1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2005-2013 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 /* Common definitions for all Efx net driver code */ 12 13 #ifndef EFX_NET_DRIVER_H 14 #define EFX_NET_DRIVER_H 15 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/ethtool.h> 19 #include <linux/if_vlan.h> 20 #include <linux/timer.h> 21 #include <linux/mdio.h> 22 #include <linux/list.h> 23 #include <linux/pci.h> 24 #include <linux/device.h> 25 #include <linux/highmem.h> 26 #include <linux/workqueue.h> 27 #include <linux/mutex.h> 28 #include <linux/vmalloc.h> 29 #include <linux/i2c.h> 30 #include <linux/mtd/mtd.h> 31 #include <net/busy_poll.h> 32 33 #include "enum.h" 34 #include "bitfield.h" 35 #include "filter.h" 36 37 /************************************************************************** 38 * 39 * Build definitions 40 * 41 **************************************************************************/ 42 43 #define EFX_DRIVER_VERSION "4.0" 44 45 #ifdef DEBUG 46 #define EFX_BUG_ON_PARANOID(x) BUG_ON(x) 47 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x) 48 #else 49 #define EFX_BUG_ON_PARANOID(x) do {} while (0) 50 #define EFX_WARN_ON_PARANOID(x) do {} while (0) 51 #endif 52 53 /************************************************************************** 54 * 55 * Efx data structures 56 * 57 **************************************************************************/ 58 59 #define EFX_MAX_CHANNELS 32U 60 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS 61 #define EFX_EXTRA_CHANNEL_IOV 0 62 #define EFX_EXTRA_CHANNEL_PTP 1 63 #define EFX_MAX_EXTRA_CHANNELS 2U 64 65 /* Checksum generation is a per-queue option in hardware, so each 66 * queue visible to the networking core is backed by two hardware TX 67 * queues. */ 68 #define EFX_MAX_TX_TC 2 69 #define EFX_MAX_CORE_TX_QUEUES (EFX_MAX_TX_TC * EFX_MAX_CHANNELS) 70 #define EFX_TXQ_TYPE_OFFLOAD 1 /* flag */ 71 #define EFX_TXQ_TYPE_HIGHPRI 2 /* flag */ 72 #define EFX_TXQ_TYPES 4 73 #define EFX_MAX_TX_QUEUES (EFX_TXQ_TYPES * EFX_MAX_CHANNELS) 74 75 /* Maximum possible MTU the driver supports */ 76 #define EFX_MAX_MTU (9 * 1024) 77 78 /* Size of an RX scatter buffer. Small enough to pack 2 into a 4K page, 79 * and should be a multiple of the cache line size. 80 */ 81 #define EFX_RX_USR_BUF_SIZE (2048 - 256) 82 83 /* If possible, we should ensure cache line alignment at start and end 84 * of every buffer. Otherwise, we just need to ensure 4-byte 85 * alignment of the network header. 86 */ 87 #if NET_IP_ALIGN == 0 88 #define EFX_RX_BUF_ALIGNMENT L1_CACHE_BYTES 89 #else 90 #define EFX_RX_BUF_ALIGNMENT 4 91 #endif 92 93 /* Forward declare Precision Time Protocol (PTP) support structure. */ 94 struct efx_ptp_data; 95 struct hwtstamp_config; 96 97 struct efx_self_tests; 98 99 /** 100 * struct efx_buffer - A general-purpose DMA buffer 101 * @addr: host base address of the buffer 102 * @dma_addr: DMA base address of the buffer 103 * @len: Buffer length, in bytes 104 * 105 * The NIC uses these buffers for its interrupt status registers and 106 * MAC stats dumps. 107 */ 108 struct efx_buffer { 109 void *addr; 110 dma_addr_t dma_addr; 111 unsigned int len; 112 }; 113 114 /** 115 * struct efx_special_buffer - DMA buffer entered into buffer table 116 * @buf: Standard &struct efx_buffer 117 * @index: Buffer index within controller;s buffer table 118 * @entries: Number of buffer table entries 119 * 120 * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE. 121 * Event and descriptor rings are addressed via one or more buffer 122 * table entries (and so can be physically non-contiguous, although we 123 * currently do not take advantage of that). On Falcon and Siena we 124 * have to take care of allocating and initialising the entries 125 * ourselves. On later hardware this is managed by the firmware and 126 * @index and @entries are left as 0. 127 */ 128 struct efx_special_buffer { 129 struct efx_buffer buf; 130 unsigned int index; 131 unsigned int entries; 132 }; 133 134 /** 135 * struct efx_tx_buffer - buffer state for a TX descriptor 136 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be 137 * freed when descriptor completes 138 * @heap_buf: When @flags & %EFX_TX_BUF_HEAP, the associated heap buffer to be 139 * freed when descriptor completes. 140 * @option: When @flags & %EFX_TX_BUF_OPTION, a NIC-specific option descriptor. 141 * @dma_addr: DMA address of the fragment. 142 * @flags: Flags for allocation and DMA mapping type 143 * @len: Length of this fragment. 144 * This field is zero when the queue slot is empty. 145 * @unmap_len: Length of this fragment to unmap 146 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping. 147 * Only valid if @unmap_len != 0. 148 */ 149 struct efx_tx_buffer { 150 union { 151 const struct sk_buff *skb; 152 void *heap_buf; 153 }; 154 union { 155 efx_qword_t option; 156 dma_addr_t dma_addr; 157 }; 158 unsigned short flags; 159 unsigned short len; 160 unsigned short unmap_len; 161 unsigned short dma_offset; 162 }; 163 #define EFX_TX_BUF_CONT 1 /* not last descriptor of packet */ 164 #define EFX_TX_BUF_SKB 2 /* buffer is last part of skb */ 165 #define EFX_TX_BUF_HEAP 4 /* buffer was allocated with kmalloc() */ 166 #define EFX_TX_BUF_MAP_SINGLE 8 /* buffer was mapped with dma_map_single() */ 167 #define EFX_TX_BUF_OPTION 0x10 /* empty buffer for option descriptor */ 168 169 /** 170 * struct efx_tx_queue - An Efx TX queue 171 * 172 * This is a ring buffer of TX fragments. 173 * Since the TX completion path always executes on the same 174 * CPU and the xmit path can operate on different CPUs, 175 * performance is increased by ensuring that the completion 176 * path and the xmit path operate on different cache lines. 177 * This is particularly important if the xmit path is always 178 * executing on one CPU which is different from the completion 179 * path. There is also a cache line for members which are 180 * read but not written on the fast path. 181 * 182 * @efx: The associated Efx NIC 183 * @queue: DMA queue number 184 * @channel: The associated channel 185 * @core_txq: The networking core TX queue structure 186 * @buffer: The software buffer ring 187 * @tsoh_page: Array of pages of TSO header buffers 188 * @txd: The hardware descriptor ring 189 * @ptr_mask: The size of the ring minus 1. 190 * @piobuf: PIO buffer region for this TX queue (shared with its partner). 191 * Size of the region is efx_piobuf_size. 192 * @piobuf_offset: Buffer offset to be specified in PIO descriptors 193 * @initialised: Has hardware queue been initialised? 194 * @read_count: Current read pointer. 195 * This is the number of buffers that have been removed from both rings. 196 * @old_write_count: The value of @write_count when last checked. 197 * This is here for performance reasons. The xmit path will 198 * only get the up-to-date value of @write_count if this 199 * variable indicates that the queue is empty. This is to 200 * avoid cache-line ping-pong between the xmit path and the 201 * completion path. 202 * @merge_events: Number of TX merged completion events 203 * @insert_count: Current insert pointer 204 * This is the number of buffers that have been added to the 205 * software ring. 206 * @write_count: Current write pointer 207 * This is the number of buffers that have been added to the 208 * hardware ring. 209 * @old_read_count: The value of read_count when last checked. 