1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2011-2013 Solarflare Communications Inc. 5 */ 6 7 /* Theory of operation: 8 * 9 * PTP support is assisted by firmware running on the MC, which provides 10 * the hardware timestamping capabilities. Both transmitted and received 11 * PTP event packets are queued onto internal queues for subsequent processing; 12 * this is because the MC operations are relatively long and would block 13 * block NAPI/interrupt operation. 14 * 15 * Receive event processing: 16 * The event contains the packet's UUID and sequence number, together 17 * with the hardware timestamp. The PTP receive packet queue is searched 18 * for this UUID/sequence number and, if found, put on a pending queue. 19 * Packets not matching are delivered without timestamps (MCDI events will 20 * always arrive after the actual packet). 21 * It is important for the operation of the PTP protocol that the ordering 22 * of packets between the event and general port is maintained. 23 * 24 * Work queue processing: 25 * If work waiting, synchronise host/hardware time 26 * 27 * Transmit: send packet through MC, which returns the transmission time 28 * that is converted to an appropriate timestamp. 29 * 30 * Receive: the packet's reception time is converted to an appropriate 31 * timestamp. 32 */ 33 #include <linux/ip.h> 34 #include <linux/udp.h> 35 #include <linux/time.h> 36 #include <linux/errno.h> 37 #include <linux/ktime.h> 38 #include <linux/module.h> 39 #include <linux/pps_kernel.h> 40 #include <linux/ptp_clock_kernel.h> 41 #include "net_driver.h" 42 #include "efx.h" 43 #include "mcdi.h" 44 #include "mcdi_pcol.h" 45 #include "io.h" 46 #include "tx.h" 47 #include "nic.h" /* indirectly includes ptp.h */ 48 #include "efx_channels.h" 49 50 /* Maximum number of events expected to make up a PTP event */ 51 #define MAX_EVENT_FRAGS 3 52 53 /* Maximum delay, ms, to begin synchronisation */ 54 #define MAX_SYNCHRONISE_WAIT_MS 2 55 56 /* How long, at most, to spend synchronising */ 57 #define SYNCHRONISE_PERIOD_NS 250000 58 59 /* How often to update the shared memory time */ 60 #define SYNCHRONISATION_GRANULARITY_NS 200 61 62 /* Minimum permitted length of a (corrected) synchronisation time */ 63 #define DEFAULT_MIN_SYNCHRONISATION_NS 120 64 65 /* Maximum permitted length of a (corrected) synchronisation time */ 66 #define MAX_SYNCHRONISATION_NS 1000 67 68 /* How many (MC) receive events that can be queued */ 69 #define MAX_RECEIVE_EVENTS 8 70 71 /* Length of (modified) moving average. */ 72 #define AVERAGE_LENGTH 16 73 74 /* How long an unmatched event or packet can be held */ 75 #define PKT_EVENT_LIFETIME_MS 10 76 77 /* How long unused unicast filters can be held */ 78 #define UCAST_FILTER_EXPIRY_JIFFIES msecs_to_jiffies(30000) 79 80 /* Offsets into PTP packet for identification. These offsets are from the 81 * start of the IP header, not the MAC header. Note that neither PTP V1 nor 82 * PTP V2 permit the use of IPV4 options. 83 */ 84 #define PTP_DPORT_OFFSET 22 85 86 #define PTP_V1_VERSION_LENGTH 2 87 #define PTP_V1_VERSION_OFFSET 28 88 89 #define PTP_V1_SEQUENCE_LENGTH 2 90 #define PTP_V1_SEQUENCE_OFFSET 58 91 92 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid: 93 * includes IP header. 94 */ 95 #define PTP_V1_MIN_LENGTH 64 96 97 #define PTP_V2_VERSION_LENGTH 1 98 #define PTP_V2_VERSION_OFFSET 29 99 100 #define PTP_V2_SEQUENCE_LENGTH 2 101 #define PTP_V2_SEQUENCE_OFFSET 58 102 103 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid: 104 * includes IP header. 105 */ 106 #define PTP_V2_MIN_LENGTH 63 107 108 #define PTP_MIN_LENGTH 63 109 110 #define PTP_ADDR_IPV4 0xe0000181 /* 224.0.1.129 */ 111 112 /* ff0e::181 */ 113 static const struct in6_addr ptp_addr_ipv6 = { { { 114 0xff, 0x0e, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01, 0x81 } } }; 115 116 /* 01-1B-19-00-00-00 */ 117 static const u8 ptp_addr_ether[ETH_ALEN] __aligned(2) = { 118 0x01, 0x1b, 0x19, 0x00, 0x00, 0x00 }; 119 120 #define PTP_EVENT_PORT 319 121 #define PTP_GENERAL_PORT 320 122 123 /* Annoyingly the format of the version numbers are different between 124 * versions 1 and 2 so it isn't possible to simply look for 1 or 2. 125 */ 126 #define PTP_VERSION_V1 1 127 128 #define PTP_VERSION_V2 2 129 #define PTP_VERSION_V2_MASK 0x0f 130 131 enum ptp_packet_state { 132 PTP_PACKET_STATE_UNMATCHED = 0, 133 PTP_PACKET_STATE_MATCHED, 134 PTP_PACKET_STATE_TIMED_OUT, 135 PTP_PACKET_STATE_MATCH_UNWANTED 136 }; 137 138 /* NIC synchronised with single word of time only comprising 139 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds. 140 */ 141 #define MC_NANOSECOND_BITS 30 142 #define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1) 143 #define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1) 144 145 /* Maximum parts-per-billion adjustment that is acceptable */ 146 #define MAX_PPB 1000000 147 148 /* Precalculate scale word to avoid long long division at runtime */ 149 /* This is equivalent to 2^66 / 10^9. */ 150 #define PPB_SCALE_WORD ((1LL << (57)) / 1953125LL) 151 152 /* How much to shift down after scaling to convert to FP40 */ 153 #define PPB_SHIFT_FP40 26 154 /* ... and FP44. */ 155 #define PPB_SHIFT_FP44 22 156 157 #define PTP_SYNC_ATTEMPTS 4 158 159 /** 160 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area. 161 * @expiry: Time after which the packet should be delivered irrespective of 162 * event arrival. 163 * @state: The state of the packet - whether it is ready for processing or 164 * whether that is of no interest. 165 */ 166 struct efx_ptp_match { 167 unsigned long expiry; 168 enum ptp_packet_state state; 169 }; 170 171 /** 172 * struct efx_ptp_event_rx - A PTP receive event (from MC) 173 * @link: list of events 174 * @seq0: First part of (PTP) UUID 175 * @seq1: Second part of (PTP) UUID and sequence number 176 * @hwtimestamp: Event timestamp 177 * @expiry: Time which the packet arrived 178 */ 179 struct efx_ptp_event_rx { 180 struct list_head link; 181 u32 seq0; 182 u32 seq1; 183 ktime_t hwtimestamp; 184 unsigned long expiry; 185 }; 186 187 /** 188 * struct efx_ptp_timeset - Synchronisation between host and MC 189 * @host_start: Host time immediately before hardware timestamp taken 190 * @major: Hardware timestamp, major 191 * @minor: Hardware timestamp, minor 192 * @host_end: Host time immediately after hardware timestamp taken 193 * @wait: Number of NIC clock ticks between hardware timestamp being read and 194 * host end time being seen 195 * @window: Difference of host_end and host_start 196 * @valid: Whether this timeset is valid 197 */ 198 struct efx_ptp_timeset { 199 u32 host_start; 200 u32 major; 201 u32 minor; 202 u32 host_end; 203 u32 wait; 204 u32 window; /* Derived: end - start, allowing for wrap */ 205 }; 206 207 /** 208 * struct efx_ptp_rxfilter - Filter for PTP packets 209 * @list: Node of the list where the filter is added 210 * @ether_type: Network protocol of the filter (ETHER_P_IP / ETHER_P_IPV6) 211 * @loc_port: UDP port of the filter (PTP_EVENT_PORT / PTP_GENERAL_PORT) 212 * @loc_host: IPv4/v6 address of the filter 213 * @expiry: time when the filter expires, in jiffies 214 * @handle: Handle ID for the MCDI filters table 215 */ 216 struct efx_ptp_rxfilter { 217 struct list_head list; 218 __be16 ether_type; 219 __be16 loc_port; 220 __be32 loc_host[4]; 221 unsigned long expiry; 222 int handle; 223 }; 224 225 /** 226 * struct efx_ptp_data - Precision Time Protocol (PTP) state 227 * @efx: The NIC context 228 * @channel: The PTP channel (for Medford and Medford2) 229 * @rxq: Receive SKB queue (awaiting timestamps) 230 * @txq: Transmit SKB queue 231 * @workwq: Work queue for processing pending PTP operations 232 * @work: Work task 233 * @cleanup_work: Work task for periodic cleanup 234 * @reset_required: A serious error has occurred and the PTP task needs to be 235 * reset (disable, enable). 236 * @rxfilters_mcast: Receive filters for multicast PTP packets 237 * @rxfilters_ucast: Receive filters for unicast PTP packets 238 * @config: Current timestamp configuration 239 * @enabled: PTP operation enabled 240 * @mode: Mode in which PTP operating (PTP version) 241 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time 242 * @nic_to_kernel_time: Function to convert from NIC to kernel time 243 * @nic_time: contains time details 244 * @nic_time.minor_max: Wrap point for NIC minor times 245 * @nic_time.sync_event_diff_min: Minimum acceptable difference between time 246 * in packet prefix and last MCDI time sync event i.e. how much earlier than 247 * the last sync event time a packet timestamp can be. 248 * @nic_time.sync_event_diff_max: Maximum acceptable difference between time 249 * in packet prefix and last MCDI time sync event i.e. how much later than 250 * the last sync event time a packet timestamp can be. 251 * @nic_time.sync_event_minor_shift: Shift required to make minor time from 252 * field in MCDI time sync event. 