xref: /linux/drivers/net/ethernet/sfc/net_driver.h (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 /* Common definitions for all Efx net driver code */
12 
13 #ifndef EFX_NET_DRIVER_H
14 #define EFX_NET_DRIVER_H
15 
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/ethtool.h>
19 #include <linux/if_vlan.h>
20 #include <linux/timer.h>
21 #include <linux/mdio.h>
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/device.h>
25 #include <linux/highmem.h>
26 #include <linux/workqueue.h>
27 #include <linux/mutex.h>
28 #include <linux/rwsem.h>
29 #include <linux/vmalloc.h>
30 #include <linux/i2c.h>
31 #include <linux/mtd/mtd.h>
32 #include <net/busy_poll.h>
33 
34 #include "enum.h"
35 #include "bitfield.h"
36 #include "filter.h"
37 
38 /**************************************************************************
39  *
40  * Build definitions
41  *
42  **************************************************************************/
43 
44 #define EFX_DRIVER_VERSION	"4.1"
45 
46 #ifdef DEBUG
47 #define EFX_WARN_ON_ONCE_PARANOID(x) WARN_ON_ONCE(x)
48 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
49 #else
50 #define EFX_WARN_ON_ONCE_PARANOID(x) do {} while (0)
51 #define EFX_WARN_ON_PARANOID(x) do {} while (0)
52 #endif
53 
54 /**************************************************************************
55  *
56  * Efx data structures
57  *
58  **************************************************************************/
59 
60 #define EFX_MAX_CHANNELS 32U
61 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
62 #define EFX_EXTRA_CHANNEL_IOV	0
63 #define EFX_EXTRA_CHANNEL_PTP	1
64 #define EFX_MAX_EXTRA_CHANNELS	2U
65 
66 /* Checksum generation is a per-queue option in hardware, so each
67  * queue visible to the networking core is backed by two hardware TX
68  * queues. */
69 #define EFX_MAX_TX_TC		2
70 #define EFX_MAX_CORE_TX_QUEUES	(EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
71 #define EFX_TXQ_TYPE_OFFLOAD	1	/* flag */
72 #define EFX_TXQ_TYPE_HIGHPRI	2	/* flag */
73 #define EFX_TXQ_TYPES		4
74 #define EFX_MAX_TX_QUEUES	(EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
75 
76 /* Maximum possible MTU the driver supports */
77 #define EFX_MAX_MTU (9 * 1024)
78 
79 /* Minimum MTU, from RFC791 (IP) */
80 #define EFX_MIN_MTU 68
81 
82 /* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
83  * and should be a multiple of the cache line size.
84  */
85 #define EFX_RX_USR_BUF_SIZE	(2048 - 256)
86 
87 /* If possible, we should ensure cache line alignment at start and end
88  * of every buffer.  Otherwise, we just need to ensure 4-byte
89  * alignment of the network header.
90  */
91 #if NET_IP_ALIGN == 0
92 #define EFX_RX_BUF_ALIGNMENT	L1_CACHE_BYTES
93 #else
94 #define EFX_RX_BUF_ALIGNMENT	4
95 #endif
96 
97 /* Forward declare Precision Time Protocol (PTP) support structure. */
98 struct efx_ptp_data;
99 struct hwtstamp_config;
100 
101 struct efx_self_tests;
102 
103 /**
104  * struct efx_buffer - A general-purpose DMA buffer
105  * @addr: host base address of the buffer
106  * @dma_addr: DMA base address of the buffer
107  * @len: Buffer length, in bytes
108  *
109  * The NIC uses these buffers for its interrupt status registers and
110  * MAC stats dumps.
111  */
112 struct efx_buffer {
113 	void *addr;
114 	dma_addr_t dma_addr;
115 	unsigned int len;
116 };
117 
118 /**
119  * struct efx_special_buffer - DMA buffer entered into buffer table
120  * @buf: Standard &struct efx_buffer
121  * @index: Buffer index within controller;s buffer table
122  * @entries: Number of buffer table entries
123  *
124  * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
125  * Event and descriptor rings are addressed via one or more buffer
126  * table entries (and so can be physically non-contiguous, although we
127  * currently do not take advantage of that).  On Falcon and Siena we
128  * have to take care of allocating and initialising the entries
129  * ourselves.  On later hardware this is managed by the firmware and
130  * @index and @entries are left as 0.
131  */
132 struct efx_special_buffer {
133 	struct efx_buffer buf;
134 	unsigned int index;
135 	unsigned int entries;
136 };
137 
138 /**
139  * struct efx_tx_buffer - buffer state for a TX descriptor
140  * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
141  *	freed when descriptor completes
142  * @option: When @flags & %EFX_TX_BUF_OPTION, a NIC-specific option descriptor.
143  * @dma_addr: DMA address of the fragment.
144  * @flags: Flags for allocation and DMA mapping type
145  * @len: Length of this fragment.
146  *	This field is zero when the queue slot is empty.
147  * @unmap_len: Length of this fragment to unmap
148  * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
149  * Only valid if @unmap_len != 0.
150  */
151 struct efx_tx_buffer {
152 	const struct sk_buff *skb;
153 	union {
154 		efx_qword_t option;
155 		dma_addr_t dma_addr;
156 	};
157 	unsigned short flags;
158 	unsigned short len;
159 	unsigned short unmap_len;
160 	unsigned short dma_offset;
161 };
162 #define EFX_TX_BUF_CONT		1	/* not last descriptor of packet */
163 #define EFX_TX_BUF_SKB		2	/* buffer is last part of skb */
164 #define EFX_TX_BUF_MAP_SINGLE	8	/* buffer was mapped with dma_map_single() */
165 #define EFX_TX_BUF_OPTION	0x10	/* empty buffer for option descriptor */
166 
167 /**
168  * struct efx_tx_queue - An Efx TX queue
169  *
170  * This is a ring buffer of TX fragments.
171  * Since the TX completion path always executes on the same
172  * CPU and the xmit path can operate on different CPUs,
173  * performance is increased by ensuring that the completion
174  * path and the xmit path operate on different cache lines.
175  * This is particularly important if the xmit path is always
176  * executing on one CPU which is different from the completion
177  * path.  There is also a cache line for members which are
178  * read but not written on the fast path.
179  *
180  * @efx: The associated Efx NIC
181  * @queue: DMA queue number
182  * @tso_version: Version of TSO in use for this queue.
183  * @channel: The associated channel
184  * @core_txq: The networking core TX queue structure
185  * @buffer: The software buffer ring
186  * @cb_page: Array of pages of copy buffers.  Carved up according to
187  *	%EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks.
188  * @txd: The hardware descriptor ring
189  * @ptr_mask: The size of the ring minus 1.
190  * @piobuf: PIO buffer region for this TX queue (shared with its partner).
191  *	Size of the region is efx_piobuf_size.
192  * @piobuf_offset: Buffer offset to be specified in PIO descriptors
193  * @initialised: Has hardware queue been initialised?
194  * @timestamping: Is timestamping enabled for this channel?
195  * @handle_tso: TSO xmit preparation handler.  Sets up the TSO metadata and
196  *	may also map tx data, depending on the nature of the TSO implementation.
197  * @read_count: Current read pointer.
198  *	This is the number of buffers that have been removed from both rings.
199  * @old_write_count: The value of @write_count when last checked.
200  *	This is here for performance reasons.  The xmit path will
201  *	only get the up-to-date value of @write_count if this
202  *	variable indicates that the queue is empty.  This is to
203  *	avoid cache-line ping-pong between the xmit path and the
204  *	completion path.
205  * @merge_events: Number of TX merged completion events
206  * @completed_desc_ptr: Most recent completed pointer - only used with
207  *      timestamping.
208  * @completed_timestamp_major: Top part of the most recent tx timestamp.
209  * @completed_timestamp_minor: Low part of the most recent tx timestamp.
210  * @insert_count: Current insert pointer
211  *	This is the number of buffers that have been added to the
212  *	software ring.
213  * @write_count: Current write pointer
214  *	This is the number of buffers that have been added to the
215  *	hardware ring.
216  * @packet_write_count: Completable write pointer
217  *	This is the write pointer of the last packet written.
218  *	Normally this will equal @write_count, but as option descriptors
219  *	don't produce completion events, they won't update this.
220  *	Filled in iff @efx->type->option_descriptors; only used for PIO.
221  *	Thus, this is written and used on EF10, and neither on farch.
222  * @old_read_count: The value of read_count when last checked.
223  *	This is here for performance reasons.  The xmit path will
224  *	only get the up-to-date value of read_count if this
225  *	variable indicates that the queue is full.  This is to
226  *	avoid cache-line ping-pong between the xmit path and the
227  *	completion path.
