xref: /linux/drivers/net/ethernet/sfc/nic.h (revision 95298d63c67673c654c08952672d016212b26054)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2006-2013 Solarflare Communications Inc.
6  */
7 
8 #ifndef EFX_NIC_H
9 #define EFX_NIC_H
10 
11 #include <linux/net_tstamp.h>
12 #include "net_driver.h"
13 #include "efx.h"
14 #include "efx_common.h"
15 #include "mcdi.h"
16 
17 enum {
18 	/* Revisions 0-2 were Falcon A0, A1 and B0 respectively.
19 	 * They are not supported by this driver but these revision numbers
20 	 * form part of the ethtool API for register dumping.
21 	 */
22 	EFX_REV_SIENA_A0 = 3,
23 	EFX_REV_HUNT_A0 = 4,
24 };
25 
26 static inline int efx_nic_rev(struct efx_nic *efx)
27 {
28 	return efx->type->revision;
29 }
30 
31 u32 efx_farch_fpga_ver(struct efx_nic *efx);
32 
33 /* Read the current event from the event queue */
34 static inline efx_qword_t *efx_event(struct efx_channel *channel,
35 				     unsigned int index)
36 {
37 	return ((efx_qword_t *) (channel->eventq.buf.addr)) +
38 		(index & channel->eventq_mask);
39 }
40 
41 /* See if an event is present
42  *
43  * We check both the high and low dword of the event for all ones.  We
44  * wrote all ones when we cleared the event, and no valid event can
45  * have all ones in either its high or low dwords.  This approach is
46  * robust against reordering.
47  *
48  * Note that using a single 64-bit comparison is incorrect; even
49  * though the CPU read will be atomic, the DMA write may not be.
50  */
51 static inline int efx_event_present(efx_qword_t *event)
52 {
53 	return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
54 		  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
55 }
56 
57 /* Returns a pointer to the specified transmit descriptor in the TX
58  * descriptor queue belonging to the specified channel.
59  */
60 static inline efx_qword_t *
61 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
62 {
63 	return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
64 }
65 
66 /* Get partner of a TX queue, seen as part of the same net core queue */
67 static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
68 {
69 	if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
70 		return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
71 	else
72 		return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
73 }
74 
75 /* Report whether this TX queue would be empty for the given write_count.
76  * May return false negative.
77  */
78 static inline bool __efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue,
79 					 unsigned int write_count)
80 {
81 	unsigned int empty_read_count = READ_ONCE(tx_queue->empty_read_count);
82 
83 	if (empty_read_count == 0)
84 		return false;
85 
86 	return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
87 }
88 
89 /* Report whether the NIC considers this TX queue empty, using
90  * packet_write_count (the write count recorded for the last completable
91  * doorbell push).  May return false negative.  EF10 only, which is OK
92  * because only EF10 supports PIO.
93  */
94 static inline bool efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue)
95 {
96 	EFX_WARN_ON_ONCE_PARANOID(!tx_queue->efx->type->option_descriptors);
97 	return __efx_nic_tx_is_empty(tx_queue, tx_queue->packet_write_count);
98 }
99 
100 /* Decide whether we can use TX PIO, ie. write packet data directly into
101  * a buffer on the device.  This can reduce latency at the expense of
102  * throughput, so we only do this if both hardware and software TX rings
103  * are empty.  This also ensures that only one packet at a time can be
104  * using the PIO buffer.
105  */
106 static inline bool efx_nic_may_tx_pio(struct efx_tx_queue *tx_queue)
107 {
108 	struct efx_tx_queue *partner = efx_tx_queue_partner(tx_queue);
109 
110 	return tx_queue->piobuf && efx_nic_tx_is_empty(tx_queue) &&
111 	       efx_nic_tx_is_empty(partner);
112 }
113 
114 /* Decide whether to push a TX descriptor to the NIC vs merely writing
115  * the doorbell.  This can reduce latency when we are adding a single
116  * descriptor to an empty queue, but is otherwise pointless.  Further,
117  * Falcon and Siena have hardware bugs (SF bug 33851) that may be
118  * triggered if we don't check this.
119  * We use the write_count used for the last doorbell push, to get the
120  * NIC's view of the tx queue.
