xref: /linux/drivers/net/ethernet/sfc/net_driver.h (revision 89e47d3b8a273b0eac21e4bf6d7fdb86b654fa16)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 /* Common definitions for all Efx net driver code */
12 
13 #ifndef EFX_NET_DRIVER_H
14 #define EFX_NET_DRIVER_H
15 
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/ethtool.h>
19 #include <linux/if_vlan.h>
20 #include <linux/timer.h>
21 #include <linux/mdio.h>
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/device.h>
25 #include <linux/highmem.h>
26 #include <linux/workqueue.h>
27 #include <linux/mutex.h>
28 #include <linux/vmalloc.h>
29 #include <linux/i2c.h>
30 #include <linux/mtd/mtd.h>
31 
32 #include "enum.h"
33 #include "bitfield.h"
34 #include "filter.h"
35 
36 /**************************************************************************
37  *
38  * Build definitions
39  *
40  **************************************************************************/
41 
42 #define EFX_DRIVER_VERSION	"4.0"
43 
44 #ifdef DEBUG
45 #define EFX_BUG_ON_PARANOID(x) BUG_ON(x)
46 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
47 #else
48 #define EFX_BUG_ON_PARANOID(x) do {} while (0)
49 #define EFX_WARN_ON_PARANOID(x) do {} while (0)
50 #endif
51 
52 /**************************************************************************
53  *
54  * Efx data structures
55  *
56  **************************************************************************/
57 
58 #define EFX_MAX_CHANNELS 32U
59 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
60 #define EFX_EXTRA_CHANNEL_IOV	0
61 #define EFX_EXTRA_CHANNEL_PTP	1
62 #define EFX_MAX_EXTRA_CHANNELS	2U
63 
64 /* Checksum generation is a per-queue option in hardware, so each
65  * queue visible to the networking core is backed by two hardware TX
66  * queues. */
67 #define EFX_MAX_TX_TC		2
68 #define EFX_MAX_CORE_TX_QUEUES	(EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
69 #define EFX_TXQ_TYPE_OFFLOAD	1	/* flag */
70 #define EFX_TXQ_TYPE_HIGHPRI	2	/* flag */
71 #define EFX_TXQ_TYPES		4
72 #define EFX_MAX_TX_QUEUES	(EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
73 
74 /* Maximum possible MTU the driver supports */
75 #define EFX_MAX_MTU (9 * 1024)
76 
77 /* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
78  * and should be a multiple of the cache line size.
79  */
80 #define EFX_RX_USR_BUF_SIZE	(2048 - 256)
81 
82 /* If possible, we should ensure cache line alignment at start and end
83  * of every buffer.  Otherwise, we just need to ensure 4-byte
84  * alignment of the network header.
85  */
86 #if NET_IP_ALIGN == 0
87 #define EFX_RX_BUF_ALIGNMENT	L1_CACHE_BYTES
88 #else
89 #define EFX_RX_BUF_ALIGNMENT	4
90 #endif
91 
92 /* Forward declare Precision Time Protocol (PTP) support structure. */
93 struct efx_ptp_data;
94 struct hwtstamp_config;
95 
96 struct efx_self_tests;
97 
98 /**
99  * struct efx_buffer - A general-purpose DMA buffer
100  * @addr: host base address of the buffer
101  * @dma_addr: DMA base address of the buffer
102  * @len: Buffer length, in bytes
103  *
104  * The NIC uses these buffers for its interrupt status registers and
105  * MAC stats dumps.
106  */
107 struct efx_buffer {
108 	void *addr;
109 	dma_addr_t dma_addr;
110 	unsigned int len;
111 };
112 
113 /**
114  * struct efx_special_buffer - DMA buffer entered into buffer table
115  * @buf: Standard &struct efx_buffer
116  * @index: Buffer index within controller;s buffer table
117  * @entries: Number of buffer table entries
118  *
119  * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
120  * Event and descriptor rings are addressed via one or more buffer
121  * table entries (and so can be physically non-contiguous, although we
122  * currently do not take advantage of that).  On Falcon and Siena we
123  * have to take care of allocating and initialising the entries
124  * ourselves.  On later hardware this is managed by the firmware and
125  * @index and @entries are left as 0.
126  */
127 struct efx_special_buffer {
128 	struct efx_buffer buf;
129 	unsigned int index;
130 	unsigned int entries;
131 };
132 
133 /**
134  * struct efx_tx_buffer - buffer state for a TX descriptor
135  * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
136  *	freed when descriptor completes
137  * @heap_buf: When @flags & %EFX_TX_BUF_HEAP, the associated heap buffer to be
138  *	freed when descriptor completes.
139  * @option: When @flags & %EFX_TX_BUF_OPTION, a NIC-specific option descriptor.
140  * @dma_addr: DMA address of the fragment.
141  * @flags: Flags for allocation and DMA mapping type
142  * @len: Length of this fragment.
143  *	This field is zero when the queue slot is empty.
144  * @unmap_len: Length of this fragment to unmap
145  * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
146  * Only valid if @unmap_len != 0.
147  */
148 struct efx_tx_buffer {
149 	union {
150 		const struct sk_buff *skb;
151 		void *heap_buf;
152 	};
153 	union {
154 		efx_qword_t option;
155 		dma_addr_t dma_addr;
156 	};
157 	unsigned short flags;
158 	unsigned short len;
159 	unsigned short unmap_len;
160 	unsigned short dma_offset;
161 };
162 #define EFX_TX_BUF_CONT		1	/* not last descriptor of packet */
163 #define EFX_TX_BUF_SKB		2	/* buffer is last part of skb */
164 #define EFX_TX_BUF_HEAP		4	/* buffer was allocated with kmalloc() */
165 #define EFX_TX_BUF_MAP_SINGLE	8	/* buffer was mapped with dma_map_single() */
166 #define EFX_TX_BUF_OPTION	0x10	/* empty buffer for option descriptor */
167 
168 /**
169  * struct efx_tx_queue - An Efx TX queue
170  *
171  * This is a ring buffer of TX fragments.
172  * Since the TX completion path always executes on the same
173  * CPU and the xmit path can operate on different CPUs,
174  * performance is increased by ensuring that the completion
175  * path and the xmit path operate on different cache lines.
176  * This is particularly important if the xmit path is always
177  * executing on one CPU which is different from the completion
178  * path.  There is also a cache line for members which are
179  * read but not written on the fast path.
180  *
181  * @efx: The associated Efx NIC
182  * @queue: DMA queue number
183  * @channel: The associated channel
184  * @core_txq: The networking core TX queue structure
185  * @buffer: The software buffer ring
186  * @tsoh_page: Array of pages of TSO header buffers
187  * @txd: The hardware descriptor ring
188  * @ptr_mask: The size of the ring minus 1.
189  * @piobuf: PIO buffer region for this TX queue (shared with its partner).
190  *	Size of the region is efx_piobuf_size.
191  * @piobuf_offset: Buffer offset to be specified in PIO descriptors
192  * @initialised: Has hardware queue been initialised?
193  * @read_count: Current read pointer.
194  *	This is the number of buffers that have been removed from both rings.