228  * @tso_bursts: Number of times TSO xmit invoked by kernel
229  * @tso_long_headers: Number of packets with headers too long for standard
230  *	blocks
231  * @tso_packets: Number of packets via the TSO xmit path
232  * @tso_fallbacks: Number of times TSO fallback used
233  * @pushes: Number of times the TX push feature has been used
234  * @pio_packets: Number of times the TX PIO feature has been used
235  * @xmit_more_available: Are any packets waiting to be pushed to the NIC
236  * @cb_packets: Number of times the TX copybreak feature has been used
237  * @empty_read_count: If the completion path has seen the queue as empty
238  *	and the transmission path has not yet checked this, the value of
239  *	@read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
240  */
241 struct efx_tx_queue {
242 	/* Members which don't change on the fast path */
243 	struct efx_nic *efx ____cacheline_aligned_in_smp;
244 	unsigned queue;
245 	unsigned int tso_version;
246 	struct efx_channel *channel;
247 	struct netdev_queue *core_txq;
248 	struct efx_tx_buffer *buffer;
249 	struct efx_buffer *cb_page;
250 	struct efx_special_buffer txd;
251 	unsigned int ptr_mask;
252 	void __iomem *piobuf;
253 	unsigned int piobuf_offset;
254 	bool initialised;
255 	bool timestamping;
256 
257 	/* Function pointers used in the fast path. */
258 	int (*handle_tso)(struct efx_tx_queue*, struct sk_buff*, bool *);
259 
260 	/* Members used mainly on the completion path */
261 	unsigned int read_count ____cacheline_aligned_in_smp;
262 	unsigned int old_write_count;
263 	unsigned int merge_events;
264 	unsigned int bytes_compl;
265 	unsigned int pkts_compl;
266 	unsigned int completed_desc_ptr;
267 	u32 completed_timestamp_major;
268 	u32 completed_timestamp_minor;
269 
270 	/* Members used only on the xmit path */
271 	unsigned int insert_count ____cacheline_aligned_in_smp;
272 	unsigned int write_count;
273 	unsigned int packet_write_count;
274 	unsigned int old_read_count;
275 	unsigned int tso_bursts;
276 	unsigned int tso_long_headers;
277 	unsigned int tso_packets;
278 	unsigned int tso_fallbacks;
279 	unsigned int pushes;
280 	unsigned int pio_packets;
281 	bool xmit_more_available;
282 	unsigned int cb_packets;
283 	/* Statistics to supplement MAC stats */
284 	unsigned long tx_packets;
285 
286 	/* Members shared between paths and sometimes updated */
287 	unsigned int empty_read_count ____cacheline_aligned_in_smp;
288 #define EFX_EMPTY_COUNT_VALID 0x80000000
289 	atomic_t flush_outstanding;
290 };
291 
292 #define EFX_TX_CB_ORDER	7
293 #define EFX_TX_CB_SIZE	(1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN
294 
295 /**
296  * struct efx_rx_buffer - An Efx RX data buffer
297  * @dma_addr: DMA base address of the buffer
298  * @page: The associated page buffer.
299  *	Will be %NULL if the buffer slot is currently free.
300  * @page_offset: If pending: offset in @page of DMA base address.
301  *	If completed: offset in @page of Ethernet header.
302  * @len: If pending: length for DMA descriptor.
303  *	If completed: received length, excluding hash prefix.
304  * @flags: Flags for buffer and packet state.  These are only set on the
305  *	first buffer of a scattered packet.
306  */
307 struct efx_rx_buffer {
308 	dma_addr_t dma_addr;
309 	struct page *page;
310 	u16 page_offset;
311 	u16 len;
312 	u16 flags;
313 };
314 #define EFX_RX_BUF_LAST_IN_PAGE	0x0001
315 #define EFX_RX_PKT_CSUMMED	0x0002
316 #define EFX_RX_PKT_DISCARD	0x0004
317 #define EFX_RX_PKT_TCP		0x0040
318 #define EFX_RX_PKT_PREFIX_LEN	0x0080	/* length is in prefix only */
319 #define EFX_RX_PKT_CSUM_LEVEL	0x0200
320 
321 /**
322  * struct efx_rx_page_state - Page-based rx buffer state
323  *
324  * Inserted at the start of every page allocated for receive buffers.
325  * Used to facilitate sharing dma mappings between recycled rx buffers
326  * and those passed up to the kernel.
327  *
328  * @dma_addr: The dma address of this page.
329  */
330 struct efx_rx_page_state {
331 	dma_addr_t dma_addr;
332 
333 	unsigned int __pad[0] ____cacheline_aligned;
334 };
335 
336 /**
337  * struct efx_rx_queue - An Efx RX queue
338  * @efx: The associated Efx NIC
339  * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
340  *	is associated with a real RX queue.
341  * @buffer: The software buffer ring
342  * @rxd: The hardware descriptor ring
343  * @ptr_mask: The size of the ring minus 1.
344  * @refill_enabled: Enable refill whenever fill level is low
345  * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
346  *	@rxq_flush_pending.
347  * @added_count: Number of buffers added to the receive queue.
348  * @notified_count: Number of buffers given to NIC (<= @added_count).
349  * @removed_count: Number of buffers removed from the receive queue.
350  * @scatter_n: Used by NIC specific receive code.
351  * @scatter_len: Used by NIC specific receive code.
352  * @page_ring: The ring to store DMA mapped pages for reuse.
353  * @page_add: Counter to calculate the write pointer for the recycle ring.
354  * @page_remove: Counter to calculate the read pointer for the recycle ring.
355  * @page_recycle_count: The number of pages that have been recycled.
356  * @page_recycle_failed: The number of pages that couldn't be recycled because
357  *      the kernel still held a reference to them.
358  * @page_recycle_full: The number of pages that were released because the
359  *      recycle ring was full.
360  * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
361  * @max_fill: RX descriptor maximum fill level (<= ring size)
362  * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
363  *	(<= @max_fill)
364  * @min_fill: RX descriptor minimum non-zero fill level.
365  *	This records the minimum fill level observed when a ring
366  *	refill was triggered.
367  * @recycle_count: RX buffer recycle counter.
368  * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
369  */
370 struct efx_rx_queue {
371 	struct efx_nic *efx;
372 	int core_index;
373 	struct efx_rx_buffer *buffer;
374 	struct efx_special_buffer rxd;
375 	unsigned int ptr_mask;
376 	bool refill_enabled;
377 	bool flush_pending;
378 
379 	unsigned int added_count;
380 	unsigned int notified_count;
381 	unsigned int removed_count;
382 	unsigned int scatter_n;
383 	unsigned int scatter_len;
384 	struct page **page_ring;
385 	unsigned int page_add;
386 	unsigned int page_remove;
387 	unsigned int page_recycle_count;
388 	unsigned int page_recycle_failed;
389 	unsigned int page_recycle_full;
390 	unsigned int page_ptr_mask;
391 	unsigned int max_fill;
392 	unsigned int fast_fill_trigger;
393 	unsigned int min_fill;
394 	unsigned int min_overfill;
395 	unsigned int recycle_count;
396 	struct timer_list slow_fill;
397 	unsigned int slow_fill_count;
398 	/* Statistics to supplement MAC stats */
399 	unsigned long rx_packets;
400 };
401 
402 enum efx_sync_events_state {
403 	SYNC_EVENTS_DISABLED = 0,
404 	SYNC_EVENTS_QUIESCENT,
405 	SYNC_EVENTS_REQUESTED,
406 	SYNC_EVENTS_VALID,
407 };
408 
409 /**
410  * struct efx_channel - An Efx channel
411  *
412  * A channel comprises an event queue, at least one TX queue, at least
413  * one RX queue, and an associated tasklet for processing the event
414  * queue.
