xref: /linux/drivers/net/ethernet/sfc/net_driver.h (revision b85d45947951d23cb22d90caecf4c1eb81342c96)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 /* Common definitions for all Efx net driver code */
12 
13 #ifndef EFX_NET_DRIVER_H
14 #define EFX_NET_DRIVER_H
15 
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/ethtool.h>
19 #include <linux/if_vlan.h>
20 #include <linux/timer.h>
21 #include <linux/mdio.h>
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/device.h>
25 #include <linux/highmem.h>
26 #include <linux/workqueue.h>
27 #include <linux/mutex.h>
28 #include <linux/rwsem.h>
29 #include <linux/vmalloc.h>
30 #include <linux/i2c.h>
31 #include <linux/mtd/mtd.h>
32 #include <net/busy_poll.h>
33 
34 #include "enum.h"
35 #include "bitfield.h"
36 #include "filter.h"
37 
38 /**************************************************************************
39  *
40  * Build definitions
41  *
42  **************************************************************************/
43 
44 #define EFX_DRIVER_VERSION	"4.0"
45 
46 #ifdef DEBUG
47 #define EFX_BUG_ON_PARANOID(x) BUG_ON(x)
48 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
49 #else
50 #define EFX_BUG_ON_PARANOID(x) do {} while (0)
51 #define EFX_WARN_ON_PARANOID(x) do {} while (0)
52 #endif
53 
54 /**************************************************************************
55  *
56  * Efx data structures
57  *
58  **************************************************************************/
59 
60 #define EFX_MAX_CHANNELS 32U
61 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
62 #define EFX_EXTRA_CHANNEL_IOV	0
63 #define EFX_EXTRA_CHANNEL_PTP	1
64 #define EFX_MAX_EXTRA_CHANNELS	2U
65 
66 /* Checksum generation is a per-queue option in hardware, so each
67  * queue visible to the networking core is backed by two hardware TX
68  * queues. */
69 #define EFX_MAX_TX_TC		2
70 #define EFX_MAX_CORE_TX_QUEUES	(EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
71 #define EFX_TXQ_TYPE_OFFLOAD	1	/* flag */
72 #define EFX_TXQ_TYPE_HIGHPRI	2	/* flag */
73 #define EFX_TXQ_TYPES		4
74 #define EFX_MAX_TX_QUEUES	(EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
75 
76 /* Maximum possible MTU the driver supports */
77 #define EFX_MAX_MTU (9 * 1024)
78 
79 /* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
80  * and should be a multiple of the cache line size.
81  */
82 #define EFX_RX_USR_BUF_SIZE	(2048 - 256)
83 
84 /* If possible, we should ensure cache line alignment at start and end
85  * of every buffer.  Otherwise, we just need to ensure 4-byte
86  * alignment of the network header.
87  */
88 #if NET_IP_ALIGN == 0
89 #define EFX_RX_BUF_ALIGNMENT	L1_CACHE_BYTES
90 #else
91 #define EFX_RX_BUF_ALIGNMENT	4
92 #endif
93 
94 /* Forward declare Precision Time Protocol (PTP) support structure. */
95 struct efx_ptp_data;
96 struct hwtstamp_config;
97 
98 struct efx_self_tests;
99 
100 /**
101  * struct efx_buffer - A general-purpose DMA buffer
102  * @addr: host base address of the buffer
103  * @dma_addr: DMA base address of the buffer
104  * @len: Buffer length, in bytes
105  *
106  * The NIC uses these buffers for its interrupt status registers and
107  * MAC stats dumps.
108  */
109 struct efx_buffer {
110 	void *addr;
111 	dma_addr_t dma_addr;
112 	unsigned int len;
113 };
114 
115 /**
116  * struct efx_special_buffer - DMA buffer entered into buffer table
117  * @buf: Standard &struct efx_buffer
118  * @index: Buffer index within controller;s buffer table
119  * @entries: Number of buffer table entries
120  *
121  * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
122  * Event and descriptor rings are addressed via one or more buffer
123  * table entries (and so can be physically non-contiguous, although we
124  * currently do not take advantage of that).  On Falcon and Siena we
125  * have to take care of allocating and initialising the entries
126  * ourselves.  On later hardware this is managed by the firmware and
127  * @index and @entries are left as 0.
128  */
129 struct efx_special_buffer {
130 	struct efx_buffer buf;
131 	unsigned int index;
132 	unsigned int entries;
133 };
134 
135 /**
136  * struct efx_tx_buffer - buffer state for a TX descriptor
137  * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
138  *	freed when descriptor completes
139  * @heap_buf: When @flags & %EFX_TX_BUF_HEAP, the associated heap buffer to be
140  *	freed when descriptor completes.
141  * @option: When @flags & %EFX_TX_BUF_OPTION, a NIC-specific option descriptor.
142  * @dma_addr: DMA address of the fragment.
143  * @flags: Flags for allocation and DMA mapping type
144  * @len: Length of this fragment.
145  *	This field is zero when the queue slot is empty.
146  * @unmap_len: Length of this fragment to unmap
147  * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
148  * Only valid if @unmap_len != 0.
149  */
150 struct efx_tx_buffer {
151 	union {
152 		const struct sk_buff *skb;
153 		void *heap_buf;
154 	};
155 	union {
156 		efx_qword_t option;
157 		dma_addr_t dma_addr;
158 	};
159 	unsigned short flags;
160 	unsigned short len;
161 	unsigned short unmap_len;
162 	unsigned short dma_offset;
163 };
164 #define EFX_TX_BUF_CONT		1	/* not last descriptor of packet */
165 #define EFX_TX_BUF_SKB		2	/* buffer is last part of skb */
166 #define EFX_TX_BUF_HEAP		4	/* buffer was allocated with kmalloc() */
167 #define EFX_TX_BUF_MAP_SINGLE	8	/* buffer was mapped with dma_map_single() */
168 #define EFX_TX_BUF_OPTION	0x10	/* empty buffer for option descriptor */
169 
170 /**
171  * struct efx_tx_queue - An Efx TX queue
172  *
173  * This is a ring buffer of TX fragments.
174  * Since the TX completion path always executes on the same
175  * CPU and the xmit path can operate on different CPUs,
176  * performance is increased by ensuring that the completion
177  * path and the xmit path operate on different cache lines.
178  * This is particularly important if the xmit path is always
179  * executing on one CPU which is different from the completion
180  * path.  There is also a cache line for members which are
181  * read but not written on the fast path.
182  *
183  * @efx: The associated Efx NIC
184  * @queue: DMA queue number
185  * @channel: The associated channel
186  * @core_txq: The networking core TX queue structure
187  * @buffer: The software buffer ring
188  * @tsoh_page: Array of pages of TSO header buffers
189  * @txd: The hardware descriptor ring
190  * @ptr_mask: The size of the ring minus 1.
191  * @piobuf: PIO buffer region for this TX queue (shared with its partner).
192  *	Size of the region is efx_piobuf_size.
193  * @piobuf_offset: Buffer offset to be specified in PIO descriptors
194  * @initialised: Has hardware queue been initialised?
195  * @read_count: Current read pointer.
196  *	This is the number of buffers that have been removed from both rings.
197  * @old_write_count: The value of @write_count when last checked.
198  *	This is here for performance reasons.  The xmit path will
199  *	only get the up-to-date value of @write_count if this
200  *	variable indicates that the queue is empty.  This is to
201  *	avoid cache-line ping-pong between the xmit path and the
202  *	completion path.
203  * @merge_events: Number of TX merged completion events
204  * @insert_count: Current insert pointer
205  *	This is the number of buffers that have been added to the
206  *	software ring.
207  * @write_count: Current write pointer
208  *	This is the number of buffers that have been added to the
209  *	hardware ring.
210  * @old_read_count: The value of read_count when last checked.
211  *	This is here for performance reasons.  The xmit path will
212  *	only get the up-to-date value of read_count if this
213  *	variable indicates that the queue is full.  This is to
214  *	avoid cache-line ping-pong between the xmit path and the
215  *	completion path.