253 * @min_synchronisation_ns: Minimum acceptable corrected sync window 254 * @capabilities: Capabilities flags from the NIC 255 * @ts_corrections: contains corrections details 256 * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit 257 * timestamps 258 * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive 259 * timestamps 260 * @ts_corrections.pps_out: PPS output error (information only) 261 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps 262 * @ts_corrections.general_tx: Required driver correction of general packet 263 * transmit timestamps 264 * @ts_corrections.general_rx: Required driver correction of general packet 265 * receive timestamps 266 * @evt_frags: Partly assembled PTP events 267 * @evt_frag_idx: Current fragment number 268 * @evt_code: Last event code 269 * @start: Address at which MC indicates ready for synchronisation 270 * @host_time_pps: Host time at last PPS 271 * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion 272 * frequency adjustment into a fixed point fractional nanosecond format. 273 * @current_adjfreq: Current ppb adjustment. 274 * @phc_clock: Pointer to registered phc device (if primary function) 275 * @phc_clock_info: Registration structure for phc device 276 * @pps_work: pps work task for handling pps events 277 * @pps_workwq: pps work queue 278 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled 279 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids 280 * allocations in main data path). 281 * @good_syncs: Number of successful synchronisations. 282 * @fast_syncs: Number of synchronisations requiring short delay 283 * @bad_syncs: Number of failed synchronisations. 284 * @sync_timeouts: Number of synchronisation timeouts 285 * @no_time_syncs: Number of synchronisations with no good times. 286 * @invalid_sync_windows: Number of sync windows with bad durations. 287 * @undersize_sync_windows: Number of corrected sync windows that are too small 288 * @oversize_sync_windows: Number of corrected sync windows that are too large 289 * @rx_no_timestamp: Number of packets received without a timestamp. 290 * @timeset: Last set of synchronisation statistics. 291 * @xmit_skb: Transmit SKB function. 292 */ 293 struct efx_ptp_data { 294 struct efx_nic *efx; 295 struct efx_channel *channel; 296 struct sk_buff_head rxq; 297 struct sk_buff_head txq; 298 struct workqueue_struct *workwq; 299 struct work_struct work; 300 struct delayed_work cleanup_work; 301 bool reset_required; 302 struct list_head rxfilters_mcast; 303 struct list_head rxfilters_ucast; 304 struct kernel_hwtstamp_config config; 305 bool enabled; 306 unsigned int mode; 307 void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor); 308 ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor, 309 s32 correction); 310 struct { 311 u32 minor_max; 312 u32 sync_event_diff_min; 313 u32 sync_event_diff_max; 314 unsigned int sync_event_minor_shift; 315 } nic_time; 316 unsigned int min_synchronisation_ns; 317 unsigned int capabilities; 318 struct { 319 s32 ptp_tx; 320 s32 ptp_rx; 321 s32 pps_out; 322 s32 pps_in; 323 s32 general_tx; 324 s32 general_rx; 325 } ts_corrections; 326 efx_qword_t evt_frags[MAX_EVENT_FRAGS]; 327 int evt_frag_idx; 328 int evt_code; 329 struct efx_buffer start; 330 struct pps_event_time host_time_pps; 331 unsigned int adjfreq_ppb_shift; 332 s64 current_adjfreq; 333 struct ptp_clock *phc_clock; 334 struct ptp_clock_info phc_clock_info; 335 struct work_struct pps_work; 336 struct workqueue_struct *pps_workwq; 337 bool nic_ts_enabled; 338 efx_dword_t txbuf[MCDI_TX_BUF_LEN(MC_CMD_PTP_IN_TRANSMIT_LENMAX)]; 339 340 unsigned int good_syncs; 341 unsigned int fast_syncs; 342 unsigned int bad_syncs; 343 unsigned int sync_timeouts; 344 unsigned int no_time_syncs; 345 unsigned int invalid_sync_windows; 346 unsigned int undersize_sync_windows; 347 unsigned int oversize_sync_windows; 348 unsigned int rx_no_timestamp; 349 struct efx_ptp_timeset 350 timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM]; 351 void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb); 352 }; 353 354 static int efx_phc_adjfine(struct ptp_clock_info *ptp, long scaled_ppm); 355 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta); 356 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts); 357 static int efx_phc_settime(struct ptp_clock_info *ptp, 358 const struct timespec64 *e_ts); 359 static int efx_phc_enable(struct ptp_clock_info *ptp, 360 struct ptp_clock_request *request, int on); 361 static int efx_ptp_insert_unicast_filter(struct efx_nic *efx, 362 struct sk_buff *skb); 363 364 bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx) 365 { 366 return efx_has_cap(efx, TX_MAC_TIMESTAMPING); 367 } 368 369 /* PTP 'extra' channel is still a traffic channel, but we only create TX queues 370 * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit. 371 */ 372 static bool efx_ptp_want_txqs(struct efx_channel *channel) 373 { 374 return efx_ptp_use_mac_tx_timestamps(channel->efx); 375 } 376 377 #define PTP_SW_STAT(ext_name, field_name) \ 378 { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) } 379 #define PTP_MC_STAT(ext_name, mcdi_name) \ 380 { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST } 381 static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = { 382 PTP_SW_STAT(ptp_good_syncs, good_syncs), 383 PTP_SW_STAT(ptp_fast_syncs, fast_syncs), 384 PTP_SW_STAT(ptp_bad_syncs, bad_syncs), 385 PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts), 386 PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs), 387 PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows), 388 PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows), 389 PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows), 390 PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp), 391 PTP_MC_STAT(ptp_tx_timestamp_packets, TX), 392 PTP_MC_STAT(ptp_rx_timestamp_packets, RX), 393 PTP_MC_STAT(ptp_timestamp_packets, TS), 394 PTP_MC_STAT(ptp_filter_matches, FM), 395 PTP_MC_STAT(ptp_non_filter_matches, NFM), 396 }; 397 #define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc) 398 static const unsigned long efx_ptp_stat_mask[] = { 399 [0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL, 400 }; 401 402 size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 **strings) 403 { 404 if (!efx->ptp_data) 405 return 0; 406 407 return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT, 408 efx_ptp_stat_mask, strings); 409 } 410 411 size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats) 412 { 413 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN); 414 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN); 415 size_t i; 416 int rc; 417 418 if (!efx->ptp_data) 419 return 0; 420 421 /* Copy software statistics */ 422 for (i = 0; i < PTP_STAT_COUNT; i++) { 423 if (efx_ptp_stat_desc[i].dma_width) 424 continue; 425 stats[i] = *(unsigned int *)((char *)efx->ptp_data + 426 efx_ptp_stat_desc[i].offset); 427 } 428 429 /* Fetch MC statistics. We *must* fill in all statistics or 430 * risk leaking kernel memory to userland, so if the MCDI 431 * request fails we pretend we got zeroes. 432 */ 433 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS); 434 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 435 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 436 outbuf, sizeof(outbuf), NULL); 437 if (rc) 438 memset(outbuf, 0, sizeof(outbuf)); 439 efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT, 440 efx_ptp_stat_mask, 441 stats, _MCDI_PTR(outbuf, 0), false); 442 443 return PTP_STAT_COUNT; 444 } 445 446 /* To convert from s27 format to ns we multiply then divide by a power of 2. 447 * For the conversion from ns to s27, the operation is also converted to a 448 * multiply and shift. 449 */ 450 #define S27_TO_NS_SHIFT (27) 451 #define NS_TO_S27_MULT (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC) 452 #define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT) 453 #define S27_MINOR_MAX (1 << S27_TO_NS_SHIFT) 454 455 /* For Huntington platforms NIC time is in seconds and fractions of a second 456 * where the minor register only uses 27 bits in units of 2^-27s. 457 */ 458 static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor) 459 { 460 struct timespec64 ts = ns_to_timespec64(ns); 461 u32 maj = (u32)ts.tv_sec; 462 u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT + 463 (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT); 464 465 /* The conversion can result in the minor value exceeding the maximum. 466 * In this case, round up to the next second. 