121  */
122 static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
123 					    unsigned int write_count)
124 {
125 	bool was_empty = __efx_nic_tx_is_empty(tx_queue, write_count);
126 
127 	tx_queue->empty_read_count = 0;
128 	return was_empty && tx_queue->write_count - write_count == 1;
129 }
130 
131 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
132 static inline efx_qword_t *
133 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
134 {
135 	return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
136 }
137 
138 enum {
139 	PHY_TYPE_NONE = 0,
140 	PHY_TYPE_TXC43128 = 1,
141 	PHY_TYPE_88E1111 = 2,
142 	PHY_TYPE_SFX7101 = 3,
143 	PHY_TYPE_QT2022C2 = 4,
144 	PHY_TYPE_PM8358 = 6,
145 	PHY_TYPE_SFT9001A = 8,
146 	PHY_TYPE_QT2025C = 9,
147 	PHY_TYPE_SFT9001B = 10,
148 };
149 
150 /* Alignment of PCIe DMA boundaries (4KB) */
151 #define EFX_PAGE_SIZE	4096
152 /* Size and alignment of buffer table entries (same) */
153 #define EFX_BUF_SIZE	EFX_PAGE_SIZE
154 
155 /* NIC-generic software stats */
156 enum {
157 	GENERIC_STAT_rx_noskb_drops,
158 	GENERIC_STAT_rx_nodesc_trunc,
159 	GENERIC_STAT_COUNT
160 };
161 
162 enum {
163 	SIENA_STAT_tx_bytes = GENERIC_STAT_COUNT,
164 	SIENA_STAT_tx_good_bytes,
165 	SIENA_STAT_tx_bad_bytes,
166 	SIENA_STAT_tx_packets,
167 	SIENA_STAT_tx_bad,
168 	SIENA_STAT_tx_pause,
169 	SIENA_STAT_tx_control,
170 	SIENA_STAT_tx_unicast,
171 	SIENA_STAT_tx_multicast,
172 	SIENA_STAT_tx_broadcast,
173 	SIENA_STAT_tx_lt64,
174 	SIENA_STAT_tx_64,
175 	SIENA_STAT_tx_65_to_127,
176 	SIENA_STAT_tx_128_to_255,
177 	SIENA_STAT_tx_256_to_511,
178 	SIENA_STAT_tx_512_to_1023,
179 	SIENA_STAT_tx_1024_to_15xx,
180 	SIENA_STAT_tx_15xx_to_jumbo,
181 	SIENA_STAT_tx_gtjumbo,
182 	SIENA_STAT_tx_collision,
183 	SIENA_STAT_tx_single_collision,
184 	SIENA_STAT_tx_multiple_collision,
185 	SIENA_STAT_tx_excessive_collision,
186 	SIENA_STAT_tx_deferred,
187 	SIENA_STAT_tx_late_collision,
188 	SIENA_STAT_tx_excessive_deferred,
189 	SIENA_STAT_tx_non_tcpudp,
190 	SIENA_STAT_tx_mac_src_error,
191 	SIENA_STAT_tx_ip_src_error,
192 	SIENA_STAT_rx_bytes,
193 	SIENA_STAT_rx_good_bytes,
194 	SIENA_STAT_rx_bad_bytes,
195 	SIENA_STAT_rx_packets,
196 	SIENA_STAT_rx_good,
197 	SIENA_STAT_rx_bad,
198 	SIENA_STAT_rx_pause,
199 	SIENA_STAT_rx_control,
200 	SIENA_STAT_rx_unicast,
201 	SIENA_STAT_rx_multicast,
202 	SIENA_STAT_rx_broadcast,
203 	SIENA_STAT_rx_lt64,
204 	SIENA_STAT_rx_64,
205 	SIENA_STAT_rx_65_to_127,
206 	SIENA_STAT_rx_128_to_255,
207 	SIENA_STAT_rx_256_to_511,
208 	SIENA_STAT_rx_512_to_1023,
209 	SIENA_STAT_rx_1024_to_15xx,
210 	SIENA_STAT_rx_15xx_to_jumbo,
211 	SIENA_STAT_rx_gtjumbo,
212 	SIENA_STAT_rx_bad_gtjumbo,
213 	SIENA_STAT_rx_overflow,
214 	SIENA_STAT_rx_false_carrier,
215 	SIENA_STAT_rx_symbol_error,
216 	SIENA_STAT_rx_align_error,
217 	SIENA_STAT_rx_length_error,
218 	SIENA_STAT_rx_internal_error,
219 	SIENA_STAT_rx_nodesc_drop_cnt,
220 	SIENA_STAT_COUNT
221 };
222 
223 /**
224  * struct siena_nic_data - Siena NIC state
225  * @efx: Pointer back to main interface structure
226  * @wol_filter_id: Wake-on-LAN packet filter id
227  * @stats: Hardware statistics
228  * @vf: Array of &struct siena_vf objects
229  * @vf_buftbl_base: The zeroth buffer table index used to back VF queues.