210 * This is here for performance reasons. The xmit path will 211 * only get the up-to-date value of read_count if this 212 * variable indicates that the queue is full. This is to 213 * avoid cache-line ping-pong between the xmit path and the 214 * completion path. 215 * @tso_bursts: Number of times TSO xmit invoked by kernel 216 * @tso_long_headers: Number of packets with headers too long for standard 217 * blocks 218 * @tso_packets: Number of packets via the TSO xmit path 219 * @pushes: Number of times the TX push feature has been used 220 * @pio_packets: Number of times the TX PIO feature has been used 221 * @empty_read_count: If the completion path has seen the queue as empty 222 * and the transmission path has not yet checked this, the value of 223 * @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0. 224 */ 225 struct efx_tx_queue { 226 /* Members which don't change on the fast path */ 227 struct efx_nic *efx ____cacheline_aligned_in_smp; 228 unsigned queue; 229 struct efx_channel *channel; 230 struct netdev_queue *core_txq; 231 struct efx_tx_buffer *buffer; 232 struct efx_buffer *tsoh_page; 233 struct efx_special_buffer txd; 234 unsigned int ptr_mask; 235 void __iomem *piobuf; 236 unsigned int piobuf_offset; 237 bool initialised; 238 239 /* Members used mainly on the completion path */ 240 unsigned int read_count ____cacheline_aligned_in_smp; 241 unsigned int old_write_count; 242 unsigned int merge_events; 243 244 /* Members used only on the xmit path */ 245 unsigned int insert_count ____cacheline_aligned_in_smp; 246 unsigned int write_count; 247 unsigned int old_read_count; 248 unsigned int tso_bursts; 249 unsigned int tso_long_headers; 250 unsigned int tso_packets; 251 unsigned int pushes; 252 unsigned int pio_packets; 253 /* Statistics to supplement MAC stats */ 254 unsigned long tx_packets; 255 256 /* Members shared between paths and sometimes updated */ 257 unsigned int empty_read_count ____cacheline_aligned_in_smp; 258 #define EFX_EMPTY_COUNT_VALID 0x80000000 259 atomic_t flush_outstanding; 260 }; 261 262 /** 263 * struct efx_rx_buffer - An Efx RX data buffer 264 * @dma_addr: DMA base address of the buffer 265 * @page: The associated page buffer. 266 * Will be %NULL if the buffer slot is currently free. 267 * @page_offset: If pending: offset in @page of DMA base address. 268 * If completed: offset in @page of Ethernet header. 269 * @len: If pending: length for DMA descriptor. 270 * If completed: received length, excluding hash prefix. 271 * @flags: Flags for buffer and packet state. These are only set on the 272 * first buffer of a scattered packet. 273 */ 274 struct efx_rx_buffer { 275 dma_addr_t dma_addr; 276 struct page *page; 277 u16 page_offset; 278 u16 len; 279 u16 flags; 280 }; 281 #define EFX_RX_BUF_LAST_IN_PAGE 0x0001 282 #define EFX_RX_PKT_CSUMMED 0x0002 283 #define EFX_RX_PKT_DISCARD 0x0004 284 #define EFX_RX_PKT_TCP 0x0040 285 #define EFX_RX_PKT_PREFIX_LEN 0x0080 /* length is in prefix only */ 286 287 /** 288 * struct efx_rx_page_state - Page-based rx buffer state 289 * 290 * Inserted at the start of every page allocated for receive buffers. 291 * Used to facilitate sharing dma mappings between recycled rx buffers 292 * and those passed up to the kernel. 293 * 294 * @dma_addr: The dma address of this page. 295 */ 296 struct efx_rx_page_state { 297 dma_addr_t dma_addr; 298 299 unsigned int __pad[0] ____cacheline_aligned; 300 }; 301 302 /** 303 * struct efx_rx_queue - An Efx RX queue 304 * @efx: The associated Efx NIC 305 * @core_index: Index of network core RX queue. Will be >= 0 iff this 306 * is associated with a real RX queue. 307 * @buffer: The software buffer ring 308 * @rxd: The hardware descriptor ring 309 * @ptr_mask: The size of the ring minus 1. 310 * @refill_enabled: Enable refill whenever fill level is low 311 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as 312 * @rxq_flush_pending. 313 * @added_count: Number of buffers added to the receive queue. 314 * @notified_count: Number of buffers given to NIC (<= @added_count). 315 * @removed_count: Number of buffers removed from the receive queue. 316 * @scatter_n: Used by NIC specific receive code. 317 * @scatter_len: Used by NIC specific receive code. 318 * @page_ring: The ring to store DMA mapped pages for reuse. 319 * @page_add: Counter to calculate the write pointer for the recycle ring. 320 * @page_remove: Counter to calculate the read pointer for the recycle ring. 321 * @page_recycle_count: The number of pages that have been recycled. 322 * @page_recycle_failed: The number of pages that couldn't be recycled because 323 * the kernel still held a reference to them. 324 * @page_recycle_full: The number of pages that were released because the 325 * recycle ring was full. 326 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1. 327 * @max_fill: RX descriptor maximum fill level (<= ring size) 328 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill 329 * (<= @max_fill) 330 * @min_fill: RX descriptor minimum non-zero fill level. 331 * This records the minimum fill level observed when a ring 332 * refill was triggered. 333 * @recycle_count: RX buffer recycle counter. 334 * @slow_fill: Timer used to defer efx_nic_generate_fill_event(). 335 */ 336 struct efx_rx_queue { 337 struct efx_nic *efx; 338 int core_index; 339 struct efx_rx_buffer *buffer; 340 struct efx_special_buffer rxd; 341 unsigned int ptr_mask; 342 bool refill_enabled; 343 bool flush_pending; 344 345 unsigned int added_count; 346 unsigned int notified_count; 347 unsigned int removed_count; 348 unsigned int scatter_n; 349 unsigned int scatter_len; 350 struct page **page_ring; 351 unsigned int page_add; 352 unsigned int page_remove; 353 unsigned int page_recycle_count; 354 unsigned int page_recycle_failed; 355 unsigned int page_recycle_full; 356 unsigned int page_ptr_mask; 357 unsigned int max_fill; 358 unsigned int fast_fill_trigger; 359 unsigned int min_fill; 360 unsigned int min_overfill; 361 unsigned int recycle_count; 362 struct timer_list slow_fill; 363 unsigned int slow_fill_count; 364 /* Statistics to supplement MAC stats */ 365 unsigned long rx_packets; 366 }; 367 368 enum efx_sync_events_state { 369 SYNC_EVENTS_DISABLED = 0, 370 SYNC_EVENTS_QUIESCENT, 371 SYNC_EVENTS_REQUESTED, 372 SYNC_EVENTS_VALID, 373 }; 374 375 /** 376 * struct efx_channel - An Efx channel 377 * 378 * A channel comprises an event queue, at least one TX queue, at least 379 * one RX queue, and an associated tasklet for processing the event 380 * queue. 