1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2005-2013 Solarflare Communications Inc. 6 */ 7 8 /* Common definitions for all Efx net driver code */ 9 10 #ifndef EFX_NET_DRIVER_H 11 #define EFX_NET_DRIVER_H 12 13 #include <linux/netdevice.h> 14 #include <linux/etherdevice.h> 15 #include <linux/ethtool.h> 16 #include <linux/if_vlan.h> 17 #include <linux/timer.h> 18 #include <linux/mdio.h> 19 #include <linux/list.h> 20 #include <linux/pci.h> 21 #include <linux/device.h> 22 #include <linux/highmem.h> 23 #include <linux/workqueue.h> 24 #include <linux/mutex.h> 25 #include <linux/rwsem.h> 26 #include <linux/vmalloc.h> 27 #include <linux/mtd/mtd.h> 28 #include <net/busy_poll.h> 29 #include <net/xdp.h> 30 #include <net/netevent.h> 31 32 #include "enum.h" 33 #include "bitfield.h" 34 #include "filter.h" 35 36 /************************************************************************** 37 * 38 * Build definitions 39 * 40 **************************************************************************/ 41 42 #ifdef DEBUG 43 #define EFX_WARN_ON_ONCE_PARANOID(x) WARN_ON_ONCE(x) 44 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x) 45 #else 46 #define EFX_WARN_ON_ONCE_PARANOID(x) do {} while (0) 47 #define EFX_WARN_ON_PARANOID(x) do {} while (0) 48 #endif 49 50 /************************************************************************** 51 * 52 * Efx data structures 53 * 54 **************************************************************************/ 55 56 #define EFX_MAX_CHANNELS 32U 57 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS 58 #define EFX_EXTRA_CHANNEL_IOV 0 59 #define EFX_EXTRA_CHANNEL_PTP 1 60 #define EFX_EXTRA_CHANNEL_TC 2 61 #define EFX_MAX_EXTRA_CHANNELS 3U 62 63 /* Checksum generation is a per-queue option in hardware, so each 64 * queue visible to the networking core is backed by two hardware TX 65 * queues. */ 66 #define EFX_MAX_TX_TC 2 67 #define EFX_MAX_CORE_TX_QUEUES (EFX_MAX_TX_TC * EFX_MAX_CHANNELS) 68 #define EFX_TXQ_TYPE_OUTER_CSUM 1 /* Outer checksum offload */ 69 #define EFX_TXQ_TYPE_INNER_CSUM 2 /* Inner checksum offload */ 70 #define EFX_TXQ_TYPES 4 71 #define EFX_MAX_TXQ_PER_CHANNEL 4 72 #define EFX_MAX_TX_QUEUES (EFX_MAX_TXQ_PER_CHANNEL * EFX_MAX_CHANNELS) 73 74 /* Maximum possible MTU the driver supports */ 75 #define EFX_MAX_MTU (9 * 1024) 76 77 /* Minimum MTU, from RFC791 (IP) */ 78 #define EFX_MIN_MTU 68 79 80 /* Maximum total header length for TSOv2 */ 81 #define EFX_TSO2_MAX_HDRLEN 208 82 83 /* Size of an RX scatter buffer. Small enough to pack 2 into a 4K page, 84 * and should be a multiple of the cache line size. 85 */ 86 #define EFX_RX_USR_BUF_SIZE (2048 - 256) 87 88 /* If possible, we should ensure cache line alignment at start and end 89 * of every buffer. Otherwise, we just need to ensure 4-byte 90 * alignment of the network header. 91 */ 92 #if NET_IP_ALIGN == 0 93 #define EFX_RX_BUF_ALIGNMENT L1_CACHE_BYTES 94 #else 95 #define EFX_RX_BUF_ALIGNMENT 4 96 #endif 97 98 /* Non-standard XDP_PACKET_HEADROOM and tailroom to satisfy XDP_REDIRECT and 99 * still fit two standard MTU size packets into a single 4K page. 100 */ 101 #define EFX_XDP_HEADROOM 128 102 #define EFX_XDP_TAILROOM SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) 103 104 /* Forward declare Precision Time Protocol (PTP) support structure. */ 105 struct efx_ptp_data; 106 struct hwtstamp_config; 107 108 struct efx_self_tests; 109 110 /** 111 * struct efx_buffer - A general-purpose DMA buffer 112 * @addr: host base address of the buffer 113 * @dma_addr: DMA base address of the buffer 114 * @len: Buffer length, in bytes 115 * 116 * The NIC uses these buffers for its interrupt status registers and 117 * MAC stats dumps. 118 */ 119 struct efx_buffer { 120 void *addr; 121 dma_addr_t dma_addr; 122 unsigned int len; 123 }; 124 125 /** 126 * struct efx_tx_buffer - buffer state for a TX descriptor 127 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be 128 * freed when descriptor completes 129 * @xdpf: When @flags & %EFX_TX_BUF_XDP, the XDP frame information; its @data 130 * member is the associated buffer to drop a page reference on. 131 * @option: When @flags & %EFX_TX_BUF_OPTION, an EF10-specific option 132 * descriptor. 133 * @dma_addr: DMA address of the fragment. 134 * @flags: Flags for allocation and DMA mapping type 135 * @len: Length of this fragment. 136 * This field is zero when the queue slot is empty. 137 * @unmap_len: Length of this fragment to unmap 138 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping. 139 * Only valid if @unmap_len != 0. 140 */ 141 struct efx_tx_buffer { 142 union { 143 const struct sk_buff *skb; 144 struct xdp_frame *xdpf; 145 }; 146 union { 147 efx_qword_t option; /* EF10 */ 148 dma_addr_t dma_addr; 149 }; 150 unsigned short flags; 151 unsigned short len; 152 unsigned short unmap_len; 153 unsigned short dma_offset; 154 }; 155 #define EFX_TX_BUF_CONT 1 /* not last descriptor of packet */ 156 #define EFX_TX_BUF_SKB 2 /* buffer is last part of skb */ 157 #define EFX_TX_BUF_MAP_SINGLE 8 /* buffer was mapped with dma_map_single() */ 158 #define EFX_TX_BUF_OPTION 0x10 /* empty buffer for option descriptor */ 159 #define EFX_TX_BUF_XDP 0x20 /* buffer was sent with XDP */ 160 #define EFX_TX_BUF_TSO_V3 0x40 /* empty buffer for a TSO_V3 descriptor */ 161 #define EFX_TX_BUF_EFV 0x100 /* buffer was sent from representor */ 162 163 /** 164 * struct efx_tx_queue - An Efx TX queue 165 * 166 * This is a ring buffer of TX fragments. 167 * Since the TX completion path always executes on the same 168 * CPU and the xmit path can operate on different CPUs, 169 * performance is increased by ensuring that the completion 170 * path and the xmit path operate on different cache lines. 171 * This is particularly important if the xmit path is always 172 * executing on one CPU which is different from the completion 173 * path. There is also a cache line for members which are 174 * read but not written on the fast path. 175 * 176 * @efx: The associated Efx NIC 177 * @queue: DMA queue number 178 * @label: Label for TX completion events. 179 * Is our index within @channel->tx_queue array. 180 * @type: configuration type of this TX queue. A bitmask of %EFX_TXQ_TYPE_* flags. 181 * @tso_version: Version of TSO in use for this queue. 182 * @tso_encap: Is encapsulated TSO supported? Supported in TSOv2 on 8000 series. 183 * @channel: The associated channel 184 * @core_txq: The networking core TX queue structure 185 * @buffer: The software buffer ring 186 * @cb_page: Array of pages of copy buffers. Carved up according to 187 * %EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks. 188 * @txd: The hardware descriptor ring 189 * @ptr_mask: The size of the ring minus 1. 190 * @piobuf: PIO buffer region for this TX queue (shared with its partner). 191 * Size of the region is efx_piobuf_size. 192 * @piobuf_offset: Buffer offset to be specified in PIO descriptors 193 * @initialised: Has hardware queue been initialised? 194 * @timestamping: Is timestamping enabled for this channel? 195 * @xdp_tx: Is this an XDP tx queue? 196 * @read_count: Current read pointer. 197 * This is the number of buffers that have been removed from both rings. 198 * @old_write_count: The value of @write_count when last checked. 199 * This is here for performance reasons. The xmit path will 200 * only get the up-to-date value of @write_count if this 201 * variable indicates that the queue is empty. This is to 202 * avoid cache-line ping-pong between the xmit path and the 203 * completion path. 204 * @merge_events: Number of TX merged completion events 205 * @completed_timestamp_major: Top part of the most recent tx timestamp. 206 * @completed_timestamp_minor: Low part of the most recent tx timestamp. 207 * @insert_count: Current insert pointer 208 * This is the number of buffers that have been added to the 209 * software ring. 210 * @write_count: Current write pointer 211 * This is the number of buffers that have been added to the 212 * hardware ring. 213 * @packet_write_count: Completable write pointer 214 * This is the write pointer of the last packet written. 215 * Normally this will equal @write_count, but as option descriptors 216 * don't produce completion events, they won't update this. 217 * Filled in iff @efx->type->option_descriptors; only used for PIO. 218 * Thus, this is only written and used on EF10. 219 * @old_read_count: The value of read_count when last checked. 