] = flow_id; 916 channel = efx_get_channel(efx, skb_get_rx_queue(skb)); 917 ++channel->rfs_filters_added; 918 919 if (ether_type == htons(ETH_P_IP)) 920 netif_info(efx, rx_status, efx->net_dev, 921 "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d]\n", 922 (spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 923 spec.rem_host, ntohs(ports[0]), spec.loc_host, 924 ntohs(ports[1]), rxq_index, flow_id, rc); 925 else 926 netif_info(efx, rx_status, efx->net_dev, 927 "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d]\n", 928 (spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", 929 spec.rem_host, ntohs(ports[0]), spec.loc_host, 930 ntohs(ports[1]), rxq_index, flow_id, rc); 931 932 return rc; 933 } 934 935 bool __efx_filter_rfs_expire(struct efx_nic *efx, unsigned int quota) 936 { 937 bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index); 938 unsigned int index, size; 939 u32 flow_id; 940 941 if (!spin_trylock_bh(&efx->filter_lock)) 942 return false; 943 944 expire_one = efx->type->filter_rfs_expire_one; 945 index = efx->rps_expire_index; 946 size = efx->type->max_rx_ip_filters; 947 while (quota--) { 948 flow_id = efx->rps_flow_id[index]; 949 if (expire_one(efx, flow_id, index)) 950 netif_info(efx, rx_status, efx->net_dev, 951 "expired filter %d [flow %u]\n", 952 index, flow_id); 953 if (++index == size) 954 index = 0; 955 } 956 efx->rps_expire_index = index; 957 958 spin_unlock_bh(&efx->filter_lock); 959 return true; 960 } 961 962 #endif /* CONFIG_RFS_ACCEL */ 963 964 /** 965 * efx_filter_is_mc_recipient - test whether spec is a multicast recipient 966 * @spec: Specification to test 967 * 968 * Return: %true if the specification is a non-drop RX filter that 969 * matches a local MAC address I/G bit value of 1 or matches a local 970 * IPv4 or IPv6 address value in the respective multicast address 971 * range. Otherwise %false. 972 */ 973 bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec) 974 { 975 if (!(spec->flags & EFX_FILTER_FLAG_RX) || 976 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP) 977 return false; 978 979 if (spec->match_flags & 980 (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) && 981 is_multicast_ether_addr(spec->loc_mac)) 982 return true; 983 984 if ((spec->match_flags & 985 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) == 986 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) { 987 if (spec->ether_type == htons(ETH_P_IP) && 988 ipv4_is_multicast(spec->loc_host[0])) 989 return true; 990 if (spec->ether_type == htons(ETH_P_IPV6) && 991 ((const u8 *)spec->loc_host)[0] == 0xff) 992 return true; 993 } 994 995 return false; 996 } 997