467 */ 468 if (min >= S27_MINOR_MAX) { 469 min -= S27_MINOR_MAX; 470 maj++; 471 } 472 473 *nic_major = maj; 474 *nic_minor = min; 475 } 476 477 static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor) 478 { 479 u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC + 480 (1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT); 481 return ktime_set(nic_major, ns); 482 } 483 484 static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor, 485 s32 correction) 486 { 487 /* Apply the correction and deal with carry */ 488 nic_minor += correction; 489 if ((s32)nic_minor < 0) { 490 nic_minor += S27_MINOR_MAX; 491 nic_major--; 492 } else if (nic_minor >= S27_MINOR_MAX) { 493 nic_minor -= S27_MINOR_MAX; 494 nic_major++; 495 } 496 497 return efx_ptp_s27_to_ktime(nic_major, nic_minor); 498 } 499 500 /* For Medford2 platforms the time is in seconds and quarter nanoseconds. */ 501 static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor) 502 { 503 struct timespec64 ts = ns_to_timespec64(ns); 504 505 *nic_major = (u32)ts.tv_sec; 506 *nic_minor = ts.tv_nsec * 4; 507 } 508 509 static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor, 510 s32 correction) 511 { 512 ktime_t kt; 513 514 nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4); 515 correction = DIV_ROUND_CLOSEST(correction, 4); 516 517 kt = ktime_set(nic_major, nic_minor); 518 519 if (correction >= 0) 520 kt = ktime_add_ns(kt, (u64)correction); 521 else 522 kt = ktime_sub_ns(kt, (u64)-correction); 523 return kt; 524 } 525 526 struct efx_channel *efx_ptp_channel(struct efx_nic *efx) 527 { 528 return efx->ptp_data ? efx->ptp_data->channel : NULL; 529 } 530 531 void efx_ptp_update_channel(struct efx_nic *efx, struct efx_channel *channel) 532 { 533 if (efx->ptp_data) 534 efx->ptp_data->channel = channel; 535 } 536 537 static u32 last_sync_timestamp_major(struct efx_nic *efx) 538 { 539 struct efx_channel *channel = efx_ptp_channel(efx); 540 u32 major = 0; 541 542 if (channel) 543 major = channel->sync_timestamp_major; 544 return major; 545 } 546 547 /* The 8000 series and later can provide the time from the MAC, which is only 548 * 48 bits long and provides meta-information in the top 2 bits. 549 */ 550 static ktime_t 551 efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx, 552 struct efx_ptp_data *ptp, 553 u32 nic_major, u32 nic_minor, 554 s32 correction) 555 { 556 u32 sync_timestamp; 557 ktime_t kt = { 0 }; 558 s16 delta; 559 560 if (!(nic_major & 0x80000000)) { 561 WARN_ON_ONCE(nic_major >> 16); 562 563 /* Medford provides 48 bits of timestamp, so we must get the top 564 * 16 bits from the timesync event state. 565 * 566 * We only have the lower 16 bits of the time now, but we do 567 * have a full resolution timestamp at some point in past. As 568 * long as the difference between the (real) now and the sync 569 * is less than 2^15, then we can reconstruct the difference 570 * between those two numbers using only the lower 16 bits of 571 * each. 572 * 573 * Put another way 574 * 575 * a - b = ((a mod k) - b) mod k 576 * 577 * when -k/2 < (a-b) < k/2. In our case k is 2^16. We know 578 * (a mod k) and b, so can calculate the delta, a - b. 579 * 580 */ 581 sync_timestamp = last_sync_timestamp_major(efx); 582 583 /* Because delta is s16 this does an implicit mask down to 584 * 16 bits which is what we need, assuming 585 * MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that 586 * we can deal with the (unlikely) case of sync timestamps 587 * arriving from the future. 588 */ 589 delta = nic_major - sync_timestamp; 590 591 /* Recover the fully specified time now, by applying the offset 592 * to the (fully specified) sync time. 593 */ 594 nic_major = sync_timestamp + delta; 595 596 kt = ptp->nic_to_kernel_time(nic_major, nic_minor, 597 correction); 598 } 599 return kt; 600 } 601 602 ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue) 603 { 604 struct efx_nic *efx = tx_queue->efx; 605 struct efx_ptp_data *ptp = efx->ptp_data; 606 ktime_t kt; 607 608 if (efx_ptp_use_mac_tx_timestamps(efx)) 609 kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp, 610 tx_queue->completed_timestamp_major, 611 tx_queue->completed_timestamp_minor, 612 ptp->ts_corrections.general_tx); 613 else 614 kt = ptp->nic_to_kernel_time( 615 tx_queue->completed_timestamp_major, 616 tx_queue->completed_timestamp_minor, 617 ptp->ts_corrections.general_tx); 618 return kt; 619 } 620 621 /* Get PTP attributes and set up time conversions */ 622 static int efx_ptp_get_attributes(struct efx_nic *efx) 623 { 624 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN); 625 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN); 626 struct efx_ptp_data *ptp = efx->ptp_data; 627 int rc; 628 u32 fmt; 629 size_t out_len; 630 631 /* Get the PTP attributes. If the NIC doesn't support the operation we 632 * use the default format for compatibility with older NICs i.e. 633 * seconds and nanoseconds. 634 */ 635 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES); 636 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 637 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 638 outbuf, sizeof(outbuf), &out_len); 639 if (rc == 0) { 640 fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT); 641 } else if (rc == -EINVAL) { 642 fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS; 643 } else if (rc == -EPERM) { 644 pci_info(efx->pci_dev, "no PTP support\n"); 645 return rc; 646 } else { 647 efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), 648 outbuf, sizeof(outbuf), rc); 649 return rc; 650 } 651 652 switch (fmt) { 653 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION: 654 ptp->ns_to_nic_time = efx_ptp_ns_to_s27; 655 ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction; 656 ptp->nic_time.minor_max = 1 << 27; 657 ptp->nic_time.sync_event_minor_shift = 19; 658 break; 659 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS: 660 ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns; 661 ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction; 662 ptp->nic_time.minor_max = 4000000000UL; 663 ptp->nic_time.sync_event_minor_shift = 24; 664 break; 665 default: 666 return -ERANGE; 667 } 668 669 /* Precalculate acceptable difference between the minor time in the 670 * packet prefix and the last MCDI time sync event. We expect the 671 * packet prefix timestamp to be after of sync event by up to one 672 * sync event interval (0.25s) but we allow it to exceed this by a 673 * fuzz factor of (0.1s) 674 */ 675 ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max 676 - (ptp->nic_time.minor_max / 10); 677 ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4) 678 + (ptp->nic_time.minor_max / 10); 679 680 /* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older 681 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return 682 * a value to use for the minimum acceptable corrected synchronization 683 * window and may return further capabilities. 684 * If we have the extra information store it. For older firmware that 685 * does not implement the extended command use the default value. 686 */ 687 if (rc == 0 && 688 out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST) 689 ptp->min_synchronisation_ns = 690 MCDI_DWORD(outbuf, 691 PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN); 692 else 693 ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS; 694 695 if (rc == 0 && 696 out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN) 697 ptp->capabilities = MCDI_DWORD(outbuf, 698 PTP_OUT_GET_ATTRIBUTES_CAPABILITIES); 699 else 700 ptp->capabilities = 0; 701 702 /* Set up the shift for conversion between frequency 703 * adjustments in parts-per-billion and the fixed-point 704 * fractional ns format that the adapter uses. 705 */ 706 if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN)) 707 ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44; 708 else 709 ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40; 710 711 return 0; 712 } 713 714 /* Get PTP timestamp corrections */ 715 static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx) 716 { 717 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN); 718 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN); 719 int rc; 720 size_t out_len; 721 722 /* Get the timestamp corrections from the NIC. If this operation is 723 * not supported (older NICs) then no correction is required. 724 */ 725 MCDI_SET_DWORD(inbuf, PTP_IN_OP, 726 MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS); 727 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 728 729 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 730 outbuf, sizeof(outbuf), &out_len); 731 if (rc == 0) { 732 efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf, 733 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT); 734 efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf, 735 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE); 736 efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf, 737 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT); 738 efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf, 739 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN); 740 741 if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) { 742 efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD( 743 outbuf, 744 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX); 745 efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD( 746 outbuf, 747 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX); 748 } else { 749 efx->ptp_data->ts_corrections.general_tx = 750 efx->ptp_data->ts_corrections.ptp_tx; 751 efx->ptp_data->ts_corrections.general_rx = 752 efx->ptp_data->ts_corrections.ptp_rx; 753 } 754 } else if (rc == -EINVAL) { 755 efx->ptp_data->ts_corrections.ptp_tx = 0; 756 efx->ptp_data->ts_corrections.ptp_rx = 0; 757 efx->ptp_data->ts_corrections.pps_out = 0; 758 efx->ptp_data->ts_corrections.pps_in = 0; 759 efx->ptp_data->ts_corrections.general_tx = 0; 760 efx->ptp_data->ts_corrections.general_rx = 0; 761 } else { 762 efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf, 763 sizeof(outbuf), rc); 764 return rc; 765 } 766 767 return 0; 768 } 769 770 /* Enable MCDI PTP support. */ 771 static int efx_ptp_enable(struct efx_nic *efx) 772 { 773 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN); 774 MCDI_DECLARE_BUF_ERR(outbuf); 775 int rc; 776 777 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE); 778 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 779 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE, 780 efx->ptp_data->channel ? 