1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2005-2013 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 /* Common definitions for all Efx net driver code */ 12 13 #ifndef EFX_NET_DRIVER_H 14 #define EFX_NET_DRIVER_H 15 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/ethtool.h> 19 #include <linux/if_vlan.h> 20 #include <linux/timer.h> 21 #include <linux/mdio.h> 22 #include <linux/list.h> 23 #include <linux/pci.h> 24 #include <linux/device.h> 25 #include <linux/highmem.h> 26 #include <linux/workqueue.h> 27 #include <linux/mutex.h> 28 #include <linux/vmalloc.h> 29 #include <linux/i2c.h> 30 #include <linux/mtd/mtd.h> 31 32 #include "enum.h" 33 #include "bitfield.h" 34 #include "filter.h" 35 36 /************************************************************************** 37 * 38 * Build definitions 39 * 40 **************************************************************************/ 41 42 #define EFX_DRIVER_VERSION "4.0" 43 44 #ifdef DEBUG 45 #define EFX_BUG_ON_PARANOID(x) BUG_ON(x) 46 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x) 47 #else 48 #define EFX_BUG_ON_PARANOID(x) do {} while (0) 49 #define EFX_WARN_ON_PARANOID(x) do {} while (0) 50 #endif 51 52 /************************************************************************** 53 * 54 * Efx data structures 55 * 56 **************************************************************************/ 57 58 #define EFX_MAX_CHANNELS 32U 59 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS 60 #define EFX_EXTRA_CHANNEL_IOV 0 61 #define EFX_EXTRA_CHANNEL_PTP 1 62 #define EFX_MAX_EXTRA_CHANNELS 2U 63 64 /* Checksum generation is a per-queue option in hardware, so each 65 * queue visible to the networking core is backed by two hardware TX 66 * queues. */ 67 #define EFX_MAX_TX_TC 2 68 #define EFX_MAX_CORE_TX_QUEUES (EFX_MAX_TX_TC * EFX_MAX_CHANNELS) 69 #define EFX_TXQ_TYPE_OFFLOAD 1 /* flag */ 70 #define EFX_TXQ_TYPE_HIGHPRI 2 /* flag */ 71 #define EFX_TXQ_TYPES 4 72 #define EFX_MAX_TX_QUEUES (EFX_TXQ_TYPES * EFX_MAX_CHANNELS) 73 74 /* Maximum possible MTU the driver supports */ 75 #define EFX_MAX_MTU (9 * 1024) 76 77 /* Size of an RX scatter buffer. Small enough to pack 2 into a 4K page, 78 * and should be a multiple of the cache line size. 79 */ 80 #define EFX_RX_USR_BUF_SIZE (2048 - 256) 81 82 /* If possible, we should ensure cache line alignment at start and end 83 * of every buffer. Otherwise, we just need to ensure 4-byte 84 * alignment of the network header. 85 */ 86 #if NET_IP_ALIGN == 0 87 #define EFX_RX_BUF_ALIGNMENT L1_CACHE_BYTES 88 #else 89 #define EFX_RX_BUF_ALIGNMENT 4 90 #endif 91 92 /* Forward declare Precision Time Protocol (PTP) support structure. */ 93 struct efx_ptp_data; 94 struct hwtstamp_config; 95 96 struct efx_self_tests; 97 98 /** 99 * struct efx_buffer - A general-purpose DMA buffer 100 * @addr: host base address of the buffer 101 * @dma_addr: DMA base address of the buffer 102 * @len: Buffer length, in bytes 103 * 104 * The NIC uses these buffers for its interrupt status registers and 105 * MAC stats dumps. 106 */ 107 struct efx_buffer { 108 void *addr; 109 dma_addr_t dma_addr; 110 unsigned int len; 111 }; 112 113 /** 114 * struct efx_special_buffer - DMA buffer entered into buffer table 115 * @buf: Standard &struct efx_buffer 116 * @index: Buffer index within controller;s buffer table 117 * @entries: Number of buffer table entries 118 * 119 * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE. 120 * Event and descriptor rings are addressed via one or more buffer 121 * table entries (and so can be physically non-contiguous, although we 122 * currently do not take advantage of that). On Falcon and Siena we 123 * have to take care of allocating and initialising the entries 124 * ourselves. On later hardware this is managed by the firmware and 125 * @index and @entries are left as 0. 126 */ 127 struct efx_special_buffer { 128 struct efx_buffer buf; 129 unsigned int index; 130 unsigned int entries; 131 }; 132 133 /** 134 * struct efx_tx_buffer - buffer state for a TX descriptor 135 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be 136 * freed when descriptor completes 137 * @heap_buf: When @flags & %EFX_TX_BUF_HEAP, the associated heap buffer to be 138 * freed when descriptor completes. 139 * @option: When @flags & %EFX_TX_BUF_OPTION, a NIC-specific option descriptor. 140 * @dma_addr: DMA address of the fragment. 141 * @flags: Flags for allocation and DMA mapping type 142 * @len: Length of this fragment. 143 * This field is zero when the queue slot is empty. 144 * @unmap_len: Length of this fragment to unmap 145 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping. 146 * Only valid if @unmap_len != 0. 147 */ 148 struct efx_tx_buffer { 149 union { 150 const struct sk_buff *skb; 151 void *heap_buf; 152 }; 153 union { 154 efx_qword_t option; 155 dma_addr_t dma_addr; 156 }; 157 unsigned short flags; 158 unsigned short len; 159 unsigned short unmap_len; 160 unsigned short dma_offset; 161 }; 162 #define EFX_TX_BUF_CONT 1 /* not last descriptor of packet */ 163 #define EFX_TX_BUF_SKB 2 /* buffer is last part of skb */ 164 #define EFX_TX_BUF_HEAP 4 /* buffer was allocated with kmalloc() */ 165 #define EFX_TX_BUF_MAP_SINGLE 8 /* buffer was mapped with dma_map_single() */ 166 #define EFX_TX_BUF_OPTION 0x10 /* empty buffer for option descriptor */ 167 168 /** 169 * struct efx_tx_queue - An Efx TX queue 170 * 171 * This is a ring buffer of TX fragments. 172 * Since the TX completion path always executes on the same 173 * CPU and the xmit path can operate on different CPUs, 174 * performance is increased by ensuring that the completion 175 * path and the xmit path operate on different cache lines. 176 * This is particularly important if the xmit path is always 177 * executing on one CPU which is different from the completion 178 * path. There is also a cache line for members which are 179 * read but not written on the fast path. 180 * 181 * @efx: The associated Efx NIC 182 * @queue: DMA queue number 183 * @channel: The associated channel 184 * @core_txq: The networking core TX queue structure 185 * @buffer: The software buffer ring 186 * @tsoh_page: Array of pages of TSO header buffers 187 * @txd: The hardware descriptor ring 188 * @ptr_mask: The size of the ring minus 1. 189 * @piobuf: PIO buffer region for this TX queue (shared with its partner). 190 * Size of the region is efx_piobuf_size. 191 * @piobuf_offset: Buffer offset to be specified in PIO descriptors 192 * @initialised: Has hardware queue been initialised? 193 * @read_count: Current read pointer. 194 * This is the number of buffers that have been removed from both rings. 195 * @old_write_count: The value of @write_count when last checked. 