195  * @old_write_count: The value of @write_count when last checked.
196  *	This is here for performance reasons.  The xmit path will
197  *	only get the up-to-date value of @write_count if this
198  *	variable indicates that the queue is empty.  This is to
199  *	avoid cache-line ping-pong between the xmit path and the
200  *	completion path.
201  * @merge_events: Number of TX merged completion events
202  * @insert_count: Current insert pointer
203  *	This is the number of buffers that have been added to the
204  *	software ring.
205  * @write_count: Current write pointer
206  *	This is the number of buffers that have been added to the
207  *	hardware ring.
208  * @old_read_count: The value of read_count when last checked.
209  *	This is here for performance reasons.  The xmit path will
210  *	only get the up-to-date value of read_count if this
211  *	variable indicates that the queue is full.  This is to
212  *	avoid cache-line ping-pong between the xmit path and the
213  *	completion path.
214  * @tso_bursts: Number of times TSO xmit invoked by kernel
215  * @tso_long_headers: Number of packets with headers too long for standard
216  *	blocks
217  * @tso_packets: Number of packets via the TSO xmit path
218  * @pushes: Number of times the TX push feature has been used
219  * @pio_packets: Number of times the TX PIO feature has been used
220  * @empty_read_count: If the completion path has seen the queue as empty
221  *	and the transmission path has not yet checked this, the value of
222  *	@read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
223  */
224 struct efx_tx_queue {
225 	/* Members which don't change on the fast path */
226 	struct efx_nic *efx ____cacheline_aligned_in_smp;
227 	unsigned queue;
228 	struct efx_channel *channel;
229 	struct netdev_queue *core_txq;
230 	struct efx_tx_buffer *buffer;
231 	struct efx_buffer *tsoh_page;
232 	struct efx_special_buffer txd;
233 	unsigned int ptr_mask;
234 	void __iomem *piobuf;
235 	unsigned int piobuf_offset;
236 	bool initialised;
237 
238 	/* Members used mainly on the completion path */
239 	unsigned int read_count ____cacheline_aligned_in_smp;
240 	unsigned int old_write_count;
241 	unsigned int merge_events;
242 
243 	/* Members used only on the xmit path */
244 	unsigned int insert_count ____cacheline_aligned_in_smp;
245 	unsigned int write_count;
246 	unsigned int old_read_count;
247 	unsigned int tso_bursts;
248 	unsigned int tso_long_headers;
249 	unsigned int tso_packets;
250 	unsigned int pushes;
251 	unsigned int pio_packets;
252 
253 	/* Members shared between paths and sometimes updated */
254 	unsigned int empty_read_count ____cacheline_aligned_in_smp;
255 #define EFX_EMPTY_COUNT_VALID 0x80000000
256 	atomic_t flush_outstanding;
257 };
258 
259 /**
260  * struct efx_rx_buffer - An Efx RX data buffer
261  * @dma_addr: DMA base address of the buffer
262  * @page: The associated page buffer.
263  *	Will be %NULL if the buffer slot is currently free.
264  * @page_offset: If pending: offset in @page of DMA base address.
265  *	If completed: offset in @page of Ethernet header.
266  * @len: If pending: length for DMA descriptor.
267  *	If completed: received length, excluding hash prefix.
268  * @flags: Flags for buffer and packet state.  These are only set on the
269  *	first buffer of a scattered packet.
270  */
271 struct efx_rx_buffer {
272 	dma_addr_t dma_addr;
273 	struct page *page;
274 	u16 page_offset;
275 	u16 len;
276 	u16 flags;
277 };
278 #define EFX_RX_BUF_LAST_IN_PAGE	0x0001
279 #define EFX_RX_PKT_CSUMMED	0x0002
280 #define EFX_RX_PKT_DISCARD	0x0004
281 #define EFX_RX_PKT_TCP		0x0040
282 #define EFX_RX_PKT_PREFIX_LEN	0x0080	/* length is in prefix only */
283 
284 /**
285  * struct efx_rx_page_state - Page-based rx buffer state
286  *
287  * Inserted at the start of every page allocated for receive buffers.
288  * Used to facilitate sharing dma mappings between recycled rx buffers
289  * and those passed up to the kernel.
290  *
291  * @refcnt: Number of struct efx_rx_buffer's referencing this page.
292  *	When refcnt falls to zero, the page is unmapped for dma
293  * @dma_addr: The dma address of this page.
294  */
295 struct efx_rx_page_state {
296 	unsigned refcnt;
297 	dma_addr_t dma_addr;
298 
299 	unsigned int __pad[0] ____cacheline_aligned;
300 };
301 
302 /**
303  * struct efx_rx_queue - An Efx RX queue
304  * @efx: The associated Efx NIC
305  * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
306  *	is associated with a real RX queue.
307  * @buffer: The software buffer ring
308  * @rxd: The hardware descriptor ring
309  * @ptr_mask: The size of the ring minus 1.
310  * @refill_enabled: Enable refill whenever fill level is low
311  * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
312  *	@rxq_flush_pending.
313  * @added_count: Number of buffers added to the receive queue.
314  * @notified_count: Number of buffers given to NIC (<= @added_count).
315  * @removed_count: Number of buffers removed from the receive queue.
316  * @scatter_n: Used by NIC specific receive code.
317  * @scatter_len: Used by NIC specific receive code.
318  * @page_ring: The ring to store DMA mapped pages for reuse.
319  * @page_add: Counter to calculate the write pointer for the recycle ring.
320  * @page_remove: Counter to calculate the read pointer for the recycle ring.
321  * @page_recycle_count: The number of pages that have been recycled.
322  * @page_recycle_failed: The number of pages that couldn't be recycled because
323  *      the kernel still held a reference to them.
324  * @page_recycle_full: The number of pages that were released because the
325  *      recycle ring was full.
326  * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
327  * @max_fill: RX descriptor maximum fill level (<= ring size)
328  * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
329  *	(<= @max_fill)
330  * @min_fill: RX descriptor minimum non-zero fill level.
331  *	This records the minimum fill level observed when a ring
332  *	refill was triggered.
333  * @recycle_count: RX buffer recycle counter.
334  * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
335  */
336 struct efx_rx_queue {
337 	struct efx_nic *efx;
338 	int core_index;
339 	struct efx_rx_buffer *buffer;
340 	struct efx_special_buffer rxd;
341 	unsigned int ptr_mask;
342 	bool refill_enabled;
343 	bool flush_pending;
344 
345 	unsigned int added_count;
346 	unsigned int notified_count;
347 	unsigned int removed_count;
348 	unsigned int scatter_n;
349 	unsigned int scatter_len;
350 	struct page **page_ring;
351 	unsigned int page_add;
352 	unsigned int page_remove;
353 	unsigned int page_recycle_count;
354 	unsigned int page_recycle_failed;
355 	unsigned int page_recycle_full;
356 	unsigned int page_ptr_mask;
357 	unsigned int max_fill;
358 	unsigned int fast_fill_trigger;
359 	unsigned int min_fill;
360 	unsigned int min_overfill;
361 	unsigned int recycle_count;
362 	struct timer_list slow_fill;
363 	unsigned int slow_fill_count;
364 };
365 
366 enum efx_rx_alloc_method {
367 	RX_ALLOC_METHOD_AUTO = 0,
368 	RX_ALLOC_METHOD_SKB = 1,
369 	RX_ALLOC_METHOD_PAGE = 2,
370 };
371 
372 enum efx_sync_events_state {
373 	SYNC_EVENTS_DISABLED = 0,
374 	SYNC_EVENTS_QUIESCENT,
375 	SYNC_EVENTS_REQUESTED,
376 	SYNC_EVENTS_VALID,
377 };
378 
379 /**
380  * struct efx_channel - An Efx channel
381  *
382  * A channel comprises an event queue, at least one TX queue, at least
383  * one RX queue, and an associated tasklet for processing the event
384  * queue.
