xref: /linux/drivers/net/ethernet/sfc/rx.c (revision b8d312aa075f33282565467662c4628dae0a2aff)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7 
8 #include <linux/socket.h>
9 #include <linux/in.h>
10 #include <linux/slab.h>
11 #include <linux/ip.h>
12 #include <linux/ipv6.h>
13 #include <linux/tcp.h>
14 #include <linux/udp.h>
15 #include <linux/prefetch.h>
16 #include <linux/moduleparam.h>
17 #include <linux/iommu.h>
18 #include <net/ip.h>
19 #include <net/checksum.h>
20 #include "net_driver.h"
21 #include "efx.h"
22 #include "filter.h"
23 #include "nic.h"
24 #include "selftest.h"
25 #include "workarounds.h"
26 
27 /* Preferred number of descriptors to fill at once */
28 #define EFX_RX_PREFERRED_BATCH 8U
29 
30 /* Number of RX buffers to recycle pages for.  When creating the RX page recycle
31  * ring, this number is divided by the number of buffers per page to calculate
32  * the number of pages to store in the RX page recycle ring.
33  */
34 #define EFX_RECYCLE_RING_SIZE_IOMMU 4096
35 #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH)
36 
37 /* Size of buffer allocated for skb header area. */
38 #define EFX_SKB_HEADERS  128u
39 
40 /* This is the percentage fill level below which new RX descriptors
41  * will be added to the RX descriptor ring.
42  */
43 static unsigned int rx_refill_threshold;
44 
45 /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
46 #define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \
47 				      EFX_RX_USR_BUF_SIZE)
48 
49 /*
50  * RX maximum head room required.
51  *
52  * This must be at least 1 to prevent overflow, plus one packet-worth
53  * to allow pipelined receives.
54  */
55 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
56 
57 static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf)
58 {
59 	return page_address(buf->page) + buf->page_offset;
60 }
61 
62 static inline u32 efx_rx_buf_hash(struct efx_nic *efx, const u8 *eh)
63 {
64 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
65 	return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset));
66 #else
67 	const u8 *data = eh + efx->rx_packet_hash_offset;
68 	return (u32)data[0]	  |
69 	       (u32)data[1] << 8  |
70 	       (u32)data[2] << 16 |
71 	       (u32)data[3] << 24;
72 #endif
73 }
74 
75 static inline struct efx_rx_buffer *
76 efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
77 {
78 	if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
79 		return efx_rx_buffer(rx_queue, 0);
80 	else
81 		return rx_buf + 1;
82 }
83 
84 static inline void efx_sync_rx_buffer(struct efx_nic *efx,
85 				      struct efx_rx_buffer *rx_buf,
86 				      unsigned int len)
87 {
88 	dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
89 				DMA_FROM_DEVICE);
90 }
91 
92 void efx_rx_config_page_split(struct efx_nic *efx)
93 {
94 	efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align,
95 				      EFX_RX_BUF_ALIGNMENT);
96 	efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
97 		((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
98 		 efx->rx_page_buf_step);
99 	efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
100 		efx->rx_bufs_per_page;
101 	efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
102 					       efx->rx_bufs_per_page);
103 }
104 
105 /* Check the RX page recycle ring for a page that can be reused. */
106 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
107 {
108 	struct efx_nic *efx = rx_queue->efx;
109 	struct page *page;
110 	struct efx_rx_page_state *state;
111 	unsigned index;
112 
113 	index = rx_queue->page_remove & rx_queue->page_ptr_mask;
114 	page = rx_queue->page_ring[index];
115 	if (page == NULL)
116 		return NULL;
117 
118 	rx_queue->page_ring[index] = NULL;
119 	/* page_remove cannot exceed page_add. */
120 	if (rx_queue->page_remove != rx_queue->page_add)
121 		++rx_queue->page_remove;
122 
123 	/* If page_count is 1 then we hold the only reference to this page. */
124 	if (page_count(page) == 1) {
125 		++rx_queue->page_recycle_count;
126 		return page;
127 	} else {
128 		state = page_address(page);
129 		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
130 			       PAGE_SIZE << efx->rx_buffer_order,
131 			       DMA_FROM_DEVICE);
132 		put_page(page);
133 		++rx_queue->page_recycle_failed;
134 	}
135 
136 	return NULL;
137 }
138 
139 /**
140  * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
141  *
142  * @rx_queue:		Efx RX queue
143  *
144  * This allocates a batch of pages, maps them for DMA, and populates
145  * struct efx_rx_buffers for each one. Return a negative error code or
146  * 0 on success. If a single page can be used for multiple buffers,
147  * then the page will either be inserted fully, or not at all.