230  * @vfdi_status: Common VFDI status page to be dmad to VF address space.
231  * @local_addr_list: List of local addresses. Protected by %local_lock.
232  * @local_page_list: List of DMA addressable pages used to broadcast
233  *	%local_addr_list. Protected by %local_lock.
234  * @local_lock: Mutex protecting %local_addr_list and %local_page_list.
235  * @peer_work: Work item to broadcast peer addresses to VMs.
236  */
237 struct siena_nic_data {
238 	struct efx_nic *efx;
239 	int wol_filter_id;
240 	u64 stats[SIENA_STAT_COUNT];
241 #ifdef CONFIG_SFC_SRIOV
242 	struct siena_vf *vf;
243 	struct efx_channel *vfdi_channel;
244 	unsigned vf_buftbl_base;
245 	struct efx_buffer vfdi_status;
246 	struct list_head local_addr_list;
247 	struct list_head local_page_list;
248 	struct mutex local_lock;
249 	struct work_struct peer_work;
250 #endif
251 };
252 
253 enum {
254 	EF10_STAT_port_tx_bytes = GENERIC_STAT_COUNT,
255 	EF10_STAT_port_tx_packets,
256 	EF10_STAT_port_tx_pause,
257 	EF10_STAT_port_tx_control,
258 	EF10_STAT_port_tx_unicast,
259 	EF10_STAT_port_tx_multicast,
260 	EF10_STAT_port_tx_broadcast,
261 	EF10_STAT_port_tx_lt64,
262 	EF10_STAT_port_tx_64,
263 	EF10_STAT_port_tx_65_to_127,
264 	EF10_STAT_port_tx_128_to_255,
265 	EF10_STAT_port_tx_256_to_511,
266 	EF10_STAT_port_tx_512_to_1023,
267 	EF10_STAT_port_tx_1024_to_15xx,
268 	EF10_STAT_port_tx_15xx_to_jumbo,
269 	EF10_STAT_port_rx_bytes,
270 	EF10_STAT_port_rx_bytes_minus_good_bytes,
271 	EF10_STAT_port_rx_good_bytes,
272 	EF10_STAT_port_rx_bad_bytes,
273 	EF10_STAT_port_rx_packets,
274 	EF10_STAT_port_rx_good,
275 	EF10_STAT_port_rx_bad,
276 	EF10_STAT_port_rx_pause,
277 	EF10_STAT_port_rx_control,
278 	EF10_STAT_port_rx_unicast,
279 	EF10_STAT_port_rx_multicast,
280 	EF10_STAT_port_rx_broadcast,
281 	EF10_STAT_port_rx_lt64,
282 	EF10_STAT_port_rx_64,
283 	EF10_STAT_port_rx_65_to_127,
284 	EF10_STAT_port_rx_128_to_255,
285 	EF10_STAT_port_rx_256_to_511,
286 	EF10_STAT_port_rx_512_to_1023,
287 	EF10_STAT_port_rx_1024_to_15xx,
288 	EF10_STAT_port_rx_15xx_to_jumbo,
289 	EF10_STAT_port_rx_gtjumbo,
290 	EF10_STAT_port_rx_bad_gtjumbo,
291 	EF10_STAT_port_rx_overflow,
292 	EF10_STAT_port_rx_align_error,
