1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2008-2013 Solarflare Communications Inc. 5 */ 6 7 #include <linux/delay.h> 8 #include <linux/moduleparam.h> 9 #include <linux/atomic.h> 10 #include "net_driver.h" 11 #include "nic.h" 12 #include "io.h" 13 #include "mcdi_pcol.h" 14 15 /************************************************************************** 16 * 17 * Management-Controller-to-Driver Interface 18 * 19 ************************************************************************** 20 */ 21 22 #define MCDI_RPC_TIMEOUT (10 * HZ) 23 24 /* A reboot/assertion causes the MCDI status word to be set after the 25 * command word is set or a REBOOT event is sent. If we notice a reboot 26 * via these mechanisms then wait 250ms for the status word to be set. 27 */ 28 #define MCDI_STATUS_DELAY_US 100 29 #define MCDI_STATUS_DELAY_COUNT 2500 30 #define MCDI_STATUS_SLEEP_MS \ 31 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000) 32 33 #define SEQ_MASK \ 34 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ)) 35 36 struct efx_mcdi_async_param { 37 struct list_head list; 38 unsigned int cmd; 39 size_t inlen; 40 size_t outlen; 41 bool quiet; 42 efx_mcdi_async_completer *complete; 43 unsigned long cookie; 44 /* followed by request/response buffer */ 45 }; 46 47 static void efx_mcdi_timeout_async(struct timer_list *t); 48 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, 49 bool *was_attached_out); 50 static bool efx_mcdi_poll_once(struct efx_nic *efx); 51 static void efx_mcdi_abandon(struct efx_nic *efx); 52 53 #ifdef CONFIG_SFC_MCDI_LOGGING 54 static bool mcdi_logging_default; 55 module_param(mcdi_logging_default, bool, 0644); 56 MODULE_PARM_DESC(mcdi_logging_default, 57 "Enable MCDI logging on newly-probed functions"); 58 #endif 59 60 int efx_mcdi_init(struct efx_nic *efx) 61 { 62 struct efx_mcdi_iface *mcdi; 63 bool already_attached; 64 int rc = -ENOMEM; 65 66 efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL); 67 if (!efx->mcdi) 68 goto fail; 69 70 mcdi = efx_mcdi(efx); 71 mcdi->efx = efx; 72 #ifdef CONFIG_SFC_MCDI_LOGGING 73 /* consuming code assumes buffer is page-sized */ 74 mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL); 75 if (!mcdi->logging_buffer) 76 goto fail1; 77 mcdi->logging_enabled = mcdi_logging_default; 78 #endif 79 init_waitqueue_head(&mcdi->wq); 80 init_waitqueue_head(&mcdi->proxy_rx_wq); 81 spin_lock_init(&mcdi->iface_lock); 82 mcdi->state = MCDI_STATE_QUIESCENT; 83 mcdi->mode = MCDI_MODE_POLL; 84 spin_lock_init(&mcdi->async_lock); 85 INIT_LIST_HEAD(&mcdi->async_list); 86 timer_setup(&mcdi->async_timer, efx_mcdi_timeout_async, 0); 87 88 (void) efx_mcdi_poll_reboot(efx); 89 mcdi->new_epoch = true; 90 91 /* Recover from a failed assertion before probing */ 92 rc = efx_mcdi_handle_assertion(efx); 93 if (rc) 94 goto fail2; 95 96 /* Let the MC (and BMC, if this is a LOM) know that the driver 97 * is loaded. We should do this before we reset the NIC. 98 */ 99 rc = efx_mcdi_drv_attach(efx, true, &already_attached); 100 if (rc) { 101 pci_err(efx->pci_dev, "Unable to register driver with MCPU\n"); 102 goto fail2; 103 } 104 if (already_attached) 105 /* Not a fatal error */ 106 pci_err(efx->pci_dev, "Host already registered with MCPU\n"); 107 108 if (efx->mcdi->fn_flags & 109 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) 110 efx->primary = efx; 111 112 return 0; 113 fail2: 114 #ifdef CONFIG_SFC_MCDI_LOGGING 115 free_page((unsigned long)mcdi->logging_buffer); 116 fail1: 117 #endif 118 kfree(efx->mcdi); 119 efx->mcdi = NULL; 120 fail: 121 return rc; 122 } 123 124 void efx_mcdi_detach(struct efx_nic *efx) 125 { 126 if (!efx->mcdi) 127 return; 128 129 BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT); 130 131 /* Relinquish the device (back to the BMC, if this is a LOM) */ 132 efx_mcdi_drv_attach(efx, false, NULL); 133 } 134 135 void efx_mcdi_fini(struct efx_nic *efx) 136 { 137 if (!efx->mcdi) 138 return; 139 140 #ifdef CONFIG_SFC_MCDI_LOGGING 141 free_page((unsigned long)efx->mcdi->iface.logging_buffer); 142 #endif 143 144 kfree(efx->mcdi); 145 } 146 147 