216  * @tso_bursts: Number of times TSO xmit invoked by kernel
217  * @tso_long_headers: Number of packets with headers too long for standard
218  *	blocks
219  * @tso_packets: Number of packets via the TSO xmit path
220  * @pushes: Number of times the TX push feature has been used
221  * @pio_packets: Number of times the TX PIO feature has been used
222  * @empty_read_count: If the completion path has seen the queue as empty
223  *	and the transmission path has not yet checked this, the value of
224  *	@read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
225  */
226 struct efx_tx_queue {
227 	/* Members which don't change on the fast path */
228 	struct efx_nic *efx ____cacheline_aligned_in_smp;
229 	unsigned queue;
230 	struct efx_channel *channel;
231 	struct netdev_queue *core_txq;
232 	struct efx_tx_buffer *buffer;
233 	struct efx_buffer *tsoh_page;
234 	struct efx_special_buffer txd;
235 	unsigned int ptr_mask;
236 	void __iomem *piobuf;
237 	unsigned int piobuf_offset;
238 	bool initialised;
239 
240 	/* Members used mainly on the completion path */
241 	unsigned int read_count ____cacheline_aligned_in_smp;
242 	unsigned int old_write_count;
243 	unsigned int merge_events;
244 	unsigned int bytes_compl;
245 	unsigned int pkts_compl;
246 
247 	/* Members used only on the xmit path */
248 	unsigned int insert_count ____cacheline_aligned_in_smp;
249 	unsigned int write_count;
250 	unsigned int old_read_count;
251 	unsigned int tso_bursts;
252 	unsigned int tso_long_headers;
253 	unsigned int tso_packets;
254 	unsigned int pushes;
255 	unsigned int pio_packets;
256 	/* Statistics to supplement MAC stats */
257 	unsigned long tx_packets;
258 
259 	/* Members shared between paths and sometimes updated */
260 	unsigned int empty_read_count ____cacheline_aligned_in_smp;
261 #define EFX_EMPTY_COUNT_VALID 0x80000000
262 	atomic_t flush_outstanding;
263 };
264 
265 /**
266  * struct efx_rx_buffer - An Efx RX data buffer
267  * @dma_addr: DMA base address of the buffer
268  * @page: The associated page buffer.
269  *	Will be %NULL if the buffer slot is currently free.
270  * @page_offset: If pending: offset in @page of DMA base address.
271  *	If completed: offset in @page of Ethernet header.
272  * @len: If pending: length for DMA descriptor.
273  *	If completed: received length, excluding hash prefix.
274  * @flags: Flags for buffer and packet state.  These are only set on the
275  *	first buffer of a scattered packet.
276  */
277 struct efx_rx_buffer {
278 	dma_addr_t dma_addr;
279 	struct page *page;
280 	u16 page_offset;
281 	u16 len;
282 	u16 flags;
283 };
284 #define EFX_RX_BUF_LAST_IN_PAGE	0x0001
285 #define EFX_RX_PKT_CSUMMED	0x0002
286 #define EFX_RX_PKT_DISCARD	0x0004
287 #define EFX_RX_PKT_TCP		0x0040
288 #define EFX_RX_PKT_PREFIX_LEN	0x0080	/* length is in prefix only */
289 
290 /**
291  * struct efx_rx_page_state - Page-based rx buffer state
292  *
293  * Inserted at the start of every page allocated for receive buffers.
294  * Used to facilitate sharing dma mappings between recycled rx buffers
295  * and those passed up to the kernel.
296  *
297  * @dma_addr: The dma address of this page.
298  */
299 struct efx_rx_page_state {
300 	dma_addr_t dma_addr;
301 
302 	unsigned int __pad[0] ____cacheline_aligned;
303 };
304 
305 /**
306  * struct efx_rx_queue - An Efx RX queue
307  * @efx: The associated Efx NIC
308  * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
309  *	is associated with a real RX queue.
310  * @buffer: The software buffer ring
311  * @rxd: The hardware descriptor ring
312  * @ptr_mask: The size of the ring minus 1.
313  * @refill_enabled: Enable refill whenever fill level is low
314  * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
315  *	@rxq_flush_pending.
316  * @added_count: Number of buffers added to the receive queue.
317  * @notified_count: Number of buffers given to NIC (<= @added_count).
318  * @removed_count: Number of buffers removed from the receive queue.
319  * @scatter_n: Used by NIC specific receive code.
320  * @scatter_len: Used by NIC specific receive code.
321  * @page_ring: The ring to store DMA mapped pages for reuse.
322  * @page_add: Counter to calculate the write pointer for the recycle ring.
323  * @page_remove: Counter to calculate the read pointer for the recycle ring.
324  * @page_recycle_count: The number of pages that have been recycled.
325  * @page_recycle_failed: The number of pages that couldn't be recycled because
326  *      the kernel still held a reference to them.
327  * @page_recycle_full: The number of pages that were released because the
328  *      recycle ring was full.
329  * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
330  * @max_fill: RX descriptor maximum fill level (<= ring size)
331  * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
332  *	(<= @max_fill)
333  * @min_fill: RX descriptor minimum non-zero fill level.
334  *	This records the minimum fill level observed when a ring
335  *	refill was triggered.
336  * @recycle_count: RX buffer recycle counter.
337  * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
338  */
339 struct efx_rx_queue {
340 	struct efx_nic *efx;
341 	int core_index;
342 	struct efx_rx_buffer *buffer;
343 	struct efx_special_buffer rxd;
344 	unsigned int ptr_mask;
345 	bool refill_enabled;
346 	bool flush_pending;
347 
348 	unsigned int added_count;
349 	unsigned int notified_count;
350 	unsigned int removed_count;
351 	unsigned int scatter_n;
352 	unsigned int scatter_len;
353 	struct page **page_ring;
354 	unsigned int page_add;
355 	unsigned int page_remove;
356 	unsigned int page_recycle_count;
357 	unsigned int page_recycle_failed;
358 	unsigned int page_recycle_full;
359 	unsigned int page_ptr_mask;
360 	unsigned int max_fill;
361 	unsigned int fast_fill_trigger;
362 	unsigned int min_fill;
363 	unsigned int min_overfill;
364 	unsigned int recycle_count;
365 	struct timer_list slow_fill;
366 	unsigned int slow_fill_count;
367 	/* Statistics to supplement MAC stats */
368 	unsigned long rx_packets;
369 };
370 
371 enum efx_sync_events_state {
372 	SYNC_EVENTS_DISABLED = 0,
373 	SYNC_EVENTS_QUIESCENT,
374 	SYNC_EVENTS_REQUESTED,
375 	SYNC_EVENTS_VALID,
376 };
377 
378 /**
379  * struct efx_channel - An Efx channel
380  *
381  * A channel comprises an event queue, at least one TX queue, at least
382  * one RX queue, and an associated tasklet for processing the event
383  * queue.