385  *
386  * @efx: Associated Efx NIC
387  * @channel: Channel instance number
388  * @type: Channel type definition
389  * @eventq_init: Event queue initialised flag
390  * @enabled: Channel enabled indicator
391  * @irq: IRQ number (MSI and MSI-X only)
392  * @irq_moderation: IRQ moderation value (in hardware ticks)
393  * @napi_dev: Net device used with NAPI
394  * @napi_str: NAPI control structure
395  * @eventq: Event queue buffer
396  * @eventq_mask: Event queue pointer mask
397  * @eventq_read_ptr: Event queue read pointer
398  * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
399  * @irq_count: Number of IRQs since last adaptive moderation decision
400  * @irq_mod_score: IRQ moderation score
401  * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
402  * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
403  * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
404  * @n_rx_mcast_mismatch: Count of unmatched multicast frames
405  * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
406  * @n_rx_overlength: Count of RX_OVERLENGTH errors
407  * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
408  * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
409  *	lack of descriptors
410  * @n_rx_merge_events: Number of RX merged completion events
411  * @n_rx_merge_packets: Number of RX packets completed by merged events
412  * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
413  *	__efx_rx_packet(), or zero if there is none
414  * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
415  *	by __efx_rx_packet(), if @rx_pkt_n_frags != 0
416  * @rx_queue: RX queue for this channel
417  * @tx_queue: TX queues for this channel
418  * @sync_events_state: Current state of sync events on this channel
419  * @sync_timestamp_major: Major part of the last ptp sync event
420  * @sync_timestamp_minor: Minor part of the last ptp sync event
421  */
422 struct efx_channel {
423 	struct efx_nic *efx;
424 	int channel;
425 	const struct efx_channel_type *type;
426 	bool eventq_init;
427 	bool enabled;
428 	int irq;
429 	unsigned int irq_moderation;
430 	struct net_device *napi_dev;
431 	struct napi_struct napi_str;
432 	struct efx_special_buffer eventq;
433 	unsigned int eventq_mask;
434 	unsigned int eventq_read_ptr;
435 	int event_test_cpu;
436 
437 	unsigned int irq_count;
438 	unsigned int irq_mod_score;
439 #ifdef CONFIG_RFS_ACCEL
440 	unsigned int rfs_filters_added;
441 #endif
442 
443 	unsigned n_rx_tobe_disc;
444 	unsigned n_rx_ip_hdr_chksum_err;
445 	unsigned n_rx_tcp_udp_chksum_err;
446 	unsigned n_rx_mcast_mismatch;
447 	unsigned n_rx_frm_trunc;
448 	unsigned n_rx_overlength;
449 	unsigned n_skbuff_leaks;
450 	unsigned int n_rx_nodesc_trunc;
451 	unsigned int n_rx_merge_events;
452 	unsigned int n_rx_merge_packets;
453 
454 	unsigned int rx_pkt_n_frags;
455 	unsigned int rx_pkt_index;
456 
457 	struct efx_rx_queue rx_queue;
458 	struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
459 
460 	enum efx_sync_events_state sync_events_state;
461 	u32 sync_timestamp_major;
462 	u32 sync_timestamp_minor;
463 };
464 
465 /**
466  * struct efx_msi_context - Context for each MSI
467  * @efx: The associated NIC
468  * @index: Index of the channel/IRQ
469  * @name: Name of the channel/IRQ
470  *
471  * Unlike &struct efx_channel, this is never reallocated and is always
472  * safe for the IRQ handler to access.
473  */
474 struct efx_msi_context {
475 	struct efx_nic *efx;
476 	unsigned int index;
477 	char name[IFNAMSIZ + 6];
478 };
479 
480 /**
481  * struct efx_channel_type - distinguishes traffic and extra channels
482  * @handle_no_channel: Handle failure to allocate an extra channel
483  * @pre_probe: Set up extra state prior to initialisation
484  * @post_remove: Tear down extra state after finalisation, if allocated.
485  *	May be called on channels that have not been probed.
486  * @get_name: Generate the channel's name (used for its IRQ handler)
487  * @copy: Copy the channel state prior to reallocation.  May be %NULL if
488  *	reallocation is not supported.
489  * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
490  * @keep_eventq: Flag for whether event queue should be kept initialised
491  *	while the device is stopped
492  */
493 struct efx_channel_type {
494 	void (*handle_no_channel)(struct efx_nic *);
495 	int (*pre_probe)(struct efx_channel *);
496 	void (*post_remove)(struct efx_channel *);
497 	void (*get_name)(struct efx_channel *, char *buf, size_t len);
498 	struct efx_channel *(*copy)(const struct efx_channel *);
499 	bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
500 	bool keep_eventq;
501 };
502 
503 enum efx_led_mode {
504 	EFX_LED_OFF	= 0,
505 	EFX_LED_ON	= 1,
506 	EFX_LED_DEFAULT	= 2
507 };
508 
509 #define STRING_TABLE_LOOKUP(val, member) \
510 	((val) < member ## _max) ? member ## _names[val] : "(invalid)"
511 
512 extern const char *const efx_loopback_mode_names[];
513 extern const unsigned int efx_loopback_mode_max;
514 #define LOOPBACK_MODE(efx) \
515 	STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
516 
517 extern const char *const efx_reset_type_names[];
518 extern const unsigned int efx_reset_type_max;
519 #define RESET_TYPE(type) \
520 	STRING_TABLE_LOOKUP(type, efx_reset_type)
521 
522 enum efx_int_mode {
523 	/* Be careful if altering to correct macro below */
524 	EFX_INT_MODE_MSIX = 0,
525 	EFX_INT_MODE_MSI = 1,
526 	EFX_INT_MODE_LEGACY = 2,
527 	EFX_INT_MODE_MAX	/* Insert any new items before this */
528 };
529 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
530 
531 enum nic_state {
532 	STATE_UNINIT = 0,	/* device being probed/removed or is frozen */
533 	STATE_READY = 1,	/* hardware ready and netdev registered */
534 	STATE_DISABLED = 2,	/* device disabled due to hardware errors */
535 	STATE_RECOVERY = 3,	/* device recovering from PCI error */
536 };
537 
538 /* Forward declaration */
539 struct efx_nic;
540 
541 /* Pseudo bit-mask flow control field */
542 #define EFX_FC_RX	FLOW_CTRL_RX
543 #define EFX_FC_TX	FLOW_CTRL_TX
544 #define EFX_FC_AUTO	4
545 
546 /**
547  * struct efx_link_state - Current state of the link
548  * @up: Link is up
549  * @fd: Link is full-duplex
550  * @fc: Actual flow control flags
551  * @speed: Link speed (Mbps)
552  */
553 struct efx_link_state {
554 	bool up;
555 	bool fd;
556 	u8 fc;
557 	unsigned int speed;
558 };
559 
560 static inline bool efx_link_state_equal(const struct efx_link_state *left,
561 					const struct efx_link_state *right)
562 {
563 	return left->up == right->up && left->fd == right->fd &&
564 		left->fc == right->fc && left->speed == right->speed;
565 }
566 
567 /**
568  * struct efx_phy_operations - Efx PHY operations table
569  * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
570  *	efx->loopback_modes.
