1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2006-2013 Solarflare Communications Inc. 6 * Copyright 2019-2020 Xilinx Inc. 7 */ 8 9 #ifndef EFX_NIC_COMMON_H 10 #define EFX_NIC_COMMON_H 11 12 #include "net_driver.h" 13 #include "efx_common.h" 14 #include "mcdi.h" 15 #include "ptp.h" 16 17 enum { 18 /* Revisions 0-3 were Falcon A0, A1, B0 and Siena respectively. 19 * They are not supported by this driver but these revision numbers 20 * form part of the ethtool API for register dumping. 21 */ 22 EFX_REV_HUNT_A0 = 4, 23 EFX_REV_EF100 = 5, 24 }; 25 26 static inline int efx_nic_rev(struct efx_nic *efx) 27 { 28 return efx->type->revision; 29 } 30 31 /* Read the current event from the event queue */ 32 static inline efx_qword_t *efx_event(struct efx_channel *channel, 33 unsigned int index) 34 { 35 return ((efx_qword_t *)(channel->eventq.addr)) + 36 (index & channel->eventq_mask); 37 } 38 39 /* See if an event is present 40 * 41 * We check both the high and low dword of the event for all ones. We 42 * wrote all ones when we cleared the event, and no valid event can 43 * have all ones in either its high or low dwords. This approach is 44 * robust against reordering. 45 * 46 * Note that using a single 64-bit comparison is incorrect; even 47 * though the CPU read will be atomic, the DMA write may not be. 48 */ 49 static inline int efx_event_present(efx_qword_t *event) 50 { 51 return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) | 52 EFX_DWORD_IS_ALL_ONES(event->dword[1])); 53 } 54 55 /* Returns a pointer to the specified transmit descriptor in the TX 56 * descriptor queue belonging to the specified channel. 57 */ 58 static inline efx_qword_t * 59 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index) 60 { 61 return ((efx_qword_t *)(tx_queue->txd.addr)) + index; 62 } 63 64 /* Report whether this TX queue would be empty for the given write_count. 65 * May return false negative. 66 */ 67 static inline bool efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue, unsigned int write_count) 68 { 69 unsigned int empty_read_count = READ_ONCE(tx_queue->empty_read_count); 70 71 if (empty_read_count == 0) 72 return false; 73 74 return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0; 75 } 76 77 int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, struct sk_buff *skb, 78 bool *data_mapped); 79 80 /* Decide whether to push a TX descriptor to the NIC vs merely writing 81 * the doorbell. This can reduce latency when we are adding a single 82 * descriptor to an empty queue, but is otherwise pointless. 83 * We use the write_count used for the last doorbell push, to get the 84 * NIC's view of the tx queue. 85 */ 86 static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue, 87 unsigned int write_count) 88 { 89 bool was_empty = efx_nic_tx_is_empty(tx_queue, write_count); 90 91 tx_queue->empty_read_count = 0; 92 return was_empty && tx_queue->write_count - write_count == 1; 93 } 94 95 /* Returns a pointer to the specified descriptor in the RX descriptor queue */ 96 static inline efx_qword_t * 97 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index) 98 { 99 return ((efx_qword_t *)(rx_queue->rxd.addr)) + index; 100 } 101 102 /* Alignment of PCIe DMA boundaries (4KB) */ 103 #define EFX_PAGE_SIZE 4096 104 /* Size and alignment of buffer table entries (same) */ 105 #define EFX_BUF_SIZE EFX_PAGE_SIZE 106 107 /* NIC-generic software stats */ 108 enum { 109 GENERIC_STAT_rx_noskb_drops, 110 GENERIC_STAT_rx_nodesc_trunc, 111 GENERIC_STAT_COUNT 112 }; 113 114 #define EFX_GENERIC_SW_STAT(ext_name) \ 115 [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 } 116 117 /* TX data path */ 118 static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue) 119 { 120 return tx_queue->efx->type->tx_probe(tx_queue); 121 } 122 static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue) 123 { 124 tx_queue->efx->type->tx_init(tx_queue); 125 } 126 static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue) 127 { 128 if (tx_queue->efx->type->tx_remove) 129 tx_queue->efx->type->tx_remove(tx_queue); 130 } 131 static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue) 132 { 133 tx_queue->efx->type->tx_write(tx_queue); 134 } 135 136 /* RX data path */ 137 static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue) 