384  *
385  * @efx: Associated Efx NIC
386  * @channel: Channel instance number
387  * @type: Channel type definition
388  * @eventq_init: Event queue initialised flag
389  * @enabled: Channel enabled indicator
390  * @irq: IRQ number (MSI and MSI-X only)
391  * @irq_moderation: IRQ moderation value (in hardware ticks)
392  * @napi_dev: Net device used with NAPI
393  * @napi_str: NAPI control structure
394  * @state: state for NAPI vs busy polling
395  * @state_lock: lock protecting @state
396  * @eventq: Event queue buffer
397  * @eventq_mask: Event queue pointer mask
398  * @eventq_read_ptr: Event queue read pointer
399  * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
400  * @irq_count: Number of IRQs since last adaptive moderation decision
401  * @irq_mod_score: IRQ moderation score
402  * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
403  * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
404  * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
405  * @n_rx_mcast_mismatch: Count of unmatched multicast frames
406  * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
407  * @n_rx_overlength: Count of RX_OVERLENGTH errors
408  * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
409  * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
410  *	lack of descriptors
411  * @n_rx_merge_events: Number of RX merged completion events
412  * @n_rx_merge_packets: Number of RX packets completed by merged events
413  * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
414  *	__efx_rx_packet(), or zero if there is none
415  * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
416  *	by __efx_rx_packet(), if @rx_pkt_n_frags != 0
417  * @rx_queue: RX queue for this channel
418  * @tx_queue: TX queues for this channel
419  * @sync_events_state: Current state of sync events on this channel
420  * @sync_timestamp_major: Major part of the last ptp sync event
421  * @sync_timestamp_minor: Minor part of the last ptp sync event
422  */
423 struct efx_channel {
424 	struct efx_nic *efx;
425 	int channel;
426 	const struct efx_channel_type *type;
427 	bool eventq_init;
428 	bool enabled;
429 	int irq;
430 	unsigned int irq_moderation;
431 	struct net_device *napi_dev;
432 	struct napi_struct napi_str;
433 #ifdef CONFIG_NET_RX_BUSY_POLL
434 	unsigned int state;
435 	spinlock_t state_lock;
436 #define EFX_CHANNEL_STATE_IDLE		0
437 #define EFX_CHANNEL_STATE_NAPI		(1 << 0)  /* NAPI owns this channel */
438 #define EFX_CHANNEL_STATE_POLL		(1 << 1)  /* poll owns this channel */
439 #define EFX_CHANNEL_STATE_DISABLED	(1 << 2)  /* channel is disabled */
440 #define EFX_CHANNEL_STATE_NAPI_YIELD	(1 << 3)  /* NAPI yielded this channel */
441 #define EFX_CHANNEL_STATE_POLL_YIELD	(1 << 4)  /* poll yielded this channel */
442 #define EFX_CHANNEL_OWNED \
443 	(EFX_CHANNEL_STATE_NAPI | EFX_CHANNEL_STATE_POLL)
444 #define EFX_CHANNEL_LOCKED \
445 	(EFX_CHANNEL_OWNED | EFX_CHANNEL_STATE_DISABLED)
446 #define EFX_CHANNEL_USER_PEND \
447 	(EFX_CHANNEL_STATE_POLL | EFX_CHANNEL_STATE_POLL_YIELD)
448 #endif /* CONFIG_NET_RX_BUSY_POLL */
449 	struct efx_special_buffer eventq;
450 	unsigned int eventq_mask;
451 	unsigned int eventq_read_ptr;
452 	int event_test_cpu;
453 
454 	unsigned int irq_count;
455 	unsigned int irq_mod_score;
456 #ifdef CONFIG_RFS_ACCEL
457 	unsigned int rfs_filters_added;
458 #endif
459 
460 	unsigned n_rx_tobe_disc;
461 	unsigned n_rx_ip_hdr_chksum_err;
462 	unsigned n_rx_tcp_udp_chksum_err;
463 	unsigned n_rx_mcast_mismatch;
464 	unsigned n_rx_frm_trunc;
465 	unsigned n_rx_overlength;
466 	unsigned n_skbuff_leaks;
467 	unsigned int n_rx_nodesc_trunc;
468 	unsigned int n_rx_merge_events;
469 	unsigned int n_rx_merge_packets;
470 
471 	unsigned int rx_pkt_n_frags;
472 	unsigned int rx_pkt_index;
473 
474 	struct efx_rx_queue rx_queue;
475 	struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
476 
477 	enum efx_sync_events_state sync_events_state;
478 	u32 sync_timestamp_major;
479 	u32 sync_timestamp_minor;
480 };
481 
482 #ifdef CONFIG_NET_RX_BUSY_POLL
483 static inline void efx_channel_init_lock(struct efx_channel *channel)
484 {
485 	spin_lock_init(&channel->state_lock);
486 }
487 
488 /* Called from the device poll routine to get ownership of a channel. */
489 static inline bool efx_channel_lock_napi(struct efx_channel *channel)
490 {
491 	bool rc = true;
492 
493 	spin_lock_bh(&channel->state_lock);
494 	if (channel->state & EFX_CHANNEL_LOCKED) {
495 		WARN_ON(channel->state & EFX_CHANNEL_STATE_NAPI);
496 		channel->state |= EFX_CHANNEL_STATE_NAPI_YIELD;
497 		rc = false;
498 	} else {
499 		/* we don't care if someone yielded */
500 		channel->state = EFX_CHANNEL_STATE_NAPI;
501 	}
502 	spin_unlock_bh(&channel->state_lock);
503 	return rc;
504 }
505 
506 static inline void efx_channel_unlock_napi(struct efx_channel *channel)
507 {
508 	spin_lock_bh(&channel->state_lock);
509 	WARN_ON(channel->state &
510 		(EFX_CHANNEL_STATE_POLL | EFX_CHANNEL_STATE_NAPI_YIELD));
511 
512 	channel->state &= EFX_CHANNEL_STATE_DISABLED;
513 	spin_unlock_bh(&channel->state_lock);
514 }
515 
516 /* Called from efx_busy_poll(). */
517 static inline bool efx_channel_lock_poll(struct efx_channel *channel)
518 {
519 	bool rc = true;
520 
521 	spin_lock_bh(&channel->state_lock);
522 	if ((channel->state & EFX_CHANNEL_LOCKED)) {
523 		channel->state |= EFX_CHANNEL_STATE_POLL_YIELD;
524 		rc = false;
525 	} else {
526 		/* preserve yield marks */
527 		channel->state |= EFX_CHANNEL_STATE_POLL;
528 	}
529 	spin_unlock_bh(&channel->state_lock);
530 	return rc;
531 }
532 
533 /* Returns true if NAPI tried to get the channel while it was locked. */
534 static inline void efx_channel_unlock_poll(struct efx_channel *channel)
535 {
536 	spin_lock_bh(&channel->state_lock);
537 	WARN_ON(channel->state & EFX_CHANNEL_STATE_NAPI);
538 
539 	/* will reset state to idle, unless channel is disabled */
540 	channel->state &= EFX_CHANNEL_STATE_DISABLED;
541 	spin_unlock_bh(&channel->state_lock);
542 }
543 
544 /* True if a socket is polling, even if it did not get the lock. */
545 static inline bool efx_channel_busy_polling(struct efx_channel *channel)
546 {
547 	WARN_ON(!(channel->state & EFX_CHANNEL_OWNED));
548 	return channel->state & EFX_CHANNEL_USER_PEND;
549 }
550 
551 static inline void efx_channel_enable(struct efx_channel *channel)
552 {
553 	spin_lock_bh(&channel->state_lock);
554 	channel->state = EFX_CHANNEL_STATE_IDLE;
555 	spin_unlock_bh(&channel->state_lock);
556 }
557 
558 /* False if the channel is currently owned. */
559 static inline bool efx_channel_disable(struct efx_channel *channel)
560 {
561 	bool rc = true;
562 
563 	spin_lock_bh(&channel->state_lock);
564 	if (channel->state & EFX_CHANNEL_OWNED)
565 		rc = false;
566 	channel->state |= EFX_CHANNEL_STATE_DISABLED;
567 	spin_unlock_bh(&channel->state_lock);
568 
569 	return rc;
570 }
571 
572 #else /* CONFIG_NET_RX_BUSY_POLL */
573 
574 static inline void efx_channel_init_lock(struct efx_channel *channel)
575 {
576 }
577 
578 static inline bool efx_channel_lock_napi(struct efx_channel *channel)
579 {
580 	return true;
581 }
582 
583 static inline void efx_channel_unlock_napi(struct efx_channel *channel)
584 {
585 }
586 
587 static inline bool efx_channel_lock_poll(struct efx_channel *channel)
588 {
589 	return false;
590 }
591 
592 static inline void efx_channel_unlock_poll(struct efx_channel *channel)
593 {
594 }
595 
596 static inline bool efx_channel_busy_polling(struct efx_channel *channel)
597 {
598 	return false;
599 }
600 
601 static inline void efx_channel_enable(struct efx_channel *channel)
602 {
603 }
604 
605 static inline bool efx_channel_disable(struct efx_channel *channel)
606 {
607 	return true;
608 }
609 #endif /* CONFIG_NET_RX_BUSY_POLL */
610 
611 /**
612  * struct efx_msi_context - Context for each MSI
613  * @efx: The associated NIC
614  * @index: Index of the channel/IRQ
615  * @name: Name of the channel/IRQ
616  *
617  * Unlike &struct efx_channel, this is never reallocated and is always
618  * safe for the IRQ handler to access.