148  */
149 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic)
150 {
151 	struct efx_nic *efx = rx_queue->efx;
152 	struct efx_rx_buffer *rx_buf;
153 	struct page *page;
154 	unsigned int page_offset;
155 	struct efx_rx_page_state *state;
156 	dma_addr_t dma_addr;
157 	unsigned index, count;
158 
159 	count = 0;
160 	do {
161 		page = efx_reuse_page(rx_queue);
162 		if (page == NULL) {
163 			page = alloc_pages(__GFP_COMP |
164 					   (atomic ? GFP_ATOMIC : GFP_KERNEL),
165 					   efx->rx_buffer_order);
166 			if (unlikely(page == NULL))
167 				return -ENOMEM;
168 			dma_addr =
169 				dma_map_page(&efx->pci_dev->dev, page, 0,
170 					     PAGE_SIZE << efx->rx_buffer_order,
171 					     DMA_FROM_DEVICE);
172 			if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
173 						       dma_addr))) {
174 				__free_pages(page, efx->rx_buffer_order);
175 				return -EIO;
176 			}
177 			state = page_address(page);
178 			state->dma_addr = dma_addr;
179 		} else {
180 			state = page_address(page);
181 			dma_addr = state->dma_addr;
182 		}
183 
184 		dma_addr += sizeof(struct efx_rx_page_state);
185 		page_offset = sizeof(struct efx_rx_page_state);
186 
187 		do {
188 			index = rx_queue->added_count & rx_queue->ptr_mask;
189 			rx_buf = efx_rx_buffer(rx_queue, index);
190 			rx_buf->dma_addr = dma_addr + efx->rx_ip_align;
191 			rx_buf->page = page;
192 			rx_buf->page_offset = page_offset + efx->rx_ip_align;
193 			rx_buf->len = efx->rx_dma_len;
194 			rx_buf->flags = 0;
195 			++rx_queue->added_count;
196 			get_page(page);
197 			dma_addr += efx->rx_page_buf_step;
198 			page_offset += efx->rx_page_buf_step;
199 		} while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
200 
201 		rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
202 	} while (++count < efx->rx_pages_per_batch);
203 
204 	return 0;
205 }
206 
207 /* Unmap a DMA-mapped page.  This function is only called for the final RX
208  * buffer in a page.
209  */
210 static void efx_unmap_rx_buffer(struct efx_nic *efx,
211 				struct efx_rx_buffer *rx_buf)
212 {
213 	struct page *page = rx_buf->page;
214 
215 	if (page) {
216 		struct efx_rx_page_state *state = page_address(page);
217 		dma_unmap_page(&efx->pci_dev->dev,
218 			       state->dma_addr,
219 			       PAGE_SIZE << efx->rx_buffer_order,
220 			       DMA_FROM_DEVICE);
221 	}
222 }
223 
224 static void efx_free_rx_buffers(struct efx_rx_queue *rx_queue,
225 				struct efx_rx_buffer *rx_buf,
226 				unsigned int num_bufs)
227 {
228 	do {
229 		if (rx_buf->page) {
230 			put_page(rx_buf->page);
231 			rx_buf->page = NULL;
232 		}
233 		rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
234 	} while (--num_bufs);
235 }
236 
237 /* Attempt to recycle the page if there is an RX recycle ring; the page can
238  * only be added if this is the final RX buffer, to prevent pages being used in
239  * the descriptor ring and appearing in the recycle ring simultaneously.
240  */
241 static void efx_recycle_rx_page(struct efx_channel *channel,
242 				struct efx_rx_buffer *rx_buf)
243 {
244 	struct page *page = rx_buf->page;
245 	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
246 	struct efx_nic *efx = rx_queue->efx;
247 	unsigned index;
248 
249 	/* Only recycle the page after processing the final buffer. */
250 	if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
251 		return;
252 
253 	index = rx_queue->page_add & rx_queue->page_ptr_mask;
254 	if (rx_queue->page_ring[index] == NULL) {
255 		unsigned read_index = rx_queue->page_remove &
256 			rx_queue->page_ptr_mask;
257 
258 		/* The next slot in the recycle ring is available, but
259 		 * increment page_remove if the read pointer currently
260 		 * points here.
