xref: /linux/drivers/net/ethernet/sfc/nic.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/cpu_rmap.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "ef10_regs.h"
23 #include "farch_regs.h"
24 #include "io.h"
25 #include "workarounds.h"
26 
27 /**************************************************************************
28  *
29  * Generic buffer handling
30  * These buffers are used for interrupt status, MAC stats, etc.
31  *
32  **************************************************************************/
33 
34 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
35 			 unsigned int len, gfp_t gfp_flags)
36 {
37 	buffer->addr = dma_zalloc_coherent(&efx->pci_dev->dev, len,
38 					   &buffer->dma_addr, gfp_flags);
39 	if (!buffer->addr)
40 		return -ENOMEM;
41 	buffer->len = len;
42 	return 0;
43 }
44 
45 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
46 {
47 	if (buffer->addr) {
48 		dma_free_coherent(&efx->pci_dev->dev, buffer->len,
49 				  buffer->addr, buffer->dma_addr);
50 		buffer->addr = NULL;
51 	}
52 }
53 
54 /* Check whether an event is present in the eventq at the current
55  * read pointer.  Only useful for self-test.
56  */
57 bool efx_nic_event_present(struct efx_channel *channel)
58 {
59 	return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
60 }
61 
62 void efx_nic_event_test_start(struct efx_channel *channel)
63 {
64 	channel->event_test_cpu = -1;
65 	smp_wmb();
66 	channel->efx->type->ev_test_generate(channel);
67 }
68 
69 void efx_nic_irq_test_start(struct efx_nic *efx)
70 {
71 	efx->last_irq_cpu = -1;
72 	smp_wmb();
73 	efx->type->irq_test_generate(efx);
74 }
75 
76 /* Hook interrupt handler(s)
77  * Try MSI and then legacy interrupts.
78  */
79 int efx_nic_init_interrupt(struct efx_nic *efx)
80 {
81 	struct efx_channel *channel;
82 	unsigned int n_irqs;
83 	int rc;
84 
85 	if (!EFX_INT_MODE_USE_MSI(efx)) {
86 		rc = request_irq(efx->legacy_irq,
87 				 efx->type->irq_handle_legacy, IRQF_SHARED,
88 				 efx->name, efx);
89 		if (rc) {
90 			netif_err(efx, drv, efx->net_dev,
91 				  "failed to hook legacy IRQ %d\n",
92 				  efx->pci_dev->irq);
93 			goto fail1;
94 		}
95 		return 0;
96 	}
97 
98 #ifdef CONFIG_RFS_ACCEL
99 	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
100 		efx->net_dev->rx_cpu_rmap =
101 			alloc_irq_cpu_rmap(efx->n_rx_channels);
102 		if (!efx->net_dev->rx_cpu_rmap) {
103 			rc = -ENOMEM;
104 			goto fail1;
105 		}
106 	}
107 #endif
108 
109 	/* Hook MSI or MSI-X interrupt */
110 	n_irqs = 0;
111 	efx_for_each_channel(channel, efx) {
112 		rc = request_irq(channel->irq, efx->type->irq_handle_msi,
113 				 IRQF_PROBE_SHARED, /* Not shared */
114 				 efx->msi_context[channel->channel].name,
115 				 &efx->msi_context[channel->channel]);
116 		if (rc) {
117 			netif_err(efx, drv, efx->net_dev,
118 				  "failed to hook IRQ %d\n", channel->irq);
119 			goto fail2;
120 		}
121 		++n_irqs;
122 
123 #ifdef CONFIG_RFS_ACCEL
124 		if (efx->interrupt_mode == EFX_INT_MODE_MSIX &&
125 		    channel->channel < efx->n_rx_channels) {
126 			rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
127 					      channel->irq);
128 			if (rc)
129 				goto fail2;
130 		}
131 #endif
132 	}
133 
134 	return 0;
135 
136  fail2:
137 #ifdef CONFIG_RFS_ACCEL
138 	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
139 	efx->net_dev->rx_cpu_rmap = NULL;
140 #endif