415  *
416  * @efx: Associated Efx NIC
417  * @channel: Channel instance number
418  * @type: Channel type definition
419  * @eventq_init: Event queue initialised flag
420  * @enabled: Channel enabled indicator
421  * @irq: IRQ number (MSI and MSI-X only)
422  * @irq_moderation_us: IRQ moderation value (in microseconds)
423  * @napi_dev: Net device used with NAPI
424  * @napi_str: NAPI control structure
425  * @state: state for NAPI vs busy polling
426  * @state_lock: lock protecting @state
427  * @eventq: Event queue buffer
428  * @eventq_mask: Event queue pointer mask
429  * @eventq_read_ptr: Event queue read pointer
430  * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
431  * @irq_count: Number of IRQs since last adaptive moderation decision
432  * @irq_mod_score: IRQ moderation score
433  * @filter_work: Work item for efx_filter_rfs_expire()
434  * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
435  *      indexed by filter ID
436  * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
437  * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
438  * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
439  * @n_rx_mcast_mismatch: Count of unmatched multicast frames
440  * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
441  * @n_rx_overlength: Count of RX_OVERLENGTH errors
442  * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
443  * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
444  *	lack of descriptors
445  * @n_rx_merge_events: Number of RX merged completion events
446  * @n_rx_merge_packets: Number of RX packets completed by merged events
447  * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
448  *	__efx_rx_packet(), or zero if there is none
449  * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
450  *	by __efx_rx_packet(), if @rx_pkt_n_frags != 0
451  * @rx_list: list of SKBs from current RX, awaiting processing
452  * @rx_queue: RX queue for this channel
453  * @tx_queue: TX queues for this channel
454  * @sync_events_state: Current state of sync events on this channel
455  * @sync_timestamp_major: Major part of the last ptp sync event
456  * @sync_timestamp_minor: Minor part of the last ptp sync event
457  */
458 struct efx_channel {
459 	struct efx_nic *efx;
460 	int channel;
461 	const struct efx_channel_type *type;
462 	bool eventq_init;
463 	bool enabled;
464 	int irq;
465 	unsigned int irq_moderation_us;
466 	struct net_device *napi_dev;
467 	struct napi_struct napi_str;
468 #ifdef CONFIG_NET_RX_BUSY_POLL
469 	unsigned long busy_poll_state;
470 #endif
471 	struct efx_special_buffer eventq;
472 	unsigned int eventq_mask;
473 	unsigned int eventq_read_ptr;
474 	int event_test_cpu;
475 
476 	unsigned int irq_count;
477 	unsigned int irq_mod_score;
478 #ifdef CONFIG_RFS_ACCEL
479 	unsigned int rfs_filters_added;
480 	struct work_struct filter_work;
481 #define RPS_FLOW_ID_INVALID 0xFFFFFFFF
482 	u32 *rps_flow_id;
483 #endif
484 
485 	unsigned int n_rx_tobe_disc;
486 	unsigned int n_rx_ip_hdr_chksum_err;
487 	unsigned int n_rx_tcp_udp_chksum_err;
488 	unsigned int n_rx_outer_ip_hdr_chksum_err;
489 	unsigned int n_rx_outer_tcp_udp_chksum_err;
490 	unsigned int n_rx_inner_ip_hdr_chksum_err;
491 	unsigned int n_rx_inner_tcp_udp_chksum_err;
492 	unsigned int n_rx_eth_crc_err;
493 	unsigned int n_rx_mcast_mismatch;
494 	unsigned int n_rx_frm_trunc;
495 	unsigned int n_rx_overlength;
496 	unsigned int n_skbuff_leaks;
497 	unsigned int n_rx_nodesc_trunc;
498 	unsigned int n_rx_merge_events;
499 	unsigned int n_rx_merge_packets;
500 
501 	unsigned int rx_pkt_n_frags;
502 	unsigned int rx_pkt_index;
503 
504 	struct list_head *rx_list;
505 
506 	struct efx_rx_queue rx_queue;
507 	struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
508 
509 	enum efx_sync_events_state sync_events_state;
510 	u32 sync_timestamp_major;
511 	u32 sync_timestamp_minor;
512 };
513 
514 /**
515  * struct efx_msi_context - Context for each MSI
516  * @efx: The associated NIC
517  * @index: Index of the channel/IRQ
518  * @name: Name of the channel/IRQ
519  *
520  * Unlike &struct efx_channel, this is never reallocated and is always
521  * safe for the IRQ handler to access.
522  */
523 struct efx_msi_context {
524 	struct efx_nic *efx;
525 	unsigned int index;
526 	char name[IFNAMSIZ + 6];
527 };
528 
529 /**
530  * struct efx_channel_type - distinguishes traffic and extra channels
531  * @handle_no_channel: Handle failure to allocate an extra channel
532  * @pre_probe: Set up extra state prior to initialisation
533  * @post_remove: Tear down extra state after finalisation, if allocated.
534  *	May be called on channels that have not been probed.
535  * @get_name: Generate the channel's name (used for its IRQ handler)
536  * @copy: Copy the channel state prior to reallocation.  May be %NULL if
537  *	reallocation is not supported.
538  * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
539  * @want_txqs: Determine whether this channel should have TX queues
540  *	created.  If %NULL, TX queues are not created.
541  * @keep_eventq: Flag for whether event queue should be kept initialised
542  *	while the device is stopped
543  * @want_pio: Flag for whether PIO buffers should be linked to this
544  *	channel's TX queues.
545  */
546 struct efx_channel_type {
547 	void (*handle_no_channel)(struct efx_nic *);
548 	int (*pre_probe)(struct efx_channel *);
549 	void (*post_remove)(struct efx_channel *);
550 	void (*get_name)(struct efx_channel *, char *buf, size_t len);
551 	struct efx_channel *(*copy)(const struct efx_channel *);
552 	bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
553 	bool (*want_txqs)(struct efx_channel *);
554 	bool keep_eventq;
555 	bool want_pio;
556 };
557 
558 enum efx_led_mode {
559 	EFX_LED_OFF	= 0,
560 	EFX_LED_ON	= 1,
561 	EFX_LED_DEFAULT	= 2
562 };
563 
564 #define STRING_TABLE_LOOKUP(val, member) \
565 	((val) < member ## _max) ? member ## _names[val] : "(invalid)"
566 
567 extern const char *const efx_loopback_mode_names[];
568 extern const unsigned int efx_loopback_mode_max;
569 #define LOOPBACK_MODE(efx) \
570 	STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
571 
572 extern const char *const efx_reset_type_names[];
573 extern const unsigned int efx_reset_type_max;
574 #define RESET_TYPE(type) \
575 	STRING_TABLE_LOOKUP(type, efx_reset_type)
576 
577 void efx_get_udp_tunnel_type_name(u16 type, char *buf, size_t buflen);
578 
579 enum efx_int_mode {
580 	/* Be careful if altering to correct macro below */
581 	EFX_INT_MODE_MSIX = 0,
582 	EFX_INT_MODE_MSI = 1,
583 	EFX_INT_MODE_LEGACY = 2,
584 	EFX_INT_MODE_MAX	/* Insert any new items before this */
585 };
586 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
587 
588 enum nic_state {
589 	STATE_UNINIT = 0,	/* device being probed/removed or is frozen */
590 	STATE_READY = 1,	/* hardware ready and netdev registered */
591 	STATE_DISABLED = 2,	/* device disabled due to hardware errors */
592 	STATE_RECOVERY = 3,	/* device recovering from PCI error */
593 };
594 
595 /* Forward declaration */
596 struct efx_nic;
597 
598 /* Pseudo bit-mask flow control field */
599 #define EFX_FC_RX	FLOW_CTRL_RX
600 #define EFX_FC_TX	FLOW_CTRL_TX
601 #define EFX_FC_AUTO	4
602 
603 /**
604  * struct efx_link_state - Current state of the link
605  * @up: Link is up
606  * @fd: Link is full-duplex
607  * @fc: Actual flow control flags
608  * @speed: Link speed (Mbps)
609  */
610 struct efx_link_state {
611 	bool up;
612 	bool fd;
613 	u8 fc;
614 	unsigned int speed;
615 };
616 
617 static inline bool efx_link_state_equal(const struct efx_link_state *left,
618 					const struct efx_link_state *right)
619 {
620 	return left->up == right->up && left->fd == right->fd &&
621 		left->fc == right->fc && left->speed == right->speed;
622 }
623 
624 /**
625  * struct efx_phy_operations - Efx PHY operations table
626  * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
627  *	efx->loopback_modes.
628  * @init: Initialise PHY
629  * @fini: Shut down PHY
630  * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
631  * @poll: Update @link_state and report whether it changed.
632  *	Serialised by the mac_lock.
633  * @get_link_ksettings: Get ethtool settings. Serialised by the mac_lock.
634  * @set_link_ksettings: Set ethtool settings. Serialised by the mac_lock.
635  * @get_fecparam: Get Forward Error Correction settings. Serialised by mac_lock.
636  * @set_fecparam: Set Forward Error Correction settings. Serialised by mac_lock.
637  * @set_npage_adv: Set abilities advertised in (Extended) Next Page
638  *	(only needed where AN bit is set in mmds)
639  * @test_alive: Test that PHY is 'alive' (online)
640  * @test_name: Get the name of a PHY-specific test/result
641  * @run_tests: Run tests and record results as appropriate (offline).
642  *	Flags are the ethtool tests flags.