196 * This is here for performance reasons. The xmit path will 197 * only get the up-to-date value of @write_count if this 198 * variable indicates that the queue is empty. This is to 199 * avoid cache-line ping-pong between the xmit path and the 200 * completion path. 201 * @merge_events: Number of TX merged completion events 202 * @insert_count: Current insert pointer 203 * This is the number of buffers that have been added to the 204 * software ring. 205 * @write_count: Current write pointer 206 * This is the number of buffers that have been added to the 207 * hardware ring. 208 * @old_read_count: The value of read_count when last checked. 209 * This is here for performance reasons. The xmit path will 210 * only get the up-to-date value of read_count if this 211 * variable indicates that the queue is full. This is to 212 * avoid cache-line ping-pong between the xmit path and the 213 * completion path. 214 * @tso_bursts: Number of times TSO xmit invoked by kernel 215 * @tso_long_headers: Number of packets with headers too long for standard 216 * blocks 217 * @tso_packets: Number of packets via the TSO xmit path 218 * @pushes: Number of times the TX push feature has been used 219 * @pio_packets: Number of times the TX PIO feature has been used 220 * @empty_read_count: If the completion path has seen the queue as empty 221 * and the transmission path has not yet checked this, the value of 222 * @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0. 223 */ 224 struct efx_tx_queue { 225 /* Members which don't change on the fast path */ 226 struct efx_nic *efx ____cacheline_aligned_in_smp; 227 unsigned queue; 228 struct efx_channel *channel; 229 struct netdev_queue *core_txq; 230 struct efx_tx_buffer *buffer; 231 struct efx_buffer *tsoh_page; 232 struct efx_special_buffer txd; 233 unsigned int ptr_mask; 234 void __iomem *piobuf; 235 unsigned int piobuf_offset; 236 bool initialised; 237 238 /* Members used mainly on the completion path */ 239 unsigned int read_count ____cacheline_aligned_in_smp; 240 unsigned int old_write_count; 241 unsigned int merge_events; 242 243 /* Members used only on the xmit path */ 244 unsigned int insert_count ____cacheline_aligned_in_smp; 245 unsigned int write_count; 246 unsigned int old_read_count; 247 unsigned int tso_bursts; 248 unsigned int tso_long_headers; 249 unsigned int tso_packets; 250 unsigned int pushes; 251 unsigned int pio_packets; 252 253 /* Members shared between paths and sometimes updated */ 254 unsigned int empty_read_count ____cacheline_aligned_in_smp; 255 #define EFX_EMPTY_COUNT_VALID 0x80000000 256 atomic_t flush_outstanding; 257 }; 258 259 /** 260 * struct efx_rx_buffer - An Efx RX data buffer 261 * @dma_addr: DMA base address of the buffer 262 * @page: The associated page buffer. 263 * Will be %NULL if the buffer slot is currently free. 264 * @page_offset: If pending: offset in @page of DMA base address. 265 * If completed: offset in @page of Ethernet header. 266 * @len: If pending: length for DMA descriptor. 267 * If completed: received length, excluding hash prefix. 268 * @flags: Flags for buffer and packet state. These are only set on the 269 * first buffer of a scattered packet. 270 */ 271 struct efx_rx_buffer { 272 dma_addr_t dma_addr; 273 struct page *page; 274 u16 page_offset; 275 u16 len; 276 u16 flags; 277 }; 278 #define EFX_RX_BUF_LAST_IN_PAGE 0x0001 279 #define EFX_RX_PKT_CSUMMED 0x0002 280 #define EFX_RX_PKT_DISCARD 0x0004 281 #define EFX_RX_PKT_TCP 0x0040 282 #define EFX_RX_PKT_PREFIX_LEN 0x0080 /* length is in prefix only */ 283 284 /** 285 * struct efx_rx_page_state - Page-based rx buffer state 286 * 287 * Inserted at the start of every page allocated for receive buffers. 288 * Used to facilitate sharing dma mappings between recycled rx buffers 289 * and those passed up to the kernel. 290 * 291 * @refcnt: Number of struct efx_rx_buffer's referencing this page. 292 * When refcnt falls to zero, the page is unmapped for dma 293 * @dma_addr: The dma address of this page. 294 */ 295 struct efx_rx_page_state { 296 unsigned refcnt; 297 dma_addr_t dma_addr; 298 299 unsigned int __pad[0] ____cacheline_aligned; 300 }; 301 302 /** 303 * struct efx_rx_queue - An Efx RX queue 304 * @efx: The associated Efx NIC 305 * @core_index: Index of network core RX queue. Will be >= 0 iff this 306 * is associated with a real RX queue. 307 * @buffer: The software buffer ring 308 * @rxd: The hardware descriptor ring 309 * @ptr_mask: The size of the ring minus 1. 310 * @refill_enabled: Enable refill whenever fill level is low 311 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as 312 * @rxq_flush_pending. 313 * @added_count: Number of buffers added to the receive queue. 314 * @notified_count: Number of buffers given to NIC (<= @added_count). 315 * @removed_count: Number of buffers removed from the receive queue. 316 * @scatter_n: Used by NIC specific receive code. 317 * @scatter_len: Used by NIC specific receive code. 318 * @page_ring: The ring to store DMA mapped pages for reuse. 319 * @page_add: Counter to calculate the write pointer for the recycle ring. 320 * @page_remove: Counter to calculate the read pointer for the recycle ring. 321 * @page_recycle_count: The number of pages that have been recycled. 322 * @page_recycle_failed: The number of pages that couldn't be recycled because 323 * the kernel still held a reference to them. 324 * @page_recycle_full: The number of pages that were released because the 325 * recycle ring was full. 326 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1. 327 * @max_fill: RX descriptor maximum fill level (<= ring size) 328 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill 329 * (<= @max_fill) 330 * @min_fill: RX descriptor minimum non-zero fill level. 331 * This records the minimum fill level observed when a ring 332 * refill was triggered. 333 * @recycle_count: RX buffer recycle counter. 334 * @slow_fill: Timer used to defer efx_nic_generate_fill_event(). 335 */ 336 struct efx_rx_queue { 337 struct efx_nic *efx; 338 int core_index; 339 struct efx_rx_buffer *buffer; 340 struct efx_special_buffer rxd; 341 unsigned int ptr_mask; 342 bool refill_enabled; 343 bool flush_pending; 344 345 unsigned int added_count; 346 unsigned int notified_count; 347 unsigned int removed_count; 348 unsigned int scatter_n; 349 unsigned int scatter_len; 350 struct page **page_ring; 351 unsigned int page_add; 352 unsigned int page_remove; 353 unsigned int page_recycle_count; 354 unsigned int page_recycle_failed; 355 unsigned int page_recycle_full; 356 unsigned int page_ptr_mask; 357 unsigned int max_fill; 358 unsigned int fast_fill_trigger; 359 unsigned int min_fill; 360 unsigned int min_overfill; 361 unsigned int recycle_count; 362 struct timer_list slow_fill; 363 unsigned int slow_fill_count; 364 }; 365 366 enum efx_rx_alloc_method { 367 RX_ALLOC_METHOD_AUTO = 0, 368 RX_ALLOC_METHOD_SKB = 1, 369 RX_ALLOC_METHOD_PAGE = 2, 370 }; 371 372 enum efx_sync_events_state { 373 SYNC_EVENTS_DISABLED = 0, 374 SYNC_EVENTS_QUIESCENT, 375 SYNC_EVENTS_REQUESTED, 376 SYNC_EVENTS_VALID, 377 }; 378 379 /** 380 * struct efx_channel - An Efx channel 381 * 382 * A channel comprises an event queue, at least one TX queue, at least 383 * one RX queue, and an associated tasklet for processing the event 384 * queue. 