619  */
620 struct efx_msi_context {
621 	struct efx_nic *efx;
622 	unsigned int index;
623 	char name[IFNAMSIZ + 6];
624 };
625 
626 /**
627  * struct efx_channel_type - distinguishes traffic and extra channels
628  * @handle_no_channel: Handle failure to allocate an extra channel
629  * @pre_probe: Set up extra state prior to initialisation
630  * @post_remove: Tear down extra state after finalisation, if allocated.
631  *	May be called on channels that have not been probed.
632  * @get_name: Generate the channel's name (used for its IRQ handler)
633  * @copy: Copy the channel state prior to reallocation.  May be %NULL if
634  *	reallocation is not supported.
635  * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
636  * @keep_eventq: Flag for whether event queue should be kept initialised
637  *	while the device is stopped
638  */
639 struct efx_channel_type {
640 	void (*handle_no_channel)(struct efx_nic *);
641 	int (*pre_probe)(struct efx_channel *);
642 	void (*post_remove)(struct efx_channel *);
643 	void (*get_name)(struct efx_channel *, char *buf, size_t len);
644 	struct efx_channel *(*copy)(const struct efx_channel *);
645 	bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
646 	bool keep_eventq;
647 };
648 
649 enum efx_led_mode {
650 	EFX_LED_OFF	= 0,
651 	EFX_LED_ON	= 1,
652 	EFX_LED_DEFAULT	= 2
653 };
654 
655 #define STRING_TABLE_LOOKUP(val, member) \
656 	((val) < member ## _max) ? member ## _names[val] : "(invalid)"
657 
658 extern const char *const efx_loopback_mode_names[];
659 extern const unsigned int efx_loopback_mode_max;
660 #define LOOPBACK_MODE(efx) \
661 	STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
662 
663 extern const char *const efx_reset_type_names[];
664 extern const unsigned int efx_reset_type_max;
665 #define RESET_TYPE(type) \
666 	STRING_TABLE_LOOKUP(type, efx_reset_type)
667 
668 enum efx_int_mode {
669 	/* Be careful if altering to correct macro below */
670 	EFX_INT_MODE_MSIX = 0,
671 	EFX_INT_MODE_MSI = 1,
672 	EFX_INT_MODE_LEGACY = 2,
673 	EFX_INT_MODE_MAX	/* Insert any new items before this */
674 };
675 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
676 
677 enum nic_state {
678 	STATE_UNINIT = 0,	/* device being probed/removed or is frozen */
679 	STATE_READY = 1,	/* hardware ready and netdev registered */
680 	STATE_DISABLED = 2,	/* device disabled due to hardware errors */
681 	STATE_RECOVERY = 3,	/* device recovering from PCI error */
682 };
683 
684 /* Forward declaration */
685 struct efx_nic;
686 
687 /* Pseudo bit-mask flow control field */
688 #define EFX_FC_RX	FLOW_CTRL_RX
689 #define EFX_FC_TX	FLOW_CTRL_TX
690 #define EFX_FC_AUTO	4
691 
692 /**
693  * struct efx_link_state - Current state of the link
694  * @up: Link is up
695  * @fd: Link is full-duplex
696  * @fc: Actual flow control flags
697  * @speed: Link speed (Mbps)
698  */
699 struct efx_link_state {
700 	bool up;
701 	bool fd;
702 	u8 fc;
703 	unsigned int speed;
704 };
705 
706 static inline bool efx_link_state_equal(const struct efx_link_state *left,
707 					const struct efx_link_state *right)
708 {
709 	return left->up == right->up && left->fd == right->fd &&
710 		left->fc == right->fc && left->speed == right->speed;
711 }
712 
713 /**
714  * struct efx_phy_operations - Efx PHY operations table
715  * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
716  *	efx->loopback_modes.
717  * @init: Initialise PHY
718  * @fini: Shut down PHY
719  * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
720  * @poll: Update @link_state and report whether it changed.
721  *	Serialised by the mac_lock.
722  * @get_settings: Get ethtool settings. Serialised by the mac_lock.
723  * @set_settings: Set ethtool settings. Serialised by the mac_lock.
724  * @set_npage_adv: Set abilities advertised in (Extended) Next Page
725  *	(only needed where AN bit is set in mmds)
726  * @test_alive: Test that PHY is 'alive' (online)
727  * @test_name: Get the name of a PHY-specific test/result
728  * @run_tests: Run tests and record results as appropriate (offline).
729  *	Flags are the ethtool tests flags.
730  */
731 struct efx_phy_operations {
732 	int (*probe) (struct efx_nic *efx);
733 	int (*init) (struct efx_nic *efx);
734 	void (*fini) (struct efx_nic *efx);
735 	void (*remove) (struct efx_nic *efx);
736 	int (*reconfigure) (struct efx_nic *efx);
737 	bool (*poll) (struct efx_nic *efx);
738 	void (*get_settings) (struct efx_nic *efx,
739 			      struct ethtool_cmd *ecmd);
740 	int (*set_settings) (struct efx_nic *efx,
741 			     struct ethtool_cmd *ecmd);
742 	void (*set_npage_adv) (struct efx_nic *efx, u32);
743 	int (*test_alive) (struct efx_nic *efx);
744 	const char *(*test_name) (struct efx_nic *efx, unsigned int index);
745 	int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
746 	int (*get_module_eeprom) (struct efx_nic *efx,
747 			       struct ethtool_eeprom *ee,
748 			       u8 *data);
749 	int (*get_module_info) (struct efx_nic *efx,
750 				struct ethtool_modinfo *modinfo);
751 };
752 
753 /**
754  * enum efx_phy_mode - PHY operating mode flags
755  * @PHY_MODE_NORMAL: on and should pass traffic
756  * @PHY_MODE_TX_DISABLED: on with TX disabled
757  * @PHY_MODE_LOW_POWER: set to low power through MDIO
758  * @PHY_MODE_OFF: switched off through external control
759  * @PHY_MODE_SPECIAL: on but will not pass traffic
760  */
761 enum efx_phy_mode {
762 	PHY_MODE_NORMAL		= 0,
763 	PHY_MODE_TX_DISABLED	= 1,
764 	PHY_MODE_LOW_POWER	= 2,
765 	PHY_MODE_OFF		= 4,
766 	PHY_MODE_SPECIAL	= 8,
767 };
768 
769 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
770 {
771 	return !!(mode & ~PHY_MODE_TX_DISABLED);
772 }
773 
774 /**
775  * struct efx_hw_stat_desc - Description of a hardware statistic
776  * @name: Name of the statistic as visible through ethtool, or %NULL if
777  *	it should not be exposed
778  * @dma_width: Width in bits (0 for non-DMA statistics)
779  * @offset: Offset within stats (ignored for non-DMA statistics)
780  */
781 struct efx_hw_stat_desc {
782 	const char *name;
783 	u16 dma_width;
784 	u16 offset;
785 };
786 
787 /* Number of bits used in a multicast filter hash address */
788 #define EFX_MCAST_HASH_BITS 8
789 
790 /* Number of (single-bit) entries in a multicast filter hash */
791 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
792 
793 /* An Efx multicast filter hash */
794 union efx_multicast_hash {
795 	u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
796 	efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
797 };
798 
799 struct vfdi_status;
800 
801 /**
802  * struct efx_nic - an Efx NIC
803  * @name: Device name (net device name or bus id before net device registered)
804  * @pci_dev: The PCI device
805  * @node: List node for maintaning primary/secondary function lists
806  * @primary: &struct efx_nic instance for the primary function of this
807  *	controller.  May be the same structure, and may be %NULL if no
808  *	primary function is bound.  Serialised by rtnl_lock.
