xref: /linux/drivers/net/ethernet/sfc/rx.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7 
8 #include <linux/socket.h>
9 #include <linux/in.h>
10 #include <linux/slab.h>
11 #include <linux/ip.h>
12 #include <linux/ipv6.h>
13 #include <linux/tcp.h>
14 #include <linux/udp.h>
15 #include <linux/prefetch.h>
16 #include <linux/moduleparam.h>
17 #include <linux/iommu.h>
18 #include <net/ip.h>
19 #include <net/checksum.h>
20 #include "net_driver.h"
21 #include "efx.h"
22 #include "filter.h"
23 #include "nic.h"
24 #include "selftest.h"
25 #include "workarounds.h"
26 
27 /* Preferred number of descriptors to fill at once */
28 #define EFX_RX_PREFERRED_BATCH 8U
29 
30 /* Number of RX buffers to recycle pages for.  When creating the RX page recycle
31  * ring, this number is divided by the number of buffers per page to calculate
32  * the number of pages to store in the RX page recycle ring.
33  */
34 #define EFX_RECYCLE_RING_SIZE_IOMMU 4096
35 #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH)
36 
37 /* Size of buffer allocated for skb header area. */
38 #define EFX_SKB_HEADERS  128u
39 
40 /* This is the percentage fill level below which new RX descriptors
41  * will be added to the RX descriptor ring.
42  */
43 static unsigned int rx_refill_threshold;
44 
45 /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
46 #define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \
47 				      EFX_RX_USR_BUF_SIZE)
48 
49 /*
50  * RX maximum head room required.
51  *
52  * This must be at least 1 to prevent overflow, plus one packet-worth
53  * to allow pipelined receives.
54  */
55 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
56 
57 static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf)
58 {
59 	return page_address(buf->page) + buf->page_offset;
60 }
61 
62 static inline u32 efx_rx_buf_hash(struct efx_nic *efx, const u8 *eh)
63 {
64 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
65 	return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset));
66 #else
67 	const u8 *data = eh + efx->rx_packet_hash_offset;
68 	return (u32)data[0]	  |
69 	       (u32)data[1] << 8  |
70 	       (u32)data[2] << 16 |
71 	       (u32)data[3] << 24;
72 #endif
73 }
74 
75 static inline struct efx_rx_buffer *
76 efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
77 {
78 	if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
79 		return efx_rx_buffer(rx_queue, 0);
80 	else
81 		return rx_buf + 1;
82 }
83 
84 static inline void efx_sync_rx_buffer(struct efx_nic *efx,
85 				      struct efx_rx_buffer *rx_buf,
86 				      unsigned int len)
87 {
88 	dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
89 				DMA_FROM_DEVICE);
90 }
91 
92 void efx_rx_config_page_split(struct efx_nic *efx)
93 {
94 	efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align,
95 				      EFX_RX_BUF_ALIGNMENT);
96 	efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
97 		((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
98 		 efx->rx_page_buf_step);
99 	efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
100 		efx->rx_bufs_per_page;
101 	efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
102 					       efx->rx_bufs_per_page);
103 }
104 
105 /* Check the RX page recycle ring for a page that can be reused. */
106 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
107 {
108 	struct efx_nic *efx = rx_queue->efx;
109 	struct page *page;
110 	struct efx_rx_page_state *state;
111 	unsigned index;
112 
113 	index = rx_queue->page_remove & rx_queue->page_ptr_mask;
114 	page = rx_queue->page_ring[index];
115 	if (page == NULL)
116 		return NULL;
117 
118 	rx_queue->page_ring[index] = NULL;
119 	/* page_remove cannot exceed page_add. */
120 	if (rx_queue->page_remove != rx_queue->page_add)
121 		++rx_queue->page_remove;
122 
123 	/* If page_count is 1 then we hold the only reference to this page. */
124 	if (page_count(page) == 1) {
125 		++rx_queue->page_recycle_count;
126 		return page;
127 	} else {
128 		state = page_address(page);
129 		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
130 			       PAGE_SIZE << efx->rx_buffer_order,
131 			       DMA_FROM_DEVICE);
132 		put_page(page);
133 		++rx_queue->page_recycle_failed;
134 	}
135 
136 	return NULL;
137 }
138 
139 /**
140  * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
141  *
142  * @rx_queue:		Efx RX queue
143  *
144  * This allocates a batch of pages, maps them for DMA, and populates
145  * struct efx_rx_buffers for each one. Return a negative error code or
146  * 0 on success. If a single page can be used for multiple buffers,
147  * then the page will either be inserted fully, or not at all.