220 * This is here for performance reasons. The xmit path will 221 * only get the up-to-date value of read_count if this 222 * variable indicates that the queue is full. This is to 223 * avoid cache-line ping-pong between the xmit path and the 224 * completion path. 225 * @tso_bursts: Number of times TSO xmit invoked by kernel 226 * @tso_long_headers: Number of packets with headers too long for standard 227 * blocks 228 * @tso_packets: Number of packets via the TSO xmit path 229 * @tso_fallbacks: Number of times TSO fallback used 230 * @pushes: Number of times the TX push feature has been used 231 * @pio_packets: Number of times the TX PIO feature has been used 232 * @xmit_pending: Are any packets waiting to be pushed to the NIC 233 * @cb_packets: Number of times the TX copybreak feature has been used 234 * @notify_count: Count of notified descriptors to the NIC 235 * @empty_read_count: If the completion path has seen the queue as empty 236 * and the transmission path has not yet checked this, the value of 237 * @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0. 238 */ 239 struct efx_tx_queue { 240 /* Members which don't change on the fast path */ 241 struct efx_nic *efx ____cacheline_aligned_in_smp; 242 unsigned int queue; 243 unsigned int label; 244 unsigned int type; 245 unsigned int tso_version; 246 bool tso_encap; 247 struct efx_channel *channel; 248 struct netdev_queue *core_txq; 249 struct efx_tx_buffer *buffer; 250 struct efx_buffer *cb_page; 251 struct efx_buffer txd; 252 unsigned int ptr_mask; 253 void __iomem *piobuf; 254 unsigned int piobuf_offset; 255 bool initialised; 256 bool timestamping; 257 bool xdp_tx; 258 259 /* Members used mainly on the completion path */ 260 unsigned int read_count ____cacheline_aligned_in_smp; 261 unsigned int old_write_count; 262 unsigned int merge_events; 263 unsigned int bytes_compl; 264 unsigned int pkts_compl; 265 u32 completed_timestamp_major; 266 u32 completed_timestamp_minor; 267 268 /* Members used only on the xmit path */ 269 unsigned int insert_count ____cacheline_aligned_in_smp; 270 unsigned int write_count; 271 unsigned int packet_write_count; 272 unsigned int old_read_count; 273 unsigned int tso_bursts; 274 unsigned int tso_long_headers; 275 unsigned int tso_packets; 276 unsigned int tso_fallbacks; 277 unsigned int pushes; 278 unsigned int pio_packets; 279 bool xmit_pending; 280 unsigned int cb_packets; 281 unsigned int notify_count; 282 /* Statistics to supplement MAC stats */ 283 unsigned long tx_packets; 284 285 /* Members shared between paths and sometimes updated */ 286 unsigned int empty_read_count ____cacheline_aligned_in_smp; 287 #define EFX_EMPTY_COUNT_VALID 0x80000000 288 atomic_t flush_outstanding; 289 }; 290 291 #define EFX_TX_CB_ORDER 7 292 #define EFX_TX_CB_SIZE (1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN 293 294 /** 295 * struct efx_rx_buffer - An Efx RX data buffer 296 * @dma_addr: DMA base address of the buffer 297 * @page: The associated page buffer. 298 * Will be %NULL if the buffer slot is currently free. 299 * @page_offset: If pending: offset in @page of DMA base address. 300 * If completed: offset in @page of Ethernet header. 301 * @len: If pending: length for DMA descriptor. 302 * If completed: received length, excluding hash prefix. 303 * @flags: Flags for buffer and packet state. These are only set on the 304 * first buffer of a scattered packet. 305 */ 306 struct efx_rx_buffer { 307 dma_addr_t dma_addr; 308 struct page *page; 309 u16 page_offset; 310 u16 len; 311 u16 flags; 312 }; 313 #define EFX_RX_BUF_LAST_IN_PAGE 0x0001 314 #define EFX_RX_PKT_CSUMMED 0x0002 315 #define EFX_RX_PKT_DISCARD 0x0004 316 #define EFX_RX_PKT_TCP 0x0040 317 #define EFX_RX_PKT_PREFIX_LEN 0x0080 /* length is in prefix only */ 318 #define EFX_RX_PKT_CSUM_LEVEL 0x0200 319 320 /** 321 * struct efx_rx_page_state - Page-based rx buffer state 322 * 323 * Inserted at the start of every page allocated for receive buffers. 324 * Used to facilitate sharing dma mappings between recycled rx buffers 325 * and those passed up to the kernel. 326 * 327 * @dma_addr: The dma address of this page. 328 */ 329 struct efx_rx_page_state { 330 dma_addr_t dma_addr; 331 332 unsigned int __pad[] ____cacheline_aligned; 333 }; 334 335 /** 336 * struct efx_rx_queue - An Efx RX queue 337 * @efx: The associated Efx NIC 338 * @core_index: Index of network core RX queue. Will be >= 0 iff this 339 * is associated with a real RX queue. 340 * @buffer: The software buffer ring 341 * @rxd: The hardware descriptor ring 342 * @ptr_mask: The size of the ring minus 1. 343 * @refill_enabled: Enable refill whenever fill level is low 344 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as 345 * @rxq_flush_pending. 346 * @grant_credits: Posted RX descriptors need to be granted to the MAE with 347 * %MC_CMD_MAE_COUNTERS_STREAM_GIVE_CREDITS. For %EFX_EXTRA_CHANNEL_TC, 348 * and only supported on EF100. 349 * @added_count: Number of buffers added to the receive queue. 350 * @notified_count: Number of buffers given to NIC (<= @added_count). 351 * @granted_count: Number of buffers granted to the MAE (<= @notified_count). 352 * @removed_count: Number of buffers removed from the receive queue. 353 * @scatter_n: Used by NIC specific receive code. 354 * @scatter_len: Used by NIC specific receive code. 355 * @page_ring: The ring to store DMA mapped pages for reuse. 356 * @page_add: Counter to calculate the write pointer for the recycle ring. 357 * @page_remove: Counter to calculate the read pointer for the recycle ring. 358 * @page_recycle_count: The number of pages that have been recycled. 359 * @page_recycle_failed: The number of pages that couldn't be recycled because 360 * the kernel still held a reference to them. 361 * @page_recycle_full: The number of pages that were released because the 362 * recycle ring was full. 363 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1. 364 * @max_fill: RX descriptor maximum fill level (<= ring size) 365 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill 366 * (<= @max_fill) 367 * @min_fill: RX descriptor minimum non-zero fill level. 368 * This records the minimum fill level observed when a ring 369 * refill was triggered. 370 * @recycle_count: RX buffer recycle counter. 371 * @slow_fill: Timer used to defer efx_nic_generate_fill_event(). 372 * @grant_work: workitem used to grant credits to the MAE if @grant_credits 373 * @xdp_rxq_info: XDP specific RX queue information. 374 * @xdp_rxq_info_valid: Is xdp_rxq_info valid data?. 375 */ 376 struct efx_rx_queue { 377 struct efx_nic *efx; 378 int core_index; 379 struct efx_rx_buffer *buffer; 380 struct efx_buffer rxd; 381 unsigned int ptr_mask; 382 bool refill_enabled; 383 bool flush_pending; 384 bool grant_credits; 385 386 unsigned int added_count; 387 unsigned int notified_count; 388 unsigned int granted_count; 389 unsigned int removed_count; 390 unsigned int scatter_n; 391 unsigned int scatter_len; 392 struct page **page_ring; 393 unsigned int page_add; 394 unsigned int page_remove; 395 unsigned int page_recycle_count; 396 unsigned int page_recycle_failed; 397 unsigned int page_recycle_full; 398 unsigned int page_ptr_mask; 399 unsigned int max_fill; 400 unsigned int fast_fill_trigger; 401 unsigned int min_fill; 402 unsigned int min_overfill; 403 unsigned int recycle_count; 404 struct timer_list slow_fill; 405 unsigned int slow_fill_count; 406 struct work_struct grant_work; 407 /* Statistics to supplement MAC stats */ 408 unsigned long rx_packets; 409 struct xdp_rxq_info xdp_rxq_info; 410 bool xdp_rxq_info_valid; 411 }; 412 413 enum efx_sync_events_state { 414 SYNC_EVENTS_DISABLED = 0, 415 SYNC_EVENTS_QUIESCENT, 416 SYNC_EVENTS_REQUESTED, 417 SYNC_EVENTS_VALID, 418 }; 419 420 /** 421 * struct efx_channel - An Efx channel 422 * 423 * A channel comprises an event queue, at least one TX queue, at least 424 * one RX queue, and an associated tasklet for processing the event 425 * queue. 