781 efx->ptp_data->channel->channel : 0); 782 MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode); 783 784 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 785 outbuf, sizeof(outbuf), NULL); 786 rc = (rc == -EALREADY) ? 0 : rc; 787 if (rc) 788 efx_mcdi_display_error(efx, MC_CMD_PTP, 789 MC_CMD_PTP_IN_ENABLE_LEN, 790 outbuf, sizeof(outbuf), rc); 791 return rc; 792 } 793 794 /* Disable MCDI PTP support. 795 * 796 * Note that this function should never rely on the presence of ptp_data - 797 * may be called before that exists. 798 */ 799 static int efx_ptp_disable(struct efx_nic *efx) 800 { 801 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN); 802 MCDI_DECLARE_BUF_ERR(outbuf); 803 int rc; 804 805 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE); 806 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 807 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 808 outbuf, sizeof(outbuf), NULL); 809 rc = (rc == -EALREADY) ? 0 : rc; 810 /* If we get ENOSYS, the NIC doesn't support PTP, and thus this function 811 * should only have been called during probe. 812 */ 813 if (rc == -ENOSYS || rc == -EPERM) 814 pci_info(efx->pci_dev, "no PTP support\n"); 815 else if (rc) 816 efx_mcdi_display_error(efx, MC_CMD_PTP, 817 MC_CMD_PTP_IN_DISABLE_LEN, 818 outbuf, sizeof(outbuf), rc); 819 return rc; 820 } 821 822 static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q) 823 { 824 struct sk_buff *skb; 825 826 while ((skb = skb_dequeue(q))) { 827 local_bh_disable(); 828 netif_receive_skb(skb); 829 local_bh_enable(); 830 } 831 } 832 833 static void efx_ptp_handle_no_channel(struct efx_nic *efx) 834 { 835 netif_err(efx, drv, efx->net_dev, 836 "ERROR: PTP requires MSI-X and 1 additional interrupt" 837 "vector. PTP disabled\n"); 838 } 839 840 /* Repeatedly send the host time to the MC which will capture the hardware 841 * time. 842 */ 843 static void efx_ptp_send_times(struct efx_nic *efx, 844 struct pps_event_time *last_time) 845 { 846 struct pps_event_time now; 847 struct timespec64 limit; 848 struct efx_ptp_data *ptp = efx->ptp_data; 849 int *mc_running = ptp->start.addr; 850 851 pps_get_ts(&now); 852 limit = now.ts_real; 853 timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS); 854 855 /* Write host time for specified period or until MC is done */ 856 while ((timespec64_compare(&now.ts_real, &limit) < 0) && 857 READ_ONCE(*mc_running)) { 858 struct timespec64 update_time; 859 unsigned int host_time; 860 861 /* Don't update continuously to avoid saturating the PCIe bus */ 862 update_time = now.ts_real; 863 timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS); 864 do { 865 pps_get_ts(&now); 866 } while ((timespec64_compare(&now.ts_real, &update_time) < 0) && 867 READ_ONCE(*mc_running)); 868 869 /* Synchronise NIC with single word of time only */ 870 host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS | 871 now.ts_real.tv_nsec); 872 /* Update host time in NIC memory */ 873 efx->type->ptp_write_host_time(efx, host_time); 874 } 875 *last_time = now; 876 } 877 878 /* Read a timeset from the MC's results and partial process. */ 879 static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data), 880 struct efx_ptp_timeset *timeset) 881 { 882 unsigned start_ns, end_ns; 883 884 timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART); 885 timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR); 886 timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR); 887 timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND); 888 timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS); 889 890 /* Ignore seconds */ 891 start_ns = timeset->host_start & MC_NANOSECOND_MASK; 892 end_ns = timeset->host_end & MC_NANOSECOND_MASK; 893 /* Allow for rollover */ 894 if (end_ns < start_ns) 895 end_ns += NSEC_PER_SEC; 896 /* Determine duration of operation */ 897 timeset->window = end_ns - start_ns; 898 } 899 900 /* Process times received from MC. 901 * 902 * Extract times from returned results, and establish the minimum value 903 * seen. The minimum value represents the "best" possible time and events 904 * too much greater than this are rejected - the machine is, perhaps, too 905 * busy. A number of readings are taken so that, hopefully, at least one good 906 * synchronisation will be seen in the results. 907 */ 908 static int 909 efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf), 910 size_t response_length, 911 const struct pps_event_time *last_time) 912 { 913 unsigned number_readings = 914 MCDI_VAR_ARRAY_LEN(response_length, 915 PTP_OUT_SYNCHRONIZE_TIMESET); 916 unsigned i; 917 unsigned ngood = 0; 918 unsigned last_good = 0; 919 struct efx_ptp_data *ptp = efx->ptp_data; 920 u32 last_sec; 921 u32 start_sec; 922 struct timespec64 delta; 923 ktime_t mc_time; 924 925 if (number_readings == 0) 926 return -EAGAIN; 927 928 /* Read the set of results and find the last good host-MC 929 * synchronization result. The MC times when it finishes reading the 930 * host time so the corrected window time should be fairly constant 931 * for a given platform. Increment stats for any results that appear 932 * to be erroneous. 933 */ 934 for (i = 0; i < number_readings; i++) { 935 s32 window, corrected; 936 struct timespec64 wait; 937 938 efx_ptp_read_timeset( 939 MCDI_ARRAY_STRUCT_PTR(synch_buf, 940 PTP_OUT_SYNCHRONIZE_TIMESET, i), 941 &ptp->timeset[i]); 942 943 wait = ktime_to_timespec64( 944 ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0)); 945 window = ptp->timeset[i].window; 946 corrected = window - wait.tv_nsec; 947 948 /* We expect the uncorrected synchronization window to be at 949 * least as large as the interval between host start and end 950 * times. If it is smaller than this then this is mostly likely 951 * to be a consequence of the host's time being adjusted. 952 * Check that the corrected sync window is in a reasonable 953 * range. If it is out of range it is likely to be because an 954 * interrupt or other delay occurred between reading the system 955 * time and writing it to MC memory. 956 */ 957 if (window < SYNCHRONISATION_GRANULARITY_NS) { 958 ++ptp->invalid_sync_windows; 959 } else if (corrected >= MAX_SYNCHRONISATION_NS) { 960 ++ptp->oversize_sync_windows; 961 } else if (corrected < ptp->min_synchronisation_ns) { 962 ++ptp->undersize_sync_windows; 963 } else { 964 ngood++; 965 last_good = i; 966 } 967 } 968 969 if (ngood == 0) { 970 netif_warn(efx, drv, efx->net_dev, 971 "PTP no suitable synchronisations\n"); 972 return -EAGAIN; 973 } 974 975 /* Calculate delay from last good sync (host time) to last_time. 976 * It is possible that the seconds rolled over between taking 977 * the start reading and the last value written by the host. The 978 * timescales are such that a gap of more than one second is never 979 * expected. delta is *not* normalised. 980 */ 981 start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS; 982 last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK; 983 if (start_sec != last_sec && 984 ((start_sec + 1) & MC_SECOND_MASK) != last_sec) { 985 netif_warn(efx, hw, efx->net_dev, 986 "PTP bad synchronisation seconds\n"); 987 return -EAGAIN; 988 } 989 delta.tv_sec = (last_sec - start_sec) & 1; 990 delta.tv_nsec = 991 last_time->ts_real.tv_nsec - 992 (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK); 993 994 /* Convert the NIC time at last good sync into kernel time. 995 * No correction is required - this time is the output of a 996 * firmware process. 997 */ 998 mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major, 999 ptp->timeset[last_good].minor, 0); 1000 1001 /* Calculate delay from NIC top of second to last_time */ 1002 delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec; 1003 1004 /* Set PPS timestamp to match NIC top of second */ 1005 ptp->host_time_pps = *last_time; 1006 pps_sub_ts(&ptp->host_time_pps, delta); 1007 1008 return 0; 1009 } 1010 1011 /* Synchronize times between the host and the MC */ 1012 static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings) 1013 { 1014 struct efx_ptp_data *ptp = efx->ptp_data; 1015 MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX); 1016 size_t response_length; 1017 int rc; 1018 unsigned long timeout; 1019 struct pps_event_time last_time = {}; 1020 unsigned int loops = 0; 1021 int *start = ptp->start.addr; 1022 1023 MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE); 1024 MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0); 1025 MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS, 1026 num_readings); 1027 MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR, 1028 ptp->start.dma_addr); 1029 1030 /* Clear flag that signals MC ready */ 1031 WRITE_ONCE(*start, 0); 1032 rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf, 1033 MC_CMD_PTP_IN_SYNCHRONIZE_LEN); 1034 EFX_WARN_ON_ONCE_PARANOID(rc); 1035 1036 /* Wait for start from MCDI (or timeout) */ 1037 timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS); 1038 while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) { 1039 udelay(20); /* Usually start MCDI execution quickly */ 1040 loops++; 1041 } 1042 1043 if (loops <= 1) 1044 ++ptp->fast_syncs; 1045 if (!time_before(jiffies, timeout)) 1046 ++ptp->sync_timeouts; 1047 1048 if (READ_ONCE(*start)) 1049 efx_ptp_send_times(efx, &last_time); 1050 1051 /* Collect results */ 1052 rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP, 1053 MC_CMD_PTP_IN_SYNCHRONIZE_LEN, 1054 synch_buf, sizeof(synch_buf), 1055 &response_length); 1056 if (rc == 0) { 1057 rc = efx_ptp_process_times(efx, synch_buf, response_length, 1058 &last_time); 1059 if (rc == 0) 1060 ++ptp->good_syncs; 1061 else 1062 ++ptp->no_time_syncs; 1063 } 1064 1065 /* Increment the bad syncs counter if the synchronize fails, whatever 1066 * the reason. 