381 * 382 * @efx: Associated Efx NIC 383 * @channel: Channel instance number 384 * @type: Channel type definition 385 * @eventq_init: Event queue initialised flag 386 * @enabled: Channel enabled indicator 387 * @irq: IRQ number (MSI and MSI-X only) 388 * @irq_moderation: IRQ moderation value (in hardware ticks) 389 * @napi_dev: Net device used with NAPI 390 * @napi_str: NAPI control structure 391 * @state: state for NAPI vs busy polling 392 * @state_lock: lock protecting @state 393 * @eventq: Event queue buffer 394 * @eventq_mask: Event queue pointer mask 395 * @eventq_read_ptr: Event queue read pointer 396 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel 397 * @irq_count: Number of IRQs since last adaptive moderation decision 398 * @irq_mod_score: IRQ moderation score 399 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors 400 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors 401 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors 402 * @n_rx_mcast_mismatch: Count of unmatched multicast frames 403 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors 404 * @n_rx_overlength: Count of RX_OVERLENGTH errors 405 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun 406 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to 407 * lack of descriptors 408 * @n_rx_merge_events: Number of RX merged completion events 409 * @n_rx_merge_packets: Number of RX packets completed by merged events 410 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by 411 * __efx_rx_packet(), or zero if there is none 412 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered 413 * by __efx_rx_packet(), if @rx_pkt_n_frags != 0 414 * @rx_queue: RX queue for this channel 415 * @tx_queue: TX queues for this channel 416 * @sync_events_state: Current state of sync events on this channel 417 * @sync_timestamp_major: Major part of the last ptp sync event 418 * @sync_timestamp_minor: Minor part of the last ptp sync event 419 */ 420 struct efx_channel { 421 struct efx_nic *efx; 422 int channel; 423 const struct efx_channel_type *type; 424 bool eventq_init; 425 bool enabled; 426 int irq; 427 unsigned int irq_moderation; 428 struct net_device *napi_dev; 429 struct napi_struct napi_str; 430 #ifdef CONFIG_NET_RX_BUSY_POLL 431 unsigned int state; 432 spinlock_t state_lock; 433 #define EFX_CHANNEL_STATE_IDLE 0 434 #define EFX_CHANNEL_STATE_NAPI (1 << 0) /* NAPI owns this channel */ 435 #define EFX_CHANNEL_STATE_POLL (1 << 1) /* poll owns this channel */ 436 #define EFX_CHANNEL_STATE_DISABLED (1 << 2) /* channel is disabled */ 437 #define EFX_CHANNEL_STATE_NAPI_YIELD (1 << 3) /* NAPI yielded this channel */ 438 #define EFX_CHANNEL_STATE_POLL_YIELD (1 << 4) /* poll yielded this channel */ 439 #define EFX_CHANNEL_OWNED \ 440 (EFX_CHANNEL_STATE_NAPI | EFX_CHANNEL_STATE_POLL) 441 #define EFX_CHANNEL_LOCKED \ 442 (EFX_CHANNEL_OWNED | EFX_CHANNEL_STATE_DISABLED) 443 #define EFX_CHANNEL_USER_PEND \ 444 (EFX_CHANNEL_STATE_POLL | EFX_CHANNEL_STATE_POLL_YIELD) 445 #endif /* CONFIG_NET_RX_BUSY_POLL */ 446 struct efx_special_buffer eventq; 447 unsigned int eventq_mask; 448 unsigned int eventq_read_ptr; 449 int event_test_cpu; 450 451 unsigned int irq_count; 452 unsigned int irq_mod_score; 453 #ifdef CONFIG_RFS_ACCEL 454 unsigned int rfs_filters_added; 455 #endif 456 457 unsigned n_rx_tobe_disc; 458 unsigned n_rx_ip_hdr_chksum_err; 459 unsigned n_rx_tcp_udp_chksum_err; 460 unsigned n_rx_mcast_mismatch; 461 unsigned n_rx_frm_trunc; 462 unsigned n_rx_overlength; 463 unsigned n_skbuff_leaks; 464 unsigned int n_rx_nodesc_trunc; 465 unsigned int n_rx_merge_events; 466 unsigned int n_rx_merge_packets; 467 468 unsigned int rx_pkt_n_frags; 469 unsigned int rx_pkt_index; 470 471 struct efx_rx_queue rx_queue; 472 struct efx_tx_queue tx_queue[EFX_TXQ_TYPES]; 473 474 enum efx_sync_events_state sync_events_state; 475 u32 sync_timestamp_major; 476 u32 sync_timestamp_minor; 477 }; 478 479 #ifdef CONFIG_NET_RX_BUSY_POLL 480 static inline void efx_channel_init_lock(struct efx_channel *channel) 481 { 482 spin_lock_init(&channel->state_lock); 483 } 484 485 /* Called from the device poll routine to get ownership of a channel. */ 486 static inline bool efx_channel_lock_napi(struct efx_channel *channel) 487 { 488 bool rc = true; 489 490 spin_lock_bh(&channel->state_lock); 491 if (channel->state & EFX_CHANNEL_LOCKED) { 492 WARN_ON(channel->state & EFX_CHANNEL_STATE_NAPI); 493 channel->state |= EFX_CHANNEL_STATE_NAPI_YIELD; 494 rc = false; 495 } else { 496 /* we don't care if someone yielded */ 497 channel->state = EFX_CHANNEL_STATE_NAPI; 498 } 499 spin_unlock_bh(&channel->state_lock); 500 return rc; 501 } 502 503 static inline void efx_channel_unlock_napi(struct efx_channel *channel) 504 { 505 spin_lock_bh(&channel->state_lock); 506 WARN_ON(channel->state & 507 (EFX_CHANNEL_STATE_POLL | EFX_CHANNEL_STATE_NAPI_YIELD)); 508 509 channel->state &= EFX_CHANNEL_STATE_DISABLED; 510 spin_unlock_bh(&channel->state_lock); 511 } 512 513 /* Called from efx_busy_poll(). */ 514 static inline bool efx_channel_lock_poll(struct efx_channel *channel) 515 { 516 bool rc = true; 517 518 spin_lock_bh(&channel->state_lock); 519 if ((channel->state & EFX_CHANNEL_LOCKED)) { 520 channel->state |= EFX_CHANNEL_STATE_POLL_YIELD; 521 rc = false; 522 } else { 523 /* preserve yield marks */ 524 channel->state |= EFX_CHANNEL_STATE_POLL; 525 } 526 spin_unlock_bh(&channel->state_lock); 527 return rc; 528 } 529 530 /* Returns true if NAPI tried to get the channel while it was locked. */ 531 static inline void efx_channel_unlock_poll(struct efx_channel *channel) 532 { 533 spin_lock_bh(&channel->state_lock); 534 WARN_ON(channel->state & EFX_CHANNEL_STATE_NAPI); 535 536 /* will reset state to idle, unless channel is disabled */ 537 channel->state &= EFX_CHANNEL_STATE_DISABLED; 538 spin_unlock_bh(&channel->state_lock); 539 } 540 541 /* True if a socket is polling, even if it did not get the lock. */ 542 static inline bool efx_channel_busy_polling(struct efx_channel *channel) 543 { 544 WARN_ON(!(channel->state & EFX_CHANNEL_OWNED)); 545 return channel->state & EFX_CHANNEL_USER_PEND; 546 } 547 548 static inline void efx_channel_enable(struct efx_channel *channel) 549 { 550 spin_lock_bh(&channel->state_lock); 551 channel->state = EFX_CHANNEL_STATE_IDLE; 552 spin_unlock_bh(&channel->state_lock); 553 } 554 555 /* False if the channel is currently owned. */ 556 static inline bool efx_channel_disable(struct efx_channel *channel) 557 { 558 bool rc = true; 559 560 spin_lock_bh(&channel->state_lock); 561 if (channel->state & EFX_CHANNEL_OWNED) 562 rc = false; 563 channel->state |= EFX_CHANNEL_STATE_DISABLED; 564 spin_unlock_bh(&channel->state_lock); 565 566 return rc; 567 } 568 569 #else /* CONFIG_NET_RX_BUSY_POLL */ 570 571 static inline void efx_channel_init_lock(struct efx_channel *channel) 572 { 573 } 574 575 static inline bool efx_channel_lock_napi(struct efx_channel *channel) 576 { 577 return true; 578 } 579 580 static inline void efx_channel_unlock_napi(struct efx_channel *channel) 581 { 582 } 583 584 static inline bool efx_channel_lock_poll(struct efx_channel *channel) 585 { 586 return false; 587 } 588 589 static inline void efx_channel_unlock_poll(struct efx_channel *channel) 590 { 591 } 592 593 static inline bool efx_channel_busy_polling(struct efx_channel *channel) 594 { 595 return false; 596 } 597 598 static inline void efx_channel_enable(struct efx_channel *channel) 599 { 600 } 601 602 static inline bool efx_channel_disable(struct efx_channel *channel) 603 { 604 return true; 605 } 606 #endif /* CONFIG_NET_RX_BUSY_POLL */ 607 608 /** 609 * struct efx_msi_context - Context for each MSI 610 * @efx: The associated NIC 611 * @index: Index of the channel/IRQ 612 * @name: Name of the channel/IRQ 613 * 614 * Unlike &struct efx_channel, this is never reallocated and is always 615 * safe for the IRQ handler to access. 616 */ 617 struct efx_msi_context { 618 struct efx_nic *efx; 619 unsigned int index; 620 char name[IFNAMSIZ + 6]; 621 }; 622 623 /** 624 * struct efx_channel_type - distinguishes traffic and extra channels 625 * @handle_no_channel: Handle failure to allocate an extra channel 626 * @pre_probe: Set up extra state prior to initialisation 627 * @post_remove: Tear down extra state after finalisation, if allocated. 