426 * 427 * @efx: Associated Efx NIC 428 * @channel: Channel instance number 429 * @type: Channel type definition 430 * @eventq_init: Event queue initialised flag 431 * @enabled: Channel enabled indicator 432 * @irq: IRQ number (MSI and MSI-X only) 433 * @irq_moderation_us: IRQ moderation value (in microseconds) 434 * @napi_dev: Net device used with NAPI 435 * @napi_str: NAPI control structure 436 * @state: state for NAPI vs busy polling 437 * @state_lock: lock protecting @state 438 * @eventq: Event queue buffer 439 * @eventq_mask: Event queue pointer mask 440 * @eventq_read_ptr: Event queue read pointer 441 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel 442 * @irq_count: Number of IRQs since last adaptive moderation decision 443 * @irq_mod_score: IRQ moderation score 444 * @rfs_filter_count: number of accelerated RFS filters currently in place; 445 * equals the count of @rps_flow_id slots filled 446 * @rfs_last_expiry: value of jiffies last time some accelerated RFS filters 447 * were checked for expiry 448 * @rfs_expire_index: next accelerated RFS filter ID to check for expiry 449 * @n_rfs_succeeded: number of successful accelerated RFS filter insertions 450 * @n_rfs_failed: number of failed accelerated RFS filter insertions 451 * @filter_work: Work item for efx_filter_rfs_expire() 452 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS, 453 * indexed by filter ID 454 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors 455 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors 456 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors 457 * @n_rx_mcast_mismatch: Count of unmatched multicast frames 458 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors 459 * @n_rx_overlength: Count of RX_OVERLENGTH errors 460 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun 461 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to 462 * lack of descriptors 463 * @n_rx_merge_events: Number of RX merged completion events 464 * @n_rx_merge_packets: Number of RX packets completed by merged events 465 * @n_rx_xdp_drops: Count of RX packets intentionally dropped due to XDP 466 * @n_rx_xdp_bad_drops: Count of RX packets dropped due to XDP errors 467 * @n_rx_xdp_tx: Count of RX packets retransmitted due to XDP 468 * @n_rx_xdp_redirect: Count of RX packets redirected to a different NIC by XDP 469 * @n_rx_mport_bad: Count of RX packets dropped because their ingress mport was 470 * not recognised 471 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by 472 * __efx_rx_packet(), or zero if there is none 473 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered 474 * by __efx_rx_packet(), if @rx_pkt_n_frags != 0 475 * @rx_list: list of SKBs from current RX, awaiting processing 476 * @rx_queue: RX queue for this channel 477 * @tx_queue: TX queues for this channel 478 * @tx_queue_by_type: pointers into @tx_queue, or %NULL, indexed by txq type 479 * @sync_events_state: Current state of sync events on this channel 480 * @sync_timestamp_major: Major part of the last ptp sync event 481 * @sync_timestamp_minor: Minor part of the last ptp sync event 482 */ 483 struct efx_channel { 484 struct efx_nic *efx; 485 int channel; 486 const struct efx_channel_type *type; 487 bool eventq_init; 488 bool enabled; 489 int irq; 490 unsigned int irq_moderation_us; 491 struct net_device *napi_dev; 492 struct napi_struct napi_str; 493 #ifdef CONFIG_NET_RX_BUSY_POLL 494 unsigned long busy_poll_state; 495 #endif 496 struct efx_buffer eventq; 497 unsigned int eventq_mask; 498 unsigned int eventq_read_ptr; 499 int event_test_cpu; 500 501 unsigned int irq_count; 502 unsigned int irq_mod_score; 503 #ifdef CONFIG_RFS_ACCEL 504 unsigned int rfs_filter_count; 505 unsigned int rfs_last_expiry; 506 unsigned int rfs_expire_index; 507 unsigned int n_rfs_succeeded; 508 unsigned int n_rfs_failed; 509 struct delayed_work filter_work; 510 #define RPS_FLOW_ID_INVALID 0xFFFFFFFF 511 u32 *rps_flow_id; 512 #endif 513 514 unsigned int n_rx_tobe_disc; 515 unsigned int n_rx_ip_hdr_chksum_err; 516 unsigned int n_rx_tcp_udp_chksum_err; 517 unsigned int n_rx_outer_ip_hdr_chksum_err; 518 unsigned int n_rx_outer_tcp_udp_chksum_err; 519 unsigned int n_rx_inner_ip_hdr_chksum_err; 520 unsigned int n_rx_inner_tcp_udp_chksum_err; 521 unsigned int n_rx_eth_crc_err; 522 unsigned int n_rx_mcast_mismatch; 523 unsigned int n_rx_frm_trunc; 524 unsigned int n_rx_overlength; 525 unsigned int n_skbuff_leaks; 526 unsigned int n_rx_nodesc_trunc; 527 unsigned int n_rx_merge_events; 528 unsigned int n_rx_merge_packets; 529 unsigned int n_rx_xdp_drops; 530 unsigned int n_rx_xdp_bad_drops; 531 unsigned int n_rx_xdp_tx; 532 unsigned int n_rx_xdp_redirect; 533 unsigned int n_rx_mport_bad; 534 535 unsigned int rx_pkt_n_frags; 536 unsigned int rx_pkt_index; 537 538 struct list_head *rx_list; 539 540 struct efx_rx_queue rx_queue; 541 struct efx_tx_queue tx_queue[EFX_MAX_TXQ_PER_CHANNEL]; 542 struct efx_tx_queue *tx_queue_by_type[EFX_TXQ_TYPES]; 543 544 enum efx_sync_events_state sync_events_state; 545 u32 sync_timestamp_major; 546 u32 sync_timestamp_minor; 547 }; 548 549 /** 550 * struct efx_msi_context - Context for each MSI 551 * @efx: The associated NIC 552 * @index: Index of the channel/IRQ 553 * @name: Name of the channel/IRQ 554 * 555 * Unlike &struct efx_channel, this is never reallocated and is always 556 * safe for the IRQ handler to access. 557 */ 558 struct efx_msi_context { 559 struct efx_nic *efx; 560 unsigned int index; 561 char name[IFNAMSIZ + 6]; 562 }; 563 564 /** 565 * struct efx_channel_type - distinguishes traffic and extra channels 566 * @handle_no_channel: Handle failure to allocate an extra channel 567 * @pre_probe: Set up extra state prior to initialisation 568 * @start: called early in efx_start_channels() 569 * @stop: called early in efx_stop_channels() 570 * @post_remove: Tear down extra state after finalisation, if allocated. 571 * May be called on channels that have not been probed. 572 * @get_name: Generate the channel's name (used for its IRQ handler) 573 * @copy: Copy the channel state prior to reallocation. May be %NULL if 574 * reallocation is not supported. 575 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb() 576 * @receive_raw: Handle an RX buffer ready to be passed to __efx_rx_packet() 577 * @want_txqs: Determine whether this channel should have TX queues 578 * created. If %NULL, TX queues are not created. 579 * @keep_eventq: Flag for whether event queue should be kept initialised 580 * while the device is stopped 581 * @want_pio: Flag for whether PIO buffers should be linked to this 582 * channel's TX queues. 583 */ 584 struct efx_channel_type { 585 void (*handle_no_channel)(struct efx_nic *); 586 int (*pre_probe)(struct efx_channel *); 587 int (*start)(struct efx_channel *); 588 void (*stop)(struct efx_channel *); 589 void (*post_remove)(struct efx_channel *); 590 void (*get_name)(struct efx_channel *, char *buf, size_t len); 591 struct efx_channel *(*copy)(const struct efx_channel *); 592 bool (*receive_skb)(struct efx_channel *, struct sk_buff *); 593 bool (*receive_raw)(struct efx_rx_queue *, u32); 594 bool (*want_txqs)(struct efx_channel *); 595 bool keep_eventq; 596 bool want_pio; 597 }; 598 599 enum efx_led_mode { 600 EFX_LED_OFF = 0, 601 EFX_LED_ON = 1, 602 EFX_LED_DEFAULT = 2 603 }; 604 605 #define STRING_TABLE_LOOKUP(val, member) \ 606 ((val) < member ## _max) ? member ## _names[val] : "(invalid)" 607 608 extern const char *const efx_loopback_mode_names[]; 609 extern const unsigned int efx_loopback_mode_max; 610 #define LOOPBACK_MODE(efx) \ 611 STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode) 612 613 enum efx_int_mode { 614 /* Be careful if altering to correct macro below */ 615 EFX_INT_MODE_MSIX = 0, 616 EFX_INT_MODE_MSI = 1, 617 EFX_INT_MODE_LEGACY = 2, 618 EFX_INT_MODE_MAX /* Insert any new items before this */ 619 }; 620 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI) 621 622 enum nic_state { 623 STATE_UNINIT = 0, /* device being probed/removed */ 624 STATE_PROBED, /* hardware probed */ 625 STATE_NET_DOWN, /* netdev registered */ 626 STATE_NET_UP, /* ready for traffic */ 627 STATE_DISABLED, /* device disabled due to hardware errors */ 628 629 STATE_RECOVERY = 0x100,/* recovering from PCI error */ 630 STATE_FROZEN = 0x200, /* frozen by power management */ 631 }; 632 633 static inline bool efx_net_active(enum nic_state state) 634 { 635 return state == STATE_NET_DOWN || state == STATE_NET_UP; 636 } 637 638 static inline bool efx_frozen(enum nic_state state) 639 { 640 return state & STATE_FROZEN; 641 } 642 643 static inline bool efx_recovering(enum nic_state state) 644 { 645 return state & STATE_RECOVERY; 646 } 647 648 static inline enum nic_state efx_freeze(enum nic_state state) 649 { 650 WARN_ON(!efx_net_active(state)); 651 return state | STATE_FROZEN; 652 } 653 654 static inline enum nic_state efx_thaw(enum nic_state state) 655 { 656 WARN_ON(!efx_frozen(state)); 657 return state & ~STATE_FROZEN; 658 } 659 660 static inline enum nic_state efx_recover(enum nic_state state) 661 { 662 WARN_ON(!efx_net_active(state)); 663 return state | STATE_RECOVERY; 664 } 665 666 static inline enum nic_state efx_recovered(enum nic_state state) 667 { 668 WARN_ON(!efx_recovering(state)); 669 return state & ~STATE_RECOVERY; 670 } 671 672 /* Forward declaration */ 673 struct efx_nic; 674 675 /* Pseudo bit-mask flow control field */ 676 #define EFX_FC_RX FLOW_CTRL_RX 677 #define EFX_FC_TX FLOW_CTRL_TX 678 #define EFX_FC_AUTO 4 679 680 /** 681 * struct efx_link_state - Current state of the link 682 * @up: Link is up 683 * @fd: Link is full-duplex 684 * @fc: Actual flow control flags 685 * @speed: Link speed (Mbps) 686 */ 687 struct efx_link_state { 688 bool up; 689 bool fd; 690 u8 fc; 691 unsigned int speed; 692 }; 693 694 static inline bool efx_link_state_equal(const struct efx_link_state *left, 695 const struct efx_link_state *right) 696 { 697 return left->up == right->up && left->fd == right->fd && 698 left->fc == right->fc && left->speed == right->speed; 699 } 700 701 /** 702 * enum efx_phy_mode - PHY operating mode flags 703 * @PHY_MODE_NORMAL: on and should pass traffic 704 * @PHY_MODE_TX_DISABLED: on with TX disabled 705 * @PHY_MODE_LOW_POWER: set to low power through MDIO 706 * @PHY_MODE_OFF: switched off through external control 707 * @PHY_MODE_SPECIAL: on but will not pass traffic 708 */ 709 enum efx_phy_mode { 710 PHY_MODE_NORMAL = 0, 711 PHY_MODE_TX_DISABLED = 1, 712 PHY_MODE_LOW_POWER = 2, 713 PHY_MODE_OFF = 4, 714 PHY_MODE_SPECIAL = 8, 715 }; 716 717 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode) 718 { 719 return !!