571  * @init: Initialise PHY
572  * @fini: Shut down PHY
573  * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
574  * @poll: Update @link_state and report whether it changed.
575  *	Serialised by the mac_lock.
576  * @get_settings: Get ethtool settings. Serialised by the mac_lock.
577  * @set_settings: Set ethtool settings. Serialised by the mac_lock.
578  * @set_npage_adv: Set abilities advertised in (Extended) Next Page
579  *	(only needed where AN bit is set in mmds)
580  * @test_alive: Test that PHY is 'alive' (online)
581  * @test_name: Get the name of a PHY-specific test/result
582  * @run_tests: Run tests and record results as appropriate (offline).
583  *	Flags are the ethtool tests flags.
584  */
585 struct efx_phy_operations {
586 	int (*probe) (struct efx_nic *efx);
587 	int (*init) (struct efx_nic *efx);
588 	void (*fini) (struct efx_nic *efx);
589 	void (*remove) (struct efx_nic *efx);
590 	int (*reconfigure) (struct efx_nic *efx);
591 	bool (*poll) (struct efx_nic *efx);
592 	void (*get_settings) (struct efx_nic *efx,
593 			      struct ethtool_cmd *ecmd);
594 	int (*set_settings) (struct efx_nic *efx,
595 			     struct ethtool_cmd *ecmd);
596 	void (*set_npage_adv) (struct efx_nic *efx, u32);
597 	int (*test_alive) (struct efx_nic *efx);
598 	const char *(*test_name) (struct efx_nic *efx, unsigned int index);
599 	int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
600 	int (*get_module_eeprom) (struct efx_nic *efx,
601 			       struct ethtool_eeprom *ee,
602 			       u8 *data);
603 	int (*get_module_info) (struct efx_nic *efx,
604 				struct ethtool_modinfo *modinfo);
605 };
606 
607 /**
608  * enum efx_phy_mode - PHY operating mode flags
609  * @PHY_MODE_NORMAL: on and should pass traffic
610  * @PHY_MODE_TX_DISABLED: on with TX disabled
611  * @PHY_MODE_LOW_POWER: set to low power through MDIO
612  * @PHY_MODE_OFF: switched off through external control
613  * @PHY_MODE_SPECIAL: on but will not pass traffic
614  */
615 enum efx_phy_mode {
616 	PHY_MODE_NORMAL		= 0,
617 	PHY_MODE_TX_DISABLED	= 1,
618 	PHY_MODE_LOW_POWER	= 2,
619 	PHY_MODE_OFF		= 4,
620 	PHY_MODE_SPECIAL	= 8,
621 };
622 
623 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
624 {
625 	return !!(mode & ~PHY_MODE_TX_DISABLED);
626 }
627 
628 /**
629  * struct efx_hw_stat_desc - Description of a hardware statistic
630  * @name: Name of the statistic as visible through ethtool, or %NULL if
631  *	it should not be exposed
632  * @dma_width: Width in bits (0 for non-DMA statistics)
633  * @offset: Offset within stats (ignored for non-DMA statistics)
634  */
635 struct efx_hw_stat_desc {
636 	const char *name;
637 	u16 dma_width;
638 	u16 offset;
639 };
640 
641 /* Number of bits used in a multicast filter hash address */
642 #define EFX_MCAST_HASH_BITS 8
643 
644 /* Number of (single-bit) entries in a multicast filter hash */
645 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
646 
647 /* An Efx multicast filter hash */
648 union efx_multicast_hash {
649 	u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
650 	efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
651 };
652 
653 struct efx_vf;
654 struct vfdi_status;
655 
656 /**
657  * struct efx_nic - an Efx NIC
658  * @name: Device name (net device name or bus id before net device registered)
659  * @pci_dev: The PCI device
660  * @node: List node for maintaning primary/secondary function lists
661  * @primary: &struct efx_nic instance for the primary function of this
662  *	controller.  May be the same structure, and may be %NULL if no
663  *	primary function is bound.  Serialised by rtnl_lock.
664  * @secondary_list: List of &struct efx_nic instances for the secondary PCI
665  *	functions of the controller, if this is for the primary function.
666  *	Serialised by rtnl_lock.
667  * @type: Controller type attributes
668  * @legacy_irq: IRQ number
669  * @workqueue: Workqueue for port reconfigures and the HW monitor.
670  *	Work items do not hold and must not acquire RTNL.
671  * @workqueue_name: Name of workqueue
672  * @reset_work: Scheduled reset workitem
673  * @membase_phys: Memory BAR value as physical address
674  * @membase: Memory BAR value
675  * @interrupt_mode: Interrupt mode
676  * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
677  * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
678  * @irq_rx_moderation: IRQ moderation time for RX event queues
679  * @msg_enable: Log message enable flags
680  * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
681  * @reset_pending: Bitmask for pending resets
682  * @tx_queue: TX DMA queues
683  * @rx_queue: RX DMA queues
684  * @channel: Channels
685  * @msi_context: Context for each MSI
686  * @extra_channel_types: Types of extra (non-traffic) channels that
687  *	should be allocated for this NIC
688  * @rxq_entries: Size of receive queues requested by user.
689  * @txq_entries: Size of transmit queues requested by user.
690  * @txq_stop_thresh: TX queue fill level at or above which we stop it.
691  * @txq_wake_thresh: TX queue fill level at or below which we wake it.
692  * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
693  * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
694  * @sram_lim_qw: Qword address limit of SRAM
695  * @next_buffer_table: First available buffer table id
696  * @n_channels: Number of channels in use
697  * @n_rx_channels: Number of channels used for RX (= number of RX queues)
698  * @n_tx_channels: Number of channels used for TX
699  * @rx_ip_align: RX DMA address offset to have IP header aligned in
700  *	in accordance with NET_IP_ALIGN
701  * @rx_dma_len: Current maximum RX DMA length
702  * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
703  * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
704  *	for use in sk_buff::truesize
705  * @rx_prefix_size: Size of RX prefix before packet data
706  * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
707  *	(valid only if @rx_prefix_size != 0; always negative)
708  * @rx_packet_len_offset: Offset of RX packet length from start of packet data
709  *	(valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
710  * @rx_packet_ts_offset: Offset of timestamp from start of packet data
711  *	(valid only if channel->sync_timestamps_enabled; always negative)
712  * @rx_hash_key: Toeplitz hash key for RSS
713  * @rx_indir_table: Indirection table for RSS
714  * @rx_scatter: Scatter mode enabled for receives
715  * @int_error_count: Number of internal errors seen recently
716  * @int_error_expire: Time at which error count will be expired
717  * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
718  *	acknowledge but do nothing else.