643  */
644 struct efx_phy_operations {
645 	int (*probe) (struct efx_nic *efx);
646 	int (*init) (struct efx_nic *efx);
647 	void (*fini) (struct efx_nic *efx);
648 	void (*remove) (struct efx_nic *efx);
649 	int (*reconfigure) (struct efx_nic *efx);
650 	bool (*poll) (struct efx_nic *efx);
651 	void (*get_link_ksettings)(struct efx_nic *efx,
652 				   struct ethtool_link_ksettings *cmd);
653 	int (*set_link_ksettings)(struct efx_nic *efx,
654 				  const struct ethtool_link_ksettings *cmd);
655 	int (*get_fecparam)(struct efx_nic *efx, struct ethtool_fecparam *fec);
656 	int (*set_fecparam)(struct efx_nic *efx,
657 			    const struct ethtool_fecparam *fec);
658 	void (*set_npage_adv) (struct efx_nic *efx, u32);
659 	int (*test_alive) (struct efx_nic *efx);
660 	const char *(*test_name) (struct efx_nic *efx, unsigned int index);
661 	int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
662 	int (*get_module_eeprom) (struct efx_nic *efx,
663 			       struct ethtool_eeprom *ee,
664 			       u8 *data);
665 	int (*get_module_info) (struct efx_nic *efx,
666 				struct ethtool_modinfo *modinfo);
667 };
668 
669 /**
670  * enum efx_phy_mode - PHY operating mode flags
671  * @PHY_MODE_NORMAL: on and should pass traffic
672  * @PHY_MODE_TX_DISABLED: on with TX disabled
673  * @PHY_MODE_LOW_POWER: set to low power through MDIO
674  * @PHY_MODE_OFF: switched off through external control
675  * @PHY_MODE_SPECIAL: on but will not pass traffic
676  */
677 enum efx_phy_mode {
678 	PHY_MODE_NORMAL		= 0,
679 	PHY_MODE_TX_DISABLED	= 1,
680 	PHY_MODE_LOW_POWER	= 2,
681 	PHY_MODE_OFF		= 4,
682 	PHY_MODE_SPECIAL	= 8,
683 };
684 
685 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
686 {
687 	return !!(mode & ~PHY_MODE_TX_DISABLED);
688 }
689 
690 /**
691  * struct efx_hw_stat_desc - Description of a hardware statistic
692  * @name: Name of the statistic as visible through ethtool, or %NULL if
693  *	it should not be exposed
694  * @dma_width: Width in bits (0 for non-DMA statistics)
695  * @offset: Offset within stats (ignored for non-DMA statistics)
696  */
697 struct efx_hw_stat_desc {
698 	const char *name;
699 	u16 dma_width;
700 	u16 offset;
701 };
702 
703 /* Number of bits used in a multicast filter hash address */
704 #define EFX_MCAST_HASH_BITS 8
705 
706 /* Number of (single-bit) entries in a multicast filter hash */
707 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
708 
709 /* An Efx multicast filter hash */
710 union efx_multicast_hash {
711 	u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
712 	efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
713 };
714 
715 struct vfdi_status;
716 
717 /* The reserved RSS context value */
718 #define EFX_EF10_RSS_CONTEXT_INVALID	0xffffffff
719 /**
720  * struct efx_rss_context - A user-defined RSS context for filtering
721  * @list: node of linked list on which this struct is stored
722  * @context_id: the RSS_CONTEXT_ID returned by MC firmware, or
723  *	%EFX_EF10_RSS_CONTEXT_INVALID if this context is not present on the NIC.
724  *	For Siena, 0 if RSS is active, else %EFX_EF10_RSS_CONTEXT_INVALID.
725  * @user_id: the rss_context ID exposed to userspace over ethtool.
726  * @rx_hash_udp_4tuple: UDP 4-tuple hashing enabled
727  * @rx_hash_key: Toeplitz hash key for this RSS context
728  * @indir_table: Indirection table for this RSS context
729  */
730 struct efx_rss_context {
731 	struct list_head list;
732 	u32 context_id;
733 	u32 user_id;
734 	bool rx_hash_udp_4tuple;
735 	u8 rx_hash_key[40];
736 	u32 rx_indir_table[128];
737 };
738 
739 #ifdef CONFIG_RFS_ACCEL
740 /* Order of these is important, since filter_id >= %EFX_ARFS_FILTER_ID_PENDING
741  * is used to test if filter does or will exist.
742  */
743 #define EFX_ARFS_FILTER_ID_PENDING	-1
744 #define EFX_ARFS_FILTER_ID_ERROR	-2
745 #define EFX_ARFS_FILTER_ID_REMOVING	-3
746 /**
747  * struct efx_arfs_rule - record of an ARFS filter and its IDs
748  * @node: linkage into hash table
749  * @spec: details of the filter (used as key for hash table).  Use efx->type to
750  *	determine which member to use.
751  * @rxq_index: channel to which the filter will steer traffic.
752  * @arfs_id: filter ID which was returned to ARFS
753  * @filter_id: index in software filter table.  May be
754  *	%EFX_ARFS_FILTER_ID_PENDING if filter was not inserted yet,
755  *	%EFX_ARFS_FILTER_ID_ERROR if filter insertion failed, or
756  *	%EFX_ARFS_FILTER_ID_REMOVING if expiry is currently removing the filter.
757  */
758 struct efx_arfs_rule {
759 	struct hlist_node node;
760 	struct efx_filter_spec spec;
761 	u16 rxq_index;
762 	u16 arfs_id;
763 	s32 filter_id;
764 };
765 
766 /* Size chosen so that the table is one page (4kB) */
767 #define EFX_ARFS_HASH_TABLE_SIZE	512
768 
769 /**
770  * struct efx_async_filter_insertion - Request to asynchronously insert a filter
771  * @net_dev: Reference to the netdevice
772  * @spec: The filter to insert
773  * @work: Workitem for this request
774  * @rxq_index: Identifies the channel for which this request was made
775  * @flow_id: Identifies the kernel-side flow for which this request was made
776  */
777 struct efx_async_filter_insertion {
778 	struct net_device *net_dev;
779 	struct efx_filter_spec spec;
780 	struct work_struct work;
781 	u16 rxq_index;
782 	u32 flow_id;
783 };
784 
785 /* Maximum number of ARFS workitems that may be in flight on an efx_nic */
786 #define EFX_RPS_MAX_IN_FLIGHT	8
787 #endif /* CONFIG_RFS_ACCEL */
788 
789 /**
790  * struct efx_nic - an Efx NIC
791  * @name: Device name (net device name or bus id before net device registered)
792  * @pci_dev: The PCI device
793  * @node: List node for maintaning primary/secondary function lists
794  * @primary: &struct efx_nic instance for the primary function of this
795  *	controller.  May be the same structure, and may be %NULL if no
796  *	primary function is bound.  Serialised by rtnl_lock.
797  * @secondary_list: List of &struct efx_nic instances for the secondary PCI
798  *	functions of the controller, if this is for the primary function.
799  *	Serialised by rtnl_lock.
800  * @type: Controller type attributes
801  * @legacy_irq: IRQ number
802  * @workqueue: Workqueue for port reconfigures and the HW monitor.
803  *	Work items do not hold and must not acquire RTNL.
804  * @workqueue_name: Name of workqueue
805  * @reset_work: Scheduled reset workitem
806  * @membase_phys: Memory BAR value as physical address
807  * @membase: Memory BAR value
808  * @vi_stride: step between per-VI registers / memory regions
809  * @interrupt_mode: Interrupt mode
810  * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
811  * @timer_max_ns: Interrupt timer maximum value, in nanoseconds
812  * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
813  * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues
814  * @irq_rx_moderation_us: IRQ moderation time for RX event queues
815  * @msg_enable: Log message enable flags
816  * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
817  * @reset_pending: Bitmask for pending resets
818  * @tx_queue: TX DMA queues
819  * @rx_queue: RX DMA queues
820  * @channel: Channels
821  * @msi_context: Context for each MSI
822  * @extra_channel_types: Types of extra (non-traffic) channels that
823  *	should be allocated for this NIC
824  * @rxq_entries: Size of receive queues requested by user.
825  * @txq_entries: Size of transmit queues requested by user.
826  * @txq_stop_thresh: TX queue fill level at or above which we stop it.
827  * @txq_wake_thresh: TX queue fill level at or below which we wake it.
828  * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
829  * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
830  * @sram_lim_qw: Qword address limit of SRAM
831  * @next_buffer_table: First available buffer table id
832  * @n_channels: Number of channels in use
833  * @n_rx_channels: Number of channels used for RX (= number of RX queues)
834  * @n_tx_channels: Number of channels used for TX
835  * @n_extra_tx_channels: Number of extra channels with TX queues
836  * @rx_ip_align: RX DMA address offset to have IP header aligned in
837  *	in accordance with NET_IP_ALIGN
838  * @rx_dma_len: Current maximum RX DMA length
839  * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
840  * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
841  *	for use in sk_buff::truesize
842  * @rx_prefix_size: Size of RX prefix before packet data
843  * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
844  *	(valid only if @rx_prefix_size != 0; always negative)
845  * @rx_packet_len_offset: Offset of RX packet length from start of packet data
846  *	(valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
847  * @rx_packet_ts_offset: Offset of timestamp from start of packet data
848  *	(valid only if channel->sync_timestamps_enabled; always negative)
849  * @rx_scatter: Scatter mode enabled for receives
850  * @rss_context: Main RSS context.  Its @list member is the head of the list of
851  *	RSS contexts created by user requests
852  * @rss_lock: Protects custom RSS context software state in @rss_context.list
853  * @int_error_count: Number of internal errors seen recently
854  * @int_error_expire: Time at which error count will be expired
855  * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
856  *	acknowledge but do nothing else.
