1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2006-2013 Solarflare Communications Inc. 6 */ 7 8 #include <linux/bitops.h> 9 #include <linux/delay.h> 10 #include <linux/interrupt.h> 11 #include <linux/pci.h> 12 #include <linux/module.h> 13 #include <linux/seq_file.h> 14 #include <linux/cpu_rmap.h> 15 #include "net_driver.h" 16 #include "bitfield.h" 17 #include "efx.h" 18 #include "nic.h" 19 #include "ef10_regs.h" 20 #include "io.h" 21 #include "workarounds.h" 22 #include "mcdi_pcol.h" 23 24 /************************************************************************** 25 * 26 * Generic buffer handling 27 * These buffers are used for interrupt status, MAC stats, etc. 28 * 29 **************************************************************************/ 30 31 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer, 32 unsigned int len, gfp_t gfp_flags) 33 { 34 buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len, 35 &buffer->dma_addr, gfp_flags); 36 if (!buffer->addr) 37 return -ENOMEM; 38 buffer->len = len; 39 return 0; 40 } 41 42 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer) 43 { 44 if (buffer->addr) { 45 dma_free_coherent(&efx->pci_dev->dev, buffer->len, 46 buffer->addr, buffer->dma_addr); 47 buffer->addr = NULL; 48 } 49 } 50 51 /* Check whether an event is present in the eventq at the current 52 * read pointer. Only useful for self-test. 53 */ 54 bool efx_nic_event_present(struct efx_channel *channel) 55 { 56 return efx_event_present(efx_event(channel, channel->eventq_read_ptr)); 57 } 58 59 void efx_nic_event_test_start(struct efx_channel *channel) 60 { 61 channel->event_test_cpu = -1; 62 smp_wmb(); 63 channel->efx->type->ev_test_generate(channel); 64 } 65 66 int efx_nic_irq_test_start(struct efx_nic *efx) 67 { 68 efx->last_irq_cpu = -1; 69 smp_wmb(); 70 return efx->type->irq_test_generate(efx); 71 } 72 73 /* Hook interrupt handler(s) 74 * Try MSI and then legacy interrupts. 75 */ 76 int efx_nic_init_interrupt(struct efx_nic *efx) 77 { 78 struct efx_channel *channel; 79 unsigned int n_irqs; 80 int rc; 81 82 if (!EFX_INT_MODE_USE_MSI(efx)) { 83 rc = request_irq(efx->legacy_irq, 84 efx->type->irq_handle_legacy, IRQF_SHARED, 85 efx->name, efx); 86 if (rc) { 87 netif_err(efx, drv, efx->net_dev, 88 "failed to hook legacy IRQ %d\n", 89 efx->pci_dev->irq); 90 goto fail1; 91 } 92 efx->irqs_hooked = true; 93 return 0; 94 } 95 96 #ifdef CONFIG_RFS_ACCEL 97 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) { 98 efx->net_dev->rx_cpu_rmap = 99 alloc_irq_cpu_rmap(efx->n_rx_channels); 100 if (!efx->net_dev->rx_cpu_rmap) { 101 rc = -ENOMEM; 102 goto fail1; 103 } 104 } 105 #endif 106 107 /* Hook MSI or MSI-X interrupt */ 108 n_irqs = 0; 109 efx_for_each_channel(channel, efx) { 110 rc = request_irq(channel->irq, efx->type->irq_handle_msi, 111 IRQF_PROBE_SHARED, /* Not shared */ 112 efx->msi_context[channel->channel].name, 113 &efx->msi_context[channel->channel]); 114 if (rc) { 115 netif_err(efx, drv, efx->net_dev, 116 "failed to hook IRQ %d\n", channel->irq); 117 goto fail2; 118 } 119 ++n_irqs; 120 121 #ifdef CONFIG_RFS_ACCEL 122 if (efx->interrupt_mode == EFX_INT_MODE_MSIX && 123 channel->channel < efx->n_rx_channels) { 124 rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap, 125 channel->irq); 126 if (rc) 127 goto fail2; 128 } 129 #endif 130 } 131 132 efx->irqs_hooked = true; 133 return 0; 134 135 fail2: 136 #ifdef CONFIG_RFS_ACCEL 137 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap); 138 efx->net_dev->rx_cpu_rmap = NULL; 139 #endif 140 efx_for_each_channel(channel, efx) { 141 if (n_irqs-- == 0) 142 break; 143 free_irq(channel->irq, &efx->msi_context[channel->channel]); 144 } 145 fail1: 146 return rc; 147 } 148 149 void efx_nic_fini_interrupt(struct efx_nic *efx) 150 { 151 struct efx_channel *channel; 152 153 #ifdef CONFIG_RFS_ACCEL 154 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap); 155 efx->net_dev->rx_cpu_rmap = NULL; 156 #endif 157 158 if (!efx->irqs_hooked) 159 return; 160 if (EFX_INT_MODE_USE_MSI(efx)) { 161 /* Disable MSI/MSI-X interrupts */ 162 efx_for_each_channel(channel, efx) 163 free_irq(channel->irq, 164 &efx->msi_context[channel->channel]); 165 } else { 166 /* Disable legacy interrupt */ 167 free_irq(efx->legacy_irq, efx); 168 } 169 efx->irqs_hooked = false; 170 } 171 172 /* Register dump */ 173 174 #define REGISTER_REVISION_ED 4 175 #define REGISTER_REVISION_EZ 4 /* latest EF10 revision */ 176 177 struct efx_nic_reg { 178 u32 offset:24; 179 u32 min_revision:3, max_revision:3; 180 }; 181 182 #define REGISTER(name, arch, min_rev, max_rev) { \ 183 arch ## R_ ## min_rev ## max_rev ## _ ## name, \ 184 REGISTER_REVISION_ ## arch ## min_rev, \ 185 REGISTER_REVISION_ ## arch ## max_rev \ 186 } 187 #define REGISTER_DZ(name) REGISTER(name, E, D, Z) 188 189 static const struct efx_nic_reg efx_nic_regs[] = { 190 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */ 191 /* XX_CORE_STAT is partly RC */ 192 REGISTER_DZ(BIU_HW_REV_ID), 193 REGISTER_DZ(MC_DB_LWRD), 194 REGISTER_DZ(MC_DB_HWRD), 195 }; 196 197 struct efx_nic_reg_table { 198 u32 offset:24; 199 u32 min_revision:3, max_revision:3; 200 u32 step:6, rows:21; 201 }; 202 203 #define REGISTER_TABLE_DIMENSIONS(_, offset, arch, min_rev, max_rev, step, rows) { \ 204 offset, \ 205 REGISTER_REVISION_ ## arch ## min_rev, \ 206 REGISTER_REVISION_ ## arch ## max_rev, \ 207 step, rows \ 208 } 209 #define REGISTER_TABLE(name, arch, min_rev, max_rev) \ 210 REGISTER_TABLE_DIMENSIONS( \ 211 name, arch ## R_ ## min_rev ## max_rev ## _ ## name, \ 212 arch, min_rev, max_rev, \ 213 arch ## R_ ## min_rev ## max_rev ## _ ## name ## _STEP, \ 214 arch ## R_ ## min_rev ## max_rev ## _ ## name ## _ROWS) 215 #define REGISTER_TABLE_DZ(name) REGISTER_TABLE(name, E, D, Z) 216 217 static const struct efx_nic_reg_table efx_nic_reg_tables[] = { 218 REGISTER_TABLE_DZ(BIU_MC_SFT_STATUS), 219 }; 220 221 size_t efx_nic_get_regs_len(struct efx_nic *efx) 222 { 223 const struct efx_nic_reg *reg; 224 const struct efx_nic_reg_table *table; 225 size_t len = 0; 226 227 for (reg = efx_nic_regs; 228 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs); 229 reg++) 230 if (efx->type->revision >= reg->min_revision && 231 efx->type->revision <= reg->max_revision) 232 len += sizeof(efx_oword_t); 233 234 for (table = efx_nic_reg_tables; 235 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables); 236 table++) 237 if (efx->type->revision >= table->min_revision && 238 efx->type->revision <= table->max_revision) 239 len += table->rows * min_t(size_t, table->step, 16); 240 241 return len; 242 } 243 244 void efx_nic_get_regs(struct efx_nic *efx, void *buf) 245 { 246 const struct efx_nic_reg *reg; 247 const struct efx_nic_reg_table *table; 248 249 for (reg = efx_nic_regs; 250 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs); 251 reg++) { 252 if (efx->type->revision >= reg->min_revision && 253 efx->type->revision <= reg->max_revision) { 254 efx_reado(efx, (efx_oword_t *)buf, reg->offset); 255 buf += sizeof(efx_oword_t); 256 } 257 } 258 259 for (table = efx_nic_reg_tables; 260 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables); 261 table++) { 262 size_t size, i; 263 264 if (!(efx->type->revision >= table->min_revision && 265 efx->type->revision <= table->max_revision)) 266 continue; 267 268 size = min_t(size_t, table->step, 16); 269 270 for (i = 0; i < table->rows; i++) { 271 switch (table->step) { 272 case 4: /* 32-bit SRAM */ 273 efx_readd(efx, buf, table->offset + 4 * i); 274 break; 275 case 16: /* 128-bit-readable register */ 276 efx_reado_table(efx, buf, table->offset, i); 277 break; 278 case 32: /* 128-bit register, interleaved */ 279 efx_reado_table(efx, buf, table->offset, 2 * i); 280 break; 281 default: 282 WARN_ON(1); 283 return; 284 } 285 buf += size; 286 } 287 } 288 } 289 290 /** 291 * efx_nic_describe_stats - Describe supported statistics for ethtool 292 * @desc: Array of &struct efx_hw_stat_desc describing the statistics 293 * @count: Length of the @desc array 294 * @mask: Bitmask of which elements of @desc are enabled 295 * @names: Buffer to copy names to, or %NULL. The names are copied 296 * starting at intervals of %ETH_GSTRING_LEN bytes. 