261 		 */
262 		if (read_index == index)
263 			++rx_queue->page_remove;
264 		rx_queue->page_ring[index] = page;
265 		++rx_queue->page_add;
266 		return;
267 	}
268 	++rx_queue->page_recycle_full;
269 	efx_unmap_rx_buffer(efx, rx_buf);
270 	put_page(rx_buf->page);
271 }
272 
273 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
274 			       struct efx_rx_buffer *rx_buf)
275 {
276 	/* Release the page reference we hold for the buffer. */
277 	if (rx_buf->page)
278 		put_page(rx_buf->page);
279 
280 	/* If this is the last buffer in a page, unmap and free it. */
281 	if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
282 		efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
283 		efx_free_rx_buffers(rx_queue, rx_buf, 1);
284 	}
285 	rx_buf->page = NULL;
286 }
287 
288 /* Recycle the pages that are used by buffers that have just been received. */
289 static void efx_recycle_rx_pages(struct efx_channel *channel,
290 				 struct efx_rx_buffer *rx_buf,
291 				 unsigned int n_frags)
292 {
293 	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
294 
295 	do {
296 		efx_recycle_rx_page(channel, rx_buf);
297 		rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
298 	} while (--n_frags);
299 }
300 
301 static void efx_discard_rx_packet(struct efx_channel *channel,
302 				  struct efx_rx_buffer *rx_buf,
303 				  unsigned int n_frags)
304 {
305 	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
306 
307 	efx_recycle_rx_pages(channel, rx_buf, n_frags);
308 
309 	efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
310 }
311 
312 /**
313  * efx_fast_push_rx_descriptors - push new RX descriptors quickly
314  * @rx_queue:		RX descriptor queue
315  *
316  * This will aim to fill the RX descriptor queue up to
317  * @rx_queue->@max_fill. If there is insufficient atomic
318  * memory to do so, a slow fill will be scheduled.
319  *
320  * The caller must provide serialisation (none is used here). In practise,
321  * this means this function must run from the NAPI handler, or be called
322  * when NAPI is disabled.
323  */
324 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic)
325 {
326 	struct efx_nic *efx = rx_queue->efx;
327 	unsigned int fill_level, batch_size;
328 	int space, rc = 0;
329 
330 	if (!rx_queue->refill_enabled)
331 		return;
332 
333 	/* Calculate current fill level, and exit if we don't need to fill */
334 	fill_level = (rx_queue->added_count - rx_queue->removed_count);
335 	EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries);
336 	if (fill_level >= rx_queue->fast_fill_trigger)
337 		goto out;
338 
339 	/* Record minimum fill level */
340 	if (unlikely(fill_level < rx_queue->min_fill)) {
341 		if (fill_level)
342 			rx_queue->min_fill = fill_level;
343 	}
344 
345 	batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
346 	space = rx_queue->max_fill - fill_level;
347 	EFX_WARN_ON_ONCE_PARANOID(space < batch_size);
348 
349 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
350 		   "RX queue %d fast-filling descriptor ring from"
351 		   " level %d to level %d\n",
352 		   efx_rx_queue_index(rx_queue), fill_level,
353 		   rx_queue->max_fill);
354 
355 
356 	do {
357 		rc = efx_init_rx_buffers(rx_queue, atomic);
358 		if (unlikely(rc)) {
359 			/* Ensure that we don't leave the rx queue empty */
360 			efx_schedule_slow_fill(rx_queue);
361 			goto out;
362 		}
363 	} while ((space -= batch_size) >= batch_size);
364 
365 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
366 		   "RX queue %d fast-filled descriptor ring "
367 		   "to level %d\n", efx_rx_queue_index(rx_queue),
368 		   rx_queue->added_count - rx_queue->removed_count);
369 
370  out:
371 	if (rx_queue->notified_count != rx_queue->added_count)
372 		efx_nic_notify_rx_desc(rx_queue);
373 }
374 
375 void efx_rx_slow_fill(struct timer_list *t)
376 {
377 	struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill);
378 
379 	/* Post an event to cause NAPI to run and refill the queue */
380 	efx_nic_generate_fill_event(rx_queue);
381 	++rx_queue->slow_fill_count;
382 }
383 
384 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
385 				     struct efx_rx_buffer *rx_buf,
386 				     int len)
387 {
388 	struct efx_nic *efx = rx_queue->efx;
389 	unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
390 
391 	if (likely(len <= max_len))
392 		return;
393 
394 	/* The packet must be discarded, but this is only a fatal error
395 	 * if the caller indicated it was
396 	 */
397 	rx_buf->flags |= EFX_RX_PKT_DISCARD;
398 
399 	if (net_ratelimit())
400 		netif_err(efx, rx_err, efx->net_dev,
401 			  "RX queue %d overlength RX event (%#x > %#x)\n",
402 			  efx_rx_queue_index(rx_queue), len, max_len);
403 
404 	efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
405 }
406 
407 /* Pass a received packet up through GRO.  GRO can handle pages
408  * regardless of checksum state and skbs with a good checksum.