293 	EF10_STAT_port_rx_length_error,
294 	EF10_STAT_port_rx_nodesc_drops,
295 	EF10_STAT_port_rx_pm_trunc_bb_overflow,
296 	EF10_STAT_port_rx_pm_discard_bb_overflow,
297 	EF10_STAT_port_rx_pm_trunc_vfifo_full,
298 	EF10_STAT_port_rx_pm_discard_vfifo_full,
299 	EF10_STAT_port_rx_pm_trunc_qbb,
300 	EF10_STAT_port_rx_pm_discard_qbb,
301 	EF10_STAT_port_rx_pm_discard_mapping,
302 	EF10_STAT_port_rx_dp_q_disabled_packets,
303 	EF10_STAT_port_rx_dp_di_dropped_packets,
304 	EF10_STAT_port_rx_dp_streaming_packets,
305 	EF10_STAT_port_rx_dp_hlb_fetch,
306 	EF10_STAT_port_rx_dp_hlb_wait,
307 	EF10_STAT_rx_unicast,
308 	EF10_STAT_rx_unicast_bytes,
309 	EF10_STAT_rx_multicast,
310 	EF10_STAT_rx_multicast_bytes,
311 	EF10_STAT_rx_broadcast,
312 	EF10_STAT_rx_broadcast_bytes,
313 	EF10_STAT_rx_bad,
314 	EF10_STAT_rx_bad_bytes,
315 	EF10_STAT_rx_overflow,
316 	EF10_STAT_tx_unicast,
317 	EF10_STAT_tx_unicast_bytes,
318 	EF10_STAT_tx_multicast,
319 	EF10_STAT_tx_multicast_bytes,
320 	EF10_STAT_tx_broadcast,
321 	EF10_STAT_tx_broadcast_bytes,
322 	EF10_STAT_tx_bad,
323 	EF10_STAT_tx_bad_bytes,
324 	EF10_STAT_tx_overflow,
325 	EF10_STAT_V1_COUNT,
326 	EF10_STAT_fec_uncorrected_errors = EF10_STAT_V1_COUNT,
327 	EF10_STAT_fec_corrected_errors,
328 	EF10_STAT_fec_corrected_symbols_lane0,
329 	EF10_STAT_fec_corrected_symbols_lane1,
330 	EF10_STAT_fec_corrected_symbols_lane2,
331 	EF10_STAT_fec_corrected_symbols_lane3,
332 	EF10_STAT_ctpio_vi_busy_fallback,
333 	EF10_STAT_ctpio_long_write_success,
334 	EF10_STAT_ctpio_missing_dbell_fail,
335 	EF10_STAT_ctpio_overflow_fail,
336 	EF10_STAT_ctpio_underflow_fail,
337 	EF10_STAT_ctpio_timeout_fail,
338 	EF10_STAT_ctpio_noncontig_wr_fail,
339 	EF10_STAT_ctpio_frm_clobber_fail,
340 	EF10_STAT_ctpio_invalid_wr_fail,
341 	EF10_STAT_ctpio_vi_clobber_fallback,
342 	EF10_STAT_ctpio_unqualified_fallback,
343 	EF10_STAT_ctpio_runt_fallback,
344 	EF10_STAT_ctpio_success,
345 	EF10_STAT_ctpio_fallback,
346 	EF10_STAT_ctpio_poison,
347 	EF10_STAT_ctpio_erase,
348 	EF10_STAT_COUNT
349 };
350 
351 /* Maximum number of TX PIO buffers we may allocate to a function.
352  * This matches the total number of buffers on each SFC9100-family
353  * controller.