385 * 386 * @efx: Associated Efx NIC 387 * @channel: Channel instance number 388 * @type: Channel type definition 389 * @eventq_init: Event queue initialised flag 390 * @enabled: Channel enabled indicator 391 * @irq: IRQ number (MSI and MSI-X only) 392 * @irq_moderation: IRQ moderation value (in hardware ticks) 393 * @napi_dev: Net device used with NAPI 394 * @napi_str: NAPI control structure 395 * @eventq: Event queue buffer 396 * @eventq_mask: Event queue pointer mask 397 * @eventq_read_ptr: Event queue read pointer 398 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel 399 * @irq_count: Number of IRQs since last adaptive moderation decision 400 * @irq_mod_score: IRQ moderation score 401 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors 402 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors 403 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors 404 * @n_rx_mcast_mismatch: Count of unmatched multicast frames 405 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors 406 * @n_rx_overlength: Count of RX_OVERLENGTH errors 407 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun 408 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to 409 * lack of descriptors 410 * @n_rx_merge_events: Number of RX merged completion events 411 * @n_rx_merge_packets: Number of RX packets completed by merged events 412 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by 413 * __efx_rx_packet(), or zero if there is none 414 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered 415 * by __efx_rx_packet(), if @rx_pkt_n_frags != 0 416 * @rx_queue: RX queue for this channel 417 * @tx_queue: TX queues for this channel 418 * @sync_events_state: Current state of sync events on this channel 419 * @sync_timestamp_major: Major part of the last ptp sync event 420 * @sync_timestamp_minor: Minor part of the last ptp sync event 421 */ 422 struct efx_channel { 423 struct efx_nic *efx; 424 int channel; 425 const struct efx_channel_type *type; 426 bool eventq_init; 427 bool enabled; 428 int irq; 429 unsigned int irq_moderation; 430 struct net_device *napi_dev; 431 struct napi_struct napi_str; 432 struct efx_special_buffer eventq; 433 unsigned int eventq_mask; 434 unsigned int eventq_read_ptr; 435 int event_test_cpu; 436 437 unsigned int irq_count; 438 unsigned int irq_mod_score; 439 #ifdef CONFIG_RFS_ACCEL 440 unsigned int rfs_filters_added; 441 #endif 442 443 unsigned n_rx_tobe_disc; 444 unsigned n_rx_ip_hdr_chksum_err; 445 unsigned n_rx_tcp_udp_chksum_err; 446 unsigned n_rx_mcast_mismatch; 447 unsigned n_rx_frm_trunc; 448 unsigned n_rx_overlength; 449 unsigned n_skbuff_leaks; 450 unsigned int n_rx_nodesc_trunc; 451 unsigned int n_rx_merge_events; 452 unsigned int n_rx_merge_packets; 453 454 unsigned int rx_pkt_n_frags; 455 unsigned int rx_pkt_index; 456 457 struct efx_rx_queue rx_queue; 458 struct efx_tx_queue tx_queue[EFX_TXQ_TYPES]; 459 460 enum efx_sync_events_state sync_events_state; 461 u32 sync_timestamp_major; 462 u32 sync_timestamp_minor; 463 }; 464 465 /** 466 * struct efx_msi_context - Context for each MSI 467 * @efx: The associated NIC 468 * @index: Index of the channel/IRQ 469 * @name: Name of the channel/IRQ 470 * 471 * Unlike &struct efx_channel, this is never reallocated and is always 472 * safe for the IRQ handler to access. 473 */ 474 struct efx_msi_context { 475 struct efx_nic *efx; 476 unsigned int index; 477 char name[IFNAMSIZ + 6]; 478 }; 479 480 /** 481 * struct efx_channel_type - distinguishes traffic and extra channels 482 * @handle_no_channel: Handle failure to allocate an extra channel 483 * @pre_probe: Set up extra state prior to initialisation 484 * @post_remove: Tear down extra state after finalisation, if allocated. 485 * May be called on channels that have not been probed. 486 * @get_name: Generate the channel's name (used for its IRQ handler) 487 * @copy: Copy the channel state prior to reallocation. May be %NULL if 488 * reallocation is not supported. 489 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb() 490 * @keep_eventq: Flag for whether event queue should be kept initialised 491 * while the device is stopped 492 */ 493 struct efx_channel_type { 494 void (*handle_no_channel)(struct efx_nic *); 495 int (*pre_probe)(struct efx_channel *); 496 void (*post_remove)(struct efx_channel *); 497 void (*get_name)(struct efx_channel *, char *buf, size_t len); 498 struct efx_channel *(*copy)(const struct efx_channel *); 499 bool (*receive_skb)(struct efx_channel *, struct sk_buff *); 500 bool keep_eventq; 501 }; 502 503 enum efx_led_mode { 504 EFX_LED_OFF = 0, 505 EFX_LED_ON = 1, 506 EFX_LED_DEFAULT = 2 507 }; 508 509 #define STRING_TABLE_LOOKUP(val, member) \ 510 ((val) < member ## _max) ? member ## _names[val] : "(invalid)" 511 512 extern const char *const efx_loopback_mode_names[]; 513 extern const unsigned int efx_loopback_mode_max; 514 #define LOOPBACK_MODE(efx) \ 515 STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode) 516 517 extern const char *const efx_reset_type_names[]; 518 extern const unsigned int efx_reset_type_max; 519 #define RESET_TYPE(type) \ 520 STRING_TABLE_LOOKUP(type, efx_reset_type) 521 522 enum efx_int_mode { 523 /* Be careful if altering to correct macro below */ 524 EFX_INT_MODE_MSIX = 0, 525 EFX_INT_MODE_MSI = 1, 526 EFX_INT_MODE_LEGACY = 2, 527 EFX_INT_MODE_MAX /* Insert any new items before this */ 528 }; 529 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI) 530 531 enum nic_state { 532 STATE_UNINIT = 0, /* device being probed/removed or is frozen */ 533 STATE_READY = 1, /* hardware ready and netdev registered */ 534 STATE_DISABLED = 2, /* device disabled due to hardware errors */ 535 STATE_RECOVERY = 3, /* device recovering from PCI error */ 536 }; 537 538 /* Forward declaration */ 539 struct efx_nic; 540 541 /* Pseudo bit-mask flow control field */ 542 #define EFX_FC_RX FLOW_CTRL_RX 543 #define EFX_FC_TX FLOW_CTRL_TX 544 #define EFX_FC_AUTO 4 545 546 /** 547 * struct efx_link_state - Current state of the link 548 * @up: Link is up 549 * @fd: Link is full-duplex 550 * @fc: Actual flow control flags 551 * @speed: Link speed (Mbps) 552 */ 553 struct efx_link_state { 554 bool up; 555 bool fd; 556 u8 fc; 557 unsigned int speed; 558 }; 559 560 static inline bool efx_link_state_equal(const struct efx_link_state *left, 561 const struct efx_link_state *right) 562 { 563 return left->up == right->up && left->fd == right->fd && 564 left->fc == right->fc && left->speed == right->speed; 565 } 566 567 /** 568 * struct efx_phy_operations - Efx PHY operations table 569 * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds, 570 * efx->loopback_modes. 