409  */
410 static void
411 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
412 		  unsigned int n_frags, u8 *eh)
413 {
414 	struct napi_struct *napi = &channel->napi_str;
415 	gro_result_t gro_result;
416 	struct efx_nic *efx = channel->efx;
417 	struct sk_buff *skb;
418 
419 	skb = napi_get_frags(napi);
420 	if (unlikely(!skb)) {
421 		struct efx_rx_queue *rx_queue;
422 
423 		rx_queue = efx_channel_get_rx_queue(channel);
424 		efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
425 		return;
426 	}
427 
428 	if (efx->net_dev->features & NETIF_F_RXHASH)
429 		skb_set_hash(skb, efx_rx_buf_hash(efx, eh),
430 			     PKT_HASH_TYPE_L3);
431 	skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
432 			  CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
433 	skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL);
434 
435 	for (;;) {
436 		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
437 				   rx_buf->page, rx_buf->page_offset,
438 				   rx_buf->len);
439 		rx_buf->page = NULL;
440 		skb->len += rx_buf->len;
441 		if (skb_shinfo(skb)->nr_frags == n_frags)
442 			break;
443 
444 		rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
445 	}
446 
447 	skb->data_len = skb->len;
448 	skb->truesize += n_frags * efx->rx_buffer_truesize;
449 
450 	skb_record_rx_queue(skb, channel->rx_queue.core_index);
451 
452 	gro_result = napi_gro_frags(napi);
453 	if (gro_result != GRO_DROP)
454 		channel->irq_mod_score += 2;
455 }
456 
457 /* Allocate and construct an SKB around page fragments */
458 static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel,
459 				     struct efx_rx_buffer *rx_buf,
460 				     unsigned int n_frags,
461 				     u8 *eh, int hdr_len)
462 {
463 	struct efx_nic *efx = channel->efx;
464 	struct sk_buff *skb;
465 
466 	/* Allocate an SKB to store the headers */
467 	skb = netdev_alloc_skb(efx->net_dev,
468 			       efx->rx_ip_align + efx->rx_prefix_size +
469 			       hdr_len);
470 	if (unlikely(skb == NULL)) {
471 		atomic_inc(&efx->n_rx_noskb_drops);
472 		return NULL;
473 	}
474 
475 	EFX_WARN_ON_ONCE_PARANOID(rx_buf->len < hdr_len);
476 
477 	memcpy(skb->data + efx->rx_ip_align, eh - efx->rx_prefix_size,
478 	       efx->rx_prefix_size + hdr_len);
479 	skb_reserve(skb, efx->rx_ip_align + efx->rx_prefix_size);
480 	__skb_put(skb, hdr_len);
481 
482 	/* Append the remaining page(s) onto the frag list */
483 	if (rx_buf->len > hdr_len) {
484 		rx_buf->page_offset += hdr_len;
485 		rx_buf->len -= hdr_len;
486 
487 		for (;;) {
488 			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
489 					   rx_buf->page, rx_buf->page_offset,
490 					   rx_buf->len);
491 			rx_buf->page = NULL;
492 			skb->len += rx_buf->len;
493 			skb->data_len += rx_buf->len;
494 			if (skb_shinfo(skb)->nr_frags == n_frags)
495 				break;
496 
497 			rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
498 		}
499 	} else {
500 		__free_pages(rx_buf->page, efx->rx_buffer_order);
501 		rx_buf->page = NULL;
502 		n_frags = 0;
503 	}
504 
505 	skb->truesize += n_frags * efx->rx_buffer_truesize;
506 
507 	/* Move past the ethernet header */
508 	skb->protocol = eth_type_trans(skb, efx->net_dev);
509 
510 	skb_mark_napi_id(skb, &channel->napi_str);
511 
512 	return skb;
513 }
514 
515 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
516 		   unsigned int n_frags, unsigned int len, u16 flags)
517 {
518 	struct efx_nic *efx = rx_queue->efx;
519 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
520 	struct efx_rx_buffer *rx_buf;
521 
522 	rx_queue->rx_packets++;
523 
524 	rx_buf = efx_rx_buffer(rx_queue, index);
525 	rx_buf->flags |= flags;
526 
527 	/* Validate the number of fragments and completed length */
528 	if (n_frags == 1) {
529 		if (!(flags & EFX_RX_PKT_PREFIX_LEN))
530 			efx_rx_packet__check_len(rx_queue, rx_buf, len);
531 	} else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) ||
532 		   unlikely(len <= (n_frags - 1) * efx->rx_dma_len) ||
533 		   unlikely(len > n_frags * efx->rx_dma_len) ||
534 		   unlikely(!efx->rx_scatter)) {
535 		/* If this isn't an explicit discard request, either
536 		 * the hardware or the driver is broken.