857  * @irq_status: Interrupt status buffer
858  * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
859  * @irq_level: IRQ level/index for IRQs not triggered by an event queue
860  * @selftest_work: Work item for asynchronous self-test
861  * @mtd_list: List of MTDs attached to the NIC
862  * @nic_data: Hardware dependent state
863  * @mcdi: Management-Controller-to-Driver Interface state
864  * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
865  *	efx_monitor() and efx_reconfigure_port()
866  * @port_enabled: Port enabled indicator.
867  *	Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
868  *	efx_mac_work() with kernel interfaces. Safe to read under any
869  *	one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
870  *	be held to modify it.
871  * @port_initialized: Port initialized?
872  * @net_dev: Operating system network device. Consider holding the rtnl lock
873  * @fixed_features: Features which cannot be turned off
874  * @num_mac_stats: Number of MAC stats reported by firmware (MAC_STATS_NUM_STATS
875  *	field of %MC_CMD_GET_CAPABILITIES_V4 response, or %MC_CMD_MAC_NSTATS)
876  * @stats_buffer: DMA buffer for statistics
877  * @phy_type: PHY type
878  * @phy_op: PHY interface
879  * @phy_data: PHY private data (including PHY-specific stats)
880  * @mdio: PHY MDIO interface
881  * @mdio_bus: PHY MDIO bus ID (only used by Siena)
882  * @phy_mode: PHY operating mode. Serialised by @mac_lock.
883  * @link_advertising: Autonegotiation advertising flags
884  * @fec_config: Forward Error Correction configuration flags.  For bit positions
885  *	see &enum ethtool_fec_config_bits.
886  * @link_state: Current state of the link
887  * @n_link_state_changes: Number of times the link has changed state
888  * @unicast_filter: Flag for Falcon-arch simple unicast filter.
889  *	Protected by @mac_lock.
890  * @multicast_hash: Multicast hash table for Falcon-arch.
891  *	Protected by @mac_lock.
892  * @wanted_fc: Wanted flow control flags
893  * @fc_disable: When non-zero flow control is disabled. Typically used to
894  *	ensure that network back pressure doesn't delay dma queue flushes.
895  *	Serialised by the rtnl lock.
896  * @mac_work: Work item for changing MAC promiscuity and multicast hash
897  * @loopback_mode: Loopback status
898  * @loopback_modes: Supported loopback mode bitmask
899  * @loopback_selftest: Offline self-test private state
900  * @filter_sem: Filter table rw_semaphore, protects existence of @filter_state
901  * @filter_state: Architecture-dependent filter table state
902  * @rps_mutex: Protects RPS state of all channels
903  * @rps_expire_channel: Next channel to check for expiry
904  * @rps_expire_index: Next index to check for expiry in
905  *	@rps_expire_channel's @rps_flow_id
906  * @rps_slot_map: bitmap of in-flight entries in @rps_slot
907  * @rps_slot: array of ARFS insertion requests for efx_filter_rfs_work()
908  * @rps_hash_lock: Protects ARFS filter mapping state (@rps_hash_table and
909  *	@rps_next_id).
910  * @rps_hash_table: Mapping between ARFS filters and their various IDs
911  * @rps_next_id: next arfs_id for an ARFS filter
912  * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
913  * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
914  *	Decremented when the efx_flush_rx_queue() is called.
915  * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
916  *	completed (either success or failure). Not used when MCDI is used to
917  *	flush receive queues.
918  * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
919  * @vf_count: Number of VFs intended to be enabled.
920  * @vf_init_count: Number of VFs that have been fully initialised.
921  * @vi_scale: log2 number of vnics per VF.
922  * @ptp_data: PTP state data
923  * @ptp_warned: has this NIC seen and warned about unexpected PTP events?
924  * @vpd_sn: Serial number read from VPD
925  * @monitor_work: Hardware monitor workitem
926  * @biu_lock: BIU (bus interface unit) lock
927  * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
928  *	field is used by efx_test_interrupts() to verify that an
929  *	interrupt has occurred.
930  * @stats_lock: Statistics update lock. Must be held when calling
931  *	efx_nic_type::{update,start,stop}_stats.
932  * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
933  *
934  * This is stored in the private area of the &struct net_device.
935  */
936 struct efx_nic {
937 	/* The following fields should be written very rarely */
938 
939 	char name[IFNAMSIZ];
940 	struct list_head node;
941 	struct efx_nic *primary;
942 	struct list_head secondary_list;
943 	struct pci_dev *pci_dev;
944 	unsigned int port_num;
945 	const struct efx_nic_type *type;
946 	int legacy_irq;
947 	bool eeh_disabled_legacy_irq;
948 	struct workqueue_struct *workqueue;
949 	char workqueue_name[16];
950 	struct work_struct reset_work;
951 	resource_size_t membase_phys;
952 	void __iomem *membase;
953 
954 	unsigned int vi_stride;
955 
956 	enum efx_int_mode interrupt_mode;
957 	unsigned int timer_quantum_ns;
958 	unsigned int timer_max_ns;
959 	bool irq_rx_adaptive;
960 	unsigned int irq_mod_step_us;
961 	unsigned int irq_rx_moderation_us;
962 	u32 msg_enable;
963 
964 	enum nic_state state;
965 	unsigned long reset_pending;
966 
967 	struct efx_channel *channel[EFX_MAX_CHANNELS];
968 	struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
969 	const struct efx_channel_type *
970 	extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
971 
972 	unsigned rxq_entries;
973 	unsigned txq_entries;
974 	unsigned int txq_stop_thresh;
975 	unsigned int txq_wake_thresh;
976 
977 	unsigned tx_dc_base;
978 	unsigned rx_dc_base;
979 	unsigned sram_lim_qw;
980 	unsigned next_buffer_table;
981 
982 	unsigned int max_channels;
983 	unsigned int max_tx_channels;
984 	unsigned n_channels;
985 	unsigned n_rx_channels;
986 	unsigned rss_spread;
987 	unsigned tx_channel_offset;
988 	unsigned n_tx_channels;
989 	unsigned n_extra_tx_channels;
990 	unsigned int rx_ip_align;
991 	unsigned int rx_dma_len;
992 	unsigned int rx_buffer_order;
993 	unsigned int rx_buffer_truesize;
994 	unsigned int rx_page_buf_step;
995 	unsigned int rx_bufs_per_page;
996 	unsigned int rx_pages_per_batch;
997 	unsigned int rx_prefix_size;
998 	int rx_packet_hash_offset;
999 	int rx_packet_len_offset;
1000 	int rx_packet_ts_offset;
1001 	bool rx_scatter;
1002 	struct efx_rss_context rss_context;
1003 	struct mutex rss_lock;
1004 
1005 	unsigned int_error_count;
1006 	unsigned long int_error_expire;
1007 
1008 	bool irq_soft_enabled;
1009 	struct efx_buffer irq_status;
1010 	unsigned irq_zero_count;
1011 	unsigned irq_level;
1012 	struct delayed_work selftest_work;
1013 
1014 #ifdef CONFIG_SFC_MTD
1015 	struct list_head mtd_list;
1016 #endif
1017 
1018 	void *nic_data;
1019 	struct efx_mcdi_data *mcdi;
1020 
1021 	struct mutex mac_lock;
1022 	struct work_struct mac_work;
1023 	bool port_enabled;
1024 
1025 	bool mc_bist_for_other_fn;
1026 	bool port_initialized;
1027 	struct net_device *net_dev;
1028 
1029 	netdev_features_t fixed_features;
1030 
1031 	u16 num_mac_stats;
1032 	struct efx_buffer stats_buffer;
1033 	u64 rx_nodesc_drops_total;
1034 	u64 rx_nodesc_drops_while_down;
1035 	bool rx_nodesc_drops_prev_state;
1036 
1037 	unsigned int phy_type;
1038 	const struct efx_phy_operations *phy_op;
1039 	void *phy_data;
1040 	struct mdio_if_info mdio;
1041 	unsigned int mdio_bus;
1042 	enum efx_phy_mode phy_mode;
1043 
1044 	__ETHTOOL_DECLARE_LINK_MODE_MASK(link_advertising);
1045 	u32 fec_config;
1046 	struct efx_link_state link_state;
1047 	unsigned int n_link_state_changes;
1048 
1049 	bool unicast_filter;
1050 	union efx_multicast_hash multicast_hash;
1051 	u8 wanted_fc;
1052 	unsigned fc_disable;
1053 
1054 	atomic_t rx_reset;
1055 	enum efx_loopback_mode loopback_mode;
1056 	u64 loopback_modes;
1057 
1058 	void *loopback_selftest;
1059 
1060 	struct rw_semaphore filter_sem;
1061 	void *filter_state;
1062 #ifdef CONFIG_RFS_ACCEL
1063 	struct mutex rps_mutex;
1064 	unsigned int rps_expire_channel;
1065 	unsigned int rps_expire_index;
1066 	unsigned long rps_slot_map;