571 * @init: Initialise PHY 572 * @fini: Shut down PHY 573 * @reconfigure: Reconfigure PHY (e.g. for new link parameters) 574 * @poll: Update @link_state and report whether it changed. 575 * Serialised by the mac_lock. 576 * @get_settings: Get ethtool settings. Serialised by the mac_lock. 577 * @set_settings: Set ethtool settings. Serialised by the mac_lock. 578 * @set_npage_adv: Set abilities advertised in (Extended) Next Page 579 * (only needed where AN bit is set in mmds) 580 * @test_alive: Test that PHY is 'alive' (online) 581 * @test_name: Get the name of a PHY-specific test/result 582 * @run_tests: Run tests and record results as appropriate (offline). 583 * Flags are the ethtool tests flags. 584 */ 585 struct efx_phy_operations { 586 int (*probe) (struct efx_nic *efx); 587 int (*init) (struct efx_nic *efx); 588 void (*fini) (struct efx_nic *efx); 589 void (*remove) (struct efx_nic *efx); 590 int (*reconfigure) (struct efx_nic *efx); 591 bool (*poll) (struct efx_nic *efx); 592 void (*get_settings) (struct efx_nic *efx, 593 struct ethtool_cmd *ecmd); 594 int (*set_settings) (struct efx_nic *efx, 595 struct ethtool_cmd *ecmd); 596 void (*set_npage_adv) (struct efx_nic *efx, u32); 597 int (*test_alive) (struct efx_nic *efx); 598 const char *(*test_name) (struct efx_nic *efx, unsigned int index); 599 int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags); 600 int (*get_module_eeprom) (struct efx_nic *efx, 601 struct ethtool_eeprom *ee, 602 u8 *data); 603 int (*get_module_info) (struct efx_nic *efx, 604 struct ethtool_modinfo *modinfo); 605 }; 606 607 /** 608 * enum efx_phy_mode - PHY operating mode flags 609 * @PHY_MODE_NORMAL: on and should pass traffic 610 * @PHY_MODE_TX_DISABLED: on with TX disabled 611 * @PHY_MODE_LOW_POWER: set to low power through MDIO 612 * @PHY_MODE_OFF: switched off through external control 613 * @PHY_MODE_SPECIAL: on but will not pass traffic 614 */ 615 enum efx_phy_mode { 616 PHY_MODE_NORMAL = 0, 617 PHY_MODE_TX_DISABLED = 1, 618 PHY_MODE_LOW_POWER = 2, 619 PHY_MODE_OFF = 4, 620 PHY_MODE_SPECIAL = 8, 621 }; 622 623 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode) 624 { 625 return !!(mode & ~PHY_MODE_TX_DISABLED); 626 } 627 628 /** 629 * struct efx_hw_stat_desc - Description of a hardware statistic 630 * @name: Name of the statistic as visible through ethtool, or %NULL if 631 * it should not be exposed 632 * @dma_width: Width in bits (0 for non-DMA statistics) 633 * @offset: Offset within stats (ignored for non-DMA statistics) 634 */ 635 struct efx_hw_stat_desc { 636 const char *name; 637 u16 dma_width; 638 u16 offset; 639 }; 640 641 /* Number of bits used in a multicast filter hash address */ 642 #define EFX_MCAST_HASH_BITS 8 643 644 /* Number of (single-bit) entries in a multicast filter hash */ 645 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS) 646 647 /* An Efx multicast filter hash */ 648 union efx_multicast_hash { 649 u8 byte[EFX_MCAST_HASH_ENTRIES / 8]; 650 efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8]; 651 }; 652 653 struct efx_vf; 654 struct vfdi_status; 655 656 /** 657 * struct efx_nic - an Efx NIC 658 * @name: Device name (net device name or bus id before net device registered) 659 * @pci_dev: The PCI device 660 * @node: List node for maintaning primary/secondary function lists 661 * @primary: &struct efx_nic instance for the primary function of this 662 * controller. May be the same structure, and may be %NULL if no 663 * primary function is bound. Serialised by rtnl_lock. 664 * @secondary_list: List of &struct efx_nic instances for the secondary PCI 665 * functions of the controller, if this is for the primary function. 666 * Serialised by rtnl_lock. 667 * @type: Controller type attributes 668 * @legacy_irq: IRQ number 669 * @workqueue: Workqueue for port reconfigures and the HW monitor. 670 * Work items do not hold and must not acquire RTNL. 671 * @workqueue_name: Name of workqueue 672 * @reset_work: Scheduled reset workitem 673 * @membase_phys: Memory BAR value as physical address 674 * @membase: Memory BAR value 675 * @interrupt_mode: Interrupt mode 676 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds 677 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues 678 * @irq_rx_moderation: IRQ moderation time for RX event queues 679 * @msg_enable: Log message enable flags 680 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock. 681 * @reset_pending: Bitmask for pending resets 682 * @tx_queue: TX DMA queues 683 * @rx_queue: RX DMA queues 684 * @channel: Channels 685 * @msi_context: Context for each MSI 686 * @extra_channel_types: Types of extra (non-traffic) channels that 687 * should be allocated for this NIC 688 * @rxq_entries: Size of receive queues requested by user. 689 * @txq_entries: Size of transmit queues requested by user. 690 * @txq_stop_thresh: TX queue fill level at or above which we stop it. 691 * @txq_wake_thresh: TX queue fill level at or below which we wake it. 692 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches 693 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches 694 * @sram_lim_qw: Qword address limit of SRAM 695 * @next_buffer_table: First available buffer table id 696 * @n_channels: Number of channels in use 697 * @n_rx_channels: Number of channels used for RX (= number of RX queues) 698 * @n_tx_channels: Number of channels used for TX 699 * @rx_ip_align: RX DMA address offset to have IP header aligned in 700 * in accordance with NET_IP_ALIGN 701 * @rx_dma_len: Current maximum RX DMA length 702 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer 703 * @rx_buffer_truesize: Amortised allocation size of an RX buffer, 704 * for use in sk_buff::truesize 705 * @rx_prefix_size: Size of RX prefix before packet data 706 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data 707 * (valid only if @rx_prefix_size != 0; always negative) 708 * @rx_packet_len_offset: Offset of RX packet length from start of packet data 709 * (valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative) 710 * @rx_packet_ts_offset: Offset of timestamp from start of packet data 711 * (valid only if channel->sync_timestamps_enabled; always negative) 712 * @rx_hash_key: Toeplitz hash key for RSS 713 * @rx_indir_table: Indirection table for RSS 714 * @rx_scatter: Scatter mode enabled for receives 715 * @int_error_count: Number of internal errors seen recently 716 * @int_error_expire: Time at which error count will be expired 717 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will 718 * acknowledge but do nothing else. 719 * @irq_status: Interrupt status buffer 720 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0 721 * @irq_level: IRQ level/index for IRQs not triggered by an event queue 722 * @selftest_work: Work item for asynchronous self-test 723 * @mtd_list: List of MTDs attached to the NIC 724 * @nic_data: Hardware dependent state 725 * @mcdi: Management-Controller-to-Driver Interface state 726 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode, 727 * efx_monitor() and efx_reconfigure_port() 728 * @port_enabled: Port enabled indicator. 