628 * May be called on channels that have not been probed. 629 * @get_name: Generate the channel's name (used for its IRQ handler) 630 * @copy: Copy the channel state prior to reallocation. May be %NULL if 631 * reallocation is not supported. 632 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb() 633 * @keep_eventq: Flag for whether event queue should be kept initialised 634 * while the device is stopped 635 */ 636 struct efx_channel_type { 637 void (*handle_no_channel)(struct efx_nic *); 638 int (*pre_probe)(struct efx_channel *); 639 void (*post_remove)(struct efx_channel *); 640 void (*get_name)(struct efx_channel *, char *buf, size_t len); 641 struct efx_channel *(*copy)(const struct efx_channel *); 642 bool (*receive_skb)(struct efx_channel *, struct sk_buff *); 643 bool keep_eventq; 644 }; 645 646 enum efx_led_mode { 647 EFX_LED_OFF = 0, 648 EFX_LED_ON = 1, 649 EFX_LED_DEFAULT = 2 650 }; 651 652 #define STRING_TABLE_LOOKUP(val, member) \ 653 ((val) < member ## _max) ? member ## _names[val] : "(invalid)" 654 655 extern const char *const efx_loopback_mode_names[]; 656 extern const unsigned int efx_loopback_mode_max; 657 #define LOOPBACK_MODE(efx) \ 658 STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode) 659 660 extern const char *const efx_reset_type_names[]; 661 extern const unsigned int efx_reset_type_max; 662 #define RESET_TYPE(type) \ 663 STRING_TABLE_LOOKUP(type, efx_reset_type) 664 665 enum efx_int_mode { 666 /* Be careful if altering to correct macro below */ 667 EFX_INT_MODE_MSIX = 0, 668 EFX_INT_MODE_MSI = 1, 669 EFX_INT_MODE_LEGACY = 2, 670 EFX_INT_MODE_MAX /* Insert any new items before this */ 671 }; 672 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI) 673 674 enum nic_state { 675 STATE_UNINIT = 0, /* device being probed/removed or is frozen */ 676 STATE_READY = 1, /* hardware ready and netdev registered */ 677 STATE_DISABLED = 2, /* device disabled due to hardware errors */ 678 STATE_RECOVERY = 3, /* device recovering from PCI error */ 679 }; 680 681 /* Forward declaration */ 682 struct efx_nic; 683 684 /* Pseudo bit-mask flow control field */ 685 #define EFX_FC_RX FLOW_CTRL_RX 686 #define EFX_FC_TX FLOW_CTRL_TX 687 #define EFX_FC_AUTO 4 688 689 /** 690 * struct efx_link_state - Current state of the link 691 * @up: Link is up 692 * @fd: Link is full-duplex 693 * @fc: Actual flow control flags 694 * @speed: Link speed (Mbps) 695 */ 696 struct efx_link_state { 697 bool up; 698 bool fd; 699 u8 fc; 700 unsigned int speed; 701 }; 702 703 static inline bool efx_link_state_equal(const struct efx_link_state *left, 704 const struct efx_link_state *right) 705 { 706 return left->up == right->up && left->fd == right->fd && 707 left->fc == right->fc && left->speed == right->speed; 708 } 709 710 /** 711 * struct efx_phy_operations - Efx PHY operations table 712 * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds, 713 * efx->loopback_modes. 714 * @init: Initialise PHY 715 * @fini: Shut down PHY 716 * @reconfigure: Reconfigure PHY (e.g. for new link parameters) 717 * @poll: Update @link_state and report whether it changed. 718 * Serialised by the mac_lock. 719 * @get_settings: Get ethtool settings. Serialised by the mac_lock. 720 * @set_settings: Set ethtool settings. Serialised by the mac_lock. 721 * @set_npage_adv: Set abilities advertised in (Extended) Next Page 722 * (only needed where AN bit is set in mmds) 723 * @test_alive: Test that PHY is 'alive' (online) 724 * @test_name: Get the name of a PHY-specific test/result 725 * @run_tests: Run tests and record results as appropriate (offline). 726 * Flags are the ethtool tests flags. 727 */ 728 struct efx_phy_operations { 729 int (*probe) (struct efx_nic *efx); 730 int (*init) (struct efx_nic *efx); 731 void (*fini) (struct efx_nic *efx); 732 void (*remove) (struct efx_nic *efx); 733 int (*reconfigure) (struct efx_nic *efx); 734 bool (*poll) (struct efx_nic *efx); 735 void (*get_settings) (struct efx_nic *efx, 736 struct ethtool_cmd *ecmd); 737 int (*set_settings) (struct efx_nic *efx, 738 struct ethtool_cmd *ecmd); 739 void (*set_npage_adv) (struct efx_nic *efx, u32); 740 int (*test_alive) (struct efx_nic *efx); 741 const char *(*test_name) (struct efx_nic *efx, unsigned int index); 742 int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags); 743 int (*get_module_eeprom) (struct efx_nic *efx, 744 struct ethtool_eeprom *ee, 745 u8 *data); 746 int (*get_module_info) (struct efx_nic *efx, 747 struct ethtool_modinfo *modinfo); 748 }; 749 750 /** 751 * enum efx_phy_mode - PHY operating mode flags 752 * @PHY_MODE_NORMAL: on and should pass traffic 753 * @PHY_MODE_TX_DISABLED: on with TX disabled 754 * @PHY_MODE_LOW_POWER: set to low power through MDIO 755 * @PHY_MODE_OFF: switched off through external control 756 * @PHY_MODE_SPECIAL: on but will not pass traffic 757 */ 758 enum efx_phy_mode { 759 PHY_MODE_NORMAL = 0, 760 PHY_MODE_TX_DISABLED = 1, 761 PHY_MODE_LOW_POWER = 2, 762 PHY_MODE_OFF = 4, 763 PHY_MODE_SPECIAL = 8, 764 }; 765 766 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode) 767 { 768 return !!(mode & ~PHY_MODE_TX_DISABLED); 769 } 770 771 /** 772 * struct efx_hw_stat_desc - Description of a hardware statistic 773 * @name: Name of the statistic as visible through ethtool, or %NULL if 774 * it should not be exposed 775 * @dma_width: Width in bits (0 for non-DMA statistics) 776 * @offset: Offset within stats (ignored for non-DMA statistics) 777 */ 778 struct efx_hw_stat_desc { 779 const char *name; 780 u16 dma_width; 781 u16 offset; 782 }; 783 784 /* Number of bits used in a multicast filter hash address */ 785 #define EFX_MCAST_HASH_BITS 8 786 787 /* Number of (single-bit) entries in a multicast filter hash */ 788 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS) 789 790 /* An Efx multicast filter hash */ 791 union efx_multicast_hash { 792 u8 byte[EFX_MCAST_HASH_ENTRIES / 8]; 793 efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8]; 794 }; 795 796 struct efx_vf; 797 struct vfdi_status; 798 799 /** 800 * struct efx_nic - an Efx NIC 801 * @name: Device name (net device name or bus id before net device registered) 802 * @pci_dev: The PCI device 803 * @node: List node for maintaning primary/secondary function lists 804 * @primary: &struct efx_nic instance for the primary function of this 805 * controller. May be the same structure, and may be %NULL if no 806 * primary function is bound. Serialised by rtnl_lock. 807 * @secondary_list: List of &struct efx_nic instances for the secondary PCI 808 * functions of the controller, if this is for the primary function. 809 * Serialised by rtnl_lock. 810 * @type: Controller type attributes 811 * @legacy_irq: IRQ number 812 * @workqueue: Workqueue for port reconfigures and the HW monitor. 