537 		 */
538 		WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD));
539 		rx_buf->flags |= EFX_RX_PKT_DISCARD;
540 	}
541 
542 	netif_vdbg(efx, rx_status, efx->net_dev,
543 		   "RX queue %d received ids %x-%x len %d %s%s\n",
544 		   efx_rx_queue_index(rx_queue), index,
545 		   (index + n_frags - 1) & rx_queue->ptr_mask, len,
546 		   (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
547 		   (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
548 
549 	/* Discard packet, if instructed to do so.  Process the
550 	 * previous receive first.
551 	 */
552 	if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
553 		efx_rx_flush_packet(channel);
554 		efx_discard_rx_packet(channel, rx_buf, n_frags);
555 		return;
556 	}
557 
558 	if (n_frags == 1 && !(flags & EFX_RX_PKT_PREFIX_LEN))
559 		rx_buf->len = len;
560 
561 	/* Release and/or sync the DMA mapping - assumes all RX buffers
562 	 * consumed in-order per RX queue.
563 	 */
564 	efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
565 
566 	/* Prefetch nice and early so data will (hopefully) be in cache by
567 	 * the time we look at it.
568 	 */
569 	prefetch(efx_rx_buf_va(rx_buf));
570 
571 	rx_buf->page_offset += efx->rx_prefix_size;
572 	rx_buf->len -= efx->rx_prefix_size;
573 
574 	if (n_frags > 1) {
575 		/* Release/sync DMA mapping for additional fragments.
576 		 * Fix length for last fragment.
577 		 */
578 		unsigned int tail_frags = n_frags - 1;
579 
580 		for (;;) {
581 			rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
582 			if (--tail_frags == 0)
583 				break;
584 			efx_sync_rx_buffer(efx, rx_buf, efx->rx_dma_len);
585 		}
586 		rx_buf->len = len - (n_frags - 1) * efx->rx_dma_len;
587 		efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
588 	}
589 
590 	/* All fragments have been DMA-synced, so recycle pages. */
591 	rx_buf = efx_rx_buffer(rx_queue, index);
592 	efx_recycle_rx_pages(channel, rx_buf, n_frags);
593 
594 	/* Pipeline receives so that we give time for packet headers to be
595 	 * prefetched into cache.
596 	 */
597 	efx_rx_flush_packet(channel);
598 	channel->rx_pkt_n_frags = n_frags;
599 	channel->rx_pkt_index = index;
600 }
601 
602 static void efx_rx_deliver(struct efx_channel *channel, u8 *eh,
603 			   struct efx_rx_buffer *rx_buf,
604 			   unsigned int n_frags)
605 {
606 	struct sk_buff *skb;
607 	u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS);
608 
609 	skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
610 	if (unlikely(skb == NULL)) {
611 		struct efx_rx_queue *rx_queue;
612 
613 		rx_queue = efx_channel_get_rx_queue(channel);
614 		efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
615 		return;
616 	}
617 	skb_record_rx_queue(skb, channel->rx_queue.core_index);
618 
619 	/* Set the SKB flags */
620 	skb_checksum_none_assert(skb);
621 	if (likely(rx_buf->flags & EFX_RX_PKT_CSUMMED)) {
622 		skb->ip_summed = CHECKSUM_UNNECESSARY;
623 		skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL);
624 	}
625 
626 	efx_rx_skb_attach_timestamp(channel, skb);
627 
628 	if (channel->type->receive_skb)
629 		if (channel->type->receive_skb(channel, skb))
630 			return;
631 
632 	/* Pass the packet up */
633 	if (channel->rx_list != NULL)
634 		/* Add to list, will pass up later */
635 		list_add_tail(&skb->list, channel->rx_list);
636 	else
637 		/* No list, so pass it up now */
638 		netif_receive_skb(skb);
639 }
640 
641 /* Handle a received packet.  Second half: Touches packet payload. */
642 void __efx_rx_packet(struct efx_channel *channel)
643 {
644 	struct efx_nic *efx = channel->efx;
645 	struct efx_rx_buffer *rx_buf =
646 		efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
647 	u8 *eh = efx_rx_buf_va(rx_buf);
648 
649 	/* Read length from the prefix if necessary.  This already
650 	 * excludes the length of the prefix itself.