729 * Serialises efx_stop_all(), efx_start_all(), efx_monitor() and 730 * efx_mac_work() with kernel interfaces. Safe to read under any 731 * one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must 732 * be held to modify it. 733 * @port_initialized: Port initialized? 734 * @net_dev: Operating system network device. Consider holding the rtnl lock 735 * @stats_buffer: DMA buffer for statistics 736 * @phy_type: PHY type 737 * @phy_op: PHY interface 738 * @phy_data: PHY private data (including PHY-specific stats) 739 * @mdio: PHY MDIO interface 740 * @mdio_bus: PHY MDIO bus ID (only used by Siena) 741 * @phy_mode: PHY operating mode. Serialised by @mac_lock. 742 * @link_advertising: Autonegotiation advertising flags 743 * @link_state: Current state of the link 744 * @n_link_state_changes: Number of times the link has changed state 745 * @unicast_filter: Flag for Falcon-arch simple unicast filter. 746 * Protected by @mac_lock. 747 * @multicast_hash: Multicast hash table for Falcon-arch. 748 * Protected by @mac_lock. 749 * @wanted_fc: Wanted flow control flags 750 * @fc_disable: When non-zero flow control is disabled. Typically used to 751 * ensure that network back pressure doesn't delay dma queue flushes. 752 * Serialised by the rtnl lock. 753 * @mac_work: Work item for changing MAC promiscuity and multicast hash 754 * @loopback_mode: Loopback status 755 * @loopback_modes: Supported loopback mode bitmask 756 * @loopback_selftest: Offline self-test private state 757 * @filter_lock: Filter table lock 758 * @filter_state: Architecture-dependent filter table state 759 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS, 760 * indexed by filter ID 761 * @rps_expire_index: Next index to check for expiry in @rps_flow_id 762 * @active_queues: Count of RX and TX queues that haven't been flushed and drained. 763 * @rxq_flush_pending: Count of number of receive queues that need to be flushed. 764 * Decremented when the efx_flush_rx_queue() is called. 765 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet 766 * completed (either success or failure). Not used when MCDI is used to 767 * flush receive queues. 768 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions. 769 * @vf: Array of &struct efx_vf objects. 770 * @vf_count: Number of VFs intended to be enabled. 771 * @vf_init_count: Number of VFs that have been fully initialised. 772 * @vi_scale: log2 number of vnics per VF. 773 * @vf_buftbl_base: The zeroth buffer table index used to back VF queues. 774 * @vfdi_status: Common VFDI status page to be dmad to VF address space. 775 * @local_addr_list: List of local addresses. Protected by %local_lock. 776 * @local_page_list: List of DMA addressable pages used to broadcast 777 * %local_addr_list. Protected by %local_lock. 778 * @local_lock: Mutex protecting %local_addr_list and %local_page_list. 779 * @peer_work: Work item to broadcast peer addresses to VMs. 780 * @ptp_data: PTP state data 781 * @vpd_sn: Serial number read from VPD 782 * @monitor_work: Hardware monitor workitem 783 * @biu_lock: BIU (bus interface unit) lock 784 * @last_irq_cpu: Last CPU to handle a possible test interrupt. This 785 * field is used by efx_test_interrupts() to verify that an 786 * interrupt has occurred. 787 * @stats_lock: Statistics update lock. Must be held when calling 788 * efx_nic_type::{update,start,stop}_stats. 789 * 790 * This is stored in the private area of the &struct net_device. 791 */ 792 struct efx_nic { 793 /* The following fields should be written very rarely */ 794 795 char name[IFNAMSIZ]; 796 struct list_head node; 797 struct efx_nic *primary; 798 struct list_head secondary_list; 799 struct pci_dev *pci_dev; 800 unsigned int port_num; 801 const struct efx_nic_type *type; 802 int legacy_irq; 803 bool eeh_disabled_legacy_irq; 804 struct workqueue_struct *workqueue; 805 char workqueue_name[16]; 806 struct work_struct reset_work; 807 resource_size_t membase_phys; 808 void __iomem *membase; 809 810 enum efx_int_mode interrupt_mode; 811 unsigned int timer_quantum_ns; 812 bool irq_rx_adaptive; 813 unsigned int irq_rx_moderation; 814 u32 msg_enable; 815 816 enum nic_state state; 817 unsigned long reset_pending; 818 819 struct efx_channel *channel[EFX_MAX_CHANNELS]; 820 struct efx_msi_context msi_context[EFX_MAX_CHANNELS]; 821 const struct efx_channel_type * 822 extra_channel_type[EFX_MAX_EXTRA_CHANNELS]; 823 824 unsigned rxq_entries; 825 unsigned txq_entries; 826 unsigned int txq_stop_thresh; 827 unsigned int txq_wake_thresh; 828 829 unsigned tx_dc_base; 830 unsigned rx_dc_base; 831 unsigned sram_lim_qw; 832 unsigned next_buffer_table; 833 834 unsigned int max_channels; 835 unsigned n_channels; 836 unsigned n_rx_channels; 837 unsigned rss_spread; 838 unsigned tx_channel_offset; 839 unsigned n_tx_channels; 840 unsigned int rx_ip_align; 841 unsigned int rx_dma_len; 842 unsigned int rx_buffer_order; 843 unsigned int rx_buffer_truesize; 844 unsigned int rx_page_buf_step; 845 unsigned int rx_bufs_per_page; 846 unsigned int rx_pages_per_batch; 847 unsigned int rx_prefix_size; 848 int rx_packet_hash_offset; 849 int rx_packet_len_offset; 850 int rx_packet_ts_offset; 851 u8 rx_hash_key[40]; 852 u32 rx_indir_table[128]; 853 bool rx_scatter; 854 855 unsigned int_error_count; 856 unsigned long int_error_expire; 857 858 bool irq_soft_enabled; 859 struct efx_buffer irq_status; 860 unsigned irq_zero_count; 861 unsigned irq_level; 862 struct delayed_work selftest_work; 863 864 #ifdef CONFIG_SFC_MTD 865 struct list_head mtd_list; 866 #endif 867 868 void *nic_data; 869 struct efx_mcdi_data *mcdi; 870 871 struct mutex mac_lock; 872 struct work_struct mac_work; 873 bool port_enabled; 874 875 bool mc_bist_for_other_fn; 876 bool port_initialized; 877 struct net_device *net_dev; 878 879 struct efx_buffer stats_buffer; 880 u64 rx_nodesc_drops_total; 881 u64 rx_nodesc_drops_while_down; 882 bool rx_nodesc_drops_prev_state; 883 884 unsigned int phy_type; 885 const struct efx_phy_operations *phy_op; 886 void *phy_data; 