719  * @irq_status: Interrupt status buffer
720  * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
721  * @irq_level: IRQ level/index for IRQs not triggered by an event queue
722  * @selftest_work: Work item for asynchronous self-test
723  * @mtd_list: List of MTDs attached to the NIC
724  * @nic_data: Hardware dependent state
725  * @mcdi: Management-Controller-to-Driver Interface state
726  * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
727  *	efx_monitor() and efx_reconfigure_port()
728  * @port_enabled: Port enabled indicator.
729  *	Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
730  *	efx_mac_work() with kernel interfaces. Safe to read under any
731  *	one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
732  *	be held to modify it.
733  * @port_initialized: Port initialized?
734  * @net_dev: Operating system network device. Consider holding the rtnl lock
735  * @stats_buffer: DMA buffer for statistics
736  * @phy_type: PHY type
737  * @phy_op: PHY interface
738  * @phy_data: PHY private data (including PHY-specific stats)
739  * @mdio: PHY MDIO interface
740  * @mdio_bus: PHY MDIO bus ID (only used by Siena)
741  * @phy_mode: PHY operating mode. Serialised by @mac_lock.
742  * @link_advertising: Autonegotiation advertising flags
743  * @link_state: Current state of the link
744  * @n_link_state_changes: Number of times the link has changed state
745  * @unicast_filter: Flag for Falcon-arch simple unicast filter.
746  *	Protected by @mac_lock.
747  * @multicast_hash: Multicast hash table for Falcon-arch.
748  *	Protected by @mac_lock.
749  * @wanted_fc: Wanted flow control flags
750  * @fc_disable: When non-zero flow control is disabled. Typically used to
751  *	ensure that network back pressure doesn't delay dma queue flushes.
752  *	Serialised by the rtnl lock.
753  * @mac_work: Work item for changing MAC promiscuity and multicast hash
754  * @loopback_mode: Loopback status
755  * @loopback_modes: Supported loopback mode bitmask
756  * @loopback_selftest: Offline self-test private state
757  * @filter_lock: Filter table lock
758  * @filter_state: Architecture-dependent filter table state
759  * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
760  *	indexed by filter ID
761  * @rps_expire_index: Next index to check for expiry in @rps_flow_id
762  * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
763  * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
764  *	Decremented when the efx_flush_rx_queue() is called.
765  * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
766  *	completed (either success or failure). Not used when MCDI is used to
767  *	flush receive queues.
768  * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
769  * @vf: Array of &struct efx_vf objects.
770  * @vf_count: Number of VFs intended to be enabled.
771  * @vf_init_count: Number of VFs that have been fully initialised.
772  * @vi_scale: log2 number of vnics per VF.
773  * @vf_buftbl_base: The zeroth buffer table index used to back VF queues.
774  * @vfdi_status: Common VFDI status page to be dmad to VF address space.
775  * @local_addr_list: List of local addresses. Protected by %local_lock.
776  * @local_page_list: List of DMA addressable pages used to broadcast
777  *	%local_addr_list. Protected by %local_lock.
778  * @local_lock: Mutex protecting %local_addr_list and %local_page_list.
779  * @peer_work: Work item to broadcast peer addresses to VMs.
780  * @ptp_data: PTP state data
781  * @vpd_sn: Serial number read from VPD
782  * @monitor_work: Hardware monitor workitem
783  * @biu_lock: BIU (bus interface unit) lock
784  * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
785  *	field is used by efx_test_interrupts() to verify that an
786  *	interrupt has occurred.
787  * @stats_lock: Statistics update lock. Must be held when calling
788  *	efx_nic_type::{update,start,stop}_stats.
789  *
790  * This is stored in the private area of the &struct net_device.
791  */
792 struct efx_nic {
793 	/* The following fields should be written very rarely */
794 
795 	char name[IFNAMSIZ];
796 	struct list_head node;
797 	struct efx_nic *primary;
798 	struct list_head secondary_list;
799 	struct pci_dev *pci_dev;
800 	unsigned int port_num;
801 	const struct efx_nic_type *type;
802 	int legacy_irq;
803 	bool eeh_disabled_legacy_irq;
804 	struct workqueue_struct *workqueue;
805 	char workqueue_name[16];
806 	struct work_struct reset_work;
807 	resource_size_t membase_phys;
808 	void __iomem *membase;
809 
810 	enum efx_int_mode interrupt_mode;
811 	unsigned int timer_quantum_ns;
812 	bool irq_rx_adaptive;
813 	unsigned int irq_rx_moderation;
814 	u32 msg_enable;
815 
816 	enum nic_state state;
817 	unsigned long reset_pending;
818 
819 	struct efx_channel *channel[EFX_MAX_CHANNELS];
820 	struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
821 	const struct efx_channel_type *
822 	extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
823 
824 	unsigned rxq_entries;
825 	unsigned txq_entries;
826 	unsigned int txq_stop_thresh;
827 	unsigned int txq_wake_thresh;
828 
829 	unsigned tx_dc_base;
830 	unsigned rx_dc_base;
831 	unsigned sram_lim_qw;
832 	unsigned next_buffer_table;
833 
834 	unsigned int max_channels;
835 	unsigned n_channels;
836 	unsigned n_rx_channels;
837 	unsigned rss_spread;
838 	unsigned tx_channel_offset;
839 	unsigned n_tx_channels;
840 	unsigned int rx_ip_align;
841 	unsigned int rx_dma_len;
842 	unsigned int rx_buffer_order;
843 	unsigned int rx_buffer_truesize;
844 	unsigned int rx_page_buf_step;
845 	unsigned int rx_bufs_per_page;
846 	unsigned int rx_pages_per_batch;
847 	unsigned int rx_prefix_size;
848 	int rx_packet_hash_offset;
849 	int rx_packet_len_offset;
850 	int rx_packet_ts_offset;
851 	u8 rx_hash_key[40];
852 	u32 rx_indir_table[128];
853 	bool rx_scatter;
854 
855 	unsigned int_error_count;
856 	unsigned long int_error_expire;
857 
858 	bool irq_soft_enabled;
859 	struct efx_buffer irq_status;
860 	unsigned irq_zero_count;
861 	unsigned irq_level;
862 	struct delayed_work selftest_work;
863 
864 #ifdef CONFIG_SFC_MTD
865 	struct list_head mtd_list;
866 #endif
867 
868 	void *nic_data;
869 	struct efx_mcdi_data *mcdi;
870 
871 	struct mutex mac_lock;
872 	struct work_struct mac_work;
873 	bool port_enabled;
874 
875 	bool mc_bist_for_other_fn;
876 	bool port_initialized;
877 	struct net_device *net_dev;
878 
879 	struct efx_buffer stats_buffer;
880 	u64 rx_nodesc_drops_total;
881 	u64 rx_nodesc_drops_while_down;
882 	bool rx_nodesc_drops_prev_state;
883 
884 	unsigned int phy_type;
885 	const struct efx_phy_operations *phy_op;
886 	void *phy_data;
887 	struct mdio_if_info mdio;
888 	unsigned int mdio_bus;
889 	enum efx_phy_mode phy_mode;
890 
891 	u32 link_advertising;
892 	struct efx_link_state link_state;
893 	unsigned int n_link_state_changes;
894 
895 	bool unicast_filter;
896 	union efx_multicast_hash multicast_hash;
897 	u8 wanted_fc;
898 	unsigned fc_disable;