148  */
149 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic)
150 {
151 	struct efx_nic *efx = rx_queue->efx;
152 	struct efx_rx_buffer *rx_buf;
153 	struct page *page;
154 	unsigned int page_offset;
155 	struct efx_rx_page_state *state;
156 	dma_addr_t dma_addr;
157 	unsigned index, count;
158 
159 	count = 0;
160 	do {
161 		page = efx_reuse_page(rx_queue);
162 		if (page == NULL) {
163 			page = alloc_pages(__GFP_COMP |
164 					   (atomic ? GFP_ATOMIC : GFP_KERNEL),
165 					   efx->rx_buffer_order);
166 			if (unlikely(page == NULL))
167 				return -ENOMEM;
168 			dma_addr =
169 				dma_map_page(&efx->pci_dev->dev, page, 0,
170 					     PAGE_SIZE << efx->rx_buffer_order,
171 					     DMA_FROM_DEVICE);
172 			if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
173 						       dma_addr))) {
174 				__free_pages(page, efx->rx_buffer_order);
175 				return -EIO;
176 			}
177 			state = page_address(page);
178 			state->dma_addr = dma_addr;
179 		} else {
180 			state = page_address(page);
181 			dma_addr = state->dma_addr;
182 		}
183 
184 		dma_addr += sizeof(struct efx_rx_page_state);
185 		page_offset = sizeof(struct efx_rx_page_state);
186 
187 		do {
188 			index = rx_queue->added_count & rx_queue->ptr_mask;
189 			rx_buf = efx_rx_buffer(rx_queue, index);
190 			rx_buf->dma_addr = dma_addr + efx->rx_ip_align;
191 			rx_buf->page = page;
192 			rx_buf->page_offset = page_offset + efx->rx_ip_align;
193 			rx_buf->len = efx->rx_dma_len;
194 			rx_buf->flags = 0;
195 			++rx_queue->added_count;
196 			get_page(page);
197 			dma_addr += efx->rx_page_buf_step;
198 			page_offset += efx->rx_page_buf_step;
199 		} while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
200 
201 		rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
202 	} while (++count < efx->rx_pages_per_batch);
203 
204 	return 0;
205 }
206 
207 /* Unmap a DMA-mapped page.  This function is only called for the final RX
208  * buffer in a page.
209  */
210 static void efx_unmap_rx_buffer(struct efx_nic *efx,
211 				struct efx_rx_buffer *rx_buf)
212 {
213 	struct page *page = rx_buf->page;
214 
215 	if (page) {
216 		struct efx_rx_page_state *state = page_address(page);
217 		dma_unmap_page(&efx->pci_dev->dev,
218 			       state->dma_addr,
219 			       PAGE_SIZE << efx->rx_buffer_order,
220 			       DMA_FROM_DEVICE);
221 	}
222 }
223 
224 static void efx_free_rx_buffers(struct efx_rx_queue *rx_queue,
225 				struct efx_rx_buffer *rx_buf,
226 				unsigned int num_bufs)
227 {
228 	do {
229 		if (rx_buf->page) {
230 			put_page(rx_buf->page);
231 			rx_buf->page = NULL;
232 		}
233 		rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
234 	} while (--num_bufs);
235 }
236 
237 /* Attempt to recycle the page if there is an RX recycle ring; the page can
238  * only be added if this is the final RX buffer, to prevent pages being used in
239  * the descriptor ring and appearing in the recycle ring simultaneously.
240  */
241 static void efx_recycle_rx_page(struct efx_channel *channel,
242 				struct efx_rx_buffer *rx_buf)
243 {
244 	struct page *page = rx_buf->page;
245 	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
246 	struct efx_nic *efx = rx_queue->efx;
247 	unsigned index;
248 
249 	/* Only recycle the page after processing the final buffer. */
250 	if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
251 		return;
252 
253 	index = rx_queue->page_add & rx_queue->page_ptr_mask;
254 	if (rx_queue->page_ring[index] == NULL) {
255 		unsigned read_index = rx_queue->page_remove &
256 			rx_queue->page_ptr_mask;
257 
258 		/* The next slot in the recycle ring is available, but
259 		 * increment page_remove if the read pointer currently
260 		 * points here.