141 	efx_for_each_channel(channel, efx) {
142 		if (n_irqs-- == 0)
143 			break;
144 		free_irq(channel->irq, &efx->msi_context[channel->channel]);
145 	}
146  fail1:
147 	return rc;
148 }
149 
150 void efx_nic_fini_interrupt(struct efx_nic *efx)
151 {
152 	struct efx_channel *channel;
153 
154 #ifdef CONFIG_RFS_ACCEL
155 	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
156 	efx->net_dev->rx_cpu_rmap = NULL;
157 #endif
158 
159 	if (EFX_INT_MODE_USE_MSI(efx)) {
160 		/* Disable MSI/MSI-X interrupts */
161 		efx_for_each_channel(channel, efx)
162 			free_irq(channel->irq,
163 				 &efx->msi_context[channel->channel]);
164 	} else {
165 		/* Disable legacy interrupt */
166 		free_irq(efx->legacy_irq, efx);
167 	}
168 }
169 
170 /* Register dump */
171 
172 #define REGISTER_REVISION_FA	1
173 #define REGISTER_REVISION_FB	2
174 #define REGISTER_REVISION_FC	3
175 #define REGISTER_REVISION_FZ	3	/* last Falcon arch revision */
176 #define REGISTER_REVISION_ED	4
177 #define REGISTER_REVISION_EZ	4	/* latest EF10 revision */
178 
179 struct efx_nic_reg {
180 	u32 offset:24;
181 	u32 min_revision:3, max_revision:3;
182 };
183 
184 #define REGISTER(name, arch, min_rev, max_rev) {			\
185 	arch ## R_ ## min_rev ## max_rev ## _ ## name,			\
186 	REGISTER_REVISION_ ## arch ## min_rev,				\
187 	REGISTER_REVISION_ ## arch ## max_rev				\
188 }
189 #define REGISTER_AA(name) REGISTER(name, F, A, A)
190 #define REGISTER_AB(name) REGISTER(name, F, A, B)
191 #define REGISTER_AZ(name) REGISTER(name, F, A, Z)
192 #define REGISTER_BB(name) REGISTER(name, F, B, B)
193 #define REGISTER_BZ(name) REGISTER(name, F, B, Z)
194 #define REGISTER_CZ(name) REGISTER(name, F, C, Z)
195 #define REGISTER_DZ(name) REGISTER(name, E, D, Z)
196 
197 static const struct efx_nic_reg efx_nic_regs[] = {
198 	REGISTER_AZ(ADR_REGION),
199 	REGISTER_AZ(INT_EN_KER),
200 	REGISTER_BZ(INT_EN_CHAR),
201 	REGISTER_AZ(INT_ADR_KER),
202 	REGISTER_BZ(INT_ADR_CHAR),
203 	/* INT_ACK_KER is WO */
204 	/* INT_ISR0 is RC */
205 	REGISTER_AZ(HW_INIT),
206 	REGISTER_CZ(USR_EV_CFG),
207 	REGISTER_AB(EE_SPI_HCMD),
208 	REGISTER_AB(EE_SPI_HADR),
209 	REGISTER_AB(EE_SPI_HDATA),
210 	REGISTER_AB(EE_BASE_PAGE),
211 	REGISTER_AB(EE_VPD_CFG0),
212 	/* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
213 	/* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
214 	/* PCIE_CORE_INDIRECT is indirect */
215 	REGISTER_AB(NIC_STAT),
216 	REGISTER_AB(GPIO_CTL),
217 	REGISTER_AB(GLB_CTL),
218 	/* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
219 	REGISTER_BZ(DP_CTRL),
220 	REGISTER_AZ(MEM_STAT),
221 	REGISTER_AZ(CS_DEBUG),
222 	REGISTER_AZ(ALTERA_BUILD),
223 	REGISTER_AZ(CSR_SPARE),
224 	REGISTER_AB(PCIE_SD_CTL0123),
225 	REGISTER_AB(PCIE_SD_CTL45),
226 	REGISTER_AB(PCIE_PCS_CTL_STAT),
227 	/* DEBUG_DATA_OUT is not used */
228 	/* DRV_EV is WO */
229 	REGISTER_AZ(EVQ_CTL),
230 	REGISTER_AZ(EVQ_CNT1),
231 	REGISTER_AZ(EVQ_CNT2),
232 	REGISTER_AZ(BUF_TBL_CFG),
233 	REGISTER_AZ(SRM_RX_DC_CFG),
234 	REGISTER_AZ(SRM_TX_DC_CFG),
235 	REGISTER_AZ(SRM_CFG),
236 	/* BUF_TBL_UPD is WO */
237 	REGISTER_AZ(SRM_UPD_EVQ),
238 	REGISTER_AZ(SRAM_PARITY),
239 	REGISTER_AZ(RX_CFG),
240 	REGISTER_BZ(RX_FILTER_CTL),
241 	/* RX_FLUSH_DESCQ is WO */
242 	REGISTER_AZ(RX_DC_CFG),
243 	REGISTER_AZ(RX_DC_PF_WM),
244 	REGISTER_BZ(RX_RSS_TKEY),
245 	/* RX_NODESC_DROP is RC */
246 	REGISTER_AA(RX_SELF_RST),