(mode & ~PHY_MODE_TX_DISABLED); 720 } 721 722 /** 723 * struct efx_hw_stat_desc - Description of a hardware statistic 724 * @name: Name of the statistic as visible through ethtool, or %NULL if 725 * it should not be exposed 726 * @dma_width: Width in bits (0 for non-DMA statistics) 727 * @offset: Offset within stats (ignored for non-DMA statistics) 728 */ 729 struct efx_hw_stat_desc { 730 const char *name; 731 u16 dma_width; 732 u16 offset; 733 }; 734 735 struct vfdi_status; 736 737 /* The reserved RSS context value */ 738 #define EFX_MCDI_RSS_CONTEXT_INVALID 0xffffffff 739 /** 740 * struct efx_rss_context_priv - driver private data for an RSS context 741 * @context_id: the RSS_CONTEXT_ID returned by MC firmware, or 742 * %EFX_MCDI_RSS_CONTEXT_INVALID if this context is not present on the NIC. 743 * @rx_hash_udp_4tuple: UDP 4-tuple hashing enabled 744 */ 745 struct efx_rss_context_priv { 746 u32 context_id; 747 bool rx_hash_udp_4tuple; 748 }; 749 750 /** 751 * struct efx_rss_context - an RSS context 752 * @priv: hardware-specific state 753 * @rx_hash_key: Toeplitz hash key for this RSS context 754 * @indir_table: Indirection table for this RSS context 755 */ 756 struct efx_rss_context { 757 struct efx_rss_context_priv priv; 758 u8 rx_hash_key[40]; 759 u32 rx_indir_table[128]; 760 }; 761 762 #ifdef CONFIG_RFS_ACCEL 763 /* Order of these is important, since filter_id >= %EFX_ARFS_FILTER_ID_PENDING 764 * is used to test if filter does or will exist. 765 */ 766 #define EFX_ARFS_FILTER_ID_PENDING -1 767 #define EFX_ARFS_FILTER_ID_ERROR -2 768 #define EFX_ARFS_FILTER_ID_REMOVING -3 769 /** 770 * struct efx_arfs_rule - record of an ARFS filter and its IDs 771 * @node: linkage into hash table 772 * @spec: details of the filter (used as key for hash table). Use efx->type to 773 * determine which member to use. 774 * @rxq_index: channel to which the filter will steer traffic. 775 * @arfs_id: filter ID which was returned to ARFS 776 * @filter_id: index in software filter table. May be 777 * %EFX_ARFS_FILTER_ID_PENDING if filter was not inserted yet, 778 * %EFX_ARFS_FILTER_ID_ERROR if filter insertion failed, or 779 * %EFX_ARFS_FILTER_ID_REMOVING if expiry is currently removing the filter. 780 */ 781 struct efx_arfs_rule { 782 struct hlist_node node; 783 struct efx_filter_spec spec; 784 u16 rxq_index; 785 u16 arfs_id; 786 s32 filter_id; 787 }; 788 789 /* Size chosen so that the table is one page (4kB) */ 790 #define EFX_ARFS_HASH_TABLE_SIZE 512 791 792 /** 793 * struct efx_async_filter_insertion - Request to asynchronously insert a filter 794 * @net_dev: Reference to the netdevice 795 * @spec: The filter to insert 796 * @work: Workitem for this request 797 * @rxq_index: Identifies the channel for which this request was made 798 * @flow_id: Identifies the kernel-side flow for which this request was made 799 */ 800 struct efx_async_filter_insertion { 801 struct net_device *net_dev; 802 struct efx_filter_spec spec; 803 struct work_struct work; 804 u16 rxq_index; 805 u32 flow_id; 806 }; 807 808 /* Maximum number of ARFS workitems that may be in flight on an efx_nic */ 809 #define EFX_RPS_MAX_IN_FLIGHT 8 810 #endif /* CONFIG_RFS_ACCEL */ 811 812 enum efx_xdp_tx_queues_mode { 813 EFX_XDP_TX_QUEUES_DEDICATED, /* one queue per core, locking not needed */ 814 EFX_XDP_TX_QUEUES_SHARED, /* each queue used by more than 1 core */ 815 EFX_XDP_TX_QUEUES_BORROWED /* queues borrowed from net stack */ 816 }; 817 818 struct efx_mae; 819 820 /** 821 * struct efx_nic - an Efx NIC 822 * @name: Device name (net device name or bus id before net device registered) 823 * @pci_dev: The PCI device 824 * @node: List node for maintaning primary/secondary function lists 825 * @primary: &struct efx_nic instance for the primary function of this 826 * controller. May be the same structure, and may be %NULL if no 827 * primary function is bound. Serialised by rtnl_lock. 828 * @secondary_list: List of &struct efx_nic instances for the secondary PCI 829 * functions of the controller, if this is for the primary function. 830 * Serialised by rtnl_lock. 831 * @type: Controller type attributes 832 * @legacy_irq: IRQ number 833 * @workqueue: Workqueue for port reconfigures and the HW monitor. 834 * Work items do not hold and must not acquire RTNL. 835 * @workqueue_name: Name of workqueue 836 * @reset_work: Scheduled reset workitem 837 * @membase_phys: Memory BAR value as physical address 838 * @membase: Memory BAR value 839 * @vi_stride: step between per-VI registers / memory regions 840 * @interrupt_mode: Interrupt mode 841 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds 842 * @timer_max_ns: Interrupt timer maximum value, in nanoseconds 843 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues 844 * @irqs_hooked: Channel interrupts are hooked 845 * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues 846 * @irq_rx_moderation_us: IRQ moderation time for RX event queues 847 * @msg_enable: Log message enable flags 848 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock. 849 * @reset_pending: Bitmask for pending resets 850 * @tx_queue: TX DMA queues 851 * @rx_queue: RX DMA queues 852 * @channel: Channels 853 * @msi_context: Context for each MSI 854 * @extra_channel_types: Types of extra (non-traffic) channels that 855 * should be allocated for this NIC 856 * @mae: Details of the Match Action Engine 857 * @xdp_tx_queue_count: Number of entries in %xdp_tx_queues. 858 * @xdp_tx_queues: Array of pointers to tx queues used for XDP transmit. 859 * @xdp_txq_queues_mode: XDP TX queues sharing strategy. 860 * @rxq_entries: Size of receive queues requested by user. 861 * @txq_entries: Size of transmit queues requested by user. 862 * @txq_stop_thresh: TX queue fill level at or above which we stop it. 863 * @txq_wake_thresh: TX queue fill level at or below which we wake it. 864 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches 865 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches 866 * @sram_lim_qw: Qword address limit of SRAM 867 * @n_channels: Number of channels in use 868 * @n_rx_channels: Number of channels used for RX (= number of RX queues) 869 * @n_tx_channels: Number of channels used for TX 870 * @n_extra_tx_channels: Number of extra channels with TX queues 871 * @tx_queues_per_channel: number of TX queues probed on each channel 872 * @n_xdp_channels: Number of channels used for XDP TX 873 * @xdp_channel_offset: Offset of zeroth channel used for XPD TX. 874 * @xdp_tx_per_channel: Max number of TX queues on an XDP TX channel. 875 * @rx_ip_align: RX DMA address offset to have IP header aligned in 876 * in accordance with NET_IP_ALIGN 877 * @rx_dma_len: Current maximum RX DMA length 878 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer 879 * @rx_buffer_truesize: Amortised allocation size of an RX buffer, 880 * for use in sk_buff::truesize 881 * @rx_prefix_size: Size of RX prefix before packet data 882 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data 883 * (valid only if @rx_prefix_size != 0; always negative) 884 * @rx_packet_len_offset: Offset of RX packet length from start of packet data 885 * (valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative) 886 * @rx_packet_ts_offset: Offset of timestamp from start of packet data 887 * (valid only if channel->sync_timestamps_enabled; always negative) 888 * @rx_scatter: Scatter mode enabled for receives 889 * @rss_context: Main RSS context. 890 * @vport_id: The function's vport ID, only relevant for PFs 891 * @int_error_count: Number of internal errors seen recently 892 * @int_error_expire: Time at which error count will be expired 893 * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot 894 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will 895 * acknowledge but do nothing else. 896 * @irq_status: Interrupt status buffer 897 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0 898 * @irq_level: IRQ level/index for IRQs not triggered by an event queue 899 * @selftest_work: Work item for asynchronous self-test 900 * @mtd_list: List of MTDs attached to the NIC 901 * @nic_data: Hardware dependent state 902 * @mcdi: Management-Controller-to-Driver Interface state 903 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode, 904 * efx_monitor() and efx_reconfigure_port() 905 * @port_enabled: Port enabled indicator. 