261 		 */
262 		if (read_index == index)
263 			++rx_queue->page_remove;
264 		rx_queue->page_ring[index] = page;
265 		++rx_queue->page_add;
266 		return;
267 	}
268 	++rx_queue->page_recycle_full;
269 	efx_unmap_rx_buffer(efx, rx_buf);
270 	put_page(rx_buf->page);
271 }
272 
273 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
274 			       struct efx_rx_buffer *rx_buf)
275 {
276 	/* Release the page reference we hold for the buffer. */
277 	if (rx_buf->page)
278 		put_page(rx_buf->page);
279 
280 	/* If this is the last buffer in a page, unmap and free it. */
281 	if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
282 		efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
283 		efx_free_rx_buffers(rx_queue, rx_buf, 1);
284 	}
285 	rx_buf->page = NULL;
286 }
287 
288 /* Recycle the pages that are used by buffers that have just been received. */
289 static void efx_recycle_rx_pages(struct efx_channel *channel,
290 				 struct efx_rx_buffer *rx_buf,
291 				 unsigned int n_frags)
292 {
293 	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
294 
295 	do {
296 		efx_recycle_rx_page(channel, rx_buf);
297 		rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
298 	} while (--n_frags);
299 }
300 
301 static void efx_discard_rx_packet(struct efx_channel *channel,
302 				  struct efx_rx_buffer *rx_buf,
303 				  unsigned int n_frags)
304 {
305 	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
306 
307 	efx_recycle_rx_pages(channel, rx_buf, n_frags);
308 
309 	efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
310 }
311 
312 /**
313  * efx_fast_push_rx_descriptors - push new RX descriptors quickly
314  * @rx_queue:		RX descriptor queue
315  *
316  * This will aim to fill the RX descriptor queue up to
317  * @rx_queue->@max_fill. If there is insufficient atomic
318  * memory to do so, a slow fill will be scheduled.
319  *
320  * The caller must provide serialisation (none is used here). In practise,
321  * this means this function must run from the NAPI handler, or be called
322  * when NAPI is disabled.
323  */
324 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic)
325 {
326 	struct efx_nic *efx = rx_queue->efx;
327 	unsigned int fill_level, batch_size;
328 	int space, rc = 0;
329 
330 	if (!rx_queue->refill_enabled)
331 		return;
332 
333 	/* Calculate current fill level, and exit if we don't need to fill */
334 	fill_level = (rx_queue->added_count - rx_queue->removed_count);
335 	EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries);
336 	if (fill_level >= rx_queue->fast_fill_trigger)
337 		goto out;
338 
339 	/* Record minimum fill level */
340 	if (unlikely(fill_level < rx_queue->min_fill)) {
341 		if (fill_level)
342 			rx_queue->min_fill = fill_level;
343 	}
344 
345 	batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
346 	space = rx_queue->max_fill - fill_level;
347 	EFX_WARN_ON_ONCE_PARANOID(space < batch_size);
348 
349 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
350 		   "RX queue %d fast-filling descriptor ring from"
351 		   " level %d to level %d\n",
352 		   efx_rx_queue_index(rx_queue), fill_level,
353 		   rx_queue->max_fill);
354 
355 
356 	do {
357 		rc = efx_init_rx_buffers(rx_queue, atomic);
358 		if (unlikely(rc)) {
359 			/* Ensure that we don't leave the rx queue empty */
360 			efx_schedule_slow_fill(rx_queue);
361 			goto out;
362 		}
363 	} while ((space -= batch_size) >= batch_size);
364 
365 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
366 		   "RX queue %d fast-filled descriptor ring "
367 		   "to level %d\n", efx_rx_queue_index(rx_queue),
368 		   rx_queue->added_count - rx_queue->removed_count);
369 
370  out:
371 	if (rx_queue->notified_count != rx_queue->added_count)
372 		efx_nic_notify_rx_desc(rx_queue);
373 }
374 
375 void efx_rx_slow_fill(struct timer_list *t)
376 {
377 	struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill);
378 
379 	/* Post an event to cause NAPI to run and refill the queue */
380 	efx_nic_generate_fill_event(rx_queue);
381 	++rx_queue->slow_fill_count;
382 }
383 
384 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
385 				     struct efx_rx_buffer *rx_buf,
386 				     int len)
387 {
388 	struct efx_nic *efx = rx_queue->efx;
389 	unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
390 
391 	if (likely(len <= max_len))
392 		return;
393 
394 	/* The packet must be discarded, but this is only a fatal error
395 	 * if the caller indicated it was
396 	 */
397 	rx_buf->flags |= EFX_RX_PKT_DISCARD;
398 
399 	if (net_ratelimit())
400 		netif_err(efx, rx_err, efx->net_dev,
401 			  "RX queue %d overlength RX event (%#x > %#x)\n",
402 			  efx_rx_queue_index(rx_queue), len, max_len);
403 
404 	efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
405 }
406 
407 /* Pass a received packet up through GRO.  GRO can handle pages
408  * regardless of checksum state and skbs with a good checksum.