887 struct mdio_if_info mdio; 888 unsigned int mdio_bus; 889 enum efx_phy_mode phy_mode; 890 891 u32 link_advertising; 892 struct efx_link_state link_state; 893 unsigned int n_link_state_changes; 894 895 bool unicast_filter; 896 union efx_multicast_hash multicast_hash; 897 u8 wanted_fc; 898 unsigned fc_disable; 899 900 atomic_t rx_reset; 901 enum efx_loopback_mode loopback_mode; 902 u64 loopback_modes; 903 904 void *loopback_selftest; 905 906 spinlock_t filter_lock; 907 void *filter_state; 908 #ifdef CONFIG_RFS_ACCEL 909 u32 *rps_flow_id; 910 unsigned int rps_expire_index; 911 #endif 912 913 atomic_t active_queues; 914 atomic_t rxq_flush_pending; 915 atomic_t rxq_flush_outstanding; 916 wait_queue_head_t flush_wq; 917 918 #ifdef CONFIG_SFC_SRIOV 919 struct efx_channel *vfdi_channel; 920 struct efx_vf *vf; 921 unsigned vf_count; 922 unsigned vf_init_count; 923 unsigned vi_scale; 924 unsigned vf_buftbl_base; 925 struct efx_buffer vfdi_status; 926 struct list_head local_addr_list; 927 struct list_head local_page_list; 928 struct mutex local_lock; 929 struct work_struct peer_work; 930 #endif 931 932 struct efx_ptp_data *ptp_data; 933 934 char *vpd_sn; 935 936 /* The following fields may be written more often */ 937 938 struct delayed_work monitor_work ____cacheline_aligned_in_smp; 939 spinlock_t biu_lock; 940 int last_irq_cpu; 941 spinlock_t stats_lock; 942 }; 943 944 static inline int efx_dev_registered(struct efx_nic *efx) 945 { 946 return efx->net_dev->reg_state == NETREG_REGISTERED; 947 } 948 949 static inline unsigned int efx_port_num(struct efx_nic *efx) 950 { 951 return efx->port_num; 952 } 953 954 struct efx_mtd_partition { 955 struct list_head node; 956 struct mtd_info mtd; 957 const char *dev_type_name; 958 const char *type_name; 959 char name[IFNAMSIZ + 20]; 960 }; 961 962 /** 963 * struct efx_nic_type - Efx device type definition 964 * @mem_map_size: Get memory BAR mapped size 965 * @probe: Probe the controller 966 * @remove: Free resources allocated by probe() 967 * @init: Initialise the controller 968 * @dimension_resources: Dimension controller resources (buffer table, 969 * and VIs once the available interrupt resources are clear) 970 * @fini: Shut down the controller 971 * @monitor: Periodic function for polling link state and hardware monitor 972 * @map_reset_reason: Map ethtool reset reason to a reset method 973 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible 974 * @reset: Reset the controller hardware and possibly the PHY. This will 975 * be called while the controller is uninitialised. 976 * @probe_port: Probe the MAC and PHY 977 * @remove_port: Free resources allocated by probe_port() 978 * @handle_global_event: Handle a "global" event (may be %NULL) 979 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues) 980 * @prepare_flush: Prepare the hardware for flushing the DMA queues 981 * (for Falcon architecture) 982 * @finish_flush: Clean up after flushing the DMA queues (for Falcon 983 * architecture) 984 * @describe_stats: Describe statistics for ethtool 985 * @update_stats: Update statistics not provided by event handling. 986 * Either argument may be %NULL. 987 * @start_stats: Start the regular fetching of statistics 988 * @pull_stats: Pull stats from the NIC and wait until they arrive. 989 * @stop_stats: Stop the regular fetching of statistics 990 * @set_id_led: Set state of identifying LED or revert to automatic function 991 * @push_irq_moderation: Apply interrupt moderation value 992 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY 993 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL) 994 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings 995 * to the hardware. Serialised by the mac_lock. 996 * @check_mac_fault: Check MAC fault state. True if fault present. 997 * @get_wol: Get WoL configuration from driver state 998 * @set_wol: Push WoL configuration to the NIC 999 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume) 1000 * @test_chip: Test registers. May use efx_farch_test_registers(), and is 1001 * expected to reset the NIC. 1002 * @test_nvram: Test validity of NVRAM contents 1003 * @mcdi_request: Send an MCDI request with the given header and SDU. 1004 * The SDU length may be any value from 0 up to the protocol- 1005 * defined maximum, but its buffer will be padded to a multiple 1006 * of 4 bytes. 1007 * @mcdi_poll_response: Test whether an MCDI response is available. 1008 * @mcdi_read_response: Read the MCDI response PDU. The offset will 1009 * be a multiple of 4. The length may not be, but the buffer 1010 * will be padded so it is safe to round up. 1011 * @mcdi_poll_reboot: Test whether the MCDI has rebooted. If so, 1012 * return an appropriate error code for aborting any current 1013 * request; otherwise return 0. 1014 * @irq_enable_master: Enable IRQs on the NIC. Each event queue must 1015 * be separately enabled after this. 1016 * @irq_test_generate: Generate a test IRQ 1017 * @irq_disable_non_ev: Disable non-event IRQs on the NIC. Each event 1018 * queue must be separately disabled before this. 1019 * @irq_handle_msi: Handle MSI for a channel. The @dev_id argument is 1020 * a pointer to the &struct efx_msi_context for the channel. 1021 * @irq_handle_legacy: Handle legacy interrupt. The @dev_id argument 1022 * is a pointer to the &struct efx_nic. 1023 * @tx_probe: Allocate resources for TX queue 1024 * @tx_init: Initialise TX queue on the NIC 1025 * @tx_remove: Free resources for TX queue 1026 * @tx_write: Write TX descriptors and doorbell 1027 * @rx_push_indir_table: Write RSS indirection table to the NIC 1028 * @rx_probe: Allocate resources for RX queue 1029 * @rx_init: Initialise RX queue on the NIC 1030 * @rx_remove: Free resources for RX queue 1031 * @rx_write: Write RX descriptors and doorbell 1032 * @rx_defer_refill: Generate a refill reminder event 1033 * @ev_probe: Allocate resources for event queue 1034 * @ev_init: Initialise event queue on the NIC 1035 * @ev_fini: Deinitialise event queue on the NIC 1036 * @ev_remove: Free resources for event queue 1037 * @ev_process: Process events for a queue, up to the given NAPI quota 1038 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ 1039 * @ev_test_generate: Generate a test event 1040 * @filter_table_probe: Probe filter capabilities and set up filter software state 1041 * @filter_table_restore: Restore filters removed from hardware 1042 * @filter_table_remove: Remove filters from hardware and tear down software state 1043 * @filter_update_rx_scatter: Update filters after change to rx scatter setting 1044 * @filter_insert: add or replace a filter 1045 * @filter_remove_safe: remove a filter by ID, carefully 1046 * @filter_get_safe: retrieve a filter by ID, carefully 1047 * @filter_clear_rx: remove RX filters by priority 1048 * @filter_count_rx_used: Get the number of filters in use at a given priority 1049 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1 1050 * @filter_get_rx_ids: Get list of RX filters at a given priority 1051 * @filter_rfs_insert: Add or replace a filter for RFS. This must be 1052 * atomic. The hardware change may be asynchronous but should 1053 * not be delayed for long. It may fail if this can't be done 1054 * atomically. 