813 * Work items do not hold and must not acquire RTNL. 814 * @workqueue_name: Name of workqueue 815 * @reset_work: Scheduled reset workitem 816 * @membase_phys: Memory BAR value as physical address 817 * @membase: Memory BAR value 818 * @interrupt_mode: Interrupt mode 819 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds 820 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues 821 * @irq_rx_moderation: IRQ moderation time for RX event queues 822 * @msg_enable: Log message enable flags 823 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock. 824 * @reset_pending: Bitmask for pending resets 825 * @tx_queue: TX DMA queues 826 * @rx_queue: RX DMA queues 827 * @channel: Channels 828 * @msi_context: Context for each MSI 829 * @extra_channel_types: Types of extra (non-traffic) channels that 830 * should be allocated for this NIC 831 * @rxq_entries: Size of receive queues requested by user. 832 * @txq_entries: Size of transmit queues requested by user. 833 * @txq_stop_thresh: TX queue fill level at or above which we stop it. 834 * @txq_wake_thresh: TX queue fill level at or below which we wake it. 835 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches 836 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches 837 * @sram_lim_qw: Qword address limit of SRAM 838 * @next_buffer_table: First available buffer table id 839 * @n_channels: Number of channels in use 840 * @n_rx_channels: Number of channels used for RX (= number of RX queues) 841 * @n_tx_channels: Number of channels used for TX 842 * @rx_ip_align: RX DMA address offset to have IP header aligned in 843 * in accordance with NET_IP_ALIGN 844 * @rx_dma_len: Current maximum RX DMA length 845 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer 846 * @rx_buffer_truesize: Amortised allocation size of an RX buffer, 847 * for use in sk_buff::truesize 848 * @rx_prefix_size: Size of RX prefix before packet data 849 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data 850 * (valid only if @rx_prefix_size != 0; always negative) 851 * @rx_packet_len_offset: Offset of RX packet length from start of packet data 852 * (valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative) 853 * @rx_packet_ts_offset: Offset of timestamp from start of packet data 854 * (valid only if channel->sync_timestamps_enabled; always negative) 855 * @rx_hash_key: Toeplitz hash key for RSS 856 * @rx_indir_table: Indirection table for RSS 857 * @rx_scatter: Scatter mode enabled for receives 858 * @int_error_count: Number of internal errors seen recently 859 * @int_error_expire: Time at which error count will be expired 860 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will 861 * acknowledge but do nothing else. 862 * @irq_status: Interrupt status buffer 863 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0 864 * @irq_level: IRQ level/index for IRQs not triggered by an event queue 865 * @selftest_work: Work item for asynchronous self-test 866 * @mtd_list: List of MTDs attached to the NIC 867 * @nic_data: Hardware dependent state 868 * @mcdi: Management-Controller-to-Driver Interface state 869 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode, 870 * efx_monitor() and efx_reconfigure_port() 871 * @port_enabled: Port enabled indicator. 872 * Serialises efx_stop_all(), efx_start_all(), efx_monitor() and 873 * efx_mac_work() with kernel interfaces. Safe to read under any 874 * one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must 875 * be held to modify it. 876 * @port_initialized: Port initialized? 877 * @net_dev: Operating system network device. Consider holding the rtnl lock 878 * @stats_buffer: DMA buffer for statistics 879 * @phy_type: PHY type 880 * @phy_op: PHY interface 881 * @phy_data: PHY private data (including PHY-specific stats) 882 * @mdio: PHY MDIO interface 883 * @mdio_bus: PHY MDIO bus ID (only used by Siena) 884 * @phy_mode: PHY operating mode. Serialised by @mac_lock. 885 * @link_advertising: Autonegotiation advertising flags 886 * @link_state: Current state of the link 887 * @n_link_state_changes: Number of times the link has changed state 888 * @unicast_filter: Flag for Falcon-arch simple unicast filter. 889 * Protected by @mac_lock. 890 * @multicast_hash: Multicast hash table for Falcon-arch. 891 * Protected by @mac_lock. 892 * @wanted_fc: Wanted flow control flags 893 * @fc_disable: When non-zero flow control is disabled. Typically used to 894 * ensure that network back pressure doesn't delay dma queue flushes. 895 * Serialised by the rtnl lock. 896 * @mac_work: Work item for changing MAC promiscuity and multicast hash 897 * @loopback_mode: Loopback status 898 * @loopback_modes: Supported loopback mode bitmask 899 * @loopback_selftest: Offline self-test private state 900 * @filter_lock: Filter table lock 901 * @filter_state: Architecture-dependent filter table state 902 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS, 903 * indexed by filter ID 904 * @rps_expire_index: Next index to check for expiry in @rps_flow_id 905 * @active_queues: Count of RX and TX queues that haven't been flushed and drained. 906 * @rxq_flush_pending: Count of number of receive queues that need to be flushed. 907 * Decremented when the efx_flush_rx_queue() is called. 908 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet 909 * completed (either success or failure). Not used when MCDI is used to 910 * flush receive queues. 911 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions. 912 * @vf: Array of &struct efx_vf objects. 913 * @vf_count: Number of VFs intended to be enabled. 914 * @vf_init_count: Number of VFs that have been fully initialised. 915 * @vi_scale: log2 number of vnics per VF. 916 * @vf_buftbl_base: The zeroth buffer table index used to back VF queues. 917 * @vfdi_status: Common VFDI status page to be dmad to VF address space. 918 * @local_addr_list: List of local addresses. Protected by %local_lock. 919 * @local_page_list: List of DMA addressable pages used to broadcast 920 * %local_addr_list. Protected by %local_lock. 921 * @local_lock: Mutex protecting %local_addr_list and %local_page_list. 922 * @peer_work: Work item to broadcast peer addresses to VMs. 923 * @ptp_data: PTP state data 924 * @vpd_sn: Serial number read from VPD 925 * @monitor_work: Hardware monitor workitem 926 * @biu_lock: BIU (bus interface unit) lock 927 * @last_irq_cpu: Last CPU to handle a possible test interrupt. This 928 * field is used by efx_test_interrupts() to verify that an 929 * interrupt has occurred. 930 * @stats_lock: Statistics update lock. Must be held when calling 931 * efx_nic_type::{update,start,stop}_stats. 932 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb 933 * 934 * This is stored in the private area of the &struct net_device. 935 */ 936 struct efx_nic { 937 /* The following fields should be written very rarely */ 938 939 char name[IFNAMSIZ]; 940 struct list_head node; 941 struct efx_nic *primary; 942 struct list_head secondary_list; 943 struct pci_dev *pci_dev; 944 unsigned int port_num; 945 const struct efx_nic_type *type; 946 int legacy_irq; 947 bool eeh_disabled_legacy_irq; 948 struct workqueue_struct *workqueue; 949 char workqueue_name[16]; 950 struct work_struct reset_work; 951 resource_size_t membase_phys; 952 void __iomem *membase; 953 954 enum efx_int_mode interrupt_mode; 955 unsigned int timer_quantum_ns; 956 bool irq_rx_adaptive; 957 unsigned int irq_rx_moderation; 958 u32 msg_enable; 959 960 enum nic_state state; 961 unsigned long reset_pending; 962 963 struct efx_channel *channel[EFX_MAX_CHANNELS]; 964 struct efx_msi_context msi_context[EFX_MAX_CHANNELS]; 965 const struct efx_channel_type * 966 extra_channel_type[EFX_MAX_EXTRA_CHANNELS]; 967 968 unsigned rxq_entries; 969 unsigned txq_entries; 970 unsigned int txq_stop_thresh; 971 unsigned int txq_wake_thresh; 972 973 unsigned tx_dc_base; 974 unsigned rx_dc_base; 975 unsigned