138 { 139 return rx_queue->efx->type->rx_probe(rx_queue); 140 } 141 static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue) 142 { 143 rx_queue->efx->type->rx_init(rx_queue); 144 } 145 static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue) 146 { 147 rx_queue->efx->type->rx_remove(rx_queue); 148 } 149 static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue) 150 { 151 rx_queue->efx->type->rx_write(rx_queue); 152 } 153 static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue) 154 { 155 rx_queue->efx->type->rx_defer_refill(rx_queue); 156 } 157 158 /* Event data path */ 159 static inline int efx_nic_probe_eventq(struct efx_channel *channel) 160 { 161 return channel->efx->type->ev_probe(channel); 162 } 163 static inline int efx_nic_init_eventq(struct efx_channel *channel) 164 { 165 return channel->efx->type->ev_init(channel); 166 } 167 static inline void efx_nic_fini_eventq(struct efx_channel *channel) 168 { 169 channel->efx->type->ev_fini(channel); 170 } 171 static inline void efx_nic_remove_eventq(struct efx_channel *channel) 172 { 173 channel->efx->type->ev_remove(channel); 174 } 175 static inline int 176 efx_nic_process_eventq(struct efx_channel *channel, int quota) 177 { 178 return channel->efx->type->ev_process(channel, quota); 179 } 180 static inline void efx_nic_eventq_read_ack(struct efx_channel *channel) 181 { 182 channel->efx->type->ev_read_ack(channel); 183 } 184 185 void efx_nic_event_test_start(struct efx_channel *channel); 186 187 bool efx_nic_event_present(struct efx_channel *channel); 188 189 static inline void efx_sensor_event(struct efx_nic *efx, efx_qword_t *ev) 190 { 191 if (efx->type->sensor_event) 192 efx->type->sensor_event(efx, ev); 193 } 194 195 static inline unsigned int efx_rx_recycle_ring_size(const struct efx_nic *efx) 196 { 197 return efx->type->rx_recycle_ring_size(efx); 198 } 199 200 /* Some statistics are computed as A - B where A and B each increase 201 * linearly with some hardware counter(s) and the counters are read 202 * asynchronously. If the counters contributing to B are always read 203 * after those contributing to A, the computed value may be lower than 204 * the true value by some variable amount, and may decrease between 205 * subsequent computations. 206 * 207 * We should never allow statistics to decrease or to exceed the true 208 * value. Since the computed value will never be greater than the 209 * true value, we can achieve this by only storing the computed value 210 * when it increases. 211 */ 212 static inline void efx_update_diff_stat(u64 *stat, u64 diff) 213 { 214 if ((s64)(diff - *stat) > 0) 215 *stat = diff; 216 } 217 218 /* Interrupts */ 219 int efx_nic_init_interrupt(struct efx_nic *efx); 220 int efx_nic_irq_test_start(struct efx_nic *efx); 221 void efx_nic_fini_interrupt(struct efx_nic *efx); 222 223 static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel) 224 { 225 return READ_ONCE(channel->event_test_cpu); 226 } 227 static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx) 228 { 229 return READ_ONCE(efx->last_irq_cpu); 230 } 231 232 /* Global Resources */ 233 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer, 234 unsigned int len, gfp_t gfp_flags); 235 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer); 236 237 size_t efx_nic_get_regs_len(struct efx_nic *efx); 238 void efx_nic_get_regs(struct efx_nic *efx, void *buf); 239 240 #define EFX_MC_STATS_GENERATION_INVALID ((__force __le64)(-1)) 241 242 size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count, 243 const unsigned long *mask, u8 *names); 244 int efx_nic_copy_stats(struct efx_nic *efx, __le64 *dest); 245 void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count, 246 const unsigned long *mask, u64 *stats, 247 const void *dma_buf, bool accumulate); 248 void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *stat); 249 static inline size_t efx_nic_update_stats_atomic(struct efx_nic *efx, u64 *full_stats, 250 struct rtnl_link_stats64 *core_stats) 251 { 252 if (efx->type->update_stats_atomic) 253 return efx->type->update_stats_atomic(efx, full_stats, core_stats); 254 return efx->type->update_stats(efx, full_stats, core_stats); 255 } 256 257 #define EFX_MAX_FLUSH_TIME 5000 258 259 #endif /* EFX_NIC_COMMON_H */ 260