1067 	struct efx_async_filter_insertion rps_slot[EFX_RPS_MAX_IN_FLIGHT];
1068 	spinlock_t rps_hash_lock;
1069 	struct hlist_head *rps_hash_table;
1070 	u32 rps_next_id;
1071 #endif
1072 
1073 	atomic_t active_queues;
1074 	atomic_t rxq_flush_pending;
1075 	atomic_t rxq_flush_outstanding;
1076 	wait_queue_head_t flush_wq;
1077 
1078 #ifdef CONFIG_SFC_SRIOV
1079 	unsigned vf_count;
1080 	unsigned vf_init_count;
1081 	unsigned vi_scale;
1082 #endif
1083 
1084 	struct efx_ptp_data *ptp_data;
1085 	bool ptp_warned;
1086 
1087 	char *vpd_sn;
1088 
1089 	/* The following fields may be written more often */
1090 
1091 	struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1092 	spinlock_t biu_lock;
1093 	int last_irq_cpu;
1094 	spinlock_t stats_lock;
1095 	atomic_t n_rx_noskb_drops;
1096 };
1097 
1098 static inline int efx_dev_registered(struct efx_nic *efx)
1099 {
1100 	return efx->net_dev->reg_state == NETREG_REGISTERED;
1101 }
1102 
1103 static inline unsigned int efx_port_num(struct efx_nic *efx)
1104 {
1105 	return efx->port_num;
1106 }
1107 
1108 struct efx_mtd_partition {
1109 	struct list_head node;
1110 	struct mtd_info mtd;
1111 	const char *dev_type_name;
1112 	const char *type_name;
1113 	char name[IFNAMSIZ + 20];
1114 };
1115 
1116 struct efx_udp_tunnel {
1117 	u16 type; /* TUNNEL_ENCAP_UDP_PORT_ENTRY_foo, see mcdi_pcol.h */
1118 	__be16 port;
1119 	/* Count of repeated adds of the same port.  Used only inside the list,
1120 	 * not in request arguments.
1121 	 */
1122 	u16 count;
1123 };
1124 
1125 /**
1126  * struct efx_nic_type - Efx device type definition
1127  * @mem_bar: Get the memory BAR
1128  * @mem_map_size: Get memory BAR mapped size
1129  * @probe: Probe the controller
1130  * @remove: Free resources allocated by probe()
1131  * @init: Initialise the controller
1132  * @dimension_resources: Dimension controller resources (buffer table,
1133  *	and VIs once the available interrupt resources are clear)
1134  * @fini: Shut down the controller
1135  * @monitor: Periodic function for polling link state and hardware monitor
1136  * @map_reset_reason: Map ethtool reset reason to a reset method
1137  * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1138  * @reset: Reset the controller hardware and possibly the PHY.  This will
1139  *	be called while the controller is uninitialised.
1140  * @probe_port: Probe the MAC and PHY
1141  * @remove_port: Free resources allocated by probe_port()
1142  * @handle_global_event: Handle a "global" event (may be %NULL)
1143  * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
1144  * @prepare_flush: Prepare the hardware for flushing the DMA queues
1145  *	(for Falcon architecture)
1146  * @finish_flush: Clean up after flushing the DMA queues (for Falcon
1147  *	architecture)
1148  * @prepare_flr: Prepare for an FLR
1149  * @finish_flr: Clean up after an FLR
1150  * @describe_stats: Describe statistics for ethtool
1151  * @update_stats: Update statistics not provided by event handling.
1152  *	Either argument may be %NULL.
1153  * @start_stats: Start the regular fetching of statistics
1154  * @pull_stats: Pull stats from the NIC and wait until they arrive.
1155  * @stop_stats: Stop the regular fetching of statistics
1156  * @set_id_led: Set state of identifying LED or revert to automatic function
1157  * @push_irq_moderation: Apply interrupt moderation value
1158  * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1159  * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1160  * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1161  *	to the hardware.  Serialised by the mac_lock.
1162  * @check_mac_fault: Check MAC fault state. True if fault present.
1163  * @get_wol: Get WoL configuration from driver state
1164  * @set_wol: Push WoL configuration to the NIC
1165  * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1166  * @test_chip: Test registers.  May use efx_farch_test_registers(), and is
1167  *	expected to reset the NIC.
1168  * @test_nvram: Test validity of NVRAM contents
1169  * @mcdi_request: Send an MCDI request with the given header and SDU.
1170  *	The SDU length may be any value from 0 up to the protocol-
1171  *	defined maximum, but its buffer will be padded to a multiple
1172  *	of 4 bytes.
1173  * @mcdi_poll_response: Test whether an MCDI response is available.
1174  * @mcdi_read_response: Read the MCDI response PDU.  The offset will
1175  *	be a multiple of 4.  The length may not be, but the buffer
1176  *	will be padded so it is safe to round up.
1177  * @mcdi_poll_reboot: Test whether the MCDI has rebooted.  If so,
1178  *	return an appropriate error code for aborting any current
1179  *	request; otherwise return 0.
1180  * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
1181  *	be separately enabled after this.
1182  * @irq_test_generate: Generate a test IRQ
1183  * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
1184  *	queue must be separately disabled before this.
1185  * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
1186  *	a pointer to the &struct efx_msi_context for the channel.
1187  * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
1188  *	is a pointer to the &struct efx_nic.
1189  * @tx_probe: Allocate resources for TX queue
1190  * @tx_init: Initialise TX queue on the NIC
1191  * @tx_remove: Free resources for TX queue
1192  * @tx_write: Write TX descriptors and doorbell
1193  * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1194  * @rx_pull_rss_config: Read RSS hash key and indirection table back from the NIC
1195  * @rx_push_rss_context_config: Write RSS hash key and indirection table for
1196  *	user RSS context to the NIC
1197  * @rx_pull_rss_context_config: Read RSS hash key and indirection table for user
1198  *	RSS context back from the NIC
1199  * @rx_probe: Allocate resources for RX queue
1200  * @rx_init: Initialise RX queue on the NIC
1201  * @rx_remove: Free resources for RX queue
1202  * @rx_write: Write RX descriptors and doorbell
1203  * @rx_defer_refill: Generate a refill reminder event
1204  * @ev_probe: Allocate resources for event queue
1205  * @ev_init: Initialise event queue on the NIC
1206  * @ev_fini: Deinitialise event queue on the NIC
1207  * @ev_remove: Free resources for event queue
1208  * @ev_process: Process events for a queue, up to the given NAPI quota
1209  * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1210  * @ev_test_generate: Generate a test event
1211  * @filter_table_probe: Probe filter capabilities and set up filter software state
1212  * @filter_table_restore: Restore filters removed from hardware
1213  * @filter_table_remove: Remove filters from hardware and tear down software state
1214  * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1215  * @filter_insert: add or replace a filter
1216  * @filter_remove_safe: remove a filter by ID, carefully
1217  * @filter_get_safe: retrieve a filter by ID, carefully
1218  * @filter_clear_rx: Remove all RX filters whose priority is less than or
1219  *	equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1220  * @filter_count_rx_used: Get the number of filters in use at a given priority
1221  * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1222  * @filter_get_rx_ids: Get list of RX filters at a given priority
1223  * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1224  *	This must check whether the specified table entry is used by RFS
1225  *	and that rps_may_expire_flow() returns true for it.
1226  * @mtd_probe: Probe and add MTD partitions associated with this net device,
1227  *	 using efx_mtd_add()
1228  * @mtd_rename: Set an MTD partition name using the net device name
1229  * @mtd_read: Read from an MTD partition
1230  * @mtd_erase: Erase part of an MTD partition
1231  * @mtd_write: Write to an MTD partition
1232  * @mtd_sync: Wait for write-back to complete on MTD partition.  This
1233  *	also notifies the driver that a writer has finished using this
1234  *	partition.
1235  * @ptp_write_host_time: Send host time to MC as part of sync protocol
1236  * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1237  *	timestamping, possibly only temporarily for the purposes of a reset.