409  */
410 static void
411 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
412 		  unsigned int n_frags, u8 *eh)
413 {
414 	struct napi_struct *napi = &channel->napi_str;
415 	struct efx_nic *efx = channel->efx;
416 	struct sk_buff *skb;
417 
418 	skb = napi_get_frags(napi);
419 	if (unlikely(!skb)) {
420 		struct efx_rx_queue *rx_queue;
421 
422 		rx_queue = efx_channel_get_rx_queue(channel);
423 		efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
424 		return;
425 	}
426 
427 	if (efx->net_dev->features & NETIF_F_RXHASH)
428 		skb_set_hash(skb, efx_rx_buf_hash(efx, eh),
429 			     PKT_HASH_TYPE_L3);
430 	skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
431 			  CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
432 	skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL);
433 
434 	for (;;) {
435 		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
436 				   rx_buf->page, rx_buf->page_offset,
437 				   rx_buf->len);
438 		rx_buf->page = NULL;
439 		skb->len += rx_buf->len;
440 		if (skb_shinfo(skb)->nr_frags == n_frags)
441 			break;
442 
443 		rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
444 	}
445 
446 	skb->data_len = skb->len;
447 	skb->truesize += n_frags * efx->rx_buffer_truesize;
448 
449 	skb_record_rx_queue(skb, channel->rx_queue.core_index);
450 
451 	napi_gro_frags(napi);
452 }
453 
454 /* Allocate and construct an SKB around page fragments */
455 static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel,
456 				     struct efx_rx_buffer *rx_buf,
457 				     unsigned int n_frags,
458 				     u8 *eh, int hdr_len)
459 {
460 	struct efx_nic *efx = channel->efx;
461 	struct sk_buff *skb;
462 
463 	/* Allocate an SKB to store the headers */
464 	skb = netdev_alloc_skb(efx->net_dev,
465 			       efx->rx_ip_align + efx->rx_prefix_size +
466 			       hdr_len);
467 	if (unlikely(skb == NULL)) {
468 		atomic_inc(&efx->n_rx_noskb_drops);
469 		return NULL;
470 	}
471 
472 	EFX_WARN_ON_ONCE_PARANOID(rx_buf->len < hdr_len);
473 
474 	memcpy(skb->data + efx->rx_ip_align, eh - efx->rx_prefix_size,
475 	       efx->rx_prefix_size + hdr_len);
476 	skb_reserve(skb, efx->rx_ip_align + efx->rx_prefix_size);
477 	__skb_put(skb, hdr_len);
478 
479 	/* Append the remaining page(s) onto the frag list */
480 	if (rx_buf->len > hdr_len) {
481 		rx_buf->page_offset += hdr_len;
482 		rx_buf->len -= hdr_len;
483 
484 		for (;;) {
485 			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
486 					   rx_buf->page, rx_buf->page_offset,
487 					   rx_buf->len);
488 			rx_buf->page = NULL;
489 			skb->len += rx_buf->len;
490 			skb->data_len += rx_buf->len;
491 			if (skb_shinfo(skb)->nr_frags == n_frags)
492 				break;
493 
494 			rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
495 		}
496 	} else {
497 		__free_pages(rx_buf->page, efx->rx_buffer_order);
498 		rx_buf->page = NULL;
499 		n_frags = 0;
500 	}
501 
502 	skb->truesize += n_frags * efx->rx_buffer_truesize;
503 
504 	/* Move past the ethernet header */
505 	skb->protocol = eth_type_trans(skb, efx->net_dev);
506 
507 	skb_mark_napi_id(skb, &channel->napi_str);
508 
509 	return skb;
510 }
511 
512 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
513 		   unsigned int n_frags, unsigned int len, u16 flags)
514 {
515 	struct efx_nic *efx = rx_queue->efx;
516 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
517 	struct efx_rx_buffer *rx_buf;
518 
519 	rx_queue->rx_packets++;
520 
521 	rx_buf = efx_rx_buffer(rx_queue, index);
522 	rx_buf->flags |= flags;
523 
524 	/* Validate the number of fragments and completed length */
525 	if (n_frags == 1) {
526 		if (!(flags & EFX_RX_PKT_PREFIX_LEN))
527 			efx_rx_packet__check_len(rx_queue, rx_buf, len);
528 	} else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) ||
529 		   unlikely(len <= (n_frags - 1) * efx->rx_dma_len) ||
530 		   unlikely(len > n_frags * efx->rx_dma_len) ||
531 		   unlikely(!efx->rx_scatter)) {
532 		/* If this isn't an explicit discard request, either
533 		 * the hardware or the driver is broken.
534 		 */
535 		WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD));
536 		rx_buf->flags |= EFX_RX_PKT_DISCARD;
537 	}
538 
539 	netif_vdbg(efx, rx_status, efx->net_dev,
540 		   "RX queue %d received ids %x-%x len %d %s%s\n",
541 		   efx_rx_queue_index(rx_queue), index,
542 		   (index + n_frags - 1) & rx_queue->ptr_mask, len,
543 		   (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
544 		   (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
545 
546 	/* Discard packet, if instructed to do so.  Process the
547 	 * previous receive first.