899 
900 	atomic_t rx_reset;
901 	enum efx_loopback_mode loopback_mode;
902 	u64 loopback_modes;
903 
904 	void *loopback_selftest;
905 
906 	spinlock_t filter_lock;
907 	void *filter_state;
908 #ifdef CONFIG_RFS_ACCEL
909 	u32 *rps_flow_id;
910 	unsigned int rps_expire_index;
911 #endif
912 
913 	atomic_t active_queues;
914 	atomic_t rxq_flush_pending;
915 	atomic_t rxq_flush_outstanding;
916 	wait_queue_head_t flush_wq;
917 
918 #ifdef CONFIG_SFC_SRIOV
919 	struct efx_channel *vfdi_channel;
920 	struct efx_vf *vf;
921 	unsigned vf_count;
922 	unsigned vf_init_count;
923 	unsigned vi_scale;
924 	unsigned vf_buftbl_base;
925 	struct efx_buffer vfdi_status;
926 	struct list_head local_addr_list;
927 	struct list_head local_page_list;
928 	struct mutex local_lock;
929 	struct work_struct peer_work;
930 #endif
931 
932 	struct efx_ptp_data *ptp_data;
933 
934 	char *vpd_sn;
935 
936 	/* The following fields may be written more often */
937 
938 	struct delayed_work monitor_work ____cacheline_aligned_in_smp;
939 	spinlock_t biu_lock;
940 	int last_irq_cpu;
941 	spinlock_t stats_lock;
942 };
943 
944 static inline int efx_dev_registered(struct efx_nic *efx)
945 {
946 	return efx->net_dev->reg_state == NETREG_REGISTERED;
947 }
948 
949 static inline unsigned int efx_port_num(struct efx_nic *efx)
950 {
951 	return efx->port_num;
952 }
953 
954 struct efx_mtd_partition {
955 	struct list_head node;
956 	struct mtd_info mtd;
957 	const char *dev_type_name;
958 	const char *type_name;
959 	char name[IFNAMSIZ + 20];
960 };
961 
962 /**
963  * struct efx_nic_type - Efx device type definition
964  * @mem_map_size: Get memory BAR mapped size
965  * @probe: Probe the controller
966  * @remove: Free resources allocated by probe()
967  * @init: Initialise the controller
968  * @dimension_resources: Dimension controller resources (buffer table,
969  *	and VIs once the available interrupt resources are clear)
970  * @fini: Shut down the controller
971  * @monitor: Periodic function for polling link state and hardware monitor
972  * @map_reset_reason: Map ethtool reset reason to a reset method
973  * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
974  * @reset: Reset the controller hardware and possibly the PHY.  This will
975  *	be called while the controller is uninitialised.
976  * @probe_port: Probe the MAC and PHY
977  * @remove_port: Free resources allocated by probe_port()
978  * @handle_global_event: Handle a "global" event (may be %NULL)
979  * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
980  * @prepare_flush: Prepare the hardware for flushing the DMA queues
981  *	(for Falcon architecture)
982  * @finish_flush: Clean up after flushing the DMA queues (for Falcon
983  *	architecture)
984  * @describe_stats: Describe statistics for ethtool
985  * @update_stats: Update statistics not provided by event handling.
986  *	Either argument may be %NULL.
987  * @start_stats: Start the regular fetching of statistics
988  * @pull_stats: Pull stats from the NIC and wait until they arrive.
989  * @stop_stats: Stop the regular fetching of statistics
990  * @set_id_led: Set state of identifying LED or revert to automatic function
991  * @push_irq_moderation: Apply interrupt moderation value
992  * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
993  * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
994  * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
995  *	to the hardware.  Serialised by the mac_lock.
996  * @check_mac_fault: Check MAC fault state. True if fault present.
997  * @get_wol: Get WoL configuration from driver state
998  * @set_wol: Push WoL configuration to the NIC
999  * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1000  * @test_chip: Test registers.  May use efx_farch_test_registers(), and is
1001  *	expected to reset the NIC.
1002  * @test_nvram: Test validity of NVRAM contents
1003  * @mcdi_request: Send an MCDI request with the given header and SDU.
1004  *	The SDU length may be any value from 0 up to the protocol-
1005  *	defined maximum, but its buffer will be padded to a multiple
1006  *	of 4 bytes.
1007  * @mcdi_poll_response: Test whether an MCDI response is available.
1008  * @mcdi_read_response: Read the MCDI response PDU.  The offset will
1009  *	be a multiple of 4.  The length may not be, but the buffer
1010  *	will be padded so it is safe to round up.
1011  * @mcdi_poll_reboot: Test whether the MCDI has rebooted.  If so,
1012  *	return an appropriate error code for aborting any current
1013  *	request; otherwise return 0.
1014  * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
1015  *	be separately enabled after this.
1016  * @irq_test_generate: Generate a test IRQ
1017  * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
1018  *	queue must be separately disabled before this.
1019  * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
1020  *	a pointer to the &struct efx_msi_context for the channel.
1021  * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
1022  *	is a pointer to the &struct efx_nic.
1023  * @tx_probe: Allocate resources for TX queue
1024  * @tx_init: Initialise TX queue on the NIC
1025  * @tx_remove: Free resources for TX queue
1026  * @tx_write: Write TX descriptors and doorbell
1027  * @rx_push_indir_table: Write RSS indirection table to the NIC
1028  * @rx_probe: Allocate resources for RX queue
1029  * @rx_init: Initialise RX queue on the NIC
1030  * @rx_remove: Free resources for RX queue
1031  * @rx_write: Write RX descriptors and doorbell
1032  * @rx_defer_refill: Generate a refill reminder event
1033  * @ev_probe: Allocate resources for event queue
1034  * @ev_init: Initialise event queue on the NIC
1035  * @ev_fini: Deinitialise event queue on the NIC
1036  * @ev_remove: Free resources for event queue
1037  * @ev_process: Process events for a queue, up to the given NAPI quota
1038  * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1039  * @ev_test_generate: Generate a test event
1040  * @filter_table_probe: Probe filter capabilities and set up filter software state
1041  * @filter_table_restore: Restore filters removed from hardware
1042  * @filter_table_remove: Remove filters from hardware and tear down software state
1043  * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1044  * @filter_insert: add or replace a filter
1045  * @filter_remove_safe: remove a filter by ID, carefully
1046  * @filter_get_safe: retrieve a filter by ID, carefully
1047  * @filter_clear_rx: remove RX filters by priority
1048  * @filter_count_rx_used: Get the number of filters in use at a given priority
1049  * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1050  * @filter_get_rx_ids: Get list of RX filters at a given priority
1051  * @filter_rfs_insert: Add or replace a filter for RFS.  This must be
1052  *	atomic.  The hardware change may be asynchronous but should
1053  *	not be delayed for long.  It may fail if this can't be done
1054  *	atomically.