651 	 */
652 	if (rx_buf->flags & EFX_RX_PKT_PREFIX_LEN)
653 		rx_buf->len = le16_to_cpup((__le16 *)
654 					   (eh + efx->rx_packet_len_offset));
655 
656 	/* If we're in loopback test, then pass the packet directly to the
657 	 * loopback layer, and free the rx_buf here
658 	 */
659 	if (unlikely(efx->loopback_selftest)) {
660 		struct efx_rx_queue *rx_queue;
661 
662 		efx_loopback_rx_packet(efx, eh, rx_buf->len);
663 		rx_queue = efx_channel_get_rx_queue(channel);
664 		efx_free_rx_buffers(rx_queue, rx_buf,
665 				    channel->rx_pkt_n_frags);
666 		goto out;
667 	}
668 
669 	if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
670 		rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
671 
672 	if ((rx_buf->flags & EFX_RX_PKT_TCP) && !channel->type->receive_skb)
673 		efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
674 	else
675 		efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
676 out:
677 	channel->rx_pkt_n_frags = 0;
678 }
679 
680 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
681 {
682 	struct efx_nic *efx = rx_queue->efx;
683 	unsigned int entries;
684 	int rc;
685 
686 	/* Create the smallest power-of-two aligned ring */
687 	entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
688 	EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
689 	rx_queue->ptr_mask = entries - 1;
690 
691 	netif_dbg(efx, probe, efx->net_dev,
692 		  "creating RX queue %d size %#x mask %#x\n",
693 		  efx_rx_queue_index(rx_queue), efx->rxq_entries,
694 		  rx_queue->ptr_mask);
695 
696 	/* Allocate RX buffers */
697 	rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
698 				   GFP_KERNEL);
699 	if (!rx_queue->buffer)
700 		return -ENOMEM;
701 
702 	rc = efx_nic_probe_rx(rx_queue);
703 	if (rc) {
704 		kfree(rx_queue->buffer);
705 		rx_queue->buffer = NULL;
706 	}
707 
708 	return rc;
709 }
710 
711 static void efx_init_rx_recycle_ring(struct efx_nic *efx,
712 				     struct efx_rx_queue *rx_queue)
713 {
714 	unsigned int bufs_in_recycle_ring, page_ring_size;
715 
716 	/* Set the RX recycle ring size */
717 #ifdef CONFIG_PPC64
718 	bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
719 #else
720 	if (iommu_present(&pci_bus_type))
721 		bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
722 	else
723 		bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU;
724 #endif /* CONFIG_PPC64 */
725 
726 	page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
727 					    efx->rx_bufs_per_page);
728 	rx_queue->page_ring = kcalloc(page_ring_size,
729 				      sizeof(*rx_queue->page_ring), GFP_KERNEL);
730 	rx_queue->page_ptr_mask = page_ring_size - 1;
731 }
732 
733 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
734 {
735 	struct efx_nic *efx = rx_queue->efx;
736 	unsigned int max_fill, trigger, max_trigger;
737 
738 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
739 		  "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
740 
741 	/* Initialise ptr fields */
742 	rx_queue->added_count = 0;
743 	rx_queue->notified_count = 0;
744 	rx_queue->removed_count = 0;
745 	rx_queue->min_fill = -1U;
746 	efx_init_rx_recycle_ring(efx, rx_queue);
747 
748 	rx_queue->page_remove = 0;
749 	rx_queue->page_add = rx_queue->page_ptr_mask + 1;
750 	rx_queue->page_recycle_count = 0;
751 	rx_queue->page_recycle_failed = 0;
752 	rx_queue->page_recycle_full = 0;
753 
754 	/* Initialise limit fields */
755 	max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
756 	max_trigger =
757 		max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
758 	if (rx_refill_threshold != 0) {
759 		trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
760 		if (trigger > max_trigger)
761 			trigger = max_trigger;
762 	} else {
763 		trigger = max_trigger;
764 	}
765 
766 	rx_queue->max_fill = max_fill;
767 	rx_queue->fast_fill_trigger = trigger;
768 	rx_queue->refill_enabled = true;
769 
770 	/* Set up RX descriptor ring */
771 	efx_nic_init_rx(rx_queue);
772 }
773 
774 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
775 {
776 	int i;
777 	struct efx_nic *efx = rx_queue->efx;
778 	struct efx_rx_buffer *rx_buf;
779 
780 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
781 		  "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
782 
783 	del_timer_sync(&rx_queue->slow_fill);
784 
785 	/* Release RX buffers from the current read ptr to the write ptr */
786 	if (rx_queue->buffer) {
787 		for (i = rx_queue->removed_count; i < rx_queue->added_count;
788 		     i++) {
789 			unsigned index = i & rx_queue->ptr_mask;
790 			rx_buf = efx_rx_buffer(rx_queue, index);
791 			efx_fini_rx_buffer(rx_queue, rx_buf);
792 		}
793 	}