548 	 */
549 	if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
550 		efx_rx_flush_packet(channel);
551 		efx_discard_rx_packet(channel, rx_buf, n_frags);
552 		return;
553 	}
554 
555 	if (n_frags == 1 && !(flags & EFX_RX_PKT_PREFIX_LEN))
556 		rx_buf->len = len;
557 
558 	/* Release and/or sync the DMA mapping - assumes all RX buffers
559 	 * consumed in-order per RX queue.
560 	 */
561 	efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
562 
563 	/* Prefetch nice and early so data will (hopefully) be in cache by
564 	 * the time we look at it.
565 	 */
566 	prefetch(efx_rx_buf_va(rx_buf));
567 
568 	rx_buf->page_offset += efx->rx_prefix_size;
569 	rx_buf->len -= efx->rx_prefix_size;
570 
571 	if (n_frags > 1) {
572 		/* Release/sync DMA mapping for additional fragments.
573 		 * Fix length for last fragment.
574 		 */
575 		unsigned int tail_frags = n_frags - 1;
576 
577 		for (;;) {
578 			rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
579 			if (--tail_frags == 0)
580 				break;
581 			efx_sync_rx_buffer(efx, rx_buf, efx->rx_dma_len);
582 		}
583 		rx_buf->len = len - (n_frags - 1) * efx->rx_dma_len;
584 		efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
585 	}
586 
587 	/* All fragments have been DMA-synced, so recycle pages. */
588 	rx_buf = efx_rx_buffer(rx_queue, index);
589 	efx_recycle_rx_pages(channel, rx_buf, n_frags);
590 
591 	/* Pipeline receives so that we give time for packet headers to be
592 	 * prefetched into cache.
593 	 */
594 	efx_rx_flush_packet(channel);
595 	channel->rx_pkt_n_frags = n_frags;
596 	channel->rx_pkt_index = index;
597 }
598 
599 static void efx_rx_deliver(struct efx_channel *channel, u8 *eh,
600 			   struct efx_rx_buffer *rx_buf,
601 			   unsigned int n_frags)
602 {
603 	struct sk_buff *skb;
604 	u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS);
605 
606 	skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
607 	if (unlikely(skb == NULL)) {
608 		struct efx_rx_queue *rx_queue;
609 
610 		rx_queue = efx_channel_get_rx_queue(channel);
611 		efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
612 		return;
613 	}
614 	skb_record_rx_queue(skb, channel->rx_queue.core_index);
615 
616 	/* Set the SKB flags */
617 	skb_checksum_none_assert(skb);
618 	if (likely(rx_buf->flags & EFX_RX_PKT_CSUMMED)) {
619 		skb->ip_summed = CHECKSUM_UNNECESSARY;
620 		skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL);
621 	}
622 
623 	efx_rx_skb_attach_timestamp(channel, skb);
624 
625 	if (channel->type->receive_skb)
626 		if (channel->type->receive_skb(channel, skb))
627 			return;
628 
629 	/* Pass the packet up */
630 	if (channel->rx_list != NULL)
631 		/* Add to list, will pass up later */
632 		list_add_tail(&skb->list, channel->rx_list);
633 	else
634 		/* No list, so pass it up now */
635 		netif_receive_skb(skb);
636 }
637 
638 /* Handle a received packet.  Second half: Touches packet payload. */
639 void __efx_rx_packet(struct efx_channel *channel)
640 {
641 	struct efx_nic *efx = channel->efx;
642 	struct efx_rx_buffer *rx_buf =
643 		efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
644 	u8 *eh = efx_rx_buf_va(rx_buf);
645 
646 	/* Read length from the prefix if necessary.  This already
647 	 * excludes the length of the prefix itself.