1055 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS. 1056 * This must check whether the specified table entry is used by RFS 1057 * and that rps_may_expire_flow() returns true for it. 1058 * @mtd_probe: Probe and add MTD partitions associated with this net device, 1059 * using efx_mtd_add() 1060 * @mtd_rename: Set an MTD partition name using the net device name 1061 * @mtd_read: Read from an MTD partition 1062 * @mtd_erase: Erase part of an MTD partition 1063 * @mtd_write: Write to an MTD partition 1064 * @mtd_sync: Wait for write-back to complete on MTD partition. This 1065 * also notifies the driver that a writer has finished using this 1066 * partition. 1067 * @ptp_write_host_time: Send host time to MC as part of sync protocol 1068 * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX 1069 * timestamping, possibly only temporarily for the purposes of a reset. 1070 * @ptp_set_ts_config: Set hardware timestamp configuration. The flags 1071 * and tx_type will already have been validated but this operation 1072 * must validate and update rx_filter. 1073 * @revision: Hardware architecture revision 1074 * @txd_ptr_tbl_base: TX descriptor ring base address 1075 * @rxd_ptr_tbl_base: RX descriptor ring base address 1076 * @buf_tbl_base: Buffer table base address 1077 * @evq_ptr_tbl_base: Event queue pointer table base address 1078 * @evq_rptr_tbl_base: Event queue read-pointer table base address 1079 * @max_dma_mask: Maximum possible DMA mask 1080 * @rx_prefix_size: Size of RX prefix before packet data 1081 * @rx_hash_offset: Offset of RX flow hash within prefix 1082 * @rx_ts_offset: Offset of timestamp within prefix 1083 * @rx_buffer_padding: Size of padding at end of RX packet 1084 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers 1085 * @always_rx_scatter: NIC will always scatter packets to multiple buffers 1086 * @max_interrupt_mode: Highest capability interrupt mode supported 1087 * from &enum efx_init_mode. 1088 * @timer_period_max: Maximum period of interrupt timer (in ticks) 1089 * @offload_features: net_device feature flags for protocol offload 1090 * features implemented in hardware 1091 * @mcdi_max_ver: Maximum MCDI version supported 1092 * @hwtstamp_filters: Mask of hardware timestamp filter types supported 1093 */ 1094 struct efx_nic_type { 1095 unsigned int (*mem_map_size)(struct efx_nic *efx); 1096 int (*probe)(struct efx_nic *efx); 1097 void (*remove)(struct efx_nic *efx); 1098 int (*init)(struct efx_nic *efx); 1099 int (*dimension_resources)(struct efx_nic *efx); 1100 void (*fini)(struct efx_nic *efx); 1101 void (*monitor)(struct efx_nic *efx); 1102 enum reset_type (*map_reset_reason)(enum reset_type reason); 1103 int (*map_reset_flags)(u32 *flags); 1104 int (*reset)(struct efx_nic *efx, enum reset_type method); 1105 int (*probe_port)(struct efx_nic *efx); 1106 void (*remove_port)(struct efx_nic *efx); 1107 bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *); 1108 int (*fini_dmaq)(struct efx_nic *efx); 1109 void (*prepare_flush)(struct efx_nic *efx); 1110 void (*finish_flush)(struct efx_nic *efx); 1111 size_t (*describe_stats)(struct efx_nic *efx, u8 *names); 1112 size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats, 1113 struct rtnl_link_stats64 *core_stats); 1114 void (*start_stats)(struct efx_nic *efx); 1115 void (*pull_stats)(struct efx_nic *efx); 1116 void (*stop_stats)(struct efx_nic *efx); 1117 void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode); 1118 void (*push_irq_moderation)(struct efx_channel *channel); 1119 int (*reconfigure_port)(struct efx_nic *efx); 1120 void (*prepare_enable_fc_tx)(struct efx_nic *efx); 1121 int (*reconfigure_mac)(struct efx_nic *efx); 1122 bool (*check_mac_fault)(struct efx_nic *efx); 1123 void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol); 1124 int (*set_wol)(struct efx_nic *efx, u32 type); 1125 void (*resume_wol)(struct efx_nic *efx); 1126 int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests); 1127 int (*test_nvram)(struct efx_nic *efx); 1128 void (*mcdi_request)(struct efx_nic *efx, 1129 const efx_dword_t *hdr, size_t hdr_len, 1130 const efx_dword_t *sdu, size_t sdu_len); 1131 bool (*mcdi_poll_response)(struct efx_nic *efx); 1132 void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu, 1133 size_t pdu_offset, size_t pdu_len); 1134 int (*mcdi_poll_reboot)(struct efx_nic *efx); 1135 void (*irq_enable_master)(struct efx_nic *efx); 1136 void (*irq_test_generate)(struct efx_nic *efx); 1137 void (*irq_disable_non_ev)(struct efx_nic *efx); 1138 irqreturn_t (*irq_handle_msi)(int irq, void *dev_id); 1139 irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id); 1140 int (*tx_probe)(struct efx_tx_queue *tx_queue); 1141 void (*tx_init)(struct efx_tx_queue *tx_queue); 1142 void (*tx_remove)(struct efx_tx_queue *tx_queue); 1143 void (*tx_write)(struct efx_tx_queue *tx_queue); 1144 void (*rx_push_indir_table)(struct efx_nic *efx); 1145 int (*rx_probe)(struct efx_rx_queue *rx_queue); 1146 void (*rx_init)(struct efx_rx_queue *rx_queue); 1147 void (*rx_remove)(struct efx_rx_queue *rx_queue); 1148 void (*rx_write)(struct efx_rx_queue *rx_queue); 1149 void (*rx_defer_refill)(struct efx_rx_queue *rx_queue); 1150 int (*ev_probe)(struct efx_channel *channel); 1151 int (*ev_init)(struct efx_channel *channel); 1152 void (*ev_fini)(struct efx_channel *channel); 1153 void (*ev_remove)(struct efx_channel *channel); 1154 int (*ev_process)(struct efx_channel *channel, int quota); 1155 void (*ev_read_ack)(struct efx_channel *channel); 1156 void (*ev_test_generate)(struct efx_channel *channel); 1157 int (*filter_table_probe)(struct efx_nic *efx); 1158 void (*filter_table_restore)(struct efx_nic *efx); 1159 void (*filter_table_remove)(struct efx_nic *efx); 1160 void (*filter_update_rx_scatter)(struct efx_nic *efx); 1161 s32 (*filter_insert)(struct efx_nic *efx, 1162 struct efx_filter_spec *spec, bool replace); 1163 int (*filter_remove_safe)(struct efx_nic *efx, 1164 enum efx_filter_priority priority, 1165 u32 filter_id); 1166 int (*filter_get_safe)(struct efx_nic *efx, 1167 enum efx_filter_priority priority, 1168 u32 filter_id, struct efx_filter_spec *); 1169 void (*filter_clear_rx)(struct efx_nic *efx, 1170 enum efx_filter_priority priority); 1171 u32 (*filter_count_rx_used)(struct efx_nic *efx, 1172 enum efx_filter_priority priority); 1173 u32 (*filter_get_rx_id_limit)(struct efx_nic *efx); 1174 s32 (*filter_get_rx_ids)(struct efx_nic *efx, 1175 enum efx_filter_priority priority, 1176 u32 *buf, u32 size); 1177 #ifdef CONFIG_RFS_ACCEL 1178 s32 (*filter_rfs_insert)(struct efx_nic *efx, 1179 struct efx_filter_spec *spec); 1180 bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id, 1181 unsigned int index); 1182 #endif 1183 #ifdef CONFIG_SFC_MTD 1184 int (*mtd_probe)(struct efx_nic *efx); 1185 void (*mtd_rename)(struct efx_mtd_partition *part); 1186 int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len, 1187 size_t *retlen, u8 *buffer); 1188 int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len); 1189 int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len, 1190 size_t *retlen, const u8 *buffer); 1191 int (*mtd_sync)(struct mtd_info *mtd); 1192 #endif 1193 void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time); 1194 int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp); 1195 int (*ptp_set_ts_config)(struct efx_nic *efx, 1196 struct hwtstamp_config *init); 1197 1198 int revision; 1199 unsigned int txd_ptr_tbl_base; 1200 unsigned int rxd_ptr_tbl_base; 1201 unsigned int buf_tbl_base; 1202 unsigned int evq_ptr_tbl_base; 1203 unsigned int evq_rptr_tbl_base; 1204 u64 max_dma_mask; 1205 unsigned int rx_prefix_size; 1206 unsigned int rx_hash_offset; 1207 unsigned int rx_ts_offset; 1208 unsigned int rx_buffer_padding; 1209 bool can_rx_scatter; 1210 bool always_rx_scatter; 1211 unsigned int max_interrupt_mode; 1212 unsigned int timer_period_max; 1213 netdev_features_t offload_features; 1214 int mcdi_max_ver; 1215 unsigned int max_rx_ip_filters; 1216 u32 hwtstamp_filters; 1217 }; 1218 1219 /************************************************************************** 1220 * 1221 * Prototypes and inline functions 1222 * 1223 *************************************************************************/ 1224 1225 static inline struct efx_channel * 1226 efx_get_channel(struct efx_nic *efx, unsigned index) 1227 { 1228 EFX_BUG_ON_PARANOID(index >= efx->n_channels); 1229 return efx->channel[index]; 1230 } 1231 1232 /* Iterate over all used channels */ 1233 #define efx_for_each_channel(_channel, _efx) \ 1234 for (_channel = (_efx)->channel[0]; \ 1235 _channel; \ 1236 _channel = (_channel->channel + 1 < (_efx)->n_channels) ? \ 1237 (_efx)->channel[_channel->channel + 1] : NULL) 1238 1239 /* Iterate over all used channels in reverse */ 1240 #define efx_for_each_channel_rev(_channel, _efx) \ 1241 for (_channel = (_efx)->channel[(_efx)->n_channels - 1]; \ 1242 _channel; \ 1243 _channel = _channel->channel ? \ 1244 (_efx)->channel[_channel->channel - 1] : NULL) 1245 1246 static inline struct efx_tx_queue * 1247 efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type) 1248 { 1249 EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels || 1250 type >= EFX_TXQ_TYPES); 1251 return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type]; 1252 } 1253 1254 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel) 1255 { 1256 return channel->channel - channel->efx->tx_channel_offset < 1257 channel->efx->n_tx_channels; 1258 } 1259 1260 static inline struct efx_tx_queue * 1261 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type) 1262 { 1263 EFX_BUG_ON_PARANOID(!efx_channel_has_tx_queues(channel) || 1264 type >= EFX_TXQ_TYPES); 1265 return &channel->tx_queue[type]; 1266 } 1267 1268 static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue) 1269 { 1270 return !(tx_queue->efx->net_dev->num_tc < 2 && 1271 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI); 1272 } 1273 1274 /* Iterate over all TX queues belonging to a channel */ 1275 #define efx_for_each_channel_tx_queue(_tx_queue, _channel) \ 1276 if (!efx_channel_has_tx_queues(_channel)) \ 1277 ; \ 1278 else \ 1279 for (_tx_queue = (_channel)->tx_queue; \ 1280 _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \ 1281 efx_tx_queue_used(_tx_queue); \ 1282 _tx_queue++) 1283 1284 /* Iterate over all possible TX queues belonging to a channel */ 1285 #define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel) \ 1286 if (!efx_channel_has_tx_queues(_channel)) \ 1287 ; \ 1288 else \ 1289 for (_tx_queue = (_channel)->tx_queue; \ 1290 _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES; \ 1291 _tx_queue++) 1292 1293 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel) 1294 { 1295 return channel->rx_queue.core_index >= 0; 1296 } 1297 1298 static inline struct efx_rx_queue * 1299 efx_channel_get_rx_queue(struct efx_channel *channel) 1300 { 1301 EFX_BUG_ON_PARANOID(!efx_channel_has_rx_queue(channel)); 1302 return &channel->rx_queue; 1303 } 1304 1305 /* Iterate over all RX queues belonging to a channel */ 1306 #define efx_for_each_channel_rx_queue(_rx_queue, _channel) \ 1307 if (!efx_channel_has_rx_queue(_channel)) \ 1308 ; \ 1309 else \ 1310 for (_rx_queue = &(_channel)->rx_queue; \ 1311 _rx_queue; \ 1312 _rx_queue = NULL) 1313 1314 static inline struct efx_channel * 1315 efx_rx_queue_channel(struct efx_rx_queue *rx_queue) 1316 { 1317 return container_of(rx_queue, struct efx_channel, rx_queue); 1318 } 1319 1320 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue) 1321 { 1322 return efx_rx_queue_channel(rx_queue)->channel; 1323 } 1324 1325 /* Returns a pointer to the specified receive buffer in the RX 1326 * descriptor queue. 1327 */ 1328 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue, 1329 unsigned int index) 1330 { 1331 return &rx_queue->buffer[index]; 1332 } 1333 1334 1335 /** 1336 * EFX_MAX_FRAME_LEN - calculate maximum frame length 1337 * 1338 * This calculates the maximum frame length that will be used for a 1339 * given MTU. The frame length will be equal to the MTU plus a 1340 * constant amount of header space and padding. This is the quantity 1341 * that the net driver will program into the MAC as the maximum frame 1342 * length. 1343 * 1344 * The 10G MAC requires 8-byte alignment on the frame 1345 * length, so we round up to the nearest 8. 1346 * 1347 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an 1348 * XGMII cycle). If the frame length reaches the maximum value in the 1349 * same cycle, the XMAC can miss the IPG altogether. We work around 1350 * this by adding a further 16 bytes. 1351 */ 1352 #define EFX_MAX_FRAME_LEN(mtu) \ 1353 ((((mtu) + ETH_HLEN + VLAN_HLEN + 4/* FCS */ + 7) & ~7) + 16) 1354 1355 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb) 1356 { 1357 return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP; 1358 } 1359 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb) 1360 { 1361 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1362 } 1363 1364 #endif /* EFX_NET_DRIVER_H */ 1365