354  */
355 #define EF10_TX_PIOBUF_COUNT 16
356 
357 /**
358  * struct efx_ef10_nic_data - EF10 architecture NIC state
359  * @mcdi_buf: DMA buffer for MCDI
360  * @warm_boot_count: Last seen MC warm boot count
361  * @vi_base: Absolute index of first VI in this function
362  * @n_allocated_vis: Number of VIs allocated to this function
363  * @n_piobufs: Number of PIO buffers allocated to this function
364  * @wc_membase: Base address of write-combining mapping of the memory BAR
365  * @pio_write_base: Base address for writing PIO buffers
366  * @pio_write_vi_base: Relative VI number for @pio_write_base
367  * @piobuf_handle: Handle of each PIO buffer allocated
368  * @piobuf_size: size of a single PIO buffer
369  * @must_restore_piobufs: Flag: PIO buffers have yet to be restored after MC
370  *	reboot
371  * @stats: Hardware statistics
372  * @workaround_35388: Flag: firmware supports workaround for bug 35388
373  * @workaround_26807: Flag: firmware supports workaround for bug 26807
374  * @workaround_61265: Flag: firmware supports workaround for bug 61265
375  * @must_check_datapath_caps: Flag: @datapath_caps needs to be revalidated
376  *	after MC reboot
377  * @datapath_caps: Capabilities of datapath firmware (FLAGS1 field of
378  *	%MC_CMD_GET_CAPABILITIES response)
379  * @datapath_caps2: Further Capabilities of datapath firmware (FLAGS2 field of
380  * %MC_CMD_GET_CAPABILITIES response)
381  * @rx_dpcpu_fw_id: Firmware ID of the RxDPCPU
382  * @tx_dpcpu_fw_id: Firmware ID of the TxDPCPU
383  * @must_probe_vswitching: Flag: vswitching has yet to be setup after MC reboot
384  * @pf_index: The number for this PF, or the parent PF if this is a VF
385 #ifdef CONFIG_SFC_SRIOV
386  * @vf: Pointer to VF data structure
387 #endif
388  * @vport_mac: The MAC address on the vport, only for PFs; VFs will be zero
389  * @vlan_list: List of VLANs added over the interface. Serialised by vlan_lock.
390  * @vlan_lock: Lock to serialize access to vlan_list.
391  * @udp_tunnels: UDP tunnel port numbers and types.
392  * @udp_tunnels_dirty: flag indicating a reboot occurred while pushing
393  *	@udp_tunnels to hardware and thus the push must be re-done.
394  * @udp_tunnels_lock: Serialises writes to @udp_tunnels and @udp_tunnels_dirty.
395  */
396 struct efx_ef10_nic_data {
397 	struct efx_buffer mcdi_buf;
398 	u16 warm_boot_count;
399 	unsigned int vi_base;
400 	unsigned int n_allocated_vis;
401 	unsigned int n_piobufs;
402 	void __iomem *wc_membase, *pio_write_base;
403 	unsigned int pio_write_vi_base;
404 	unsigned int piobuf_handle[EF10_TX_PIOBUF_COUNT];
405 	u16 piobuf_size;
406 	bool must_restore_piobufs;
407 	u64 stats[EF10_STAT_COUNT];
408 	bool workaround_35388;
409 	bool workaround_26807;
410 	bool workaround_61265;
411 	bool must_check_datapath_caps;
412 	u32 datapath_caps;
413 	u32 datapath_caps2;
414 	unsigned int rx_dpcpu_fw_id;
415 	unsigned int tx_dpcpu_fw_id;
416 	bool must_probe_vswitching;
417 	unsigned int pf_index;
418 	u8 port_id[ETH_ALEN];
419 #ifdef CONFIG_SFC_SRIOV
420 	unsigned int vf_index;
421 	struct ef10_vf *vf;
422 #endif
423 	u8 vport_mac[ETH_ALEN];
424 	struct list_head vlan_list;
425 	struct mutex vlan_lock;
426 	struct efx_udp_tunnel udp_tunnels[16];
427 	bool udp_tunnels_dirty;
428 	struct mutex udp_tunnels_lock;
429 	u64 licensed_features;
430 };
431 
432 int efx_init_sriov(void);
433 void efx_fini_sriov(void);
434 
435 struct ethtool_ts_info;
436 int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel);
437 void efx_ptp_defer_probe_with_channel(struct efx_nic *efx);
438 struct efx_channel *efx_ptp_channel(struct efx_nic *efx);
439 void efx_ptp_remove(struct efx_nic *efx);
440 int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr);
441 int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr);
442 void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info);
443 bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
444 int efx_ptp_get_mode(struct efx_nic *efx);
445 int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
446 			unsigned int new_mode);
447 int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
448 void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev);
449 size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings);
450 size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats);
451 void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev);
452 void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
453 				   struct sk_buff *skb);
454 static inline void efx_rx_skb_attach_timestamp(struct efx_channel *channel,
455 					       struct sk_buff *skb)
456 {
457 	if (channel->sync_events_state == SYNC_EVENTS_VALID)
458 		__efx_rx_skb_attach_timestamp(channel, skb);
459 }
460 void efx_ptp_start_datapath(struct efx_nic *efx);
461 void efx_ptp_stop_datapath(struct efx_nic *efx);
462 bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx);
463 ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue);
464 
465 extern const struct efx_nic_type falcon_a1_nic_type;
466 extern const struct efx_nic_type falcon_b0_nic_type;
467 extern const struct efx_nic_type siena_a0_nic_type;
468 extern const struct efx_nic_type efx_hunt_a0_nic_type;
469 extern const struct efx_nic_type efx_hunt_a0_vf_nic_type;
470 
471 /**************************************************************************
472  *
473  * Externs