906 * Serialises efx_stop_all(), efx_start_all(), efx_monitor() and 907 * efx_mac_work() with kernel interfaces. Safe to read under any 908 * one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must 909 * be held to modify it. 910 * @port_initialized: Port initialized? 911 * @net_dev: Operating system network device. Consider holding the rtnl lock 912 * @fixed_features: Features which cannot be turned off 913 * @num_mac_stats: Number of MAC stats reported by firmware (MAC_STATS_NUM_STATS 914 * field of %MC_CMD_GET_CAPABILITIES_V4 response, or %MC_CMD_MAC_NSTATS) 915 * @stats_buffer: DMA buffer for statistics 916 * @phy_type: PHY type 917 * @phy_data: PHY private data (including PHY-specific stats) 918 * @mdio: PHY MDIO interface 919 * @mdio_bus: PHY MDIO bus ID (only used by Siena) 920 * @phy_mode: PHY operating mode. Serialised by @mac_lock. 921 * @link_advertising: Autonegotiation advertising flags 922 * @fec_config: Forward Error Correction configuration flags. For bit positions 923 * see &enum ethtool_fec_config_bits. 924 * @link_state: Current state of the link 925 * @n_link_state_changes: Number of times the link has changed state 926 * @wanted_fc: Wanted flow control flags 927 * @fc_disable: When non-zero flow control is disabled. Typically used to 928 * ensure that network back pressure doesn't delay dma queue flushes. 929 * Serialised by the rtnl lock. 930 * @mac_work: Work item for changing MAC promiscuity and multicast hash 931 * @loopback_mode: Loopback status 932 * @loopback_modes: Supported loopback mode bitmask 933 * @loopback_selftest: Offline self-test private state 934 * @xdp_prog: Current XDP programme for this interface 935 * @filter_sem: Filter table rw_semaphore, protects existence of @filter_state 936 * @filter_state: Architecture-dependent filter table state 937 * @rps_mutex: Protects RPS state of all channels 938 * @rps_slot_map: bitmap of in-flight entries in @rps_slot 939 * @rps_slot: array of ARFS insertion requests for efx_filter_rfs_work() 940 * @rps_hash_lock: Protects ARFS filter mapping state (@rps_hash_table and 941 * @rps_next_id). 942 * @rps_hash_table: Mapping between ARFS filters and their various IDs 943 * @rps_next_id: next arfs_id for an ARFS filter 944 * @active_queues: Count of RX and TX queues that haven't been flushed and drained. 945 * @rxq_flush_pending: Count of number of receive queues that need to be flushed. 946 * Decremented when the efx_flush_rx_queue() is called. 947 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet 948 * completed (either success or failure). Not used when MCDI is used to 949 * flush receive queues. 950 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions. 951 * @vf_count: Number of VFs intended to be enabled. 952 * @vf_init_count: Number of VFs that have been fully initialised. 953 * @vi_scale: log2 number of vnics per VF. 954 * @vf_reps_lock: Protects vf_reps list 955 * @vf_reps: local VF reps 956 * @ptp_data: PTP state data 957 * @ptp_warned: has this NIC seen and warned about unexpected PTP events? 958 * @vpd_sn: Serial number read from VPD 959 * @xdp_rxq_info_failed: Have any of the rx queues failed to initialise their 960 * xdp_rxq_info structures? 961 * @netdev_notifier: Netdevice notifier. 962 * @netevent_notifier: Netevent notifier (for neighbour updates). 963 * @tc: state for TC offload (EF100). 964 * @devlink: reference to devlink structure owned by this device 965 * @dl_port: devlink port associated with the PF 966 * @mem_bar: The BAR that is mapped into membase. 967 * @reg_base: Offset from the start of the bar to the function control window. 968 * @monitor_work: Hardware monitor workitem 969 * @biu_lock: BIU (bus interface unit) lock 970 * @last_irq_cpu: Last CPU to handle a possible test interrupt. This 971 * field is used by efx_test_interrupts() to verify that an 972 * interrupt has occurred. 973 * @stats_lock: Statistics update lock. Must be held when calling 974 * efx_nic_type::{update,start,stop}_stats. 975 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb 976 * 977 * This is stored in the private area of the &struct net_device. 978 */ 979 struct efx_nic { 980 /* The following fields should be written very rarely */ 981 982 char name[IFNAMSIZ]; 983 struct list_head node; 984 struct efx_nic *primary; 985 struct list_head secondary_list; 986 struct pci_dev *pci_dev; 987 unsigned int port_num; 988 const struct efx_nic_type *type; 989 int legacy_irq; 990 bool eeh_disabled_legacy_irq; 991 struct workqueue_struct *workqueue; 992 char workqueue_name[16]; 993 struct work_struct reset_work; 994 resource_size_t membase_phys; 995 void __iomem *membase; 996 997 unsigned int vi_stride; 998 999 enum efx_int_mode interrupt_mode; 1000 unsigned int timer_quantum_ns; 1001 unsigned int timer_max_ns; 1002 bool irq_rx_adaptive; 1003 bool irqs_hooked; 1004 unsigned int irq_mod_step_us; 1005 unsigned int irq_rx_moderation_us; 1006 u32 msg_enable; 1007 1008 enum nic_state state; 1009 unsigned long reset_pending; 1010 1011 struct efx_channel *channel[EFX_MAX_CHANNELS]; 1012 struct efx_msi_context msi_context[EFX_MAX_CHANNELS]; 1013 const struct efx_channel_type * 1014 extra_channel_type[EFX_MAX_EXTRA_CHANNELS]; 1015 struct efx_mae *mae; 1016 1017 unsigned int xdp_tx_queue_count; 1018 struct efx_tx_queue **xdp_tx_queues; 1019 enum efx_xdp_tx_queues_mode xdp_txq_queues_mode; 1020 1021 unsigned rxq_entries; 1022 unsigned txq_entries; 1023 unsigned int txq_stop_thresh; 1024 unsigned int txq_wake_thresh; 1025 1026 unsigned tx_dc_base; 1027 unsigned rx_dc_base; 1028 unsigned sram_lim_qw; 1029 1030 unsigned int max_channels; 1031 unsigned int max_vis; 1032 unsigned int max_tx_channels; 1033 unsigned n_channels; 1034 unsigned n_rx_channels; 1035 unsigned rss_spread; 1036 unsigned tx_channel_offset; 1037 unsigned n_tx_channels; 1038 unsigned n_extra_tx_channels; 1039 unsigned int tx_queues_per_channel; 1040 unsigned int n_xdp_channels; 1041 unsigned int xdp_channel_offset; 1042 unsigned int xdp_tx_per_channel; 1043 unsigned int rx_ip_align; 1044 unsigned int rx_dma_len; 1045 unsigned int rx_buffer_order; 1046 unsigned int rx_buffer_truesize; 1047 unsigned int rx_page_buf_step; 1048 unsigned int rx_bufs_per_page; 1049 unsigned int rx_pages_per_batch; 1050 unsigned int rx_prefix_size; 1051 int rx_packet_hash_offset; 1052 int rx_packet_len_offset; 1053 int rx_packet_ts_offset; 1054 bool rx_scatter; 1055 struct efx_rss_context rss_context; 1056 u32 vport_id; 1057 1058 unsigned int_error_count; 1059 unsigned long int_error_expire; 1060 1061 bool must_realloc_vis; 1062 bool irq_soft_enabled; 1063 struct efx_buffer irq_status; 1064 unsigned irq_zero_count; 1065 unsigned irq_level; 1066 struct delayed_work selftest_work; 1067 1068 #ifdef CONFIG_SFC_MTD 1069 struct list_head mtd_list; 1070 #endif 1071 1072 void *nic_data; 1073 struct efx_mcdi_data *mcdi; 1074 1075 struct mutex mac_lock; 1076 struct work_struct mac_work; 1077 bool port_enabled; 1078 1079 bool mc_bist_for_other_fn; 1080 bool port_initialized; 1081 struct net_device *net_dev; 1082 1083 netdev_features_t fixed_features; 1084 1085 u16 num_mac_stats; 1086 struct efx_buffer stats_buffer; 1087 u64 rx_nodesc_drops_total; 1088 u64 rx_nodesc_drops_while_down; 1089 bool rx_nodesc_drops_prev_state; 1090 1091 unsigned int phy_type; 1092 void *phy_data; 1093 struct mdio_if_info mdio; 1094 unsigned int mdio_bus; 1095 enum efx_phy_mode phy_mode; 1096 1097 __ETHTOOL_DECLARE_LINK_MODE_MASK(link_advertising); 1098 u32 fec_config; 1099 struct efx_link_state link_state; 1100 unsigned int n_link_state_changes; 1101 1102 u8 wanted_fc; 1103 unsigned fc_disable; 1104 1105 atomic_t rx_reset; 1106 enum efx_loopback_mode loopback_mode; 1107 u64 loopback_modes; 1108 1109 void *loopback_selftest; 1110 /* We access loopback_selftest immediately before running XDP, 1111 * so we want them next to each other. 