sram_lim_qw; 976 unsigned next_buffer_table; 977 978 unsigned int max_channels; 979 unsigned n_channels; 980 unsigned n_rx_channels; 981 unsigned rss_spread; 982 unsigned tx_channel_offset; 983 unsigned n_tx_channels; 984 unsigned int rx_ip_align; 985 unsigned int rx_dma_len; 986 unsigned int rx_buffer_order; 987 unsigned int rx_buffer_truesize; 988 unsigned int rx_page_buf_step; 989 unsigned int rx_bufs_per_page; 990 unsigned int rx_pages_per_batch; 991 unsigned int rx_prefix_size; 992 int rx_packet_hash_offset; 993 int rx_packet_len_offset; 994 int rx_packet_ts_offset; 995 u8 rx_hash_key[40]; 996 u32 rx_indir_table[128]; 997 bool rx_scatter; 998 999 unsigned int_error_count; 1000 unsigned long int_error_expire; 1001 1002 bool irq_soft_enabled; 1003 struct efx_buffer irq_status; 1004 unsigned irq_zero_count; 1005 unsigned irq_level; 1006 struct delayed_work selftest_work; 1007 1008 #ifdef CONFIG_SFC_MTD 1009 struct list_head mtd_list; 1010 #endif 1011 1012 void *nic_data; 1013 struct efx_mcdi_data *mcdi; 1014 1015 struct mutex mac_lock; 1016 struct work_struct mac_work; 1017 bool port_enabled; 1018 1019 bool mc_bist_for_other_fn; 1020 bool port_initialized; 1021 struct net_device *net_dev; 1022 1023 struct efx_buffer stats_buffer; 1024 u64 rx_nodesc_drops_total; 1025 u64 rx_nodesc_drops_while_down; 1026 bool rx_nodesc_drops_prev_state; 1027 1028 unsigned int phy_type; 1029 const struct efx_phy_operations *phy_op; 1030 void *phy_data; 1031 struct mdio_if_info mdio; 1032 unsigned int mdio_bus; 1033 enum efx_phy_mode phy_mode; 1034 1035 u32 link_advertising; 1036 struct efx_link_state link_state; 1037 unsigned int n_link_state_changes; 1038 1039 bool unicast_filter; 1040 union efx_multicast_hash multicast_hash; 1041 u8 wanted_fc; 1042 unsigned fc_disable; 1043 1044 atomic_t rx_reset; 1045 enum efx_loopback_mode loopback_mode; 1046 u64 loopback_modes; 1047 1048 void *loopback_selftest; 1049 1050 spinlock_t filter_lock; 1051 void *filter_state; 1052 #ifdef CONFIG_RFS_ACCEL 1053 u32 *rps_flow_id; 1054 unsigned int rps_expire_index; 1055 #endif 1056 1057 atomic_t active_queues; 1058 atomic_t rxq_flush_pending; 1059 atomic_t rxq_flush_outstanding; 1060 wait_queue_head_t flush_wq; 1061 1062 #ifdef CONFIG_SFC_SRIOV 1063 struct efx_channel *vfdi_channel; 1064 struct efx_vf *vf; 1065 unsigned vf_count; 1066 unsigned vf_init_count; 1067 unsigned vi_scale; 1068 unsigned vf_buftbl_base; 1069 struct efx_buffer vfdi_status; 1070 struct list_head local_addr_list; 1071 struct list_head local_page_list; 1072 struct mutex local_lock; 1073 struct work_struct peer_work; 1074 #endif 1075 1076 struct efx_ptp_data *ptp_data; 1077 1078 char *vpd_sn; 1079 1080 /* The following fields may be written more often */ 1081 1082 struct delayed_work monitor_work ____cacheline_aligned_in_smp; 1083 spinlock_t biu_lock; 1084 int last_irq_cpu; 1085 spinlock_t stats_lock; 1086 atomic_t n_rx_noskb_drops; 1087 }; 1088 1089 static inline int efx_dev_registered(struct efx_nic *efx) 1090 { 1091 return efx->net_dev->reg_state == NETREG_REGISTERED; 1092 } 1093 1094 static inline unsigned int efx_port_num(struct efx_nic *efx) 1095 { 1096 return efx->port_num; 1097 } 1098 1099 struct efx_mtd_partition { 1100 struct list_head node; 1101 struct mtd_info mtd; 1102 const char *dev_type_name; 1103 const char *type_name; 1104 char name[IFNAMSIZ + 20]; 1105 }; 1106 1107 /** 1108 * struct efx_nic_type - Efx device type definition 1109 * @mem_map_size: Get memory BAR mapped size 1110 * @probe: Probe the controller 1111 * @remove: Free resources allocated by probe() 1112 * @init: Initialise the controller 1113 * @dimension_resources: Dimension controller resources (buffer table, 1114 * and VIs once the available interrupt resources are clear) 1115 * @fini: Shut down the controller 1116 * @monitor: Periodic function for polling link state and hardware monitor 1117 * @map_reset_reason: Map ethtool reset reason to a reset method 1118 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible 1119 * @reset: Reset the controller hardware and possibly the PHY. This will 1120 * be called while the controller is uninitialised. 1121 * @probe_port: Probe the MAC and PHY 1122 * @remove_port: Free resources allocated by probe_port() 1123 * @handle_global_event: Handle a "global" event (may be %NULL) 1124 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues) 1125 * @prepare_flush: Prepare the hardware for flushing the DMA queues 1126 * (for Falcon architecture) 1127 * @finish_flush: Clean up after flushing the DMA queues (for Falcon 1128 * architecture) 1129 * @prepare_flr: Prepare for an FLR 1130 * @finish_flr: Clean up after an FLR 1131 * @describe_stats: Describe statistics for ethtool 1132 * @update_stats: Update statistics not provided by event handling. 1133 * Either argument may be %NULL. 1134 * @start_stats: Start the regular fetching of statistics 1135 * @pull_stats: Pull stats from the NIC and wait until they arrive. 1136 * @stop_stats: Stop the regular fetching of statistics 1137 * @set_id_led: Set state of identifying LED or revert to automatic function 1138 * @push_irq_moderation: Apply interrupt moderation value 1139 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY 1140 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL) 1141 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings 1142 * to the hardware. Serialised by the mac_lock. 1143 * @check_mac_fault: Check MAC fault state. True if fault present. 1144 * @get_wol: Get WoL configuration from driver state 1145 * @set_wol: Push WoL configuration to the NIC 1146 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume) 1147 * @test_chip: Test registers. May use efx_farch_test_registers(), and is 1148 * expected to reset the NIC. 1149 * @test_nvram: Test validity of NVRAM contents 1150 * @mcdi_request: Send an MCDI request with the given header and SDU. 1151 * The SDU length may be any value from 0 up to the protocol- 1152 * defined maximum, but its buffer will be padded to a multiple 1153 * of 4 bytes. 1154 * @mcdi_poll_response: Test whether an MCDI response is available. 1155 * @mcdi_read_response: Read the MCDI response PDU. The offset will 1156 * be a multiple of 4. The length may not be, but the buffer 1157 * will be padded so it is safe to round up. 1158 * @mcdi_poll_reboot: Test whether the MCDI has rebooted. If so, 1159 * return an appropriate error code for aborting any current 1160 * request; otherwise return 0. 1161 * @irq_enable_master: Enable IRQs on the NIC. Each event queue must 1162 * be separately enabled after this. 1163 * @irq_test_generate: Generate a test IRQ 1164 * @irq_disable_non_ev: Disable non-event IRQs on the NIC. Each event 1165 * queue must be separately disabled before this. 1166 * @irq_handle_msi: Handle MSI for a channel. The @dev_id argument is 1167 * a pointer to the &struct efx_msi_context for the channel. 