794 
795 	/* Unmap and release the pages in the recycle ring. Remove the ring. */
796 	for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
797 		struct page *page = rx_queue->page_ring[i];
798 		struct efx_rx_page_state *state;
799 
800 		if (page == NULL)
801 			continue;
802 
803 		state = page_address(page);
804 		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
805 			       PAGE_SIZE << efx->rx_buffer_order,
806 			       DMA_FROM_DEVICE);
807 		put_page(page);
808 	}
809 	kfree(rx_queue->page_ring);
810 	rx_queue->page_ring = NULL;
811 }
812 
813 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
814 {
815 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
816 		  "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
817 
818 	efx_nic_remove_rx(rx_queue);
819 
820 	kfree(rx_queue->buffer);
821 	rx_queue->buffer = NULL;
822 }
823 
824 
825 module_param(rx_refill_threshold, uint, 0444);
826 MODULE_PARM_DESC(rx_refill_threshold,
827 		 "RX descriptor ring refill threshold (%)");
828 
829 #ifdef CONFIG_RFS_ACCEL
830 
831 static void efx_filter_rfs_work(struct work_struct *data)
832 {
833 	struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion,
834 							      work);
835 	struct efx_nic *efx = netdev_priv(req->net_dev);
836 	struct efx_channel *channel = efx_get_channel(efx, req->rxq_index);
837 	int slot_idx = req - efx->rps_slot;
838 	struct efx_arfs_rule *rule;
839 	u16 arfs_id = 0;
840 	int rc;
841 
842 	rc = efx->type->filter_insert(efx, &req->spec, true);
843 	if (rc >= 0)
844 		rc %= efx->type->max_rx_ip_filters;
845 	if (efx->rps_hash_table) {
846 		spin_lock_bh(&efx->rps_hash_lock);
847 		rule = efx_rps_hash_find(efx, &req->spec);
848 		/* The rule might have already gone, if someone else's request
849 		 * for the same spec was already worked and then expired before
850 		 * we got around to our work.  In that case we have nothing
851 		 * tying us to an arfs_id, meaning that as soon as the filter
852 		 * is considered for expiry it will be removed.
853 		 */
854 		if (rule) {
855 			if (rc < 0)
856 				rule->filter_id = EFX_ARFS_FILTER_ID_ERROR;
857 			else
858 				rule->filter_id = rc;
859 			arfs_id = rule->arfs_id;
860 		}
861 		spin_unlock_bh(&efx->rps_hash_lock);
862 	}
863 	if (rc >= 0) {
864 		/* Remember this so we can check whether to expire the filter
865 		 * later.
866 		 */
867 		mutex_lock(&efx->rps_mutex);
868 		channel->rps_flow_id[rc] = req->flow_id;
869 		++channel->rfs_filters_added;
870 		mutex_unlock(&efx->rps_mutex);
871 
872 		if (req->spec.ether_type == htons(ETH_P_IP))
873 			netif_info(efx, rx_status, efx->net_dev,
874 				   "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n",
875 				   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
876 				   req->spec.rem_host, ntohs(req->spec.rem_port),
877 				   req->spec.loc_host, ntohs(req->spec.loc_port),
878 				   req->rxq_index, req->flow_id, rc, arfs_id);
879 		else
880 			netif_info(efx, rx_status, efx->net_dev,
881 				   "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n",
882 				   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
883 				   req->spec.rem_host, ntohs(req->spec.rem_port),
884 				   req->spec.loc_host, ntohs(req->spec.loc_port),
885 				   req->rxq_index, req->flow_id, rc, arfs_id);
886 	}
887 
888 	/* Release references */
889 	clear_bit(slot_idx, &efx->rps_slot_map);
890 	dev_put(req->net_dev);
891 }
892 
893 int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
894 		   u16 rxq_index, u32 flow_id)
895 {
896 	struct efx_nic *efx = netdev_priv(net_dev);
897 	struct efx_async_filter_insertion *req;
898 	struct efx_arfs_rule *rule;
899 	struct flow_keys fk;
900 	int slot_idx;
901 	bool new;
902 	int rc;
903 
904 	/* find a free slot */
905 	for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++)
906 		if (!test_and_set_bit(slot_idx, &efx->rps_slot_map))
907 			break;
908 	if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT)
909 		return -EBUSY;
910 
911 	if (flow_id == RPS_FLOW_ID_INVALID) {
912 		rc = -EINVAL;
913 		goto out_clear;
914 	}
915 
916 	if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) {
917 		rc = -EPROTONOSUPPORT;
918 		goto out_clear;
919 	}
920 
921 	if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) {
922 		rc = -EPROTONOSUPPORT;
923 		goto out_clear;
924 	}
925 	if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) {
926 		rc = -EPROTONOSUPPORT;
927 		goto out_clear;
928 	}
929 
930 	req = efx->rps_slot + slot_idx;
931 	efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT,
932 			   efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