648 	 */
649 	if (rx_buf->flags & EFX_RX_PKT_PREFIX_LEN)
650 		rx_buf->len = le16_to_cpup((__le16 *)
651 					   (eh + efx->rx_packet_len_offset));
652 
653 	/* If we're in loopback test, then pass the packet directly to the
654 	 * loopback layer, and free the rx_buf here
655 	 */
656 	if (unlikely(efx->loopback_selftest)) {
657 		struct efx_rx_queue *rx_queue;
658 
659 		efx_loopback_rx_packet(efx, eh, rx_buf->len);
660 		rx_queue = efx_channel_get_rx_queue(channel);
661 		efx_free_rx_buffers(rx_queue, rx_buf,
662 				    channel->rx_pkt_n_frags);
663 		goto out;
664 	}
665 
666 	if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
667 		rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
668 
669 	if ((rx_buf->flags & EFX_RX_PKT_TCP) && !channel->type->receive_skb)
670 		efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
671 	else
672 		efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
673 out:
674 	channel->rx_pkt_n_frags = 0;
675 }
676 
677 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
678 {
679 	struct efx_nic *efx = rx_queue->efx;
680 	unsigned int entries;
681 	int rc;
682 
683 	/* Create the smallest power-of-two aligned ring */
684 	entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
685 	EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
686 	rx_queue->ptr_mask = entries - 1;
687 
688 	netif_dbg(efx, probe, efx->net_dev,
689 		  "creating RX queue %d size %#x mask %#x\n",
690 		  efx_rx_queue_index(rx_queue), efx->rxq_entries,
691 		  rx_queue->ptr_mask);
692 
693 	/* Allocate RX buffers */
694 	rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
695 				   GFP_KERNEL);
696 	if (!rx_queue->buffer)
697 		return -ENOMEM;
698 
699 	rc = efx_nic_probe_rx(rx_queue);
700 	if (rc) {
701 		kfree(rx_queue->buffer);
702 		rx_queue->buffer = NULL;
703 	}
704 
705 	return rc;
706 }
707 
708 static void efx_init_rx_recycle_ring(struct efx_nic *efx,
709 				     struct efx_rx_queue *rx_queue)
710 {
711 	unsigned int bufs_in_recycle_ring, page_ring_size;
712 
713 	/* Set the RX recycle ring size */
714 #ifdef CONFIG_PPC64
715 	bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
716 #else
717 	if (iommu_present(&pci_bus_type))
718 		bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
719 	else
720 		bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU;
721 #endif /* CONFIG_PPC64 */
722 
723 	page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
724 					    efx->rx_bufs_per_page);
725 	rx_queue->page_ring = kcalloc(page_ring_size,
726 				      sizeof(*rx_queue->page_ring), GFP_KERNEL);
727 	rx_queue->page_ptr_mask = page_ring_size - 1;
728 }
729 
730 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
731 {
732 	struct efx_nic *efx = rx_queue->efx;
733 	unsigned int max_fill, trigger, max_trigger;
734 
735 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
736 		  "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
737 
738 	/* Initialise ptr fields */
739 	rx_queue->added_count = 0;
740 	rx_queue->notified_count = 0;
741 	rx_queue->removed_count = 0;
742 	rx_queue->min_fill = -1U;
743 	efx_init_rx_recycle_ring(efx, rx_queue);
744 
745 	rx_queue->page_remove = 0;
746 	rx_queue->page_add = rx_queue->page_ptr_mask + 1;
747 	rx_queue->page_recycle_count = 0;
748 	rx_queue->page_recycle_failed = 0;
749 	rx_queue->page_recycle_full = 0;
750 
751 	/* Initialise limit fields */
752 	max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
753 	max_trigger =
754 		max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
755 	if (rx_refill_threshold != 0) {
756 		trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
757 		if (trigger > max_trigger)
758 			trigger = max_trigger;
759 	} else {
760 		trigger = max_trigger;
761 	}
762 
763 	rx_queue->max_fill = max_fill;
764 	rx_queue->fast_fill_trigger = trigger;
765 	rx_queue->refill_enabled = true;
766 
767 	/* Set up RX descriptor ring */
768 	efx_nic_init_rx(rx_queue);
769 }
770 
771 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
772 {
773 	int i;
774 	struct efx_nic *efx = rx_queue->efx;
775 	struct efx_rx_buffer *rx_buf;
776 
777 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
778 		  "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
779 
780 	del_timer_sync(&rx_queue->slow_fill);
781 
782 	/* Release RX buffers from the current read ptr to the write ptr */
783 	if (rx_queue->buffer) {
784 		for (i = rx_queue->removed_count; i < rx_queue->added_count;
785 		     i++) {
786 			unsigned index = i & rx_queue->ptr_mask;
787 			rx_buf = efx_rx_buffer(rx_queue, index);
788 			efx_fini_rx_buffer(rx_queue, rx_buf);
789 		}
790 	}