1067 */ 1068 if (rc != 0) 1069 ++ptp->bad_syncs; 1070 1071 return rc; 1072 } 1073 1074 /* Transmit a PTP packet via the dedicated hardware timestamped queue. */ 1075 static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb) 1076 { 1077 struct efx_ptp_data *ptp_data = efx->ptp_data; 1078 u8 type = efx_tx_csum_type_skb(skb); 1079 struct efx_tx_queue *tx_queue; 1080 1081 tx_queue = efx_channel_get_tx_queue(ptp_data->channel, type); 1082 if (tx_queue && tx_queue->timestamping) { 1083 skb_get(skb); 1084 1085 /* This code invokes normal driver TX code which is always 1086 * protected from softirqs when called from generic TX code, 1087 * which in turn disables preemption. Look at __dev_queue_xmit 1088 * which uses rcu_read_lock_bh disabling preemption for RCU 1089 * plus disabling softirqs. We do not need RCU reader 1090 * protection here. 1091 * 1092 * Although it is theoretically safe for current PTP TX/RX code 1093 * running without disabling softirqs, there are three good 1094 * reasond for doing so: 1095 * 1096 * 1) The code invoked is mainly implemented for non-PTP 1097 * packets and it is always executed with softirqs 1098 * disabled. 1099 * 2) This being a single PTP packet, better to not 1100 * interrupt its processing by softirqs which can lead 1101 * to high latencies. 1102 * 3) netdev_xmit_more checks preemption is disabled and 1103 * triggers a BUG_ON if not. 1104 */ 1105 local_bh_disable(); 1106 efx_enqueue_skb(tx_queue, skb); 1107 local_bh_enable(); 1108 1109 /* We need to add the filters after enqueuing the packet. 1110 * Otherwise, there's high latency in sending back the 1111 * timestamp, causing ptp4l timeouts 1112 */ 1113 efx_ptp_insert_unicast_filter(efx, skb); 1114 dev_consume_skb_any(skb); 1115 } else { 1116 WARN_ONCE(1, "PTP channel has no timestamped tx queue\n"); 1117 dev_kfree_skb_any(skb); 1118 } 1119 } 1120 1121 /* Transmit a PTP packet, via the MCDI interface, to the wire. */ 1122 static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb) 1123 { 1124 MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN); 1125 struct efx_ptp_data *ptp_data = efx->ptp_data; 1126 struct skb_shared_hwtstamps timestamps; 1127 size_t len; 1128 int rc; 1129 1130 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT); 1131 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0); 1132 MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len); 1133 if (skb_shinfo(skb)->nr_frags != 0) { 1134 rc = skb_linearize(skb); 1135 if (rc != 0) 1136 goto fail; 1137 } 1138 1139 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1140 rc = skb_checksum_help(skb); 1141 if (rc != 0) 1142 goto fail; 1143 } 1144 skb_copy_from_linear_data(skb, 1145 MCDI_PTR(ptp_data->txbuf, 1146 PTP_IN_TRANSMIT_PACKET), 1147 skb->len); 1148 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, 1149 ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len), 1150 txtime, sizeof(txtime), &len); 1151 if (rc != 0) 1152 goto fail; 1153 1154 memset(×tamps, 0, sizeof(timestamps)); 1155 timestamps.hwtstamp = ptp_data->nic_to_kernel_time( 1156 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR), 1157 MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR), 1158 ptp_data->ts_corrections.ptp_tx); 1159 1160 skb_tstamp_tx(skb, ×tamps); 1161 1162 /* Add the filters after sending back the timestamp to avoid delaying it 1163 * or ptp4l may timeout. 1164 */ 1165 efx_ptp_insert_unicast_filter(efx, skb); 1166 1167 fail: 1168 dev_kfree_skb_any(skb); 1169 1170 return; 1171 } 1172 1173 /* Process any queued receive events and corresponding packets 1174 * 1175 * q is returned with all the packets that are ready for delivery. 1176 */ 1177 static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q) 1178 { 1179 struct efx_ptp_data *ptp = efx->ptp_data; 1180 struct sk_buff *skb; 1181 1182 while ((skb = skb_dequeue(&ptp->rxq))) { 1183 struct efx_ptp_match *match; 1184 1185 match = (struct efx_ptp_match *)skb->cb; 1186 if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) { 1187 __skb_queue_tail(q, skb); 1188 } else if (time_after(jiffies, match->expiry)) { 1189 match->state = PTP_PACKET_STATE_TIMED_OUT; 1190 ++ptp->rx_no_timestamp; 1191 __skb_queue_tail(q, skb); 1192 } else { 1193 /* Replace unprocessed entry and stop */ 1194 skb_queue_head(&ptp->rxq, skb); 1195 break; 1196 } 1197 } 1198 } 1199 1200 /* Complete processing of a received packet */ 1201 static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb) 1202 { 1203 local_bh_disable(); 1204 netif_receive_skb(skb); 1205 local_bh_enable(); 1206 } 1207 1208 static struct efx_ptp_rxfilter * 1209 efx_ptp_find_filter(struct list_head *filter_list, struct efx_filter_spec *spec) 1210 { 1211 struct efx_ptp_rxfilter *rxfilter; 1212 1213 list_for_each_entry(rxfilter, filter_list, list) { 1214 if (rxfilter->ether_type == spec->ether_type && 1215 rxfilter->loc_port == spec->loc_port && 1216 !memcmp(rxfilter->loc_host, spec->loc_host, sizeof(spec->loc_host))) 1217 return rxfilter; 1218 } 1219 1220 return NULL; 1221 } 1222 1223 static void efx_ptp_remove_one_filter(struct efx_nic *efx, 1224 struct efx_ptp_rxfilter *rxfilter) 1225 { 1226 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, 1227 rxfilter->handle); 1228 list_del(&rxfilter->list); 1229 kfree(rxfilter); 1230 } 1231 1232 static void efx_ptp_remove_filters(struct efx_nic *efx, 1233 struct list_head *filter_list) 1234 { 1235 struct efx_ptp_rxfilter *rxfilter, *tmp; 1236 1237 list_for_each_entry_safe(rxfilter, tmp, filter_list, list) 1238 efx_ptp_remove_one_filter(efx, rxfilter); 1239 } 1240 1241 static void efx_ptp_init_filter(struct efx_nic *efx, 1242 struct efx_filter_spec *rxfilter) 1243 { 1244 struct efx_channel *channel = efx->ptp_data->channel; 1245 struct efx_rx_queue *queue = efx_channel_get_rx_queue(channel); 1246 1247 efx_filter_init_rx(rxfilter, EFX_FILTER_PRI_REQUIRED, 0, 1248 efx_rx_queue_index(queue)); 1249 } 1250 1251 static int efx_ptp_insert_filter(struct efx_nic *efx, 1252 struct list_head *filter_list, 1253 struct efx_filter_spec *spec, 1254 unsigned long expiry) 1255 { 1256 struct efx_ptp_data *ptp = efx->ptp_data; 1257 struct efx_ptp_rxfilter *rxfilter; 1258 int rc; 1259 1260 rxfilter = efx_ptp_find_filter(filter_list, spec); 1261 if (rxfilter) { 1262 rxfilter->expiry = expiry; 1263 return 0; 1264 } 1265 1266 rxfilter = kzalloc(sizeof(*rxfilter), GFP_KERNEL); 1267 if (!rxfilter) 1268 return -ENOMEM; 1269 1270 rc = efx_filter_insert_filter(efx, spec, true); 1271 if (rc < 0) 1272 goto fail; 1273 1274 rxfilter->handle = rc; 1275 rxfilter->ether_type = spec->ether_type; 1276 rxfilter->loc_port = spec->loc_port; 1277 memcpy(rxfilter->loc_host, spec->loc_host, sizeof(spec->loc_host)); 1278 rxfilter->expiry = expiry; 1279 list_add(&rxfilter->list, filter_list); 1280 1281 queue_delayed_work(ptp->workwq, &ptp->cleanup_work, 1282 UCAST_FILTER_EXPIRY_JIFFIES + 1); 1283 1284 return 0; 1285 1286 fail: 1287 kfree(rxfilter); 1288 return rc; 1289 } 1290 1291 static int efx_ptp_insert_ipv4_filter(struct efx_nic *efx, 1292 struct list_head *filter_list, 1293 __be32 addr, u16 port, 1294 unsigned long expiry) 1295 { 1296 struct efx_filter_spec spec; 1297 1298 efx_ptp_init_filter(efx, &spec); 1299 efx_filter_set_ipv4_local(&spec, IPPROTO_UDP, addr, htons(port)); 1300 return efx_ptp_insert_filter(efx, filter_list, &spec, expiry); 1301 } 1302 1303 static int efx_ptp_insert_ipv6_filter(struct efx_nic *efx, 1304 struct list_head *filter_list, 1305 const struct in6_addr *addr, u16 port, 1306 unsigned long expiry) 1307 { 1308 struct efx_filter_spec spec; 1309 1310 efx_ptp_init_filter(efx, &spec); 1311 efx_filter_set_ipv6_local(&spec, IPPROTO_UDP, addr, htons(port)); 1312 return efx_ptp_insert_filter(efx, filter_list, &spec, expiry); 1313 } 1314 1315 static int efx_ptp_insert_eth_multicast_filter(struct efx_nic *efx) 1316 { 1317 struct efx_ptp_data *ptp = efx->ptp_data; 1318 struct efx_filter_spec spec; 1319 1320 efx_ptp_init_filter(efx, &spec); 1321 efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC, ptp_addr_ether); 1322 spec.match_flags |= EFX_FILTER_MATCH_ETHER_TYPE; 1323 spec.ether_type = htons(ETH_P_1588); 1324 return efx_ptp_insert_filter(efx, &ptp->rxfilters_mcast, &spec, 0); 1325 } 1326 1327 static int efx_ptp_insert_multicast_filters(struct efx_nic *efx) 1328 { 1329 struct efx_ptp_data *ptp = efx->ptp_data; 1330 int rc; 1331 1332 if (!ptp->channel || !list_empty(&ptp->rxfilters_mcast)) 1333 return 0; 1334 1335 /* Must filter on both event and general ports to ensure 1336 * that there is no packet re-ordering. 