809  * @secondary_list: List of &struct efx_nic instances for the secondary PCI
810  *	functions of the controller, if this is for the primary function.
811  *	Serialised by rtnl_lock.
812  * @type: Controller type attributes
813  * @legacy_irq: IRQ number
814  * @workqueue: Workqueue for port reconfigures and the HW monitor.
815  *	Work items do not hold and must not acquire RTNL.
816  * @workqueue_name: Name of workqueue
817  * @reset_work: Scheduled reset workitem
818  * @membase_phys: Memory BAR value as physical address
819  * @membase: Memory BAR value
820  * @interrupt_mode: Interrupt mode
821  * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
822  * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
823  * @irq_rx_moderation: IRQ moderation time for RX event queues
824  * @msg_enable: Log message enable flags
825  * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
826  * @reset_pending: Bitmask for pending resets
827  * @tx_queue: TX DMA queues
828  * @rx_queue: RX DMA queues
829  * @channel: Channels
830  * @msi_context: Context for each MSI
831  * @extra_channel_types: Types of extra (non-traffic) channels that
832  *	should be allocated for this NIC
833  * @rxq_entries: Size of receive queues requested by user.
834  * @txq_entries: Size of transmit queues requested by user.
835  * @txq_stop_thresh: TX queue fill level at or above which we stop it.
836  * @txq_wake_thresh: TX queue fill level at or below which we wake it.
837  * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
838  * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
839  * @sram_lim_qw: Qword address limit of SRAM
840  * @next_buffer_table: First available buffer table id
841  * @n_channels: Number of channels in use
842  * @n_rx_channels: Number of channels used for RX (= number of RX queues)
843  * @n_tx_channels: Number of channels used for TX
844  * @rx_ip_align: RX DMA address offset to have IP header aligned in
845  *	in accordance with NET_IP_ALIGN
846  * @rx_dma_len: Current maximum RX DMA length
847  * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
848  * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
849  *	for use in sk_buff::truesize
850  * @rx_prefix_size: Size of RX prefix before packet data
851  * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
852  *	(valid only if @rx_prefix_size != 0; always negative)
853  * @rx_packet_len_offset: Offset of RX packet length from start of packet data
854  *	(valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
855  * @rx_packet_ts_offset: Offset of timestamp from start of packet data
856  *	(valid only if channel->sync_timestamps_enabled; always negative)
857  * @rx_hash_key: Toeplitz hash key for RSS
858  * @rx_indir_table: Indirection table for RSS
859  * @rx_scatter: Scatter mode enabled for receives
860  * @int_error_count: Number of internal errors seen recently
861  * @int_error_expire: Time at which error count will be expired
862  * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
863  *	acknowledge but do nothing else.
864  * @irq_status: Interrupt status buffer
865  * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
866  * @irq_level: IRQ level/index for IRQs not triggered by an event queue
867  * @selftest_work: Work item for asynchronous self-test
868  * @mtd_list: List of MTDs attached to the NIC
869  * @nic_data: Hardware dependent state
870  * @mcdi: Management-Controller-to-Driver Interface state
871  * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
872  *	efx_monitor() and efx_reconfigure_port()
873  * @port_enabled: Port enabled indicator.
874  *	Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
875  *	efx_mac_work() with kernel interfaces. Safe to read under any
876  *	one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
877  *	be held to modify it.
878  * @port_initialized: Port initialized?
879  * @net_dev: Operating system network device. Consider holding the rtnl lock
880  * @stats_buffer: DMA buffer for statistics
881  * @phy_type: PHY type
882  * @phy_op: PHY interface
883  * @phy_data: PHY private data (including PHY-specific stats)
884  * @mdio: PHY MDIO interface
885  * @mdio_bus: PHY MDIO bus ID (only used by Siena)
886  * @phy_mode: PHY operating mode. Serialised by @mac_lock.
887  * @link_advertising: Autonegotiation advertising flags
888  * @link_state: Current state of the link
889  * @n_link_state_changes: Number of times the link has changed state
890  * @unicast_filter: Flag for Falcon-arch simple unicast filter.
891  *	Protected by @mac_lock.
892  * @multicast_hash: Multicast hash table for Falcon-arch.
893  *	Protected by @mac_lock.
894  * @wanted_fc: Wanted flow control flags
895  * @fc_disable: When non-zero flow control is disabled. Typically used to
896  *	ensure that network back pressure doesn't delay dma queue flushes.
897  *	Serialised by the rtnl lock.
898  * @mac_work: Work item for changing MAC promiscuity and multicast hash
899  * @loopback_mode: Loopback status
900  * @loopback_modes: Supported loopback mode bitmask
901  * @loopback_selftest: Offline self-test private state
902  * @filter_sem: Filter table rw_semaphore, for freeing the table
903  * @filter_lock: Filter table lock, for mere content changes
904  * @filter_state: Architecture-dependent filter table state
905  * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
906  *	indexed by filter ID
907  * @rps_expire_index: Next index to check for expiry in @rps_flow_id
908  * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
909  * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
910  *	Decremented when the efx_flush_rx_queue() is called.
911  * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
912  *	completed (either success or failure). Not used when MCDI is used to
913  *	flush receive queues.
914  * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
915  * @vf_count: Number of VFs intended to be enabled.
916  * @vf_init_count: Number of VFs that have been fully initialised.
917  * @vi_scale: log2 number of vnics per VF.
918  * @ptp_data: PTP state data
919  * @vpd_sn: Serial number read from VPD
920  * @monitor_work: Hardware monitor workitem
921  * @biu_lock: BIU (bus interface unit) lock
922  * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
923  *	field is used by efx_test_interrupts() to verify that an
924  *	interrupt has occurred.
925  * @stats_lock: Statistics update lock. Must be held when calling
926  *	efx_nic_type::{update,start,stop}_stats.
927  * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
928  * @mc_promisc: Whether in multicast promiscuous mode when last changed
929  *
930  * This is stored in the private area of the &struct net_device.