791 
792 	/* Unmap and release the pages in the recycle ring. Remove the ring. */
793 	for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
794 		struct page *page = rx_queue->page_ring[i];
795 		struct efx_rx_page_state *state;
796 
797 		if (page == NULL)
798 			continue;
799 
800 		state = page_address(page);
801 		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
802 			       PAGE_SIZE << efx->rx_buffer_order,
803 			       DMA_FROM_DEVICE);
804 		put_page(page);
805 	}
806 	kfree(rx_queue->page_ring);
807 	rx_queue->page_ring = NULL;
808 }
809 
810 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
811 {
812 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
813 		  "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
814 
815 	efx_nic_remove_rx(rx_queue);
816 
817 	kfree(rx_queue->buffer);
818 	rx_queue->buffer = NULL;
819 }
820 
821 
822 module_param(rx_refill_threshold, uint, 0444);
823 MODULE_PARM_DESC(rx_refill_threshold,
824 		 "RX descriptor ring refill threshold (%)");
825 
826 #ifdef CONFIG_RFS_ACCEL
827 
828 static void efx_filter_rfs_work(struct work_struct *data)
829 {
830 	struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion,
831 							      work);
832 	struct efx_nic *efx = netdev_priv(req->net_dev);
833 	struct efx_channel *channel = efx_get_channel(efx, req->rxq_index);
834 	int slot_idx = req - efx->rps_slot;
835 	struct efx_arfs_rule *rule;
836 	u16 arfs_id = 0;
837 	int rc;
838 
839 	rc = efx->type->filter_insert(efx, &req->spec, true);
840 	if (rc >= 0)
841 		rc %= efx->type->max_rx_ip_filters;
842 	if (efx->rps_hash_table) {
843 		spin_lock_bh(&efx->rps_hash_lock);
844 		rule = efx_rps_hash_find(efx, &req->spec);
845 		/* The rule might have already gone, if someone else's request
846 		 * for the same spec was already worked and then expired before
847 		 * we got around to our work.  In that case we have nothing
848 		 * tying us to an arfs_id, meaning that as soon as the filter
849 		 * is considered for expiry it will be removed.
850 		 */
851 		if (rule) {
852 			if (rc < 0)
853 				rule->filter_id = EFX_ARFS_FILTER_ID_ERROR;
854 			else
855 				rule->filter_id = rc;
856 			arfs_id = rule->arfs_id;
857 		}
858 		spin_unlock_bh(&efx->rps_hash_lock);
859 	}
860 	if (rc >= 0) {
861 		/* Remember this so we can check whether to expire the filter
862 		 * later.
863 		 */
864 		mutex_lock(&efx->rps_mutex);
865 		channel->rps_flow_id[rc] = req->flow_id;
866 		++channel->rfs_filters_added;
867 		mutex_unlock(&efx->rps_mutex);
868 
869 		if (req->spec.ether_type == htons(ETH_P_IP))
870 			netif_info(efx, rx_status, efx->net_dev,
871 				   "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n",
872 				   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
873 				   req->spec.rem_host, ntohs(req->spec.rem_port),
874 				   req->spec.loc_host, ntohs(req->spec.loc_port),
875 				   req->rxq_index, req->flow_id, rc, arfs_id);
876 		else
877 			netif_info(efx, rx_status, efx->net_dev,
878 				   "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n",
879 				   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
880 				   req->spec.rem_host, ntohs(req->spec.rem_port),
881 				   req->spec.loc_host, ntohs(req->spec.loc_port),
882 				   req->rxq_index, req->flow_id, rc, arfs_id);
883 	}
884 
885 	/* Release references */
886 	clear_bit(slot_idx, &efx->rps_slot_map);
887 	dev_put(req->net_dev);
888 }
889 
890 int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
891 		   u16 rxq_index, u32 flow_id)
892 {
893 	struct efx_nic *efx = netdev_priv(net_dev);
894 	struct efx_async_filter_insertion *req;
895 	struct efx_arfs_rule *rule;
896 	struct flow_keys fk;
897 	int slot_idx;
898 	bool new;
899 	int rc;
900 
901 	/* find a free slot */
902 	for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++)
903 		if (!test_and_set_bit(slot_idx, &efx->rps_slot_map))
904 			break;
905 	if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT)
906 		return -EBUSY;
907 
908 	if (flow_id == RPS_FLOW_ID_INVALID) {
909 		rc = -EINVAL;
910 		goto out_clear;
911 	}
912 
913 	if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) {
914 		rc = -EPROTONOSUPPORT;
915 		goto out_clear;
916 	}
917 
918 	if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) {
919 		rc = -EPROTONOSUPPORT;
920 		goto out_clear;
921 	}
922 	if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) {
923 		rc = -EPROTONOSUPPORT;
924 		goto out_clear;
925 	}
926 
927 	req = efx->rps_slot + slot_idx;
928 	efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT,
929 			   efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