1337 */ 1338 rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_mcast, 1339 htonl(PTP_ADDR_IPV4), PTP_EVENT_PORT, 1340 0); 1341 if (rc < 0) 1342 goto fail; 1343 1344 rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_mcast, 1345 htonl(PTP_ADDR_IPV4), PTP_GENERAL_PORT, 1346 0); 1347 if (rc < 0) 1348 goto fail; 1349 1350 /* if the NIC supports hw timestamps by the MAC, we can support 1351 * PTP over IPv6 and Ethernet 1352 */ 1353 if (efx_ptp_use_mac_tx_timestamps(efx)) { 1354 rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_mcast, 1355 &ptp_addr_ipv6, PTP_EVENT_PORT, 0); 1356 if (rc < 0) 1357 goto fail; 1358 1359 rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_mcast, 1360 &ptp_addr_ipv6, PTP_GENERAL_PORT, 0); 1361 if (rc < 0) 1362 goto fail; 1363 1364 rc = efx_ptp_insert_eth_multicast_filter(efx); 1365 1366 /* Not all firmware variants support this filter */ 1367 if (rc < 0 && rc != -EPROTONOSUPPORT) 1368 goto fail; 1369 } 1370 1371 return 0; 1372 1373 fail: 1374 efx_ptp_remove_filters(efx, &ptp->rxfilters_mcast); 1375 return rc; 1376 } 1377 1378 static bool efx_ptp_valid_unicast_event_pkt(struct sk_buff *skb) 1379 { 1380 if (skb->protocol == htons(ETH_P_IP)) { 1381 return ip_hdr(skb)->daddr != htonl(PTP_ADDR_IPV4) && 1382 ip_hdr(skb)->protocol == IPPROTO_UDP && 1383 udp_hdr(skb)->source == htons(PTP_EVENT_PORT); 1384 } else if (skb->protocol == htons(ETH_P_IPV6)) { 1385 return !ipv6_addr_equal(&ipv6_hdr(skb)->daddr, &ptp_addr_ipv6) && 1386 ipv6_hdr(skb)->nexthdr == IPPROTO_UDP && 1387 udp_hdr(skb)->source == htons(PTP_EVENT_PORT); 1388 } 1389 return false; 1390 } 1391 1392 static int efx_ptp_insert_unicast_filter(struct efx_nic *efx, 1393 struct sk_buff *skb) 1394 { 1395 struct efx_ptp_data *ptp = efx->ptp_data; 1396 unsigned long expiry; 1397 int rc; 1398 1399 if (!efx_ptp_valid_unicast_event_pkt(skb)) 1400 return -EINVAL; 1401 1402 expiry = jiffies + UCAST_FILTER_EXPIRY_JIFFIES; 1403 1404 if (skb->protocol == htons(ETH_P_IP)) { 1405 __be32 addr = ip_hdr(skb)->saddr; 1406 1407 rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_ucast, 1408 addr, PTP_EVENT_PORT, expiry); 1409 if (rc < 0) 1410 goto out; 1411 1412 rc = efx_ptp_insert_ipv4_filter(efx, &ptp->rxfilters_ucast, 1413 addr, PTP_GENERAL_PORT, expiry); 1414 } else if (efx_ptp_use_mac_tx_timestamps(efx)) { 1415 /* IPv6 PTP only supported by devices with MAC hw timestamp */ 1416 struct in6_addr *addr = &ipv6_hdr(skb)->saddr; 1417 1418 rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_ucast, 1419 addr, PTP_EVENT_PORT, expiry); 1420 if (rc < 0) 1421 goto out; 1422 1423 rc = efx_ptp_insert_ipv6_filter(efx, &ptp->rxfilters_ucast, 1424 addr, PTP_GENERAL_PORT, expiry); 1425 } else { 1426 return -EOPNOTSUPP; 1427 } 1428 1429 out: 1430 return rc; 1431 } 1432 1433 static int efx_ptp_start(struct efx_nic *efx) 1434 { 1435 struct efx_ptp_data *ptp = efx->ptp_data; 1436 int rc; 1437 1438 ptp->reset_required = false; 1439 1440 rc = efx_ptp_insert_multicast_filters(efx); 1441 if (rc) 1442 return rc; 1443 1444 rc = efx_ptp_enable(efx); 1445 if (rc != 0) 1446 goto fail; 1447 1448 ptp->evt_frag_idx = 0; 1449 ptp->current_adjfreq = 0; 1450 1451 return 0; 1452 1453 fail: 1454 efx_ptp_remove_filters(efx, &ptp->rxfilters_mcast); 1455 return rc; 1456 } 1457 1458 static int efx_ptp_stop(struct efx_nic *efx) 1459 { 1460 struct efx_ptp_data *ptp = efx->ptp_data; 1461 int rc; 1462 1463 if (ptp == NULL) 1464 return 0; 1465 1466 rc = efx_ptp_disable(efx); 1467 1468 efx_ptp_remove_filters(efx, &ptp->rxfilters_mcast); 1469 efx_ptp_remove_filters(efx, &ptp->rxfilters_ucast); 1470 1471 /* Make sure RX packets are really delivered */ 1472 efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq); 1473 skb_queue_purge(&efx->ptp_data->txq); 1474 1475 return rc; 1476 } 1477 1478 static int efx_ptp_restart(struct efx_nic *efx) 1479 { 1480 if (efx->ptp_data && efx->ptp_data->enabled) 1481 return efx_ptp_start(efx); 1482 return 0; 1483 } 1484 1485 static void efx_ptp_pps_worker(struct work_struct *work) 1486 { 1487 struct efx_ptp_data *ptp = 1488 container_of(work, struct efx_ptp_data, pps_work); 1489 struct efx_nic *efx = ptp->efx; 1490 struct ptp_clock_event ptp_evt; 1491 1492 if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS)) 1493 return; 1494 1495 ptp_evt.type = PTP_CLOCK_PPSUSR; 1496 ptp_evt.pps_times = ptp->host_time_pps; 1497 ptp_clock_event(ptp->phc_clock, &ptp_evt); 1498 } 1499 1500 static void efx_ptp_worker(struct work_struct *work) 1501 { 1502 struct efx_ptp_data *ptp_data = 1503 container_of(work, struct efx_ptp_data, work); 1504 struct efx_nic *efx = ptp_data->efx; 1505 struct sk_buff *skb; 1506 struct sk_buff_head tempq; 1507 1508 if (ptp_data->reset_required) { 1509 efx_ptp_stop(efx); 1510 efx_ptp_start(efx); 1511 return; 1512 } 1513 1514 __skb_queue_head_init(&tempq); 1515 efx_ptp_process_events(efx, &tempq); 1516 1517 while ((skb = skb_dequeue(&ptp_data->txq))) 1518 ptp_data->xmit_skb(efx, skb); 1519 1520 while ((skb = __skb_dequeue(&tempq))) 1521 efx_ptp_process_rx(efx, skb); 1522 } 1523 1524 static void efx_ptp_cleanup_worker(struct work_struct *work) 1525 { 1526 struct efx_ptp_data *ptp = 1527 container_of(work, struct efx_ptp_data, cleanup_work.work); 1528 struct efx_ptp_rxfilter *rxfilter, *tmp; 1529 1530 list_for_each_entry_safe(rxfilter, tmp, &ptp->rxfilters_ucast, list) { 1531 if (time_is_before_jiffies(rxfilter->expiry)) 1532 efx_ptp_remove_one_filter(ptp->efx, rxfilter); 1533 } 1534 1535 if (!list_empty(&ptp->rxfilters_ucast)) { 1536 queue_delayed_work(ptp->workwq, &ptp->cleanup_work, 1537 UCAST_FILTER_EXPIRY_JIFFIES + 1); 1538 } 1539 } 1540 1541 static const struct ptp_clock_info efx_phc_clock_info = { 1542 .owner = THIS_MODULE, 1543 .name = "sfc", 1544 .max_adj = MAX_PPB, 1545 .n_alarm = 0, 1546 .n_ext_ts = 0, 1547 .n_per_out = 0, 1548 .n_pins = 0, 1549 .pps = 1, 1550 .adjfine = efx_phc_adjfine, 1551 .adjtime = efx_phc_adjtime, 1552 .gettime64 = efx_phc_gettime, 1553 .settime64 = efx_phc_settime, 1554 .enable = efx_phc_enable, 1555 }; 1556 1557 /* Initialise PTP state. */ 1558 int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel) 1559 { 1560 struct efx_ptp_data *ptp; 1561 int rc = 0; 1562 1563 if (efx->ptp_data) { 1564 efx->ptp_data->channel = channel; 1565 return 0; 1566 } 1567 1568 ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL); 1569 efx->ptp_data = ptp; 1570 if (!efx->ptp_data) 1571 return -ENOMEM; 1572 1573 ptp->efx = efx; 1574 ptp->channel = channel; 1575 1576 rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL); 1577 if (rc != 0) 1578 goto fail1; 1579 1580 skb_queue_head_init(&ptp->rxq); 1581 skb_queue_head_init(&ptp->txq); 1582 ptp->workwq = create_singlethread_workqueue("sfc_ptp"); 1583 if (!ptp->workwq) { 1584 rc = -ENOMEM; 1585 goto fail2; 1586 } 1587 1588 if (efx_ptp_use_mac_tx_timestamps(efx)) { 1589 ptp->xmit_skb = efx_ptp_xmit_skb_queue; 1590 /* Request sync events on this channel. */ 1591 channel->sync_events_state = SYNC_EVENTS_QUIESCENT; 1592 } else { 1593 ptp->xmit_skb = efx_ptp_xmit_skb_mc; 1594 } 1595 1596 INIT_WORK(&ptp->work, efx_ptp_worker); 1597 INIT_DELAYED_WORK(&ptp->cleanup_work, efx_ptp_cleanup_worker); 1598 ptp->config.flags = 0; 1599 ptp->config.tx_type = HWTSTAMP_TX_OFF; 1600 ptp->config.rx_filter = HWTSTAMP_FILTER_NONE; 1601 INIT_LIST_HEAD(&ptp->rxfilters_mcast); 1602 INIT_LIST_HEAD(&ptp->rxfilters_ucast); 1603 1604 /* Get the NIC PTP attributes and set up time conversions */ 1605 rc = efx_ptp_get_attributes(efx); 1606 if (rc < 0) 1607 goto fail3; 1608 1609 /* Get the timestamp corrections */ 1610 rc = efx_ptp_get_timestamp_corrections(efx); 1611 if (rc < 0) 1612 goto fail3; 1613 1614 if (efx->mcdi->fn_flags & 1615 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) { 1616 ptp->phc_clock_info = efx_phc_clock_info; 1617 ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info, 1618 &efx->pci_dev->dev); 1619 if (IS_ERR(ptp->phc_clock)) { 1620 rc = PTR_ERR(ptp->phc_clock); 1621 goto fail3; 1622 } else if (ptp->phc_clock) { 1623 INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker); 1624 ptp->pps_workwq = create_singlethread_workqueue("sfc_pps"); 1625 if (!ptp->pps_workwq) { 1626 rc = -ENOMEM; 1627 goto fail4; 1628 } 1629 } 1630 } 1631 ptp->nic_ts_enabled = false; 1632 1633 return 0; 1634 fail4: 1635 ptp_clock_unregister(efx->ptp_data->phc_clock); 1636 1637 fail3: 1638 destroy_workqueue(efx->ptp_data->workwq); 1639 1640 fail2: 1641 efx_nic_free_buffer(efx, &ptp->start); 1642 1643 fail1: 1644 kfree(efx->ptp_data); 1645 efx->ptp_data = NULL; 1646 1647 return rc; 1648 } 1649 1650 /* Initialise PTP channel. 1651 * 1652 * Setting core_index to zero causes the queue to be initialised and doesn't 1653 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue. 1654 */ 1655 static int efx_ptp_probe_channel(struct efx_channel *channel) 1656 { 1657 struct efx_nic *efx = channel->efx; 1658 int rc; 1659 1660 channel->irq_moderation_us = 0; 1661 channel->rx_queue.core_index = 0; 1662 1663 rc = efx_ptp_probe(efx, channel); 1664 /* Failure to probe PTP is not fatal; this channel will just not be 1665 * used for anything. 