297 * 298 * Returns the number of visible statistics, i.e. the number of set 299 * bits in the first @count bits of @mask for which a name is defined. 300 */ 301 size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count, 302 const unsigned long *mask, u8 *names) 303 { 304 size_t visible = 0; 305 size_t index; 306 307 for_each_set_bit(index, mask, count) { 308 if (desc[index].name) { 309 if (names) { 310 strscpy(names, desc[index].name, 311 ETH_GSTRING_LEN); 312 names += ETH_GSTRING_LEN; 313 } 314 ++visible; 315 } 316 } 317 318 return visible; 319 } 320 321 /** 322 * efx_nic_copy_stats - Copy stats from the DMA buffer in to an 323 * intermediate buffer. This is used to get a consistent 324 * set of stats while the DMA buffer can be written at any time 325 * by the NIC. 326 * @efx: The associated NIC. 327 * @dest: Destination buffer. Must be the same size as the DMA buffer. 328 */ 329 int efx_nic_copy_stats(struct efx_nic *efx, __le64 *dest) 330 { 331 __le64 *dma_stats = efx->stats_buffer.addr; 332 __le64 generation_start, generation_end; 333 int rc = 0, retry; 334 335 if (!dest) 336 return 0; 337 338 if (!dma_stats) 339 goto return_zeroes; 340 341 /* If we're unlucky enough to read statistics during the DMA, wait 342 * up to 10ms for it to finish (typically takes <500us) 343 */ 344 for (retry = 0; retry < 100; ++retry) { 345 generation_end = dma_stats[efx->num_mac_stats - 1]; 346 if (generation_end == EFX_MC_STATS_GENERATION_INVALID) 347 goto return_zeroes; 348 rmb(); 349 memcpy(dest, dma_stats, efx->num_mac_stats * sizeof(__le64)); 350 rmb(); 351 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START]; 352 if (generation_end == generation_start) 353 return 0; /* return good data */ 354 udelay(100); 355 } 356 357 rc = -EIO; 358 359 return_zeroes: 360 memset(dest, 0, efx->num_mac_stats * sizeof(u64)); 361 return rc; 362 } 363 364 /** 365 * efx_nic_update_stats - Convert statistics DMA buffer to array of u64 366 * @desc: Array of &struct efx_hw_stat_desc describing the DMA buffer 367 * layout. DMA widths of 0, 16, 32 and 64 are supported; where 368 * the width is specified as 0 the corresponding element of 369 * @stats is not updated. 370 * @count: Length of the @desc array 371 * @mask: Bitmask of which elements of @desc are enabled 372 * @stats: Buffer to update with the converted statistics. The length 373 * of this array must be at least @count. 374 * @dma_buf: DMA buffer containing hardware statistics 375 * @accumulate: If set, the converted values will be added rather than 376 * directly stored to the corresponding elements of @stats 377 */ 378 void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count, 379 const unsigned long *mask, 380 u64 *stats, const void *dma_buf, bool accumulate) 381 { 382 size_t index; 383 384 for_each_set_bit(index, mask, count) { 385 if (desc[index].dma_width) { 386 const void *addr = dma_buf + desc[index].offset; 387 u64 val; 388 389 switch (desc[index].dma_width) { 390 case 16: 391 val = le16_to_cpup((__le16 *)addr); 392 break; 393 case 32: 394 val = le32_to_cpup((__le32 *)addr); 395 break; 396 case 64: 397 val = le64_to_cpup((__le64 *)addr); 398 break; 399 default: 400 WARN_ON(1); 401 val = 0; 402 break; 403 } 404 405 if (accumulate) 406 stats[index] += val; 407 else 408 stats[index] = val; 409 } 410 } 411 } 412 413 void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *rx_nodesc_drops) 414 { 415 /* if down, or this is the first update after coming up */ 416 if (!(efx->net_dev->flags & IFF_UP) || !efx->rx_nodesc_drops_prev_state) 417 efx->rx_nodesc_drops_while_down += 418 *rx_nodesc_drops - efx->rx_nodesc_drops_total; 419 efx->rx_nodesc_drops_total = *rx_nodesc_drops; 420 efx->rx_nodesc_drops_prev_state = !!(efx->net_dev->flags & IFF_UP); 421 *rx_nodesc_drops -= efx->rx_nodesc_drops_while_down; 422 } 423