931  */
932 struct efx_nic {
933 	/* The following fields should be written very rarely */
934 
935 	char name[IFNAMSIZ];
936 	struct list_head node;
937 	struct efx_nic *primary;
938 	struct list_head secondary_list;
939 	struct pci_dev *pci_dev;
940 	unsigned int port_num;
941 	const struct efx_nic_type *type;
942 	int legacy_irq;
943 	bool eeh_disabled_legacy_irq;
944 	struct workqueue_struct *workqueue;
945 	char workqueue_name[16];
946 	struct work_struct reset_work;
947 	resource_size_t membase_phys;
948 	void __iomem *membase;
949 
950 	enum efx_int_mode interrupt_mode;
951 	unsigned int timer_quantum_ns;
952 	bool irq_rx_adaptive;
953 	unsigned int irq_rx_moderation;
954 	u32 msg_enable;
955 
956 	enum nic_state state;
957 	unsigned long reset_pending;
958 
959 	struct efx_channel *channel[EFX_MAX_CHANNELS];
960 	struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
961 	const struct efx_channel_type *
962 	extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
963 
964 	unsigned rxq_entries;
965 	unsigned txq_entries;
966 	unsigned int txq_stop_thresh;
967 	unsigned int txq_wake_thresh;
968 
969 	unsigned tx_dc_base;
970 	unsigned rx_dc_base;
971 	unsigned sram_lim_qw;
972 	unsigned next_buffer_table;
973 
974 	unsigned int max_channels;
975 	unsigned int max_tx_channels;
976 	unsigned n_channels;
977 	unsigned n_rx_channels;
978 	unsigned rss_spread;
979 	unsigned tx_channel_offset;
980 	unsigned n_tx_channels;
981 	unsigned int rx_ip_align;
982 	unsigned int rx_dma_len;
983 	unsigned int rx_buffer_order;
984 	unsigned int rx_buffer_truesize;
985 	unsigned int rx_page_buf_step;
986 	unsigned int rx_bufs_per_page;
987 	unsigned int rx_pages_per_batch;
988 	unsigned int rx_prefix_size;
989 	int rx_packet_hash_offset;
990 	int rx_packet_len_offset;
991 	int rx_packet_ts_offset;
992 	u8 rx_hash_key[40];
993 	u32 rx_indir_table[128];
994 	bool rx_scatter;
995 
996 	unsigned int_error_count;
997 	unsigned long int_error_expire;
998 
999 	bool irq_soft_enabled;
1000 	struct efx_buffer irq_status;
1001 	unsigned irq_zero_count;
1002 	unsigned irq_level;
1003 	struct delayed_work selftest_work;
1004 
1005 #ifdef CONFIG_SFC_MTD
1006 	struct list_head mtd_list;
1007 #endif
1008 
1009 	void *nic_data;
1010 	struct efx_mcdi_data *mcdi;
1011 
1012 	struct mutex mac_lock;
1013 	struct work_struct mac_work;
1014 	bool port_enabled;
1015 
1016 	bool mc_bist_for_other_fn;
1017 	bool port_initialized;
1018 	struct net_device *net_dev;
1019 
1020 	struct efx_buffer stats_buffer;
1021 	u64 rx_nodesc_drops_total;
1022 	u64 rx_nodesc_drops_while_down;
1023 	bool rx_nodesc_drops_prev_state;
1024 
1025 	unsigned int phy_type;
1026 	const struct efx_phy_operations *phy_op;
1027 	void *phy_data;
1028 	struct mdio_if_info mdio;
1029 	unsigned int mdio_bus;
1030 	enum efx_phy_mode phy_mode;
1031 
1032 	u32 link_advertising;
1033 	struct efx_link_state link_state;
1034 	unsigned int n_link_state_changes;
1035 
1036 	bool unicast_filter;
1037 	union efx_multicast_hash multicast_hash;
1038 	u8 wanted_fc;
1039 	unsigned fc_disable;
1040 
1041 	atomic_t rx_reset;
1042 	enum efx_loopback_mode loopback_mode;
1043 	u64 loopback_modes;
1044 
1045 	void *loopback_selftest;
1046 
1047 	struct rw_semaphore filter_sem;
1048 	spinlock_t filter_lock;
1049 	void *filter_state;
1050 #ifdef CONFIG_RFS_ACCEL
1051 	u32 *rps_flow_id;
1052 	unsigned int rps_expire_index;
1053 #endif
1054 
1055 	atomic_t active_queues;
1056 	atomic_t rxq_flush_pending;
1057 	atomic_t rxq_flush_outstanding;
1058 	wait_queue_head_t flush_wq;
1059 
1060 #ifdef CONFIG_SFC_SRIOV
1061 	unsigned vf_count;
1062 	unsigned vf_init_count;
1063 	unsigned vi_scale;
1064 #endif
1065 
1066 	struct efx_ptp_data *ptp_data;
1067 
1068 	char *vpd_sn;
1069 
1070 	/* The following fields may be written more often */
1071 
1072 	struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1073 	spinlock_t biu_lock;
1074 	int last_irq_cpu;
1075 	spinlock_t stats_lock;
1076 	atomic_t n_rx_noskb_drops;
1077 	bool mc_promisc;
1078 };
1079 
1080 static inline int efx_dev_registered(struct efx_nic *efx)
1081 {
1082 	return efx->net_dev->reg_state == NETREG_REGISTERED;
1083 }
1084 
1085 static inline unsigned int efx_port_num(struct efx_nic *efx)
1086 {
1087 	return efx->port_num;
1088 }
1089 
1090 struct efx_mtd_partition {
1091 	struct list_head node;
1092 	struct mtd_info mtd;
1093 	const char *dev_type_name;
1094 	const char *type_name;
1095 	char name[IFNAMSIZ + 20];
1096 };
1097 
1098 /**
1099  * struct efx_nic_type - Efx device type definition
1100  * @mem_bar: Get the memory BAR
1101  * @mem_map_size: Get memory BAR mapped size
1102  * @probe: Probe the controller
1103  * @remove: Free resources allocated by probe()
1104  * @init: Initialise the controller
1105  * @dimension_resources: Dimension controller resources (buffer table,
1106  *	and VIs once the available interrupt resources are clear)
1107  * @fini: Shut down the controller
1108  * @monitor: Periodic function for polling link state and hardware monitor
1109  * @map_reset_reason: Map ethtool reset reason to a reset method
1110  * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1111  * @reset: Reset the controller hardware and possibly the PHY.  This will
1112  *	be called while the controller is uninitialised.
1113  * @probe_port: Probe the MAC and PHY
1114  * @remove_port: Free resources allocated by probe_port()
1115  * @handle_global_event: Handle a "global" event (may be %NULL)
1116  * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
1117  * @prepare_flush: Prepare the hardware for flushing the DMA queues
1118  *	(for Falcon architecture)
1119  * @finish_flush: Clean up after flushing the DMA queues (for Falcon
1120  *	architecture)
1121  * @prepare_flr: Prepare for an FLR
1122  * @finish_flr: Clean up after an FLR
1123  * @describe_stats: Describe statistics for ethtool
1124  * @update_stats: Update statistics not provided by event handling.
1125  *	Either argument may be %NULL.
1126  * @start_stats: Start the regular fetching of statistics
1127  * @pull_stats: Pull stats from the NIC and wait until they arrive.
1128  * @stop_stats: Stop the regular fetching of statistics
1129  * @set_id_led: Set state of identifying LED or revert to automatic function
1130  * @push_irq_moderation: Apply interrupt moderation value
1131  * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1132  * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1133  * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1134  *	to the hardware.  Serialised by the mac_lock.
1135  * @check_mac_fault: Check MAC fault state. True if fault present.
1136  * @get_wol: Get WoL configuration from driver state
1137  * @set_wol: Push WoL configuration to the NIC
1138  * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1139  * @test_chip: Test registers.  May use efx_farch_test_registers(), and is
1140  *	expected to reset the NIC.
1141  * @test_nvram: Test validity of NVRAM contents
1142  * @mcdi_request: Send an MCDI request with the given header and SDU.
1143  *	The SDU length may be any value from 0 up to the protocol-
1144  *	defined maximum, but its buffer will be padded to a multiple
1145  *	of 4 bytes.
1146  * @mcdi_poll_response: Test whether an MCDI response is available.
1147  * @mcdi_read_response: Read the MCDI response PDU.  The offset will
1148  *	be a multiple of 4.  The length may not be, but the buffer
1149  *	will be padded so it is safe to round up.
1150  * @mcdi_poll_reboot: Test whether the MCDI has rebooted.  If so,
1151  *	return an appropriate error code for aborting any current
1152  *	request; otherwise return 0.
1153  * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
1154  *	be separately enabled after this.
1155  * @irq_test_generate: Generate a test IRQ
1156  * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
1157  *	queue must be separately disabled before this.
1158  * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
1159  *	a pointer to the &struct efx_msi_context for the channel.
1160  * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
1161  *	is a pointer to the &struct efx_nic.
1162  * @tx_probe: Allocate resources for TX queue
1163  * @tx_init: Initialise TX queue on the NIC
1164  * @tx_remove: Free resources for TX queue
1165  * @tx_write: Write TX descriptors and doorbell
1166  * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1167  * @rx_probe: Allocate resources for RX queue
1168  * @rx_init: Initialise RX queue on the NIC
1169  * @rx_remove: Free resources for RX queue
1170  * @rx_write: Write RX descriptors and doorbell
1171  * @rx_defer_refill: Generate a refill reminder event
1172  * @ev_probe: Allocate resources for event queue
1173  * @ev_init: Initialise event queue on the NIC
1174  * @ev_fini: Deinitialise event queue on the NIC
1175  * @ev_remove: Free resources for event queue
1176  * @ev_process: Process events for a queue, up to the given NAPI quota
1177  * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1178  * @ev_test_generate: Generate a test event
1179  * @filter_table_probe: Probe filter capabilities and set up filter software state
1180  * @filter_table_restore: Restore filters removed from hardware
1181  * @filter_table_remove: Remove filters from hardware and tear down software state
1182  * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1183  * @filter_insert: add or replace a filter
1184  * @filter_remove_safe: remove a filter by ID, carefully
1185  * @filter_get_safe: retrieve a filter by ID, carefully
1186  * @filter_clear_rx: Remove all RX filters whose priority is less than or
1187  *	equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1188  * @filter_count_rx_used: Get the number of filters in use at a given priority
1189  * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1190  * @filter_get_rx_ids: Get list of RX filters at a given priority
1191  * @filter_rfs_insert: Add or replace a filter for RFS.  This must be
1192  *	atomic.  The hardware change may be asynchronous but should
1193  *	not be delayed for long.  It may fail if this can't be done
1194  *	atomically.