247 	/* RX_DEBUG, RX_PUSH_DROP are not used */
248 	REGISTER_CZ(RX_RSS_IPV6_REG1),
249 	REGISTER_CZ(RX_RSS_IPV6_REG2),
250 	REGISTER_CZ(RX_RSS_IPV6_REG3),
251 	/* TX_FLUSH_DESCQ is WO */
252 	REGISTER_AZ(TX_DC_CFG),
253 	REGISTER_AA(TX_CHKSM_CFG),
254 	REGISTER_AZ(TX_CFG),
255 	/* TX_PUSH_DROP is not used */
256 	REGISTER_AZ(TX_RESERVED),
257 	REGISTER_BZ(TX_PACE),
258 	/* TX_PACE_DROP_QID is RC */
259 	REGISTER_BB(TX_VLAN),
260 	REGISTER_BZ(TX_IPFIL_PORTEN),
261 	REGISTER_AB(MD_TXD),
262 	REGISTER_AB(MD_RXD),
263 	REGISTER_AB(MD_CS),
264 	REGISTER_AB(MD_PHY_ADR),
265 	REGISTER_AB(MD_ID),
266 	/* MD_STAT is RC */
267 	REGISTER_AB(MAC_STAT_DMA),
268 	REGISTER_AB(MAC_CTRL),
269 	REGISTER_BB(GEN_MODE),
270 	REGISTER_AB(MAC_MC_HASH_REG0),
271 	REGISTER_AB(MAC_MC_HASH_REG1),
272 	REGISTER_AB(GM_CFG1),
273 	REGISTER_AB(GM_CFG2),
274 	/* GM_IPG and GM_HD are not used */
275 	REGISTER_AB(GM_MAX_FLEN),
276 	/* GM_TEST is not used */
277 	REGISTER_AB(GM_ADR1),
278 	REGISTER_AB(GM_ADR2),
279 	REGISTER_AB(GMF_CFG0),
280 	REGISTER_AB(GMF_CFG1),
281 	REGISTER_AB(GMF_CFG2),
282 	REGISTER_AB(GMF_CFG3),
283 	REGISTER_AB(GMF_CFG4),
284 	REGISTER_AB(GMF_CFG5),
285 	REGISTER_BB(TX_SRC_MAC_CTL),
286 	REGISTER_AB(XM_ADR_LO),
287 	REGISTER_AB(XM_ADR_HI),
288 	REGISTER_AB(XM_GLB_CFG),
289 	REGISTER_AB(XM_TX_CFG),
290 	REGISTER_AB(XM_RX_CFG),
291 	REGISTER_AB(XM_MGT_INT_MASK),
292 	REGISTER_AB(XM_FC),
293 	REGISTER_AB(XM_PAUSE_TIME),
294 	REGISTER_AB(XM_TX_PARAM),
295 	REGISTER_AB(XM_RX_PARAM),
296 	/* XM_MGT_INT_MSK (note no 'A') is RC */
297 	REGISTER_AB(XX_PWR_RST),
298 	REGISTER_AB(XX_SD_CTL),
299 	REGISTER_AB(XX_TXDRV_CTL),
300 	/* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
301 	/* XX_CORE_STAT is partly RC */
302 	REGISTER_DZ(BIU_HW_REV_ID),
303 	REGISTER_DZ(MC_DB_LWRD),
304 	REGISTER_DZ(MC_DB_HWRD),
305 };
306 
307 struct efx_nic_reg_table {
308 	u32 offset:24;
309 	u32 min_revision:3, max_revision:3;
310 	u32 step:6, rows:21;
311 };
312 
313 #define REGISTER_TABLE_DIMENSIONS(_, offset, arch, min_rev, max_rev, step, rows) { \
314 	offset,								\
315 	REGISTER_REVISION_ ## arch ## min_rev,				\
316 	REGISTER_REVISION_ ## arch ## max_rev,				\
317 	step, rows							\
318 }
319 #define REGISTER_TABLE(name, arch, min_rev, max_rev)			\
320 	REGISTER_TABLE_DIMENSIONS(					\
321 		name, arch ## R_ ## min_rev ## max_rev ## _ ## name,	\
322 		arch, min_rev, max_rev,					\
323 		arch ## R_ ## min_rev ## max_rev ## _ ## name ## _STEP,	\
324 		arch ## R_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
325 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, F, A, A)
326 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, F, A, Z)
327 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, F, B, B)
328 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, F, B, Z)
329 #define REGISTER_TABLE_BB_CZ(name)					\
330 	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, F, B, B,	\
331 				  FR_BZ_ ## name ## _STEP,		\
332 				  FR_BB_ ## name ## _ROWS),		\
333 	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, F, C, Z,	\
334 				  FR_BZ_ ## name ## _STEP,		\
335 				  FR_CZ_ ## name ## _ROWS)
336 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, F, C, Z)
337 #define REGISTER_TABLE_DZ(name) REGISTER_TABLE(name, E, D, Z)
338 
339 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
340 	/* DRIVER is not used */
341 	/* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