1238  * @ptp_set_ts_config: Set hardware timestamp configuration.  The flags
1239  *	and tx_type will already have been validated but this operation
1240  *	must validate and update rx_filter.
1241  * @get_phys_port_id: Get the underlying physical port id.
1242  * @set_mac_address: Set the MAC address of the device
1243  * @tso_versions: Returns mask of firmware-assisted TSO versions supported.
1244  *	If %NULL, then device does not support any TSO version.
1245  * @udp_tnl_push_ports: Push the list of UDP tunnel ports to the NIC if required.
1246  * @udp_tnl_add_port: Add a UDP tunnel port
1247  * @udp_tnl_has_port: Check if a port has been added as UDP tunnel
1248  * @udp_tnl_del_port: Remove a UDP tunnel port
1249  * @revision: Hardware architecture revision
1250  * @txd_ptr_tbl_base: TX descriptor ring base address
1251  * @rxd_ptr_tbl_base: RX descriptor ring base address
1252  * @buf_tbl_base: Buffer table base address
1253  * @evq_ptr_tbl_base: Event queue pointer table base address
1254  * @evq_rptr_tbl_base: Event queue read-pointer table base address
1255  * @max_dma_mask: Maximum possible DMA mask
1256  * @rx_prefix_size: Size of RX prefix before packet data
1257  * @rx_hash_offset: Offset of RX flow hash within prefix
1258  * @rx_ts_offset: Offset of timestamp within prefix
1259  * @rx_buffer_padding: Size of padding at end of RX packet
1260  * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1261  * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1262  * @option_descriptors: NIC supports TX option descriptors
1263  * @min_interrupt_mode: Lowest capability interrupt mode supported
1264  *	from &enum efx_int_mode.
1265  * @max_interrupt_mode: Highest capability interrupt mode supported
1266  *	from &enum efx_int_mode.
1267  * @timer_period_max: Maximum period of interrupt timer (in ticks)
1268  * @offload_features: net_device feature flags for protocol offload
1269  *	features implemented in hardware
1270  * @mcdi_max_ver: Maximum MCDI version supported
1271  * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1272  */
1273 struct efx_nic_type {
1274 	bool is_vf;
1275 	unsigned int (*mem_bar)(struct efx_nic *efx);
1276 	unsigned int (*mem_map_size)(struct efx_nic *efx);
1277 	int (*probe)(struct efx_nic *efx);
1278 	void (*remove)(struct efx_nic *efx);
1279 	int (*init)(struct efx_nic *efx);
1280 	int (*dimension_resources)(struct efx_nic *efx);
1281 	void (*fini)(struct efx_nic *efx);
1282 	void (*monitor)(struct efx_nic *efx);
1283 	enum reset_type (*map_reset_reason)(enum reset_type reason);
1284 	int (*map_reset_flags)(u32 *flags);
1285 	int (*reset)(struct efx_nic *efx, enum reset_type method);
1286 	int (*probe_port)(struct efx_nic *efx);
1287 	void (*remove_port)(struct efx_nic *efx);
1288 	bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1289 	int (*fini_dmaq)(struct efx_nic *efx);
1290 	void (*prepare_flush)(struct efx_nic *efx);
1291 	void (*finish_flush)(struct efx_nic *efx);
1292 	void (*prepare_flr)(struct efx_nic *efx);
1293 	void (*finish_flr)(struct efx_nic *efx);
1294 	size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1295 	size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1296 			       struct rtnl_link_stats64 *core_stats);
1297 	void (*start_stats)(struct efx_nic *efx);
1298 	void (*pull_stats)(struct efx_nic *efx);
1299 	void (*stop_stats)(struct efx_nic *efx);
1300 	void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
1301 	void (*push_irq_moderation)(struct efx_channel *channel);
1302 	int (*reconfigure_port)(struct efx_nic *efx);
1303 	void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1304 	int (*reconfigure_mac)(struct efx_nic *efx);
1305 	bool (*check_mac_fault)(struct efx_nic *efx);
1306 	void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1307 	int (*set_wol)(struct efx_nic *efx, u32 type);
1308 	void (*resume_wol)(struct efx_nic *efx);
1309 	int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1310 	int (*test_nvram)(struct efx_nic *efx);
1311 	void (*mcdi_request)(struct efx_nic *efx,
1312 			     const efx_dword_t *hdr, size_t hdr_len,
1313 			     const efx_dword_t *sdu, size_t sdu_len);
1314 	bool (*mcdi_poll_response)(struct efx_nic *efx);
1315 	void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1316 				   size_t pdu_offset, size_t pdu_len);
1317 	int (*mcdi_poll_reboot)(struct efx_nic *efx);
1318 	void (*mcdi_reboot_detected)(struct efx_nic *efx);
1319 	void (*irq_enable_master)(struct efx_nic *efx);
1320 	int (*irq_test_generate)(struct efx_nic *efx);
1321 	void (*irq_disable_non_ev)(struct efx_nic *efx);
1322 	irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1323 	irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1324 	int (*tx_probe)(struct efx_tx_queue *tx_queue);
1325 	void (*tx_init)(struct efx_tx_queue *tx_queue);
1326 	void (*tx_remove)(struct efx_tx_queue *tx_queue);
1327 	void (*tx_write)(struct efx_tx_queue *tx_queue);
1328 	unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue,
1329 				     dma_addr_t dma_addr, unsigned int len);
1330 	int (*rx_push_rss_config)(struct efx_nic *efx, bool user,
1331 				  const u32 *rx_indir_table, const u8 *key);
1332 	int (*rx_pull_rss_config)(struct efx_nic *efx);
1333 	int (*rx_push_rss_context_config)(struct efx_nic *efx,
1334 					  struct efx_rss_context *ctx,
1335 					  const u32 *rx_indir_table,
1336 					  const u8 *key);
1337 	int (*rx_pull_rss_context_config)(struct efx_nic *efx,
1338 					  struct efx_rss_context *ctx);
1339 	void (*rx_restore_rss_contexts)(struct efx_nic *efx);
1340 	int (*rx_probe)(struct efx_rx_queue *rx_queue);
1341 	void (*rx_init)(struct efx_rx_queue *rx_queue);
1342 	void (*rx_remove)(struct efx_rx_queue *rx_queue);
1343 	void (*rx_write)(struct efx_rx_queue *rx_queue);
1344 	void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1345 	int (*ev_probe)(struct efx_channel *channel);
1346 	int (*ev_init)(struct efx_channel *channel);
1347 	void (*ev_fini)(struct efx_channel *channel);
1348 	void (*ev_remove)(struct efx_channel *channel);
1349 	int (*ev_process)(struct efx_channel *channel, int quota);
1350 	void (*ev_read_ack)(struct efx_channel *channel);
1351 	void (*ev_test_generate)(struct efx_channel *channel);
1352 	int (*filter_table_probe)(struct efx_nic *efx);
1353 	void (*filter_table_restore)(struct efx_nic *efx);
1354 	void (*filter_table_remove)(struct efx_nic *efx);
1355 	void (*filter_update_rx_scatter)(struct efx_nic *efx);
1356 	s32 (*filter_insert)(struct efx_nic *efx,
1357 			     struct efx_filter_spec *spec, bool replace);
1358 	int (*filter_remove_safe)(struct efx_nic *efx,
1359 				  enum efx_filter_priority priority,
1360 				  u32 filter_id);
1361 	int (*filter_get_safe)(struct efx_nic *efx,
1362 			       enum efx_filter_priority priority,
1363 			       u32 filter_id, struct efx_filter_spec *);
1364 	int (*filter_clear_rx)(struct efx_nic *efx,
1365 			       enum efx_filter_priority priority);
1366 	u32 (*filter_count_rx_used)(struct efx_nic *efx,
1367 				    enum efx_filter_priority priority);
1368 	u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1369 	s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1370 				 enum efx_filter_priority priority,
1371 				 u32 *buf, u32 size);
1372 #ifdef CONFIG_RFS_ACCEL
1373 	bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1374 				      unsigned int index);
1375 #endif
1376 #ifdef CONFIG_SFC_MTD
1377 	int (*mtd_probe)(struct efx_nic *efx);
1378 	void (*mtd_rename)(struct efx_mtd_partition *part);
1379 	int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1380 			size_t *retlen, u8 *buffer);
1381 	int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1382 	int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1383 			 size_t *retlen, const u8 *buffer);
1384 	int (*mtd_sync)(struct mtd_info *mtd);
1385 #endif
1386 	void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1387 	int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1388 	int (*ptp_set_ts_config)(struct efx_nic *efx,
1389 				 struct hwtstamp_config *init);
1390 	int (*sriov_configure)(struct efx_nic *efx, int num_vfs);
1391 	int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1392 	int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1393 	int (*get_phys_port_id)(struct efx_nic *efx,
1394 				struct netdev_phys_item_id *ppid);
1395 	int (*sriov_init)(struct efx_nic *efx);
1396 	void (*sriov_fini)(struct efx_nic *efx);
1397 	bool (*sriov_wanted)(struct efx_nic *efx);
1398 	void (*sriov_reset)(struct efx_nic *efx);