1055  * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1056  *	This must check whether the specified table entry is used by RFS
1057  *	and that rps_may_expire_flow() returns true for it.
1058  * @mtd_probe: Probe and add MTD partitions associated with this net device,
1059  *	 using efx_mtd_add()
1060  * @mtd_rename: Set an MTD partition name using the net device name
1061  * @mtd_read: Read from an MTD partition
1062  * @mtd_erase: Erase part of an MTD partition
1063  * @mtd_write: Write to an MTD partition
1064  * @mtd_sync: Wait for write-back to complete on MTD partition.  This
1065  *	also notifies the driver that a writer has finished using this
1066  *	partition.
1067  * @ptp_write_host_time: Send host time to MC as part of sync protocol
1068  * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1069  *	timestamping, possibly only temporarily for the purposes of a reset.
1070  * @ptp_set_ts_config: Set hardware timestamp configuration.  The flags
1071  *	and tx_type will already have been validated but this operation
1072  *	must validate and update rx_filter.
1073  * @revision: Hardware architecture revision
1074  * @txd_ptr_tbl_base: TX descriptor ring base address
1075  * @rxd_ptr_tbl_base: RX descriptor ring base address
1076  * @buf_tbl_base: Buffer table base address
1077  * @evq_ptr_tbl_base: Event queue pointer table base address
1078  * @evq_rptr_tbl_base: Event queue read-pointer table base address
1079  * @max_dma_mask: Maximum possible DMA mask
1080  * @rx_prefix_size: Size of RX prefix before packet data
1081  * @rx_hash_offset: Offset of RX flow hash within prefix
1082  * @rx_ts_offset: Offset of timestamp within prefix
1083  * @rx_buffer_padding: Size of padding at end of RX packet
1084  * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1085  * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1086  * @max_interrupt_mode: Highest capability interrupt mode supported
1087  *	from &enum efx_init_mode.
1088  * @timer_period_max: Maximum period of interrupt timer (in ticks)
1089  * @offload_features: net_device feature flags for protocol offload
1090  *	features implemented in hardware
1091  * @mcdi_max_ver: Maximum MCDI version supported
1092  * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1093  */
1094 struct efx_nic_type {
1095 	unsigned int (*mem_map_size)(struct efx_nic *efx);
1096 	int (*probe)(struct efx_nic *efx);
1097 	void (*remove)(struct efx_nic *efx);
1098 	int (*init)(struct efx_nic *efx);
1099 	int (*dimension_resources)(struct efx_nic *efx);
1100 	void (*fini)(struct efx_nic *efx);
1101 	void (*monitor)(struct efx_nic *efx);
1102 	enum reset_type (*map_reset_reason)(enum reset_type reason);
1103 	int (*map_reset_flags)(u32 *flags);
1104 	int (*reset)(struct efx_nic *efx, enum reset_type method);
1105 	int (*probe_port)(struct efx_nic *efx);
1106 	void (*remove_port)(struct efx_nic *efx);
1107 	bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1108 	int (*fini_dmaq)(struct efx_nic *efx);
1109 	void (*prepare_flush)(struct efx_nic *efx);
1110 	void (*finish_flush)(struct efx_nic *efx);
1111 	size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1112 	size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1113 			       struct rtnl_link_stats64 *core_stats);
1114 	void (*start_stats)(struct efx_nic *efx);
1115 	void (*pull_stats)(struct efx_nic *efx);
1116 	void (*stop_stats)(struct efx_nic *efx);
1117 	void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
1118 	void (*push_irq_moderation)(struct efx_channel *channel);
1119 	int (*reconfigure_port)(struct efx_nic *efx);
1120 	void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1121 	int (*reconfigure_mac)(struct efx_nic *efx);
1122 	bool (*check_mac_fault)(struct efx_nic *efx);
1123 	void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1124 	int (*set_wol)(struct efx_nic *efx, u32 type);
1125 	void (*resume_wol)(struct efx_nic *efx);
1126 	int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1127 	int (*test_nvram)(struct efx_nic *efx);
1128 	void (*mcdi_request)(struct efx_nic *efx,
1129 			     const efx_dword_t *hdr, size_t hdr_len,
1130 			     const efx_dword_t *sdu, size_t sdu_len);
1131 	bool (*mcdi_poll_response)(struct efx_nic *efx);
1132 	void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1133 				   size_t pdu_offset, size_t pdu_len);
1134 	int (*mcdi_poll_reboot)(struct efx_nic *efx);
1135 	void (*irq_enable_master)(struct efx_nic *efx);
1136 	void (*irq_test_generate)(struct efx_nic *efx);
1137 	void (*irq_disable_non_ev)(struct efx_nic *efx);
1138 	irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1139 	irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1140 	int (*tx_probe)(struct efx_tx_queue *tx_queue);
1141 	void (*tx_init)(struct efx_tx_queue *tx_queue);
1142 	void (*tx_remove)(struct efx_tx_queue *tx_queue);
1143 	void (*tx_write)(struct efx_tx_queue *tx_queue);
1144 	void (*rx_push_indir_table)(struct efx_nic *efx);
1145 	int (*rx_probe)(struct efx_rx_queue *rx_queue);
1146 	void (*rx_init)(struct efx_rx_queue *rx_queue);
1147 	void (*rx_remove)(struct efx_rx_queue *rx_queue);
1148 	void (*rx_write)(struct efx_rx_queue *rx_queue);
1149 	void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1150 	int (*ev_probe)(struct efx_channel *channel);
1151 	int (*ev_init)(struct efx_channel *channel);
1152 	void (*ev_fini)(struct efx_channel *channel);
1153 	void (*ev_remove)(struct efx_channel *channel);
1154 	int (*ev_process)(struct efx_channel *channel, int quota);
1155 	void (*ev_read_ack)(struct efx_channel *channel);
1156 	void (*ev_test_generate)(struct efx_channel *channel);
1157 	int (*filter_table_probe)(struct efx_nic *efx);
1158 	void (*filter_table_restore)(struct efx_nic *efx);
1159 	void (*filter_table_remove)(struct efx_nic *efx);
1160 	void (*filter_update_rx_scatter)(struct efx_nic *efx);
1161 	s32 (*filter_insert)(struct efx_nic *efx,
1162 			     struct efx_filter_spec *spec, bool replace);
1163 	int (*filter_remove_safe)(struct efx_nic *efx,
1164 				  enum efx_filter_priority priority,
1165 				  u32 filter_id);
1166 	int (*filter_get_safe)(struct efx_nic *efx,
1167 			       enum efx_filter_priority priority,
1168 			       u32 filter_id, struct efx_filter_spec *);
1169 	void (*filter_clear_rx)(struct efx_nic *efx,
1170 				enum efx_filter_priority priority);
1171 	u32 (*filter_count_rx_used)(struct efx_nic *efx,
1172 				    enum efx_filter_priority priority);
1173 	u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1174 	s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1175 				 enum efx_filter_priority priority,
1176 				 u32 *buf, u32 size);
1177 #ifdef CONFIG_RFS_ACCEL
1178 	s32 (*filter_rfs_insert)(struct efx_nic *efx,