1112 */ 1113 struct bpf_prog __rcu *xdp_prog; 1114 1115 struct rw_semaphore filter_sem; 1116 void *filter_state; 1117 #ifdef CONFIG_RFS_ACCEL 1118 struct mutex rps_mutex; 1119 unsigned long rps_slot_map; 1120 struct efx_async_filter_insertion rps_slot[EFX_RPS_MAX_IN_FLIGHT]; 1121 spinlock_t rps_hash_lock; 1122 struct hlist_head *rps_hash_table; 1123 u32 rps_next_id; 1124 #endif 1125 1126 atomic_t active_queues; 1127 atomic_t rxq_flush_pending; 1128 atomic_t rxq_flush_outstanding; 1129 wait_queue_head_t flush_wq; 1130 1131 #ifdef CONFIG_SFC_SRIOV 1132 unsigned vf_count; 1133 unsigned vf_init_count; 1134 unsigned vi_scale; 1135 #endif 1136 spinlock_t vf_reps_lock; 1137 struct list_head vf_reps; 1138 1139 struct efx_ptp_data *ptp_data; 1140 bool ptp_warned; 1141 1142 char *vpd_sn; 1143 bool xdp_rxq_info_failed; 1144 1145 struct notifier_block netdev_notifier; 1146 struct notifier_block netevent_notifier; 1147 struct efx_tc_state *tc; 1148 1149 struct devlink *devlink; 1150 struct devlink_port *dl_port; 1151 unsigned int mem_bar; 1152 u32 reg_base; 1153 1154 /* The following fields may be written more often */ 1155 1156 struct delayed_work monitor_work ____cacheline_aligned_in_smp; 1157 spinlock_t biu_lock; 1158 int last_irq_cpu; 1159 spinlock_t stats_lock; 1160 atomic_t n_rx_noskb_drops; 1161 }; 1162 1163 /** 1164 * struct efx_probe_data - State after hardware probe 1165 * @pci_dev: The PCI device 1166 * @efx: Efx NIC details 1167 */ 1168 struct efx_probe_data { 1169 struct pci_dev *pci_dev; 1170 struct efx_nic efx; 1171 }; 1172 1173 static inline struct efx_nic *efx_netdev_priv(struct net_device *dev) 1174 { 1175 struct efx_probe_data **probe_ptr = netdev_priv(dev); 1176 struct efx_probe_data *probe_data = *probe_ptr; 1177 1178 return &probe_data->efx; 1179 } 1180 1181 static inline int efx_dev_registered(struct efx_nic *efx) 1182 { 1183 return efx->net_dev->reg_state == NETREG_REGISTERED; 1184 } 1185 1186 static inline unsigned int efx_port_num(struct efx_nic *efx) 1187 { 1188 return efx->port_num; 1189 } 1190 1191 struct efx_mtd_partition { 1192 struct list_head node; 1193 struct mtd_info mtd; 1194 const char *dev_type_name; 1195 const char *type_name; 1196 char name[IFNAMSIZ + 20]; 1197 }; 1198 1199 struct efx_udp_tunnel { 1200 #define TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID 0xffff 1201 u16 type; /* TUNNEL_ENCAP_UDP_PORT_ENTRY_foo, see mcdi_pcol.h */ 1202 __be16 port; 1203 }; 1204 1205 /** 1206 * struct efx_nic_type - Efx device type definition 1207 * @mem_bar: Get the memory BAR 1208 * @mem_map_size: Get memory BAR mapped size 1209 * @probe: Probe the controller 1210 * @remove: Free resources allocated by probe() 1211 * @init: Initialise the controller 1212 * @dimension_resources: Dimension controller resources (buffer table, 1213 * and VIs once the available interrupt resources are clear) 1214 * @fini: Shut down the controller 1215 * @monitor: Periodic function for polling link state and hardware monitor 1216 * @map_reset_reason: Map ethtool reset reason to a reset method 1217 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible 1218 * @reset: Reset the controller hardware and possibly the PHY. This will 1219 * be called while the controller is uninitialised. 1220 * @probe_port: Probe the MAC and PHY 1221 * @remove_port: Free resources allocated by probe_port() 1222 * @handle_global_event: Handle a "global" event (may be %NULL) 1223 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues) 1224 * @prepare_flr: Prepare for an FLR 1225 * @finish_flr: Clean up after an FLR 1226 * @describe_stats: Describe statistics for ethtool 1227 * @update_stats: Update statistics not provided by event handling. 1228 * Either argument may be %NULL. 1229 * @update_stats_atomic: Update statistics while in atomic context, if that 1230 * is more limiting than @update_stats. Otherwise, leave %NULL and 1231 * driver core will call @update_stats. 1232 * @start_stats: Start the regular fetching of statistics 1233 * @pull_stats: Pull stats from the NIC and wait until they arrive. 1234 * @stop_stats: Stop the regular fetching of statistics 1235 * @push_irq_moderation: Apply interrupt moderation value 1236 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY 1237 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL) 1238 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings 1239 * to the hardware. Serialised by the mac_lock. 1240 * @check_mac_fault: Check MAC fault state. True if fault present. 1241 * @get_wol: Get WoL configuration from driver state 1242 * @set_wol: Push WoL configuration to the NIC 1243 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume) 1244 * @get_fec_stats: Get standard FEC statistics. 1245 * @test_chip: Test registers. This is expected to reset the NIC. 1246 * @test_nvram: Test validity of NVRAM contents 1247 * @mcdi_request: Send an MCDI request with the given header and SDU. 1248 * The SDU length may be any value from 0 up to the protocol- 1249 * defined maximum, but its buffer will be padded to a multiple 1250 * of 4 bytes. 1251 * @mcdi_poll_response: Test whether an MCDI response is available. 1252 * @mcdi_read_response: Read the MCDI response PDU. The offset will 1253 * be a multiple of 4. The length may not be, but the buffer 1254 * will be padded so it is safe to round up. 1255 * @mcdi_poll_reboot: Test whether the MCDI has rebooted. If so, 1256 * return an appropriate error code for aborting any current 1257 * request; otherwise return 0. 1258 * @irq_enable_master: Enable IRQs on the NIC. Each event queue must 1259 * be separately enabled after this. 1260 * @irq_test_generate: Generate a test IRQ 1261 * @irq_disable_non_ev: Disable non-event IRQs on the NIC. Each event 1262 * queue must be separately disabled before this. 1263 * @irq_handle_msi: Handle MSI for a channel. The @dev_id argument is 1264 * a pointer to the &struct efx_msi_context for the channel. 1265 * @irq_handle_legacy: Handle legacy interrupt. The @dev_id argument 1266 * is a pointer to the &struct efx_nic. 1267 * @tx_probe: Allocate resources for TX queue (and select TXQ type) 1268 * @tx_init: Initialise TX queue on the NIC 1269 * @tx_remove: Free resources for TX queue 1270 * @tx_write: Write TX descriptors and doorbell 1271 * @tx_enqueue: Add an SKB to TX queue 1272 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC 1273 * @rx_pull_rss_config: Read RSS hash key and indirection table back from the NIC 1274 * @rx_push_rss_context_config: Write RSS hash key and indirection table for 1275 * user RSS context to the NIC 1276 * @rx_pull_rss_context_config: Read RSS hash key and indirection table for user 1277 * RSS context back from the NIC 1278 * @rx_probe: Allocate resources for RX queue 1279 * @rx_init: Initialise RX queue on the NIC 1280 * @rx_remove: Free resources for RX queue 1281 * @rx_write: Write RX descriptors and doorbell 1282 * @rx_defer_refill: Generate a refill reminder event 1283 * @rx_packet: Receive the queued RX buffer on a channel 1284 * @rx_buf_hash_valid: Determine whether the RX prefix contains a valid hash 1285 * @ev_probe: Allocate resources for event queue 1286 * @ev_init: Initialise event queue on the NIC 1287 * @ev_fini: Deinitialise event queue on the NIC 1288 * @ev_remove: Free resources for event queue 1289 * @ev_process: Process events for a queue, up to the given NAPI quota 1290 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ 1291 * @ev_test_generate: Generate a test event 1292 * @filter_table_probe: Probe filter capabilities and set up filter software state 1293 * @filter_table_restore: Restore filters removed from hardware 1294 * @filter_table_remove: Remove filters from hardware and tear down software state 1295 * @filter_update_rx_scatter: Update filters after change to rx scatter setting 1296 * @filter_insert: add or replace a filter 1297 * @filter_remove_safe: remove a filter by ID, carefully 1298 * @filter_get_safe: retrieve a filter by ID, carefully 1299 * @filter_clear_rx: Remove all RX filters whose priority is less than or 1300 * equal to the given priority and is not %EFX_FILTER_PRI_AUTO 1301 * @filter_count_rx_used: Get the number of filters in use at a given priority 1302 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1 1303 * @filter_get_rx_ids: Get list of RX filters at a given priority 1304 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS. 1305 * This must check whether the specified table entry is used by RFS 1306 * and that rps_may_expire_flow() returns true for it. 1307 * @mtd_probe: Probe and add MTD partitions associated with this net device, 1308 * using efx_mtd_add() 1309 * @mtd_rename: Set an MTD partition name using the net device name 1310 * @mtd_read: Read from an MTD partition 1311 * @mtd_erase: Erase part of an MTD partition 1312 * @mtd_write: Write to an MTD partition 1313 * @mtd_sync: Wait for write-back to complete on MTD partition. This 1314 * also notifies the driver that a writer has finished using this 1315 * partition. 1316 * @ptp_write_host_time: Send host time to MC as part of sync protocol 1317 * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX 1318 * timestamping, possibly only temporarily for the purposes of a reset. 1319 * @ptp_set_ts_config: Set hardware timestamp configuration. The flags 1320 * and tx_type will already have been validated but this operation 1321 * must validate and update rx_filter. 1322 * @get_phys_port_id: Get the underlying physical port id. 1323 * @set_mac_address: Set the MAC address of the device 1324 * @tso_versions: Returns mask of firmware-assisted TSO versions supported. 1325 * If %NULL, then device does not support any TSO version. 1326 * @udp_tnl_push_ports: Push the list of UDP tunnel ports to the NIC if required. 