1666 * In the case of EPERM, efx_ptp_probe will print its own message (in 1667 * efx_ptp_get_attributes()), so we don't need to. 1668 */ 1669 if (rc && rc != -EPERM) 1670 netif_warn(efx, drv, efx->net_dev, 1671 "Failed to probe PTP, rc=%d\n", rc); 1672 return 0; 1673 } 1674 1675 void efx_ptp_remove(struct efx_nic *efx) 1676 { 1677 if (!efx->ptp_data) 1678 return; 1679 1680 (void)efx_ptp_disable(efx); 1681 1682 cancel_work_sync(&efx->ptp_data->work); 1683 cancel_delayed_work_sync(&efx->ptp_data->cleanup_work); 1684 if (efx->ptp_data->pps_workwq) 1685 cancel_work_sync(&efx->ptp_data->pps_work); 1686 1687 skb_queue_purge(&efx->ptp_data->rxq); 1688 skb_queue_purge(&efx->ptp_data->txq); 1689 1690 if (efx->ptp_data->phc_clock) { 1691 destroy_workqueue(efx->ptp_data->pps_workwq); 1692 ptp_clock_unregister(efx->ptp_data->phc_clock); 1693 } 1694 1695 destroy_workqueue(efx->ptp_data->workwq); 1696 1697 efx_nic_free_buffer(efx, &efx->ptp_data->start); 1698 kfree(efx->ptp_data); 1699 efx->ptp_data = NULL; 1700 } 1701 1702 static void efx_ptp_remove_channel(struct efx_channel *channel) 1703 { 1704 efx_ptp_remove(channel->efx); 1705 } 1706 1707 static void efx_ptp_get_channel_name(struct efx_channel *channel, 1708 char *buf, size_t len) 1709 { 1710 snprintf(buf, len, "%s-ptp", channel->efx->name); 1711 } 1712 1713 /* Determine whether this packet should be processed by the PTP module 1714 * or transmitted conventionally. 1715 */ 1716 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb) 1717 { 1718 return efx->ptp_data && 1719 efx->ptp_data->enabled && 1720 skb->len >= PTP_MIN_LENGTH && 1721 skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM && 1722 likely(skb->protocol == htons(ETH_P_IP)) && 1723 skb_transport_header_was_set(skb) && 1724 skb_network_header_len(skb) >= sizeof(struct iphdr) && 1725 ip_hdr(skb)->protocol == IPPROTO_UDP && 1726 skb_headlen(skb) >= 1727 skb_transport_offset(skb) + sizeof(struct udphdr) && 1728 udp_hdr(skb)->dest == htons(PTP_EVENT_PORT); 1729 } 1730 1731 /* Receive a PTP packet. Packets are queued until the arrival of 1732 * the receive timestamp from the MC - this will probably occur after the 1733 * packet arrival because of the processing in the MC. 1734 */ 1735 static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb) 1736 { 1737 struct efx_nic *efx = channel->efx; 1738 struct efx_ptp_data *ptp = efx->ptp_data; 1739 struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb; 1740 unsigned int version; 1741 u8 *data; 1742 1743 match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS); 1744 1745 /* Correct version? */ 1746 if (ptp->mode == MC_CMD_PTP_MODE_V1) { 1747 if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) { 1748 return false; 1749 } 1750 data = skb->data; 1751 version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]); 1752 if (version != PTP_VERSION_V1) { 1753 return false; 1754 } 1755 } else { 1756 if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) { 1757 return false; 1758 } 1759 data = skb->data; 1760 version = data[PTP_V2_VERSION_OFFSET]; 1761 if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) { 1762 return false; 1763 } 1764 } 1765 1766 /* Does this packet require timestamping? */ 1767 if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) { 1768 match->state = PTP_PACKET_STATE_UNMATCHED; 1769 1770 /* We expect the sequence number to be in the same position in 1771 * the packet for PTP V1 and V2 1772 */ 1773 BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET); 1774 BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH); 1775 } else { 1776 match->state = PTP_PACKET_STATE_MATCH_UNWANTED; 1777 } 1778 1779 skb_queue_tail(&ptp->rxq, skb); 1780 queue_work(ptp->workwq, &ptp->work); 1781 1782 return true; 1783 } 1784 1785 /* Transmit a PTP packet. This has to be transmitted by the MC 1786 * itself, through an MCDI call. MCDI calls aren't permitted 1787 * in the transmit path so defer the actual transmission to a suitable worker. 1788 */ 1789 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb) 1790 { 1791 struct efx_ptp_data *ptp = efx->ptp_data; 1792 1793 skb_queue_tail(&ptp->txq, skb); 1794 1795 if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) && 1796 (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM)) 1797 efx_xmit_hwtstamp_pending(skb); 1798 queue_work(ptp->workwq, &ptp->work); 1799 1800 return NETDEV_TX_OK; 1801 } 1802 1803 int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted, 1804 unsigned int new_mode) 1805 { 1806 if ((enable_wanted != efx->ptp_data->enabled) || 1807 (enable_wanted && (efx->ptp_data->mode != new_mode))) { 1808 int rc = 0; 1809 1810 if (enable_wanted) { 1811 /* Change of mode requires disable */ 1812 if (efx->ptp_data->enabled && 1813 (efx->ptp_data->mode != new_mode)) { 1814 efx->ptp_data->enabled = false; 1815 rc = efx_ptp_stop(efx); 1816 if (rc != 0) 1817 return rc; 1818 } 1819 1820 /* Set new operating mode and establish 1821 * baseline synchronisation, which must 1822 * succeed. 1823 */ 1824 efx->ptp_data->mode = new_mode; 1825 if (netif_running(efx->net_dev)) 1826 rc = efx_ptp_start(efx); 1827 if (rc == 0) { 1828 rc = efx_ptp_synchronize(efx, 1829 PTP_SYNC_ATTEMPTS * 2); 1830 if (rc != 0) 1831 efx_ptp_stop(efx); 1832 } 1833 } else { 1834 rc = efx_ptp_stop(efx); 1835 } 1836 1837 if (rc != 0) 1838 return rc; 1839 1840 efx->ptp_data->enabled = enable_wanted; 1841 } 1842 1843 return 0; 1844 } 1845 1846 static int efx_ptp_ts_init(struct efx_nic *efx, struct kernel_hwtstamp_config *init) 1847 { 1848 int rc; 1849 1850 if ((init->tx_type != HWTSTAMP_TX_OFF) && 1851 (init->tx_type != HWTSTAMP_TX_ON)) 1852 return -ERANGE; 1853 1854 rc = efx->type->ptp_set_ts_config(efx, init); 1855 if (rc) 1856 return rc; 1857 1858 efx->ptp_data->config = *init; 1859 return 0; 1860 } 1861 1862 void efx_ptp_get_ts_info(struct efx_nic *efx, struct kernel_ethtool_ts_info *ts_info) 1863 { 1864 struct efx_ptp_data *ptp = efx->ptp_data; 1865 struct efx_nic *primary = efx->primary; 1866 1867 ASSERT_RTNL(); 1868 1869 if (!ptp) 1870 return; 1871 1872 ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | 1873 SOF_TIMESTAMPING_RX_HARDWARE | 1874 SOF_TIMESTAMPING_RAW_HARDWARE); 1875 /* Check licensed features. If we don't have the license for TX 1876 * timestamps, the NIC will not support them. 1877 */ 1878 if (efx_ptp_use_mac_tx_timestamps(efx)) { 1879 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1880 1881 if (!(nic_data->licensed_features & 1882 (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) 1883 ts_info->so_timestamping &= 1884 ~SOF_TIMESTAMPING_TX_HARDWARE; 1885 } 1886 if (primary && primary->ptp_data && primary->ptp_data->phc_clock) 1887 ts_info->phc_index = 1888 ptp_clock_index(primary->ptp_data->phc_clock); 1889 ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON; 1890 ts_info->rx_filters = ptp->efx->type->hwtstamp_filters; 1891 } 1892 1893 int efx_ptp_set_ts_config(struct efx_nic *efx, 1894 struct kernel_hwtstamp_config *config, 1895 struct netlink_ext_ack __always_unused *extack) 1896 { 1897 /* Not a PTP enabled port */ 1898 if (!efx->ptp_data) 1899 return -EOPNOTSUPP; 1900 1901 return efx_ptp_ts_init(efx, config); 1902 } 1903 1904 int efx_ptp_get_ts_config(struct efx_nic *efx, 1905 struct kernel_hwtstamp_config *config) 1906 { 1907 /* Not a PTP enabled port */ 1908 if (!efx->ptp_data) 1909 return -EOPNOTSUPP; 1910 *config = efx->ptp_data->config; 1911 return 0; 1912 } 1913 1914 static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len) 1915 { 1916 struct efx_ptp_data *ptp = efx->ptp_data; 1917 1918 netif_err(efx, hw, efx->net_dev, 1919 "PTP unexpected event length: got %d expected %d\n", 1920 ptp->evt_frag_idx, expected_frag_len); 1921 ptp->reset_required = true; 1922 queue_work(ptp->workwq, &ptp->work); 1923 } 1924 1925 static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp) 1926 { 1927 int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA); 1928 if (ptp->evt_frag_idx != 1) { 1929 ptp_event_failure(efx, 1); 1930 return; 1931 } 1932 1933 netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code); 1934 } 1935 1936 static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp) 1937 { 1938 if (ptp->nic_ts_enabled) 1939 queue_work(ptp->pps_workwq, &ptp->pps_work); 1940 } 1941 1942 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev) 1943 { 1944 struct efx_ptp_data *ptp = efx->ptp_data; 1945 int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE); 1946 1947 if (!ptp) { 1948 if (!efx->ptp_warned) { 1949 netif_warn(efx, drv, efx->net_dev, 1950 "Received PTP event but PTP not set up\n"); 1951 efx->ptp_warned = true; 1952 } 1953 return; 1954 } 1955 1956 if (!ptp->enabled) 1957 return; 1958 1959 if (ptp->evt_frag_idx == 0) { 1960 ptp->evt_code = code; 1961 } else if (ptp->evt_code != code) { 1962 netif_err(efx, hw, efx->net_dev, 1963 "PTP out of sequence event %d\n", code); 1964 ptp->evt_frag_idx = 0; 1965 } 1966 1967 ptp->evt_frags[ptp->evt_frag_idx++] = *ev; 1968 if (!MCDI_EVENT_FIELD(*ev, CONT)) { 1969 /* Process resulting event */ 1970 switch (code) { 1971 case MCDI_EVENT_CODE_PTP_FAULT: 1972 ptp_event_fault(efx, ptp); 1973 break; 1974 case MCDI_EVENT_CODE_PTP_PPS: 1975 ptp_event_pps(efx, ptp); 1976 break; 1977 default: 1978 netif_err(efx, hw, efx->net_dev, 1979 "PTP unknown event %d\n", code); 1980 break; 1981 } 1982 ptp->evt_frag_idx = 0; 1983 } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) { 1984 netif_err(efx, hw, efx->net_dev, 1985 "PTP too many event fragments\n"); 1986 ptp->evt_frag_idx = 0; 1987 } 1988 } 1989 1990 void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev) 1991 { 1992 struct efx_nic *efx = channel->efx; 1993 struct efx_ptp_data *ptp = efx->ptp_data; 1994 1995 /* When extracting the sync timestamp minor value, we should discard 1996 * the least significant two bits. These are not required in order 1997 * to reconstruct full-range timestamps and they are optionally used 1998 * to report status depending on the options supplied when subscribing 1999 * for sync events. 