1179 				 struct efx_filter_spec *spec);
1180 	bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1181 				      unsigned int index);
1182 #endif
1183 #ifdef CONFIG_SFC_MTD
1184 	int (*mtd_probe)(struct efx_nic *efx);
1185 	void (*mtd_rename)(struct efx_mtd_partition *part);
1186 	int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1187 			size_t *retlen, u8 *buffer);
1188 	int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1189 	int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1190 			 size_t *retlen, const u8 *buffer);
1191 	int (*mtd_sync)(struct mtd_info *mtd);
1192 #endif
1193 	void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1194 	int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1195 	int (*ptp_set_ts_config)(struct efx_nic *efx,
1196 				 struct hwtstamp_config *init);
1197 
1198 	int revision;
1199 	unsigned int txd_ptr_tbl_base;
1200 	unsigned int rxd_ptr_tbl_base;
1201 	unsigned int buf_tbl_base;
1202 	unsigned int evq_ptr_tbl_base;
1203 	unsigned int evq_rptr_tbl_base;
1204 	u64 max_dma_mask;
1205 	unsigned int rx_prefix_size;
1206 	unsigned int rx_hash_offset;
1207 	unsigned int rx_ts_offset;
1208 	unsigned int rx_buffer_padding;
1209 	bool can_rx_scatter;
1210 	bool always_rx_scatter;
1211 	unsigned int max_interrupt_mode;
1212 	unsigned int timer_period_max;
1213 	netdev_features_t offload_features;
1214 	int mcdi_max_ver;
1215 	unsigned int max_rx_ip_filters;
1216 	u32 hwtstamp_filters;
1217 };
1218 
1219 /**************************************************************************
1220  *
1221  * Prototypes and inline functions
1222  *
1223  *************************************************************************/
1224 
1225 static inline struct efx_channel *
1226 efx_get_channel(struct efx_nic *efx, unsigned index)
1227 {
1228 	EFX_BUG_ON_PARANOID(index >= efx->n_channels);
1229 	return efx->channel[index];
1230 }
1231 
1232 /* Iterate over all used channels */
1233 #define efx_for_each_channel(_channel, _efx)				\
1234 	for (_channel = (_efx)->channel[0];				\
1235 	     _channel;							\
1236 	     _channel = (_channel->channel + 1 < (_efx)->n_channels) ?	\
1237 		     (_efx)->channel[_channel->channel + 1] : NULL)
1238 
1239 /* Iterate over all used channels in reverse */
1240 #define efx_for_each_channel_rev(_channel, _efx)			\
1241 	for (_channel = (_efx)->channel[(_efx)->n_channels - 1];	\
1242 	     _channel;							\
1243 	     _channel = _channel->channel ?				\
1244 		     (_efx)->channel[_channel->channel - 1] : NULL)
1245 
1246 static inline struct efx_tx_queue *
1247 efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
1248 {
1249 	EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
1250 			    type >= EFX_TXQ_TYPES);
1251 	return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
1252 }
1253 
1254 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1255 {
1256 	return channel->channel - channel->efx->tx_channel_offset <
1257 		channel->efx->n_tx_channels;
1258 }
1259 
1260 static inline struct efx_tx_queue *
1261 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
1262 {
1263 	EFX_BUG_ON_PARANOID(!efx_channel_has_tx_queues(channel) ||
1264 			    type >= EFX_TXQ_TYPES);
1265 	return &channel->tx_queue[type];
1266 }
1267 
1268 static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue)
1269 {
1270 	return !(tx_queue->efx->net_dev->num_tc < 2 &&
1271 		 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI);
1272 }
1273 
1274 /* Iterate over all TX queues belonging to a channel */
1275 #define efx_for_each_channel_tx_queue(_tx_queue, _channel)		\
1276 	if (!efx_channel_has_tx_queues(_channel))			\
1277 		;							\
1278 	else								\
1279 		for (_tx_queue = (_channel)->tx_queue;			\
1280 		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \
1281 			     efx_tx_queue_used(_tx_queue);		\
1282 		     _tx_queue++)
1283 
1284 /* Iterate over all possible TX queues belonging to a channel */
1285 #define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel)	\
1286 	if (!efx_channel_has_tx_queues(_channel))			\
1287 		;							\
1288 	else								\
1289 		for (_tx_queue = (_channel)->tx_queue;			\
1290 		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES;	\
1291 		     _tx_queue++)
1292 
1293 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1294 {
1295 	return channel->rx_queue.core_index >= 0;
1296 }
1297 
1298 static inline struct efx_rx_queue *
1299 efx_channel_get_rx_queue(struct efx_channel *channel)
1300 {
1301 	EFX_BUG_ON_PARANOID(!efx_channel_has_rx_queue(channel));
1302 	return &channel->rx_queue;
1303 }
1304 
1305 /* Iterate over all RX queues belonging to a channel */
1306 #define efx_for_each_channel_rx_queue(_rx_queue, _channel)		\
1307 	if (!efx_channel_has_rx_queue(_channel))			\
1308 		;							\
1309 	else								\
1310 		for (_rx_queue = &(_channel)->rx_queue;			\
1311 		     _rx_queue;						\
1312 		     _rx_queue = NULL)
1313 
1314 static inline struct efx_channel *
1315 efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1316 {
1317 	return container_of(rx_queue, struct efx_channel, rx_queue);
1318 }
1319 
1320 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1321 {
1322 	return efx_rx_queue_channel(rx_queue)->channel;
1323 }
1324 
1325 /* Returns a pointer to the specified receive buffer in the RX
1326  * descriptor queue.
1327  */
1328 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1329 						  unsigned int index)
1330 {
1331 	return &rx_queue->buffer[index];
1332 }
1333 
1334 
1335 /**
1336  * EFX_MAX_FRAME_LEN - calculate maximum frame length
1337  *
1338  * This calculates the maximum frame length that will be used for a
1339  * given MTU.  The frame length will be equal to the MTU plus a
1340  * constant amount of header space and padding.  This is the quantity
1341  * that the net driver will program into the MAC as the maximum frame
1342  * length.
1343  *
1344  * The 10G MAC requires 8-byte alignment on the frame
1345  * length, so we round up to the nearest 8.
1346  *
1347  * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1348  * XGMII cycle).  If the frame length reaches the maximum value in the
1349  * same cycle, the XMAC can miss the IPG altogether.  We work around
1350  * this by adding a further 16 bytes.
1351  */
1352 #define EFX_MAX_FRAME_LEN(mtu) \
1353 	((((mtu) + ETH_HLEN + VLAN_HLEN + 4/* FCS */ + 7) & ~7) + 16)
1354 
1355 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1356 {
1357 	return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1358 }
1359 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1360 {
1361 	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1362 }
1363 
1364 #endif /* EFX_NET_DRIVER_H */
1365