1195  * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1196  *	This must check whether the specified table entry is used by RFS
1197  *	and that rps_may_expire_flow() returns true for it.
1198  * @mtd_probe: Probe and add MTD partitions associated with this net device,
1199  *	 using efx_mtd_add()
1200  * @mtd_rename: Set an MTD partition name using the net device name
1201  * @mtd_read: Read from an MTD partition
1202  * @mtd_erase: Erase part of an MTD partition
1203  * @mtd_write: Write to an MTD partition
1204  * @mtd_sync: Wait for write-back to complete on MTD partition.  This
1205  *	also notifies the driver that a writer has finished using this
1206  *	partition.
1207  * @ptp_write_host_time: Send host time to MC as part of sync protocol
1208  * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1209  *	timestamping, possibly only temporarily for the purposes of a reset.
1210  * @ptp_set_ts_config: Set hardware timestamp configuration.  The flags
1211  *	and tx_type will already have been validated but this operation
1212  *	must validate and update rx_filter.
1213  * @set_mac_address: Set the MAC address of the device
1214  * @revision: Hardware architecture revision
1215  * @txd_ptr_tbl_base: TX descriptor ring base address
1216  * @rxd_ptr_tbl_base: RX descriptor ring base address
1217  * @buf_tbl_base: Buffer table base address
1218  * @evq_ptr_tbl_base: Event queue pointer table base address
1219  * @evq_rptr_tbl_base: Event queue read-pointer table base address
1220  * @max_dma_mask: Maximum possible DMA mask
1221  * @rx_prefix_size: Size of RX prefix before packet data
1222  * @rx_hash_offset: Offset of RX flow hash within prefix
1223  * @rx_ts_offset: Offset of timestamp within prefix
1224  * @rx_buffer_padding: Size of padding at end of RX packet
1225  * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1226  * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1227  * @max_interrupt_mode: Highest capability interrupt mode supported
1228  *	from &enum efx_init_mode.
1229  * @timer_period_max: Maximum period of interrupt timer (in ticks)
1230  * @offload_features: net_device feature flags for protocol offload
1231  *	features implemented in hardware
1232  * @mcdi_max_ver: Maximum MCDI version supported
1233  * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1234  */
1235 struct efx_nic_type {
1236 	bool is_vf;
1237 	unsigned int mem_bar;
1238 	unsigned int (*mem_map_size)(struct efx_nic *efx);
1239 	int (*probe)(struct efx_nic *efx);
1240 	void (*remove)(struct efx_nic *efx);
1241 	int (*init)(struct efx_nic *efx);
1242 	int (*dimension_resources)(struct efx_nic *efx);
1243 	void (*fini)(struct efx_nic *efx);
1244 	void (*monitor)(struct efx_nic *efx);
1245 	enum reset_type (*map_reset_reason)(enum reset_type reason);
1246 	int (*map_reset_flags)(u32 *flags);
1247 	int (*reset)(struct efx_nic *efx, enum reset_type method);
1248 	int (*probe_port)(struct efx_nic *efx);
1249 	void (*remove_port)(struct efx_nic *efx);
1250 	bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1251 	int (*fini_dmaq)(struct efx_nic *efx);
1252 	void (*prepare_flush)(struct efx_nic *efx);
1253 	void (*finish_flush)(struct efx_nic *efx);
1254 	void (*prepare_flr)(struct efx_nic *efx);
1255 	void (*finish_flr)(struct efx_nic *efx);
1256 	size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1257 	size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1258 			       struct rtnl_link_stats64 *core_stats);
1259 	void (*start_stats)(struct efx_nic *efx);
1260 	void (*pull_stats)(struct efx_nic *efx);
1261 	void (*stop_stats)(struct efx_nic *efx);
1262 	void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
1263 	void (*push_irq_moderation)(struct efx_channel *channel);
1264 	int (*reconfigure_port)(struct efx_nic *efx);
1265 	void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1266 	int (*reconfigure_mac)(struct efx_nic *efx);
1267 	bool (*check_mac_fault)(struct efx_nic *efx);
1268 	void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1269 	int (*set_wol)(struct efx_nic *efx, u32 type);
1270 	void (*resume_wol)(struct efx_nic *efx);
1271 	int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1272 	int (*test_nvram)(struct efx_nic *efx);
1273 	void (*mcdi_request)(struct efx_nic *efx,
1274 			     const efx_dword_t *hdr, size_t hdr_len,
1275 			     const efx_dword_t *sdu, size_t sdu_len);
1276 	bool (*mcdi_poll_response)(struct efx_nic *efx);
1277 	void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1278 				   size_t pdu_offset, size_t pdu_len);
1279 	int (*mcdi_poll_reboot)(struct efx_nic *efx);
1280 	void (*irq_enable_master)(struct efx_nic *efx);
1281 	void (*irq_test_generate)(struct efx_nic *efx);
1282 	void (*irq_disable_non_ev)(struct efx_nic *efx);
1283 	irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1284 	irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1285 	int (*tx_probe)(struct efx_tx_queue *tx_queue);
1286 	void (*tx_init)(struct efx_tx_queue *tx_queue);
1287 	void (*tx_remove)(struct efx_tx_queue *tx_queue);
1288 	void (*tx_write)(struct efx_tx_queue *tx_queue);
1289 	int (*rx_push_rss_config)(struct efx_nic *efx, bool user,
1290 				  const u32 *rx_indir_table);
1291 	int (*rx_probe)(struct efx_rx_queue *rx_queue);
1292 	void (*rx_init)(struct efx_rx_queue *rx_queue);
1293 	void (*rx_remove)(struct efx_rx_queue *rx_queue);
1294 	void (*rx_write)(struct efx_rx_queue *rx_queue);
1295 	void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1296 	int (*ev_probe)(struct efx_channel *channel);
1297 	int (*ev_init)(struct efx_channel *channel);
1298 	void (*ev_fini)(struct efx_channel *channel);
1299 	void (*ev_remove)(struct efx_channel *channel);
1300 	int (*ev_process)(struct efx_channel *channel, int quota);
1301 	void (*ev_read_ack)(struct efx_channel *channel);
1302 	void (*ev_test_generate)(struct efx_channel *channel);
1303 	int (*filter_table_probe)(struct efx_nic *efx);
1304 	void (*filter_table_restore)(struct efx_nic *efx);
1305 	void (*filter_table_remove)(struct efx_nic *efx);
1306 	void (*filter_update_rx_scatter)(struct efx_nic *efx);
1307 	s32 (*filter_insert)(struct efx_nic *efx,
1308 			     struct efx_filter_spec *spec, bool replace);
1309 	int (*filter_remove_safe)(struct efx_nic *efx,
1310 				  enum efx_filter_priority priority,
1311 				  u32 filter_id);
1312 	int (*filter_get_safe)(struct efx_nic *efx,
1313 			       enum efx_filter_priority priority,
1314 			       u32 filter_id, struct efx_filter_spec *);
1315 	int (*filter_clear_rx)(struct efx_nic *efx,
1316 			       enum efx_filter_priority priority);
1317 	u32 (*filter_count_rx_used)(struct efx_nic *efx,
1318 				    enum efx_filter_priority priority);
1319 	u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1320 	s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1321 				 enum efx_filter_priority priority,
1322 				 u32 *buf, u32 size);
1323 #ifdef CONFIG_RFS_ACCEL
1324 	s32 (*filter_rfs_insert)(struct efx_nic *efx,
1325 				 struct efx_filter_spec *spec);
1326 	bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1327 				      unsigned int index);
1328 #endif
1329 #ifdef CONFIG_SFC_MTD
1330 	int (*mtd_probe)(struct efx_nic *efx);
1331 	void (*mtd_rename)(struct efx_mtd_partition *part);
1332 	int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1333 			size_t *retlen, u8 *buffer);