342 	REGISTER_TABLE_BB(TX_IPFIL_TBL),
343 	REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
344 	REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
345 	REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
346 	REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
347 	REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
348 	REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
349 	REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
350 	/* We can't reasonably read all of the buffer table (up to 8MB!).
351 	 * However this driver will only use a few entries.  Reading
352 	 * 1K entries allows for some expansion of queue count and
353 	 * size before we need to change the version. */
354 	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
355 				  F, A, A, 8, 1024),
356 	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
357 				  F, B, Z, 8, 1024),
358 	REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
359 	REGISTER_TABLE_BB_CZ(TIMER_TBL),
360 	REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
361 	REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
362 	/* TX_FILTER_TBL0 is huge and not used by this driver */
363 	REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
364 	REGISTER_TABLE_CZ(MC_TREG_SMEM),
365 	/* MSIX_PBA_TABLE is not mapped */
366 	/* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
367 	REGISTER_TABLE_BZ(RX_FILTER_TBL0),
368 	REGISTER_TABLE_DZ(BIU_MC_SFT_STATUS),
369 };
370 
371 size_t efx_nic_get_regs_len(struct efx_nic *efx)
372 {
373 	const struct efx_nic_reg *reg;
374 	const struct efx_nic_reg_table *table;
375 	size_t len = 0;
376 
377 	for (reg = efx_nic_regs;
378 	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
379 	     reg++)
380 		if (efx->type->revision >= reg->min_revision &&
381 		    efx->type->revision <= reg->max_revision)
382 			len += sizeof(efx_oword_t);
383 
384 	for (table = efx_nic_reg_tables;
385 	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
386 	     table++)
387 		if (efx->type->revision >= table->min_revision &&
388 		    efx->type->revision <= table->max_revision)
389 			len += table->rows * min_t(size_t, table->step, 16);
390 
391 	return len;
392 }
393 
394 void efx_nic_get_regs(struct efx_nic *efx, void *buf)
395 {
396 	const struct efx_nic_reg *reg;
397 	const struct efx_nic_reg_table *table;
398 
399 	for (reg = efx_nic_regs;
400 	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
401 	     reg++) {
402 		if (efx->type->revision >= reg->min_revision &&
403 		    efx->type->revision <= reg->max_revision) {
404 			efx_reado(efx, (efx_oword_t *)buf, reg->offset);
405 			buf += sizeof(efx_oword_t);
406 		}
407 	}
408 
409 	for (table = efx_nic_reg_tables;
410 	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
411 	     table++) {
412 		size_t size, i;
413 
414 		if (!(efx->type->revision >= table->min_revision &&
415 		      efx->type->revision <= table->max_revision))
416 			continue;
417 
418 		size = min_t(size_t, table->step, 16);
419 
420 		for (i = 0; i < table->rows; i++) {
421 			switch (table->step) {
422 			case 4: /* 32-bit SRAM */
423 				efx_readd(efx, buf, table->offset + 4 * i);
424 				break;
425 			case 8: /* 64-bit SRAM */
426 				efx_sram_readq(efx,
427 					       efx->membase + table->offset,
428 					       buf, i);
429 				break;