1168 * @irq_handle_legacy: Handle legacy interrupt. The @dev_id argument 1169 * is a pointer to the &struct efx_nic. 1170 * @tx_probe: Allocate resources for TX queue 1171 * @tx_init: Initialise TX queue on the NIC 1172 * @tx_remove: Free resources for TX queue 1173 * @tx_write: Write TX descriptors and doorbell 1174 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC 1175 * @rx_probe: Allocate resources for RX queue 1176 * @rx_init: Initialise RX queue on the NIC 1177 * @rx_remove: Free resources for RX queue 1178 * @rx_write: Write RX descriptors and doorbell 1179 * @rx_defer_refill: Generate a refill reminder event 1180 * @ev_probe: Allocate resources for event queue 1181 * @ev_init: Initialise event queue on the NIC 1182 * @ev_fini: Deinitialise event queue on the NIC 1183 * @ev_remove: Free resources for event queue 1184 * @ev_process: Process events for a queue, up to the given NAPI quota 1185 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ 1186 * @ev_test_generate: Generate a test event 1187 * @filter_table_probe: Probe filter capabilities and set up filter software state 1188 * @filter_table_restore: Restore filters removed from hardware 1189 * @filter_table_remove: Remove filters from hardware and tear down software state 1190 * @filter_update_rx_scatter: Update filters after change to rx scatter setting 1191 * @filter_insert: add or replace a filter 1192 * @filter_remove_safe: remove a filter by ID, carefully 1193 * @filter_get_safe: retrieve a filter by ID, carefully 1194 * @filter_clear_rx: Remove all RX filters whose priority is less than or 1195 * equal to the given priority and is not %EFX_FILTER_PRI_AUTO 1196 * @filter_count_rx_used: Get the number of filters in use at a given priority 1197 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1 1198 * @filter_get_rx_ids: Get list of RX filters at a given priority 1199 * @filter_rfs_insert: Add or replace a filter for RFS. This must be 1200 * atomic. The hardware change may be asynchronous but should 1201 * not be delayed for long. It may fail if this can't be done 1202 * atomically. 1203 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS. 1204 * This must check whether the specified table entry is used by RFS 1205 * and that rps_may_expire_flow() returns true for it. 1206 * @mtd_probe: Probe and add MTD partitions associated with this net device, 1207 * using efx_mtd_add() 1208 * @mtd_rename: Set an MTD partition name using the net device name 1209 * @mtd_read: Read from an MTD partition 1210 * @mtd_erase: Erase part of an MTD partition 1211 * @mtd_write: Write to an MTD partition 1212 * @mtd_sync: Wait for write-back to complete on MTD partition. This 1213 * also notifies the driver that a writer has finished using this 1214 * partition. 1215 * @ptp_write_host_time: Send host time to MC as part of sync protocol 1216 * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX 1217 * timestamping, possibly only temporarily for the purposes of a reset. 1218 * @ptp_set_ts_config: Set hardware timestamp configuration. The flags 1219 * and tx_type will already have been validated but this operation 1220 * must validate and update rx_filter. 1221 * @revision: Hardware architecture revision 1222 * @txd_ptr_tbl_base: TX descriptor ring base address 1223 * @rxd_ptr_tbl_base: RX descriptor ring base address 1224 * @buf_tbl_base: Buffer table base address 1225 * @evq_ptr_tbl_base: Event queue pointer table base address 1226 * @evq_rptr_tbl_base: Event queue read-pointer table base address 1227 * @max_dma_mask: Maximum possible DMA mask 1228 * @rx_prefix_size: Size of RX prefix before packet data 1229 * @rx_hash_offset: Offset of RX flow hash within prefix 1230 * @rx_ts_offset: Offset of timestamp within prefix 1231 * @rx_buffer_padding: Size of padding at end of RX packet 1232 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers 1233 * @always_rx_scatter: NIC will always scatter packets to multiple buffers 1234 * @max_interrupt_mode: Highest capability interrupt mode supported 1235 * from &enum efx_init_mode. 1236 * @timer_period_max: Maximum period of interrupt timer (in ticks) 1237 * @offload_features: net_device feature flags for protocol offload 1238 * features implemented in hardware 1239 * @mcdi_max_ver: Maximum MCDI version supported 1240 * @hwtstamp_filters: Mask of hardware timestamp filter types supported 1241 */ 1242 struct efx_nic_type { 1243 unsigned int (*mem_map_size)(struct efx_nic *efx); 1244 int (*probe)(struct efx_nic *efx); 1245 void (*remove)(struct efx_nic *efx); 1246 int (*init)(struct efx_nic *efx); 1247 int (*dimension_resources)(struct efx_nic *efx); 1248 void (*fini)(struct efx_nic *efx); 1249 void (*monitor)(struct efx_nic *efx); 1250 enum reset_type (*map_reset_reason)(enum reset_type reason); 1251 int (*map_reset_flags)(u32 *flags); 1252 int (*reset)(struct efx_nic *efx, enum reset_type method); 1253 int (*probe_port)(struct efx_nic *efx); 1254 void (*remove_port)(struct efx_nic *efx); 1255 bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *); 1256 int (*fini_dmaq)(struct efx_nic *efx); 1257 void (*prepare_flush)(struct efx_nic *efx); 1258 void (*finish_flush)(struct efx_nic *efx); 1259 void (*prepare_flr)(struct efx_nic *efx); 1260 void (*finish_flr)(struct efx_nic *efx); 1261 size_t (*describe_stats)(struct efx_nic *efx, u8 *names); 1262 size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats, 1263 struct rtnl_link_stats64 *core_stats); 1264 void (*start_stats)(struct efx_nic *efx); 1265 void (*pull_stats)(struct efx_nic *efx); 1266 void (*stop_stats)(struct efx_nic *efx); 1267 void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode); 1268 void (*push_irq_moderation)(struct efx_channel *channel); 1269 int (*reconfigure_port)(struct efx_nic *efx); 1270 void (*prepare_enable_fc_tx)(struct efx_nic *efx); 1271 int (*reconfigure_mac)(struct efx_nic *efx); 1272 bool (*check_mac_fault)(struct efx_nic *efx); 1273 void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol); 1274 int (*set_wol)(struct efx_nic *efx, u32 type); 1275 void (*resume_wol)(struct efx_nic *efx); 1276 int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests); 1277 int (*test_nvram)(struct efx_nic *efx); 1278 void (*mcdi_request)(struct efx_nic *efx, 1279 const efx_dword_t *hdr, size_t hdr_len, 1280 const efx_dword_t *sdu, size_t sdu_len); 1281 bool (*mcdi_poll_response)(struct efx_nic *efx); 1282 void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu, 1283 size_t pdu_offset, size_t pdu_len); 1284 int (*mcdi_poll_reboot)(struct efx_nic *efx); 1285 void (*irq_enable_master)(struct efx_nic *efx); 1286 void (*irq_test_generate)(struct efx_nic *efx); 1287 void (*irq_disable_non_ev)(struct efx_nic *efx); 1288 irqreturn_t (*irq_handle_msi)(int irq, void *dev_id); 1289 irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id); 1290 int (*tx_probe)(struct efx_tx_queue *tx_queue); 1291 void (*tx_init)(struct efx_tx_queue *tx_queue); 1292 void (*tx_remove)(struct efx_tx_queue *tx_queue); 1293 void (*tx_write)(struct efx_tx_queue *tx_queue); 1294 void (*rx_push_rss_config)(struct efx_nic *efx); 1295 int (*rx_probe)(struct efx_rx_queue *rx_queue); 1296 void (*rx_init)(struct efx_rx_queue *rx_queue); 1297 void (*rx_remove)(struct efx_rx_queue *rx_queue); 1298 void (*rx_write)(struct efx_rx_queue *rx_queue); 1299 void (*rx_defer_refill)(struct efx_rx_queue *rx_queue); 1300 int (*ev_probe)(struct efx_channel *channel); 1301 int (*ev_init)(struct efx_channel *channel); 1302 void (*ev_fini)(struct efx_channel *channel); 1303 void (*ev_remove)(struct efx_channel *channel); 1304 int (*ev_process)(struct efx_channel *channel, int quota); 1305 void (*ev_read_ack)(struct efx_channel *channel); 1306 void (*ev_test_generate)(struct efx_channel *channel); 1307 int (*filter_table_probe)(struct efx_nic *efx); 1308 void (*filter_table_restore)(struct