933 			   rxq_index);
934 	req->spec.match_flags =
935 		EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
936 		EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
937 		EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT;
938 	req->spec.ether_type = fk.basic.n_proto;
939 	req->spec.ip_proto = fk.basic.ip_proto;
940 
941 	if (fk.basic.n_proto == htons(ETH_P_IP)) {
942 		req->spec.rem_host[0] = fk.addrs.v4addrs.src;
943 		req->spec.loc_host[0] = fk.addrs.v4addrs.dst;
944 	} else {
945 		memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src,
946 		       sizeof(struct in6_addr));
947 		memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst,
948 		       sizeof(struct in6_addr));
949 	}
950 
951 	req->spec.rem_port = fk.ports.src;
952 	req->spec.loc_port = fk.ports.dst;
953 
954 	if (efx->rps_hash_table) {
955 		/* Add it to ARFS hash table */
956 		spin_lock(&efx->rps_hash_lock);
957 		rule = efx_rps_hash_add(efx, &req->spec, &new);
958 		if (!rule) {
959 			rc = -ENOMEM;
960 			goto out_unlock;
961 		}
962 		if (new)
963 			rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER;
964 		rc = rule->arfs_id;
965 		/* Skip if existing or pending filter already does the right thing */
966 		if (!new && rule->rxq_index == rxq_index &&
967 		    rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING)
968 			goto out_unlock;
969 		rule->rxq_index = rxq_index;
970 		rule->filter_id = EFX_ARFS_FILTER_ID_PENDING;
971 		spin_unlock(&efx->rps_hash_lock);
972 	} else {
973 		/* Without an ARFS hash table, we just use arfs_id 0 for all
974 		 * filters.  This means if multiple flows hash to the same
975 		 * flow_id, all but the most recently touched will be eligible
976 		 * for expiry.
977 		 */
978 		rc = 0;
979 	}
980 
981 	/* Queue the request */
982 	dev_hold(req->net_dev = net_dev);
983 	INIT_WORK(&req->work, efx_filter_rfs_work);
984 	req->rxq_index = rxq_index;
985 	req->flow_id = flow_id;
986 	schedule_work(&req->work);
987 	return rc;
988 out_unlock:
989 	spin_unlock(&efx->rps_hash_lock);
990 out_clear:
991 	clear_bit(slot_idx, &efx->rps_slot_map);
992 	return rc;
993 }
994 
995 bool __efx_filter_rfs_expire(struct efx_nic *efx, unsigned int quota)
996 {
997 	bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
998 	unsigned int channel_idx, index, size;
999 	u32 flow_id;
1000 
1001 	if (!mutex_trylock(&efx->rps_mutex))
1002 		return false;
1003 	expire_one = efx->type->filter_rfs_expire_one;
1004 	channel_idx = efx->rps_expire_channel;
1005 	index = efx->rps_expire_index;
1006 	size = efx->type->max_rx_ip_filters;
1007 	while (quota--) {
1008 		struct efx_channel *channel = efx_get_channel(efx, channel_idx);
1009 		flow_id = channel->rps_flow_id[index];
1010 
1011 		if (flow_id != RPS_FLOW_ID_INVALID &&
1012 		    expire_one(efx, flow_id, index)) {
1013 			netif_info(efx, rx_status, efx->net_dev,
1014 				   "expired filter %d [queue %u flow %u]\n",
1015 				   index, channel_idx, flow_id);
1016 			channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID;
1017 		}
1018 		if (++index == size) {
1019 			if (++channel_idx == efx->n_channels)
1020 				channel_idx = 0;
1021 			index = 0;
1022 		}
1023 	}
1024 	efx->rps_expire_channel = channel_idx;
1025 	efx->rps_expire_index = index;
1026 
1027 	mutex_unlock(&efx->rps_mutex);
1028 	return true;
1029 }
1030 
1031 #endif /* CONFIG_RFS_ACCEL */
1032 
1033 /**
1034  * efx_filter_is_mc_recipient - test whether spec is a multicast recipient
1035  * @spec: Specification to test
1036  *
1037  * Return: %true if the specification is a non-drop RX filter that
1038  * matches a local MAC address I/G bit value of 1 or matches a local
1039  * IPv4 or IPv6 address value in the respective multicast address
1040  * range.  Otherwise %false.
1041  */
1042 bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec)
1043 {
1044 	if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
1045 	    spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
1046 		return false;
1047 
1048 	if (spec->match_flags &
1049 	    (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
1050 	    is_multicast_ether_addr(spec->loc_mac))
1051 		return true;
1052 
1053 	if ((spec->match_flags &
1054 	     (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
1055 	    (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
1056 		if (spec->ether_type == htons(ETH_P_IP) &&
1057 		    ipv4_is_multicast(spec->loc_host[0]))
1058 			return true;
1059 		if (spec->ether_type == htons(ETH_P_IPV6) &&
1060 		    ((const u8 *)spec->loc_host)[0] == 0xff)
1061 			return true;
1062 	}
1063 
1064 	return false;
1065 }
1066