2000 */ 2001 channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR); 2002 channel->sync_timestamp_minor = 2003 (MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC) 2004 << ptp->nic_time.sync_event_minor_shift; 2005 2006 /* if sync events have been disabled then we want to silently ignore 2007 * this event, so throw away result. 2008 */ 2009 (void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED, 2010 SYNC_EVENTS_VALID); 2011 } 2012 2013 static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh) 2014 { 2015 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 2016 return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset)); 2017 #else 2018 const u8 *data = eh + efx->rx_packet_ts_offset; 2019 return (u32)data[0] | 2020 (u32)data[1] << 8 | 2021 (u32)data[2] << 16 | 2022 (u32)data[3] << 24; 2023 #endif 2024 } 2025 2026 void __efx_rx_skb_attach_timestamp(struct efx_channel *channel, 2027 struct sk_buff *skb) 2028 { 2029 struct efx_nic *efx = channel->efx; 2030 struct efx_ptp_data *ptp = efx->ptp_data; 2031 u32 pkt_timestamp_major, pkt_timestamp_minor; 2032 u32 diff, carry; 2033 struct skb_shared_hwtstamps *timestamps; 2034 2035 if (channel->sync_events_state != SYNC_EVENTS_VALID) 2036 return; 2037 2038 pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb)); 2039 2040 /* get the difference between the packet and sync timestamps, 2041 * modulo one second 2042 */ 2043 diff = pkt_timestamp_minor - channel->sync_timestamp_minor; 2044 if (pkt_timestamp_minor < channel->sync_timestamp_minor) 2045 diff += ptp->nic_time.minor_max; 2046 2047 /* do we roll over a second boundary and need to carry the one? */ 2048 carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ? 2049 1 : 0; 2050 2051 if (diff <= ptp->nic_time.sync_event_diff_max) { 2052 /* packet is ahead of the sync event by a quarter of a second or 2053 * less (allowing for fuzz) 2054 */ 2055 pkt_timestamp_major = channel->sync_timestamp_major + carry; 2056 } else if (diff >= ptp->nic_time.sync_event_diff_min) { 2057 /* packet is behind the sync event but within the fuzz factor. 2058 * This means the RX packet and sync event crossed as they were 2059 * placed on the event queue, which can sometimes happen. 2060 */ 2061 pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry; 2062 } else { 2063 /* it's outside tolerance in both directions. this might be 2064 * indicative of us missing sync events for some reason, so 2065 * we'll call it an error rather than risk giving a bogus 2066 * timestamp. 2067 */ 2068 netif_vdbg(efx, drv, efx->net_dev, 2069 "packet timestamp %x too far from sync event %x:%x\n", 2070 pkt_timestamp_minor, channel->sync_timestamp_major, 2071 channel->sync_timestamp_minor); 2072 return; 2073 } 2074 2075 /* attach the timestamps to the skb */ 2076 timestamps = skb_hwtstamps(skb); 2077 timestamps->hwtstamp = 2078 ptp->nic_to_kernel_time(pkt_timestamp_major, 2079 pkt_timestamp_minor, 2080 ptp->ts_corrections.general_rx); 2081 } 2082 2083 static int efx_phc_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) 2084 { 2085 struct efx_ptp_data *ptp_data = container_of(ptp, 2086 struct efx_ptp_data, 2087 phc_clock_info); 2088 s32 delta = scaled_ppm_to_ppb(scaled_ppm); 2089 struct efx_nic *efx = ptp_data->efx; 2090 MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN); 2091 s64 adjustment_ns; 2092 int rc; 2093 2094 if (delta > MAX_PPB) 2095 delta = MAX_PPB; 2096 else if (delta < -MAX_PPB) 2097 delta = -MAX_PPB; 2098 2099 /* Convert ppb to fixed point ns taking care to round correctly. */ 2100 adjustment_ns = ((s64)delta * PPB_SCALE_WORD + 2101 (1 << (ptp_data->adjfreq_ppb_shift - 1))) >> 2102 ptp_data->adjfreq_ppb_shift; 2103 2104 MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST); 2105 MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0); 2106 MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns); 2107 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0); 2108 MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0); 2109 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj), 2110 NULL, 0, NULL); 2111 if (rc != 0) 2112 return rc; 2113 2114 ptp_data->current_adjfreq = adjustment_ns; 2115 return 0; 2116 } 2117 2118 static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta) 2119 { 2120 u32 nic_major, nic_minor; 2121 struct efx_ptp_data *ptp_data = container_of(ptp, 2122 struct efx_ptp_data, 2123 phc_clock_info); 2124 struct efx_nic *efx = ptp_data->efx; 2125 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN); 2126 2127 efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor); 2128 2129 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST); 2130 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 2131 MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq); 2132 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major); 2133 MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor); 2134 return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 2135 NULL, 0, NULL); 2136 } 2137 2138 static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) 2139 { 2140 struct efx_ptp_data *ptp_data = container_of(ptp, 2141 struct efx_ptp_data, 2142 phc_clock_info); 2143 struct efx_nic *efx = ptp_data->efx; 2144 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN); 2145 MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN); 2146 int rc; 2147 ktime_t kt; 2148 2149 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME); 2150 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 2151 2152 rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), 2153 outbuf, sizeof(outbuf), NULL); 2154 if (rc != 0) 2155 return rc; 2156 2157 kt = ptp_data->nic_to_kernel_time( 2158 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR), 2159 MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0); 2160 *ts = ktime_to_timespec64(kt); 2161 return 0; 2162 } 2163 2164 static int efx_phc_settime(struct ptp_clock_info *ptp, 2165 const struct timespec64 *e_ts) 2166 { 2167 /* Get the current NIC time, efx_phc_gettime. 2168 * Subtract from the desired time to get the offset 2169 * call efx_phc_adjtime with the offset 2170 */ 2171 int rc; 2172 struct timespec64 time_now; 2173 struct timespec64 delta; 2174 2175 rc = efx_phc_gettime(ptp, &time_now); 2176 if (rc != 0) 2177 return rc; 2178 2179 delta = timespec64_sub(*e_ts, time_now); 2180 2181 rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta)); 2182 if (rc != 0) 2183 return rc; 2184 2185 return 0; 2186 } 2187 2188 static int efx_phc_enable(struct ptp_clock_info *ptp, 2189 struct ptp_clock_request *request, 2190 int enable) 2191 { 2192 struct efx_ptp_data *ptp_data = container_of(ptp, 2193 struct efx_ptp_data, 2194 phc_clock_info); 2195 if (request->type != PTP_CLK_REQ_PPS) 2196 return -EOPNOTSUPP; 2197 2198 ptp_data->nic_ts_enabled = !!enable; 2199 return 0; 2200 } 2201 2202 static const struct efx_channel_type efx_ptp_channel_type = { 2203 .handle_no_channel = efx_ptp_handle_no_channel, 2204 .pre_probe = efx_ptp_probe_channel, 2205 .post_remove = efx_ptp_remove_channel, 2206 .get_name = efx_ptp_get_channel_name, 2207 .copy = efx_copy_channel, 2208 .receive_skb = efx_ptp_rx, 2209 .want_txqs = efx_ptp_want_txqs, 2210 .keep_eventq = false, 2211 }; 2212 2213 void efx_ptp_defer_probe_with_channel(struct efx_nic *efx) 2214 { 2215 /* Check whether PTP is implemented on this NIC. The DISABLE 2216 * operation will succeed if and only if it is implemented. 2217 */ 2218 if (efx_ptp_disable(efx) == 0) 2219 efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] = 2220 &efx_ptp_channel_type; 2221 } 2222 2223 void efx_ptp_start_datapath(struct efx_nic *efx) 2224 { 2225 if (efx_ptp_restart(efx)) 2226 netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n"); 2227 /* re-enable timestamping if it was previously enabled */ 2228 if (efx->type->ptp_set_ts_sync_events) 2229 efx->type->ptp_set_ts_sync_events(efx, true, true); 2230 } 2231 2232 void efx_ptp_stop_datapath(struct efx_nic *efx) 2233 { 2234 /* temporarily disable timestamping */ 2235 if (efx->type->ptp_set_ts_sync_events) 2236 efx->type->ptp_set_ts_sync_events(efx, false, true); 2237 efx_ptp_stop(efx); 2238 } 2239