1399 	void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i);
1400 	int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, u8 *mac);
1401 	int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan,
1402 				 u8 qos);
1403 	int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i,
1404 				     bool spoofchk);
1405 	int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i,
1406 				   struct ifla_vf_info *ivi);
1407 	int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i,
1408 				       int link_state);
1409 	int (*vswitching_probe)(struct efx_nic *efx);
1410 	int (*vswitching_restore)(struct efx_nic *efx);
1411 	void (*vswitching_remove)(struct efx_nic *efx);
1412 	int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
1413 	int (*set_mac_address)(struct efx_nic *efx);
1414 	u32 (*tso_versions)(struct efx_nic *efx);
1415 	int (*udp_tnl_push_ports)(struct efx_nic *efx);
1416 	int (*udp_tnl_add_port)(struct efx_nic *efx, struct efx_udp_tunnel tnl);
1417 	bool (*udp_tnl_has_port)(struct efx_nic *efx, __be16 port);
1418 	int (*udp_tnl_del_port)(struct efx_nic *efx, struct efx_udp_tunnel tnl);
1419 
1420 	int revision;
1421 	unsigned int txd_ptr_tbl_base;
1422 	unsigned int rxd_ptr_tbl_base;
1423 	unsigned int buf_tbl_base;
1424 	unsigned int evq_ptr_tbl_base;
1425 	unsigned int evq_rptr_tbl_base;
1426 	u64 max_dma_mask;
1427 	unsigned int rx_prefix_size;
1428 	unsigned int rx_hash_offset;
1429 	unsigned int rx_ts_offset;
1430 	unsigned int rx_buffer_padding;
1431 	bool can_rx_scatter;
1432 	bool always_rx_scatter;
1433 	bool option_descriptors;
1434 	unsigned int min_interrupt_mode;
1435 	unsigned int max_interrupt_mode;
1436 	unsigned int timer_period_max;
1437 	netdev_features_t offload_features;
1438 	int mcdi_max_ver;
1439 	unsigned int max_rx_ip_filters;
1440 	u32 hwtstamp_filters;
1441 	unsigned int rx_hash_key_size;
1442 };
1443 
1444 /**************************************************************************
1445  *
1446  * Prototypes and inline functions
1447  *
1448  *************************************************************************/
1449 
1450 static inline struct efx_channel *
1451 efx_get_channel(struct efx_nic *efx, unsigned index)
1452 {
1453 	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_channels);
1454 	return efx->channel[index];
1455 }
1456 
1457 /* Iterate over all used channels */
1458 #define efx_for_each_channel(_channel, _efx)				\
1459 	for (_channel = (_efx)->channel[0];				\
1460 	     _channel;							\
1461 	     _channel = (_channel->channel + 1 < (_efx)->n_channels) ?	\
1462 		     (_efx)->channel[_channel->channel + 1] : NULL)
1463 
1464 /* Iterate over all used channels in reverse */
1465 #define efx_for_each_channel_rev(_channel, _efx)			\
1466 	for (_channel = (_efx)->channel[(_efx)->n_channels - 1];	\
1467 	     _channel;							\
1468 	     _channel = _channel->channel ?				\
1469 		     (_efx)->channel[_channel->channel - 1] : NULL)
1470 
1471 static inline struct efx_tx_queue *
1472 efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
1473 {
1474 	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels ||
1475 				  type >= EFX_TXQ_TYPES);
1476 	return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
1477 }
1478 
1479 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1480 {
1481 	return channel->type && channel->type->want_txqs &&
1482 				channel->type->want_txqs(channel);
1483 }
1484 
1485 static inline struct efx_tx_queue *
1486 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
1487 {
1488 	EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_tx_queues(channel) ||
1489 				  type >= EFX_TXQ_TYPES);
1490 	return &channel->tx_queue[type];
1491 }
1492 
1493 static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue)
1494 {
1495 	return !(tx_queue->efx->net_dev->num_tc < 2 &&
1496 		 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI);
1497 }
1498 
1499 /* Iterate over all TX queues belonging to a channel */
1500 #define efx_for_each_channel_tx_queue(_tx_queue, _channel)		\
1501 	if (!efx_channel_has_tx_queues(_channel))			\
1502 		;							\
1503 	else								\
1504 		for (_tx_queue = (_channel)->tx_queue;			\
1505 		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \
1506 			     efx_tx_queue_used(_tx_queue);		\
1507 		     _tx_queue++)
1508 
1509 /* Iterate over all possible TX queues belonging to a channel */
1510 #define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel)	\
1511 	if (!efx_channel_has_tx_queues(_channel))			\
1512 		;							\
1513 	else								\
1514 		for (_tx_queue = (_channel)->tx_queue;			\
1515 		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES;	\
1516 		     _tx_queue++)
1517 
1518 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1519 {
1520 	return channel->rx_queue.core_index >= 0;
1521 }
1522 
1523 static inline struct efx_rx_queue *
1524 efx_channel_get_rx_queue(struct efx_channel *channel)
1525 {
1526 	EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_rx_queue(channel));
1527 	return &channel->rx_queue;
1528 }
1529 
1530 /* Iterate over all RX queues belonging to a channel */
1531 #define efx_for_each_channel_rx_queue(_rx_queue, _channel)		\
1532 	if (!efx_channel_has_rx_queue(_channel))			\
1533 		;							\
1534 	else								\
1535 		for (_rx_queue = &(_channel)->rx_queue;			\
1536 		     _rx_queue;						\
1537 		     _rx_queue = NULL)
1538 
1539 static inline struct efx_channel *
1540 efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1541 {
1542 	return container_of(rx_queue, struct efx_channel, rx_queue);
1543 }
1544 
1545 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1546 {
1547 	return efx_rx_queue_channel(rx_queue)->channel;
1548 }
1549 
1550 /* Returns a pointer to the specified receive buffer in the RX
1551  * descriptor queue.
1552  */
1553 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1554 						  unsigned int index)
1555 {
1556 	return &rx_queue->buffer[index];
1557 }
1558 
1559 /**
1560  * EFX_MAX_FRAME_LEN - calculate maximum frame length
1561  *
1562  * This calculates the maximum frame length that will be used for a
1563  * given MTU.  The frame length will be equal to the MTU plus a
1564  * constant amount of header space and padding.  This is the quantity
1565  * that the net driver will program into the MAC as the maximum frame
1566  * length.
1567  *
1568  * The 10G MAC requires 8-byte alignment on the frame
1569  * length, so we round up to the nearest 8.
1570  *
1571  * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1572  * XGMII cycle).  If the frame length reaches the maximum value in the
1573  * same cycle, the XMAC can miss the IPG altogether.  We work around
1574  * this by adding a further 16 bytes.
1575  */
1576 #define EFX_FRAME_PAD	16
1577 #define EFX_MAX_FRAME_LEN(mtu) \
1578 	(ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8))
1579 
1580 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1581 {
1582 	return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1583 }
1584 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1585 {
1586 	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1587 }
1588 
1589 /* Get all supported features.
1590  * If a feature is not fixed, it is present in hw_features.
1591  * If a feature is fixed, it does not present in hw_features, but
1592  * always in features.
1593  */
1594 static inline netdev_features_t efx_supported_features(const struct efx_nic *efx)
1595 {
1596 	const struct net_device *net_dev = efx->net_dev;
1597 
1598 	return net_dev->features | net_dev->hw_features;
1599 }
1600 
1601 /* Get the current TX queue insert index. */
1602 static inline unsigned int
1603 efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
1604 {
1605 	return tx_queue->insert_count & tx_queue->ptr_mask;
1606 }
1607 
1608 /* Get a TX buffer. */
1609 static inline struct efx_tx_buffer *
1610 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1611 {
1612 	return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
1613 }
1614 
1615 /* Get a TX buffer, checking it's not currently in use. */
1616 static inline struct efx_tx_buffer *
1617 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1618 {
1619 	struct efx_tx_buffer *buffer =
1620 		__efx_tx_queue_get_insert_buffer(tx_queue);
1621 
1622 	EFX_WARN_ON_ONCE_PARANOID(buffer->len);
1623 	EFX_WARN_ON_ONCE_PARANOID(buffer->flags);
1624 	EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len);
1625 
1626 	return buffer;
1627 }
1628 
1629 #endif /* EFX_NET_DRIVER_H */
1630