1334 	int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1335 	int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1336 			 size_t *retlen, const u8 *buffer);
1337 	int (*mtd_sync)(struct mtd_info *mtd);
1338 #endif
1339 	void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1340 	int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1341 	int (*ptp_set_ts_config)(struct efx_nic *efx,
1342 				 struct hwtstamp_config *init);
1343 	int (*sriov_configure)(struct efx_nic *efx, int num_vfs);
1344 	int (*sriov_init)(struct efx_nic *efx);
1345 	void (*sriov_fini)(struct efx_nic *efx);
1346 	bool (*sriov_wanted)(struct efx_nic *efx);
1347 	void (*sriov_reset)(struct efx_nic *efx);
1348 	void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i);
1349 	int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, u8 *mac);
1350 	int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan,
1351 				 u8 qos);
1352 	int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i,
1353 				     bool spoofchk);
1354 	int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i,
1355 				   struct ifla_vf_info *ivi);
1356 	int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i,
1357 				       int link_state);
1358 	int (*sriov_get_phys_port_id)(struct efx_nic *efx,
1359 				      struct netdev_phys_item_id *ppid);
1360 	int (*vswitching_probe)(struct efx_nic *efx);
1361 	int (*vswitching_restore)(struct efx_nic *efx);
1362 	void (*vswitching_remove)(struct efx_nic *efx);
1363 	int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
1364 	int (*set_mac_address)(struct efx_nic *efx);
1365 
1366 	int revision;
1367 	unsigned int txd_ptr_tbl_base;
1368 	unsigned int rxd_ptr_tbl_base;
1369 	unsigned int buf_tbl_base;
1370 	unsigned int evq_ptr_tbl_base;
1371 	unsigned int evq_rptr_tbl_base;
1372 	u64 max_dma_mask;
1373 	unsigned int rx_prefix_size;
1374 	unsigned int rx_hash_offset;
1375 	unsigned int rx_ts_offset;
1376 	unsigned int rx_buffer_padding;
1377 	bool can_rx_scatter;
1378 	bool always_rx_scatter;
1379 	unsigned int max_interrupt_mode;
1380 	unsigned int timer_period_max;
1381 	netdev_features_t offload_features;
1382 	int mcdi_max_ver;
1383 	unsigned int max_rx_ip_filters;
1384 	u32 hwtstamp_filters;
1385 };
1386 
1387 /**************************************************************************
1388  *
1389  * Prototypes and inline functions
1390  *
1391  *************************************************************************/
1392 
1393 static inline struct efx_channel *
1394 efx_get_channel(struct efx_nic *efx, unsigned index)
1395 {
1396 	EFX_BUG_ON_PARANOID(index >= efx->n_channels);
1397 	return efx->channel[index];
1398 }
1399 
1400 /* Iterate over all used channels */
1401 #define efx_for_each_channel(_channel, _efx)				\
1402 	for (_channel = (_efx)->channel[0];				\
1403 	     _channel;							\
1404 	     _channel = (_channel->channel + 1 < (_efx)->n_channels) ?	\
1405 		     (_efx)->channel[_channel->channel + 1] : NULL)
1406 
1407 /* Iterate over all used channels in reverse */
1408 #define efx_for_each_channel_rev(_channel, _efx)			\
1409 	for (_channel = (_efx)->channel[(_efx)->n_channels - 1];	\
1410 	     _channel;							\
1411 	     _channel = _channel->channel ?				\
1412 		     (_efx)->channel[_channel->channel - 1] : NULL)
1413 
1414 static inline struct efx_tx_queue *
1415 efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
1416 {
1417 	EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
1418 			    type >= EFX_TXQ_TYPES);
1419 	return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
1420 }
1421 
1422 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1423 {
1424 	return channel->channel - channel->efx->tx_channel_offset <
1425 		channel->efx->n_tx_channels;
1426 }
1427 
1428 static inline struct efx_tx_queue *
1429 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
1430 {
1431 	EFX_BUG_ON_PARANOID(!efx_channel_has_tx_queues(channel) ||
1432 			    type >= EFX_TXQ_TYPES);
1433 	return &channel->tx_queue[type];
1434 }
1435 
1436 static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue)
1437 {
1438 	return !(tx_queue->efx->net_dev->num_tc < 2 &&
1439 		 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI);
1440 }
1441 
1442 /* Iterate over all TX queues belonging to a channel */
1443 #define efx_for_each_channel_tx_queue(_tx_queue, _channel)		\
1444 	if (!efx_channel_has_tx_queues(_channel))			\
1445 		;							\
1446 	else								\
1447 		for (_tx_queue = (_channel)->tx_queue;			\
1448 		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \
1449 			     efx_tx_queue_used(_tx_queue);		\
1450 		     _tx_queue++)
1451 
1452 /* Iterate over all possible TX queues belonging to a channel */
1453 #define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel)	\
1454 	if (!efx_channel_has_tx_queues(_channel))			\
1455 		;							\
1456 	else								\
1457 		for (_tx_queue = (_channel)->tx_queue;			\
1458 		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES;	\
1459 		     _tx_queue++)
1460 
1461 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1462 {
1463 	return channel->rx_queue.core_index >= 0;
1464 }
1465 
1466 static inline struct efx_rx_queue *
1467 efx_channel_get_rx_queue(struct efx_channel *channel)
1468 {
1469 	EFX_BUG_ON_PARANOID(!efx_channel_has_rx_queue(channel));
1470 	return &channel->rx_queue;
1471 }
1472 
1473 /* Iterate over all RX queues belonging to a channel */
1474 #define efx_for_each_channel_rx_queue(_rx_queue, _channel)		\
1475 	if (!efx_channel_has_rx_queue(_channel))			\
1476 		;							\
1477 	else								\
1478 		for (_rx_queue = &(_channel)->rx_queue;			\
1479 		     _rx_queue;						\
1480 		     _rx_queue = NULL)
1481 
1482 static inline struct efx_channel *
1483 efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1484 {
1485 	return container_of(rx_queue, struct efx_channel, rx_queue);
1486 }
1487 
1488 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1489 {
1490 	return efx_rx_queue_channel(rx_queue)->channel;
1491 }
1492 
1493 /* Returns a pointer to the specified receive buffer in the RX
1494  * descriptor queue.
1495  */
1496 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1497 						  unsigned int index)
1498 {
1499 	return &rx_queue->buffer[index];
1500 }
1501 
1502 /**
1503  * EFX_MAX_FRAME_LEN - calculate maximum frame length
1504  *
1505  * This calculates the maximum frame length that will be used for a
1506  * given MTU.  The frame length will be equal to the MTU plus a
1507  * constant amount of header space and padding.  This is the quantity
1508  * that the net driver will program into the MAC as the maximum frame
1509  * length.
1510  *
1511  * The 10G MAC requires 8-byte alignment on the frame
1512  * length, so we round up to the nearest 8.
1513  *
1514  * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1515  * XGMII cycle).  If the frame length reaches the maximum value in the
1516  * same cycle, the XMAC can miss the IPG altogether.  We work around
1517  * this by adding a further 16 bytes.
1518  */
1519 #define EFX_MAX_FRAME_LEN(mtu) \
1520 	((((mtu) + ETH_HLEN + VLAN_HLEN + 4/* FCS */ + 7) & ~7) + 16)
1521 
1522 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1523 {
1524 	return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1525 }
1526 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1527 {
1528 	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1529 }
1530 
1531 #endif /* EFX_NET_DRIVER_H */
1532