930 			   rxq_index);
931 	req->spec.match_flags =
932 		EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
933 		EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
934 		EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT;
935 	req->spec.ether_type = fk.basic.n_proto;
936 	req->spec.ip_proto = fk.basic.ip_proto;
937 
938 	if (fk.basic.n_proto == htons(ETH_P_IP)) {
939 		req->spec.rem_host[0] = fk.addrs.v4addrs.src;
940 		req->spec.loc_host[0] = fk.addrs.v4addrs.dst;
941 	} else {
942 		memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src,
943 		       sizeof(struct in6_addr));
944 		memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst,
945 		       sizeof(struct in6_addr));
946 	}
947 
948 	req->spec.rem_port = fk.ports.src;
949 	req->spec.loc_port = fk.ports.dst;
950 
951 	if (efx->rps_hash_table) {
952 		/* Add it to ARFS hash table */
953 		spin_lock(&efx->rps_hash_lock);
954 		rule = efx_rps_hash_add(efx, &req->spec, &new);
955 		if (!rule) {
956 			rc = -ENOMEM;
957 			goto out_unlock;
958 		}
959 		if (new)
960 			rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER;
961 		rc = rule->arfs_id;
962 		/* Skip if existing or pending filter already does the right thing */
963 		if (!new && rule->rxq_index == rxq_index &&
964 		    rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING)
965 			goto out_unlock;
966 		rule->rxq_index = rxq_index;
967 		rule->filter_id = EFX_ARFS_FILTER_ID_PENDING;
968 		spin_unlock(&efx->rps_hash_lock);
969 	} else {
970 		/* Without an ARFS hash table, we just use arfs_id 0 for all
971 		 * filters.  This means if multiple flows hash to the same
972 		 * flow_id, all but the most recently touched will be eligible
973 		 * for expiry.
974 		 */
975 		rc = 0;
976 	}
977 
978 	/* Queue the request */
979 	dev_hold(req->net_dev = net_dev);
980 	INIT_WORK(&req->work, efx_filter_rfs_work);
981 	req->rxq_index = rxq_index;
982 	req->flow_id = flow_id;
983 	schedule_work(&req->work);
984 	return rc;
985 out_unlock:
986 	spin_unlock(&efx->rps_hash_lock);
987 out_clear:
988 	clear_bit(slot_idx, &efx->rps_slot_map);
989 	return rc;
990 }
991 
992 bool __efx_filter_rfs_expire(struct efx_nic *efx, unsigned int quota)
993 {
994 	bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
995 	unsigned int channel_idx, index, size;
996 	u32 flow_id;
997 
998 	if (!mutex_trylock(&efx->rps_mutex))
999 		return false;
1000 	expire_one = efx->type->filter_rfs_expire_one;
1001 	channel_idx = efx->rps_expire_channel;
1002 	index = efx->rps_expire_index;
1003 	size = efx->type->max_rx_ip_filters;
1004 	while (quota--) {
1005 		struct efx_channel *channel = efx_get_channel(efx, channel_idx);
1006 		flow_id = channel->rps_flow_id[index];
1007 
1008 		if (flow_id != RPS_FLOW_ID_INVALID &&
1009 		    expire_one(efx, flow_id, index)) {
1010 			netif_info(efx, rx_status, efx->net_dev,
1011 				   "expired filter %d [queue %u flow %u]\n",
1012 				   index, channel_idx, flow_id);
1013 			channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID;
1014 		}
1015 		if (++index == size) {
1016 			if (++channel_idx == efx->n_channels)
1017 				channel_idx = 0;
1018 			index = 0;
1019 		}
1020 	}
1021 	efx->rps_expire_channel = channel_idx;
1022 	efx->rps_expire_index = index;
1023 
1024 	mutex_unlock(&efx->rps_mutex);
1025 	return true;
1026 }
1027 
1028 #endif /* CONFIG_RFS_ACCEL */
1029 
1030 /**
1031  * efx_filter_is_mc_recipient - test whether spec is a multicast recipient
1032  * @spec: Specification to test
1033  *
1034  * Return: %true if the specification is a non-drop RX filter that
1035  * matches a local MAC address I/G bit value of 1 or matches a local
1036  * IPv4 or IPv6 address value in the respective multicast address
1037  * range.  Otherwise %false.
1038  */
1039 bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec)
1040 {
1041 	if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
1042 	    spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
1043 		return false;
1044 
1045 	if (spec->match_flags &
1046 	    (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
1047 	    is_multicast_ether_addr(spec->loc_mac))
1048 		return true;
1049 
1050 	if ((spec->match_flags &
1051 	     (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
1052 	    (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
1053 		if (spec->ether_type == htons(ETH_P_IP) &&
1054 		    ipv4_is_multicast(spec->loc_host[0]))
1055 			return true;
1056 		if (spec->ether_type == htons(ETH_P_IPV6) &&
1057 		    ((const u8 *)spec->loc_host)[0] == 0xff)
1058 			return true;
1059 	}
1060 
1061 	return false;
1062 }
1063