474  *
475  **************************************************************************
476  */
477 
478 int falcon_probe_board(struct efx_nic *efx, u16 revision_info);
479 
480 /* TX data path */
481 static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
482 {
483 	return tx_queue->efx->type->tx_probe(tx_queue);
484 }
485 static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
486 {
487 	tx_queue->efx->type->tx_init(tx_queue);
488 }
489 static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
490 {
491 	tx_queue->efx->type->tx_remove(tx_queue);
492 }
493 static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
494 {
495 	tx_queue->efx->type->tx_write(tx_queue);
496 }
497 
498 int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
499 			bool *data_mapped);
500 
501 /* RX data path */
502 static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
503 {
504 	return rx_queue->efx->type->rx_probe(rx_queue);
505 }
506 static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
507 {
508 	rx_queue->efx->type->rx_init(rx_queue);
509 }
510 static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
511 {
512 	rx_queue->efx->type->rx_remove(rx_queue);
513 }
514 static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
515 {
516 	rx_queue->efx->type->rx_write(rx_queue);
517 }
518 static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
519 {
520 	rx_queue->efx->type->rx_defer_refill(rx_queue);
521 }
522 
523 /* Event data path */
524 static inline int efx_nic_probe_eventq(struct efx_channel *channel)
525 {
526 	return channel->efx->type->ev_probe(channel);
527 }
528 static inline int efx_nic_init_eventq(struct efx_channel *channel)
529 {
530 	return channel->efx->type->ev_init(channel);
531 }
532 static inline void efx_nic_fini_eventq(struct efx_channel *channel)
533 {
534 	channel->efx->type->ev_fini(channel);
535 }
536 static inline void efx_nic_remove_eventq(struct efx_channel *channel)
537 {
538 	channel->efx->type->ev_remove(channel);
539 }
540 static inline int
541 efx_nic_process_eventq(struct efx_channel *channel, int quota)
542 {
543 	return channel->efx->type->ev_process(channel, quota);
544 }
545 static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
546 {
547 	channel->efx->type->ev_read_ack(channel);
548 }
549 
550 void efx_nic_event_test_start(struct efx_channel *channel);
551 
552 /* Falcon/Siena queue operations */
553 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue);
554 void efx_farch_tx_init(struct efx_tx_queue *tx_queue);
555 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue);
556 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue);
557 void efx_farch_tx_write(struct efx_tx_queue *tx_queue);
558 unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
559 				    dma_addr_t dma_addr, unsigned int len);
560 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue);
561 void efx_farch_rx_init(struct efx_rx_queue *rx_queue);
562 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue);
563 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue);
564 void efx_farch_rx_write(struct efx_rx_queue *rx_queue);
565 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue);
566 int efx_farch_ev_probe(struct efx_channel *channel);
567 int efx_farch_ev_init(struct efx_channel *channel);
568 void efx_farch_ev_fini(struct efx_channel *channel);
569 void efx_farch_ev_remove(struct efx_channel *channel);
570 int efx_farch_ev_process(struct efx_channel *channel, int quota);
571 void efx_farch_ev_read_ack(struct efx_channel *channel);
572 void efx_farch_ev_test_generate(struct efx_channel *channel);
573 
574 /* Falcon/Siena filter operations */
575 int efx_farch_filter_table_probe(struct efx_nic *efx);
576 void efx_farch_filter_table_restore(struct efx_nic *efx);
577 void efx_farch_filter_table_remove(struct efx_nic *efx);
578 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx);
579 s32 efx_farch_filter_insert(struct efx_nic *efx, struct efx_filter_spec *spec,
580 			    bool replace);
581 int efx_farch_filter_remove_safe(struct efx_nic *efx,
582 				 enum efx_filter_priority priority,
583 				 u32 filter_id);
584 int efx_farch_filter_get_safe(struct efx_nic *efx,
585 			      enum efx_filter_priority priority, u32 filter_id,
586 			      struct efx_filter_spec *);
587 int efx_farch_filter_clear_rx(struct efx_nic *efx,
588 			      enum efx_filter_priority priority);
589 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
590 				   enum efx_filter_priority priority);
591 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx);
592 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
593 				enum efx_filter_priority priority, u32 *buf,
594 				u32 size);
595 #ifdef CONFIG_RFS_ACCEL
596 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
597 				     unsigned int index);
598 #endif
599 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx);
600 
601 bool efx_nic_event_present(struct efx_channel *channel);
602 
603 /* Some statistics are computed as A - B where A and B each increase
604  * linearly with some hardware counter(s) and the counters are read
605  * asynchronously.  If the counters contributing to B are always read
606  * after those contributing to A, the computed value may be lower than
607  * the true value by some variable amount, and may decrease between
608  * subsequent computations.