1327 * @udp_tnl_has_port: Check if a port has been added as UDP tunnel 1328 * @print_additional_fwver: Dump NIC-specific additional FW version info 1329 * @sensor_event: Handle a sensor event from MCDI 1330 * @rx_recycle_ring_size: Size of the RX recycle ring 1331 * @revision: Hardware architecture revision 1332 * @txd_ptr_tbl_base: TX descriptor ring base address 1333 * @rxd_ptr_tbl_base: RX descriptor ring base address 1334 * @buf_tbl_base: Buffer table base address 1335 * @evq_ptr_tbl_base: Event queue pointer table base address 1336 * @evq_rptr_tbl_base: Event queue read-pointer table base address 1337 * @max_dma_mask: Maximum possible DMA mask 1338 * @rx_prefix_size: Size of RX prefix before packet data 1339 * @rx_hash_offset: Offset of RX flow hash within prefix 1340 * @rx_ts_offset: Offset of timestamp within prefix 1341 * @rx_buffer_padding: Size of padding at end of RX packet 1342 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers 1343 * @always_rx_scatter: NIC will always scatter packets to multiple buffers 1344 * @option_descriptors: NIC supports TX option descriptors 1345 * @min_interrupt_mode: Lowest capability interrupt mode supported 1346 * from &enum efx_int_mode. 1347 * @timer_period_max: Maximum period of interrupt timer (in ticks) 1348 * @offload_features: net_device feature flags for protocol offload 1349 * features implemented in hardware 1350 * @mcdi_max_ver: Maximum MCDI version supported 1351 * @hwtstamp_filters: Mask of hardware timestamp filter types supported 1352 */ 1353 struct efx_nic_type { 1354 bool is_vf; 1355 unsigned int (*mem_bar)(struct efx_nic *efx); 1356 unsigned int (*mem_map_size)(struct efx_nic *efx); 1357 int (*probe)(struct efx_nic *efx); 1358 void (*remove)(struct efx_nic *efx); 1359 int (*init)(struct efx_nic *efx); 1360 int (*dimension_resources)(struct efx_nic *efx); 1361 void (*fini)(struct efx_nic *efx); 1362 void (*monitor)(struct efx_nic *efx); 1363 enum reset_type (*map_reset_reason)(enum reset_type reason); 1364 int (*map_reset_flags)(u32 *flags); 1365 int (*reset)(struct efx_nic *efx, enum reset_type method); 1366 int (*probe_port)(struct efx_nic *efx); 1367 void (*remove_port)(struct efx_nic *efx); 1368 bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *); 1369 int (*fini_dmaq)(struct efx_nic *efx); 1370 void (*prepare_flr)(struct efx_nic *efx); 1371 void (*finish_flr)(struct efx_nic *efx); 1372 size_t (*describe_stats)(struct efx_nic *efx, u8 *names); 1373 size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats, 1374 struct rtnl_link_stats64 *core_stats); 1375 size_t (*update_stats_atomic)(struct efx_nic *efx, u64 *full_stats, 1376 struct rtnl_link_stats64 *core_stats); 1377 void (*start_stats)(struct efx_nic *efx); 1378 void (*pull_stats)(struct efx_nic *efx); 1379 void (*stop_stats)(struct efx_nic *efx); 1380 void (*push_irq_moderation)(struct efx_channel *channel); 1381 int (*reconfigure_port)(struct efx_nic *efx); 1382 void (*prepare_enable_fc_tx)(struct efx_nic *efx); 1383 int (*reconfigure_mac)(struct efx_nic *efx, bool mtu_only); 1384 bool (*check_mac_fault)(struct efx_nic *efx); 1385 void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol); 1386 int (*set_wol)(struct efx_nic *efx, u32 type); 1387 void (*resume_wol)(struct efx_nic *efx); 1388 void (*get_fec_stats)(struct efx_nic *efx, 1389 struct ethtool_fec_stats *fec_stats); 1390 unsigned int (*check_caps)(const struct efx_nic *efx, 1391 u8 flag, 1392 u32 offset); 1393 int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests); 1394 int (*test_nvram)(struct efx_nic *efx); 1395 void (*mcdi_request)(struct efx_nic *efx, 1396 const efx_dword_t *hdr, size_t hdr_len, 1397 const efx_dword_t *sdu, size_t sdu_len); 1398 bool (*mcdi_poll_response)(struct efx_nic *efx); 1399 void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu, 1400 size_t pdu_offset, size_t pdu_len); 1401 int (*mcdi_poll_reboot)(struct efx_nic *efx); 1402 void (*mcdi_reboot_detected)(struct efx_nic *efx); 1403 void (*irq_enable_master)(struct efx_nic *efx); 1404 int (*irq_test_generate)(struct efx_nic *efx); 1405 void (*irq_disable_non_ev)(struct efx_nic *efx); 1406 irqreturn_t (*irq_handle_msi)(int irq, void *dev_id); 1407 irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id); 1408 int (*tx_probe)(struct efx_tx_queue *tx_queue); 1409 void (*tx_init)(struct efx_tx_queue *tx_queue); 1410 void (*tx_remove)(struct efx_tx_queue *tx_queue); 1411 void (*tx_write)(struct efx_tx_queue *tx_queue); 1412 netdev_tx_t (*tx_enqueue)(struct efx_tx_queue *tx_queue, struct sk_buff *skb); 1413 unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue, 1414 dma_addr_t dma_addr, unsigned int len); 1415 int (*rx_push_rss_config)(struct efx_nic *efx, bool user, 1416 const u32 *rx_indir_table, const u8 *key); 1417 int (*rx_pull_rss_config)(struct efx_nic *efx); 1418 int (*rx_push_rss_context_config)(struct efx_nic *efx, 1419 struct efx_rss_context_priv *ctx, 1420 const u32 *rx_indir_table, 1421 const u8 *key, bool delete); 1422 int (*rx_pull_rss_context_config)(struct efx_nic *efx, 1423 struct efx_rss_context *ctx); 1424 void (*rx_restore_rss_contexts)(struct efx_nic *efx); 1425 int (*rx_probe)(struct efx_rx_queue *rx_queue); 1426 void (*rx_init)(struct efx_rx_queue *rx_queue); 1427 void (*rx_remove)(struct efx_rx_queue *rx_queue); 1428 void (*rx_write)(struct efx_rx_queue *rx_queue); 1429 void (*rx_defer_refill)(struct efx_rx_queue *rx_queue); 1430 void (*rx_packet)(struct efx_channel *channel); 1431 bool (*rx_buf_hash_valid)(const u8 *prefix); 1432 int (*ev_probe)(struct efx_channel *channel); 1433 int (*ev_init)(struct efx_channel *channel); 1434 void (*ev_fini)(struct efx_channel *channel); 1435 void (*ev_remove)(struct efx_channel *channel); 1436 int (*ev_process)(struct efx_channel *channel, int quota); 1437 void (*ev_read_ack)(struct efx_channel *channel); 1438 void (*ev_test_generate)(struct efx_channel *channel); 1439 int (*filter_table_probe)(struct efx_nic *efx); 1440 void (*filter_table_restore)(struct efx_nic *efx); 1441 void (*filter_table_remove)(struct efx_nic *efx); 1442 void (*filter_update_rx_scatter)(struct efx_nic *efx); 1443 s32 (*filter_insert)(struct efx_nic *efx, 1444 struct efx_filter_spec *spec, bool replace); 1445 int (*filter_remove_safe)(struct efx_nic *efx, 1446 enum efx_filter_priority priority, 1447 u32 filter_id); 1448 int (*filter_get_safe)(struct efx_nic *efx, 1449 enum efx_filter_priority priority, 1450 u32 filter_id, struct efx_filter_spec *); 1451 int (*filter_clear_rx)(struct efx_nic *efx, 1452 enum efx_filter_priority priority); 1453 u32 (*filter_count_rx_used)(struct efx_nic *efx, 1454 enum efx_filter_priority priority); 1455 u32 (*filter_get_rx_id_limit)(struct efx_nic *efx); 1456 s32 (*filter_get_rx_ids)(struct efx_nic *efx, 1457 enum efx_filter_priority priority, 1458 u32 *buf, u32 size); 1459 #ifdef CONFIG_RFS_ACCEL 1460 bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id, 1461 unsigned int index); 1462 #endif 1463 #ifdef CONFIG_SFC_MTD 1464 int (*mtd_probe)(struct efx_nic *efx); 1465 void (*mtd_rename)(struct efx_mtd_partition *part); 1466 int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len, 1467 size_t *retlen, u8 *buffer); 1468 int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len); 1469 int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len, 1470 size_t *retlen, const u8 *buffer); 1471 int (*mtd_sync)(struct mtd_info *mtd); 1472 #endif 1473 void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time); 1474 int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp); 1475 int (*ptp_set_ts_config)(struct efx_nic *efx, 1476 struct kernel_hwtstamp_config *init); 1477 int (*sriov_configure)(struct efx_nic *efx, int num_vfs); 1478 int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid); 1479 int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid); 1480 int (*get_phys_port_id)(struct efx_nic *efx, 1481 struct netdev_phys_item_id *ppid); 1482 int (*sriov_init)(struct efx_nic *efx); 1483 void (*sriov_fini)(struct efx_nic *efx); 1484 bool (*sriov_wanted)(struct efx_nic *efx); 1485 int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, const u8 *mac); 1486 int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan, 1487 u8 qos); 1488 int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i, 1489 bool spoofchk); 1490 int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i, 1491 struct ifla_vf_info *ivi); 1492 int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i, 1493 int link_state); 1494 int (*vswitching_probe)(struct efx_nic *efx); 1495 int (*vswitching_restore)(struct efx_nic *efx); 1496 void (*vswitching_remove)(struct efx_nic *efx); 1497 int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr); 1498 int (*set_mac_address)(struct efx_nic *efx); 1499 u32 (*tso_versions)(struct efx_nic *efx); 1500 int (*udp_tnl_push_ports)(struct efx_nic *efx); 1501 bool (*udp_tnl_has_port)(struct efx_nic *efx, __be16 port); 1502 size_t (*print_additional_fwver)(struct efx_nic *efx, char *buf, 1503 size_t len); 1504 void (*sensor_event)(struct efx_nic *efx, efx_qword_t *ev); 1505 unsigned int (*rx_recycle_ring_size)(const struct efx_nic *efx); 1506 1507 int revision; 1508 unsigned int txd_ptr_tbl_base; 1509 unsigned int rxd_ptr_tbl_base; 1510 unsigned int buf_tbl_base; 1511 unsigned int evq_ptr_tbl_base; 1512 unsigned int evq_rptr_tbl_base; 1513 u64 max_dma_mask; 1514 unsigned int rx_prefix_size; 1515 unsigned int rx_hash_offset; 1516 unsigned int rx_ts_offset; 1517 unsigned int rx_buffer_padding; 1518 bool can_rx_scatter; 1519 bool always_rx_scatter; 1520 bool option_descriptors; 1521 unsigned int min_interrupt_mode; 1522 unsigned int timer_period_max; 1523 netdev_features_t offload_features; 1524 int mcdi_max_ver; 1525 unsigned int max_rx_ip_filters; 1526 u32 hwtstamp_filters; 1527 unsigned int rx_hash_key_size; 1528 }; 1529 1530 /************************************************************************** 1531 * 1532 * Prototypes and inline functions 1533 * 1534 *************************************************************************/ 1535 1536 static inline struct efx_channel * 1537 efx_get_channel(struct efx_nic *efx, unsigned index) 1538 { 1539 EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_channels); 1540 return efx->channel[index]; 1541 } 1542 1543 /* Iterate over all used channels */ 1544 #define efx_for_each_channel(_channel, _efx) \ 1545 for (_channel = (_efx)->channel[0]; \ 1546 _channel; \ 1547 _channel = (_channel->channel + 1 < (_efx)->n_channels) ? \ 1548 (_efx)->channel[_channel->channel + 1] : NULL) 1549 1550 /* Iterate over all used channels in reverse */ 1551 #define efx_for_each_channel_rev(_channel, _efx) \ 1552 for (_channel = (_efx)->channel[(_efx)->n_channels - 1]; \ 1553 _channel; \ 1554 _channel = _channel->channel ? \ 1555 (_efx)->channel[_channel->channel - 1] : NULL) 1556 1557 static inline struct efx_channel * 1558 efx_get_tx_channel(struct efx_nic *efx, unsigned int index) 1559 { 1560 EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels); 1561 return efx->channel[efx->tx_channel_offset + index]; 1562 } 1563 1564 static inline struct efx_channel * 1565 efx_get_xdp_channel(struct efx_nic *efx, unsigned int index) 1566 { 1567 EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_xdp_channels); 1568 return efx->channel[efx->xdp_channel_offset + index]; 1569 } 1570 1571 static inline bool efx_channel_is_xdp_tx(struct efx_channel *channel) 1572 { 1573 return channel->channel - channel->efx->xdp_channel_offset < 1574 channel->efx->n_xdp_channels; 1575 } 1576 1577 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel) 1578 { 1579 return channel && channel->channel >= channel->efx->tx_channel_offset; 1580 } 1581 1582 static inline unsigned int efx_channel_num_tx_queues(struct efx_channel *channel) 1583 { 1584 if (efx_channel_is_xdp_tx(channel)) 1585 return channel->efx->xdp_tx_per_channel; 1586 return channel->efx->tx_queues_per_channel; 1587 } 1588 1589 static inline struct efx_tx_queue * 1590 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned int type) 1591 { 1592 EFX_WARN_ON_ONCE_PARANOID(type >= EFX_TXQ_TYPES); 1593 return channel->tx_queue_by_type[type]; 1594 } 1595 1596 static inline struct efx_tx_queue * 1597 efx_get_tx_queue(struct efx_nic *efx, unsigned int index, unsigned int type) 1598 { 1599 struct efx_channel *channel = efx_get_tx_channel(efx, index); 1600 1601 return efx_channel_get_tx_queue(channel, type); 1602 } 1603 1604 /* Iterate over all TX queues belonging to a channel */ 1605 #define efx_for_each_channel_tx_queue(_tx_queue, _channel) \ 1606 if (!efx_channel_has_tx_queues(_channel)) \ 1607 ; \ 1608 else \ 1609 for (_tx_queue = (_channel)->tx_queue; \ 1610 _tx_queue < (_channel)->tx_queue + \ 1611 efx_channel_num_tx_queues(_channel); \ 1612 _tx_queue++) 1613 1614 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel) 1615 { 1616 return channel->rx_queue.core_index >= 0; 1617 } 1618 1619 static inline struct efx_rx_queue * 1620 efx_channel_get_rx_queue(struct efx_channel *channel) 1621 { 1622 EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_rx_queue(channel)); 1623 return &channel->rx_queue; 1624 } 1625 1626 /* Iterate over all RX queues belonging to a channel */ 1627 #define efx_for_each_channel_rx_queue(_rx_queue, _channel) \ 1628 if (!efx_channel_has_rx_queue(_channel)) \ 1629 ; \ 1630 else \ 1631 for (_rx_queue = &(_channel)->rx_queue; \ 1632 _rx_queue; \ 1633 _rx_queue = NULL) 1634 1635 static inline struct efx_channel * 1636 efx_rx_queue_channel(struct efx_rx_queue *rx_queue) 1637 { 1638 return container_of(rx_queue, struct efx_channel, rx_queue); 1639 } 1640 1641 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue) 1642 { 1643 return efx_rx_queue_channel(rx_queue)->channel; 1644 } 1645 1646 /* Returns a pointer to the specified receive buffer in the RX 1647 * descriptor queue. 1648 */ 1649 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue, 1650 unsigned int index) 1651 { 1652 return &rx_queue->buffer[index]; 1653 } 1654 1655 static inline struct efx_rx_buffer * 1656 efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf) 1657 { 1658 if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask))) 1659 return efx_rx_buffer(rx_queue, 0); 1660 else 1661 return rx_buf + 1; 1662 } 1663 1664 /** 1665 * EFX_MAX_FRAME_LEN - calculate maximum frame length 1666 * 1667 * This calculates the maximum frame length that will be used for a 1668 * given MTU. The frame length will be equal to the MTU plus a 1669 * constant amount of header space and padding. This is the quantity 1670 * that the net driver will program into the MAC as the maximum frame 1671 * length. 1672 * 1673 * The 10G MAC requires 8-byte alignment on the frame 1674 * length, so we round up to the nearest 8. 1675 * 1676 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an 1677 * XGMII cycle). If the frame length reaches the maximum value in the 1678 * same cycle, the XMAC can miss the IPG altogether. We work around 1679 * this by adding a further 16 bytes. 1680 */ 1681 #define EFX_FRAME_PAD 16 1682 #define EFX_MAX_FRAME_LEN(mtu) \ 1683 (ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8)) 1684 1685 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb) 1686 { 1687 return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP; 1688 } 1689 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb) 1690 { 1691 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1692 } 1693 1694 /* Get the max fill level of the TX queues on this channel */ 1695 static inline unsigned int 1696 efx_channel_tx_fill_level(struct efx_channel *channel) 1697 { 1698 struct efx_tx_queue *tx_queue; 1699 unsigned int fill_level = 0; 1700 1701 efx_for_each_channel_tx_queue(tx_queue, channel) 1702 fill_level = max(fill_level, 1703 tx_queue->insert_count - tx_queue->read_count); 1704 1705 return fill_level; 1706 } 1707 1708 /* Conservative approximation of efx_channel_tx_fill_level using cached value */ 1709 static inline unsigned int 1710 efx_channel_tx_old_fill_level(struct efx_channel *channel) 1711 { 1712 struct efx_tx_queue *tx_queue; 1713 unsigned int fill_level = 0; 1714 1715 efx_for_each_channel_tx_queue(tx_queue, channel) 1716 fill_level = max(fill_level, 1717 tx_queue->insert_count - tx_queue->old_read_count); 1718 1719 return fill_level; 1720 } 1721 1722 /* Get all supported features. 1723 * If a feature is not fixed, it is present in hw_features. 1724 * If a feature is fixed, it does not present in hw_features, but 1725 * always in features. 1726 */ 1727 static inline netdev_features_t efx_supported_features(const struct efx_nic *efx) 1728 { 1729 const struct net_device *net_dev = efx->net_dev; 1730 1731 return net_dev->features | net_dev->hw_features; 1732 } 1733 1734 /* Get the current TX queue insert index. */ 1735 static inline unsigned int 1736 efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue) 1737 { 1738 return tx_queue->insert_count & tx_queue->ptr_mask; 1739 } 1740 1741 /* Get a TX buffer. */ 1742 static inline struct efx_tx_buffer * 1743 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue) 1744 { 1745 return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)]; 1746 } 1747 1748 /* Get a TX buffer, checking it's not currently in use. */ 1749 static inline struct efx_tx_buffer * 1750 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue) 1751 { 1752 struct efx_tx_buffer *buffer = 1753 __efx_tx_queue_get_insert_buffer(tx_queue); 1754 1755 EFX_WARN_ON_ONCE_PARANOID(buffer->len); 1756 EFX_WARN_ON_ONCE_PARANOID(buffer->flags); 1757 EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len); 1758 1759 return buffer; 1760 } 1761 1762 #endif /* EFX_NET_DRIVER_H */ 1763