efx_nic *efx); 1309 void (*filter_table_remove)(struct efx_nic *efx); 1310 void (*filter_update_rx_scatter)(struct efx_nic *efx); 1311 s32 (*filter_insert)(struct efx_nic *efx, 1312 struct efx_filter_spec *spec, bool replace); 1313 int (*filter_remove_safe)(struct efx_nic *efx, 1314 enum efx_filter_priority priority, 1315 u32 filter_id); 1316 int (*filter_get_safe)(struct efx_nic *efx, 1317 enum efx_filter_priority priority, 1318 u32 filter_id, struct efx_filter_spec *); 1319 int (*filter_clear_rx)(struct efx_nic *efx, 1320 enum efx_filter_priority priority); 1321 u32 (*filter_count_rx_used)(struct efx_nic *efx, 1322 enum efx_filter_priority priority); 1323 u32 (*filter_get_rx_id_limit)(struct efx_nic *efx); 1324 s32 (*filter_get_rx_ids)(struct efx_nic *efx, 1325 enum efx_filter_priority priority, 1326 u32 *buf, u32 size); 1327 #ifdef CONFIG_RFS_ACCEL 1328 s32 (*filter_rfs_insert)(struct efx_nic *efx, 1329 struct efx_filter_spec *spec); 1330 bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id, 1331 unsigned int index); 1332 #endif 1333 #ifdef CONFIG_SFC_MTD 1334 int (*mtd_probe)(struct efx_nic *efx); 1335 void (*mtd_rename)(struct efx_mtd_partition *part); 1336 int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len, 1337 size_t *retlen, u8 *buffer); 1338 int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len); 1339 int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len, 1340 size_t *retlen, const u8 *buffer); 1341 int (*mtd_sync)(struct mtd_info *mtd); 1342 #endif 1343 void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time); 1344 int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp); 1345 int (*ptp_set_ts_config)(struct efx_nic *efx, 1346 struct hwtstamp_config *init); 1347 1348 int revision; 1349 unsigned int txd_ptr_tbl_base; 1350 unsigned int rxd_ptr_tbl_base; 1351 unsigned int buf_tbl_base; 1352 unsigned int evq_ptr_tbl_base; 1353 unsigned int evq_rptr_tbl_base; 1354 u64 max_dma_mask; 1355 unsigned int rx_prefix_size; 1356 unsigned int rx_hash_offset; 1357 unsigned int rx_ts_offset; 1358 unsigned int rx_buffer_padding; 1359 bool can_rx_scatter; 1360 bool always_rx_scatter; 1361 unsigned int max_interrupt_mode; 1362 unsigned int timer_period_max; 1363 netdev_features_t offload_features; 1364 int mcdi_max_ver; 1365 unsigned int max_rx_ip_filters; 1366 u32 hwtstamp_filters; 1367 }; 1368 1369 /************************************************************************** 1370 * 1371 * Prototypes and inline functions 1372 * 1373 *************************************************************************/ 1374 1375 static inline struct efx_channel * 1376 efx_get_channel(struct efx_nic *efx, unsigned index) 1377 { 1378 EFX_BUG_ON_PARANOID(index >= efx->n_channels); 1379 return efx->channel[index]; 1380 } 1381 1382 /* Iterate over all used channels */ 1383 #define efx_for_each_channel(_channel, _efx) \ 1384 for (_channel = (_efx)->channel[0]; \ 1385 _channel; \ 1386 _channel = (_channel->channel + 1 < (_efx)->n_channels) ? \ 1387 (_efx)->channel[_channel->channel + 1] : NULL) 1388 1389 /* Iterate over all used channels in reverse */ 1390 #define efx_for_each_channel_rev(_channel, _efx) \ 1391 for (_channel = (_efx)->channel[(_efx)->n_channels - 1]; \ 1392 _channel; \ 1393 _channel = _channel->channel ? \ 1394 (_efx)->channel[_channel->channel - 1] : NULL) 1395 1396 static inline struct efx_tx_queue * 1397 efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type) 1398 { 1399 EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels || 1400 type >= EFX_TXQ_TYPES); 1401 return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type]; 1402 } 1403 1404 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel) 1405 { 1406 return channel->channel - channel->efx->tx_channel_offset < 1407 channel->efx->n_tx_channels; 1408 } 1409 1410 static inline struct efx_tx_queue * 1411 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type) 1412 { 1413 EFX_BUG_ON_PARANOID(!efx_channel_has_tx_queues(channel) || 1414 type >= EFX_TXQ_TYPES); 1415 return &channel->tx_queue[type]; 1416 } 1417 1418 static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue) 1419 { 1420 return !(tx_queue->efx->net_dev->num_tc < 2 && 1421 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI); 1422 } 1423 1424 /* Iterate over all TX queues belonging to a channel */ 1425 #define efx_for_each_channel_tx_queue(_tx_queue, _channel) \ 1426 if (!efx_channel_has_tx_queues(_channel)) \ 1427 ; \ 1428 else \ 1429 for (_tx_queue = (_channel)->tx_queue; \ 1430 _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \ 1431 efx_tx_queue_used(_tx_queue); \ 1432 _tx_queue++) 1433 1434 /* Iterate over all possible TX queues belonging to a channel */ 1435 #define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel) \ 1436 if (!efx_channel_has_tx_queues(_channel)) \ 1437 ; \ 1438 else \ 1439 for (_tx_queue = (_channel)->tx_queue; \ 1440 _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES; \ 1441 _tx_queue++) 1442 1443 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel) 1444 { 1445 return channel->rx_queue.core_index >= 0; 1446 } 1447 1448 static inline struct efx_rx_queue * 1449 efx_channel_get_rx_queue(struct efx_channel *channel) 1450 { 1451 EFX_BUG_ON_PARANOID(!efx_channel_has_rx_queue(channel)); 1452 return &channel->rx_queue; 1453 } 1454 1455 /* Iterate over all RX queues belonging to a channel */ 1456 #define efx_for_each_channel_rx_queue(_rx_queue, _channel) \ 1457 if (!efx_channel_has_rx_queue(_channel)) \ 1458 ; \ 1459 else \ 1460 for (_rx_queue = &(_channel)->rx_queue; \ 1461 _rx_queue; \ 1462 _rx_queue = NULL) 1463 1464 static inline struct efx_channel * 1465 efx_rx_queue_channel(struct efx_rx_queue *rx_queue) 1466 { 1467 return container_of(rx_queue, struct efx_channel, rx_queue); 1468 } 1469 1470 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue) 1471 { 1472 return efx_rx_queue_channel(rx_queue)->channel; 1473 } 1474 1475 /* Returns a pointer to the specified receive buffer in the RX 1476 * descriptor queue. 1477 */ 1478 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue, 1479 unsigned int index) 1480 { 1481 return &rx_queue->buffer[index]; 1482 } 1483 1484 /** 1485 * EFX_MAX_FRAME_LEN - calculate maximum frame length 1486 * 1487 * This calculates the maximum frame length that will be used for a 1488 * given MTU. The frame length will be equal to the MTU plus a 1489 * constant amount of header space and padding. This is the quantity 1490 * that the net driver will program into the MAC as the maximum frame 1491 * length. 1492 * 1493 * The 10G MAC requires 8-byte alignment on the frame 1494 * length, so we round up to the nearest 8. 1495 * 1496 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an 1497 * XGMII cycle). If the frame length reaches the maximum value in the 1498 * same cycle, the XMAC can miss the IPG altogether. We work around 1499 * this by adding a further 16 bytes. 1500 */ 1501 #define EFX_MAX_FRAME_LEN(mtu) \ 1502 ((((mtu) + ETH_HLEN + VLAN_HLEN + 4/* FCS */ + 7) & ~7) + 16) 1503 1504 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb) 1505 { 1506 return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP; 1507 } 1508 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb) 1509 { 1510 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1511 } 1512 1513 #endif /* EFX_NET_DRIVER_H */ 1514