609  *
610  * We should never allow statistics to decrease or to exceed the true
611  * value.  Since the computed value will never be greater than the
612  * true value, we can achieve this by only storing the computed value
613  * when it increases.
614  */
615 static inline void efx_update_diff_stat(u64 *stat, u64 diff)
616 {
617 	if ((s64)(diff - *stat) > 0)
618 		*stat = diff;
619 }
620 
621 /* Interrupts */
622 int efx_nic_init_interrupt(struct efx_nic *efx);
623 int efx_nic_irq_test_start(struct efx_nic *efx);
624 void efx_nic_fini_interrupt(struct efx_nic *efx);
625 
626 /* Falcon/Siena interrupts */
627 void efx_farch_irq_enable_master(struct efx_nic *efx);
628 int efx_farch_irq_test_generate(struct efx_nic *efx);
629 void efx_farch_irq_disable_master(struct efx_nic *efx);
630 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id);
631 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id);
632 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx);
633 
634 static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
635 {
636 	return READ_ONCE(channel->event_test_cpu);
637 }
638 static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
639 {
640 	return READ_ONCE(efx->last_irq_cpu);
641 }
642 
643 /* Global Resources */
644 int efx_nic_flush_queues(struct efx_nic *efx);
645 void siena_prepare_flush(struct efx_nic *efx);
646 int efx_farch_fini_dmaq(struct efx_nic *efx);
647 void efx_farch_finish_flr(struct efx_nic *efx);
648 void siena_finish_flush(struct efx_nic *efx);
649 void falcon_start_nic_stats(struct efx_nic *efx);
650 void falcon_stop_nic_stats(struct efx_nic *efx);
651 int falcon_reset_xaui(struct efx_nic *efx);
652 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw);
653 void efx_farch_init_common(struct efx_nic *efx);
654 void efx_ef10_handle_drain_event(struct efx_nic *efx);
655 void efx_farch_rx_push_indir_table(struct efx_nic *efx);
656 void efx_farch_rx_pull_indir_table(struct efx_nic *efx);
657 
658 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
659 			 unsigned int len, gfp_t gfp_flags);
660 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
661 
662 /* Tests */
663 struct efx_farch_register_test {
664 	unsigned address;
665 	efx_oword_t mask;
666 };
667 
668 int efx_farch_test_registers(struct efx_nic *efx,
669 			     const struct efx_farch_register_test *regs,
670 			     size_t n_regs);
671 
672 size_t efx_nic_get_regs_len(struct efx_nic *efx);
673 void efx_nic_get_regs(struct efx_nic *efx, void *buf);
674 
675 size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
676 			      const unsigned long *mask, u8 *names);
677 void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
678 			  const unsigned long *mask, u64 *stats,
679 			  const void *dma_buf, bool accumulate);
680 void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *stat);
681 
682 #define EFX_MAX_FLUSH_TIME 5000
683 
684 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
685 			      efx_qword_t *event);
686 
687 #endif /* EFX_NIC_H */
688