430 			case 16: /* 128-bit-readable register */
431 				efx_reado_table(efx, buf, table->offset, i);
432 				break;
433 			case 32: /* 128-bit register, interleaved */
434 				efx_reado_table(efx, buf, table->offset, 2 * i);
435 				break;
436 			default:
437 				WARN_ON(1);
438 				return;
439 			}
440 			buf += size;
441 		}
442 	}
443 }
444 
445 /**
446  * efx_nic_describe_stats - Describe supported statistics for ethtool
447  * @desc: Array of &struct efx_hw_stat_desc describing the statistics
448  * @count: Length of the @desc array
449  * @mask: Bitmask of which elements of @desc are enabled
450  * @names: Buffer to copy names to, or %NULL.  The names are copied
451  *	starting at intervals of %ETH_GSTRING_LEN bytes.
452  *
453  * Returns the number of visible statistics, i.e. the number of set
454  * bits in the first @count bits of @mask for which a name is defined.
455  */
456 size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
457 			      const unsigned long *mask, u8 *names)
458 {
459 	size_t visible = 0;
460 	size_t index;
461 
462 	for_each_set_bit(index, mask, count) {
463 		if (desc[index].name) {
464 			if (names) {
465 				strlcpy(names, desc[index].name,
466 					ETH_GSTRING_LEN);
467 				names += ETH_GSTRING_LEN;
468 			}
469 			++visible;
470 		}
471 	}
472 
473 	return visible;
474 }
475 
476 /**
477  * efx_nic_update_stats - Convert statistics DMA buffer to array of u64
478  * @desc: Array of &struct efx_hw_stat_desc describing the DMA buffer
479  *	layout.  DMA widths of 0, 16, 32 and 64 are supported; where
480  *	the width is specified as 0 the corresponding element of
481  *	@stats is not updated.
482  * @count: Length of the @desc array
483  * @mask: Bitmask of which elements of @desc are enabled
484  * @stats: Buffer to update with the converted statistics.  The length
485  *	of this array must be at least @count.
486  * @dma_buf: DMA buffer containing hardware statistics
487  * @accumulate: If set, the converted values will be added rather than
488  *	directly stored to the corresponding elements of @stats
489  */
490 void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
491 			  const unsigned long *mask,
492 			  u64 *stats, const void *dma_buf, bool accumulate)
493 {
494 	size_t index;
495 
496 	for_each_set_bit(index, mask, count) {
497 		if (desc[index].dma_width) {
498 			const void *addr = dma_buf + desc[index].offset;
499 			u64 val;
500 
501 			switch (desc[index].dma_width) {
502 			case 16:
503 				val = le16_to_cpup((__le16 *)addr);
504 				break;
505 			case 32:
506 				val = le32_to_cpup((__le32 *)addr);
507 				break;
508 			case 64:
509 				val = le64_to_cpup((__le64 *)addr);
510 				break;
511 			default:
512 				WARN_ON(1);
513 				val = 0;
514 				break;
515 			}
516 
517 			if (accumulate)
518 				stats[index] += val;
519 			else
520 				stats[index] = val;
521 		}
522 	}
523 }
524 
525 void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *rx_nodesc_drops)
526 {
527 	/* if down, or this is the first update after coming up */
528 	if (!(efx->net_dev->flags & IFF_UP) || !efx->rx_nodesc_drops_prev_state)
529 		efx->rx_nodesc_drops_while_down +=
530 			*rx_nodesc_drops - efx->rx_nodesc_drops_total;
531 	efx->rx_nodesc_drops_total = *rx_nodesc_drops;
532 	efx->rx_nodesc_drops_prev_state = !!(efx->net_dev->flags & IFF_UP);
533 	*rx_nodesc_drops -= efx->rx_nodesc_drops_while_down;
534 }
535