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd, 148 const efx_dword_t *inbuf, size_t inlen) 149 { 150 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 151 #ifdef CONFIG_SFC_MCDI_LOGGING 152 char *buf = mcdi->logging_buffer; /* page-sized */ 153 #endif 154 efx_dword_t hdr[2]; 155 size_t hdr_len; 156 u32 xflags, seqno; 157 158 BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT); 159 160 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */ 161 spin_lock_bh(&mcdi->iface_lock); 162 ++mcdi->seqno; 163 seqno = mcdi->seqno & SEQ_MASK; 164 spin_unlock_bh(&mcdi->iface_lock); 165 166 xflags = 0; 167 if (mcdi->mode == MCDI_MODE_EVENTS) 168 xflags |= MCDI_HEADER_XFLAGS_EVREQ; 169 170 if (efx->type->mcdi_max_ver == 1) { 171 /* MCDI v1 */ 172 EFX_POPULATE_DWORD_7(hdr[0], 173 MCDI_HEADER_RESPONSE, 0, 174 MCDI_HEADER_RESYNC, 1, 175 MCDI_HEADER_CODE, cmd, 176 MCDI_HEADER_DATALEN, inlen, 177 MCDI_HEADER_SEQ, seqno, 178 MCDI_HEADER_XFLAGS, xflags, 179 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch); 180 hdr_len = 4; 181 } else { 182 /* MCDI v2 */ 183 BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2); 184 EFX_POPULATE_DWORD_7(hdr[0], 185 MCDI_HEADER_RESPONSE, 0, 186 MCDI_HEADER_RESYNC, 1, 187 MCDI_HEADER_CODE, MC_CMD_V2_EXTN, 188 MCDI_HEADER_DATALEN, 0, 189 MCDI_HEADER_SEQ, seqno, 190 MCDI_HEADER_XFLAGS, xflags, 191 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch); 192 EFX_POPULATE_DWORD_2(hdr[1], 193 MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd, 194 MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen); 195 hdr_len = 8; 196 } 197 198 #ifdef CONFIG_SFC_MCDI_LOGGING 199 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) { 200 int bytes = 0; 201 int i; 202 /* Lengths should always be a whole number of dwords, so scream 203 * if they're not. 204 */ 205 WARN_ON_ONCE(hdr_len % 4); 206 WARN_ON_ONCE(inlen % 4); 207 208 /* We own the logging buffer, as only one MCDI can be in 209 * progress on a NIC at any one time. So no need for locking. 210 */ 211 for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++) 212 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 213 " %08x", 214 le32_to_cpu(hdr[i].u32[0])); 215 216 for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++) 217 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 218 " %08x", 219 le32_to_cpu(inbuf[i].u32[0])); 220 221 netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf); 222 } 223 #endif 224 225 efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen); 226 227 mcdi->new_epoch = false; 228 } 229 230 static int efx_mcdi_errno(unsigned int mcdi_err) 231 { 232 switch (mcdi_err) { 233 case 0: 234 return 0; 235 #define TRANSLATE_ERROR(name) \ 236 case MC_CMD_ERR_ ## name: \ 237 return -name; 238 TRANSLATE_ERROR(EPERM); 239 TRANSLATE_ERROR(ENOENT); 240 TRANSLATE_ERROR(EINTR); 241 TRANSLATE_ERROR(EAGAIN); 242 TRANSLATE_ERROR(EACCES); 243 TRANSLATE_ERROR(EBUSY); 244 TRANSLATE_ERROR(EINVAL); 245 TRANSLATE_ERROR(EDEADLK); 246 TRANSLATE_ERROR(ENOSYS); 247 TRANSLATE_ERROR(ETIME); 248 TRANSLATE_ERROR(EALREADY); 249 TRANSLATE_ERROR(ENOSPC); 250 #undef TRANSLATE_ERROR 251 case MC_CMD_ERR_ENOTSUP: 252 return -EOPNOTSUPP; 253 case MC_CMD_ERR_ALLOC_FAIL: 254 return -ENOBUFS; 255 case MC_CMD_ERR_MAC_EXIST: 256 return -EADDRINUSE; 257 default: 258 return -EPROTO; 259 } 260 } 261 262 static void efx_mcdi_read_response_header(struct efx_nic *efx) 263 { 264 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 265 unsigned int respseq, respcmd, error; 266 #ifdef CONFIG_SFC_MCDI_LOGGING 267 char *buf = mcdi->logging_buffer; /* page-sized */ 268 #endif 269 efx_dword_t hdr; 270 271 efx->type->mcdi_read_response(efx, &hdr, 0, 4); 272 respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ); 273 respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE); 274 error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR); 275 276 if (respcmd != MC_CMD_V2_EXTN) { 277 mcdi->resp_hdr_len = 4; 278 mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN); 279 } else { 280 efx->type->mcdi_read_response(efx, &hdr, 4, 4); 281 mcdi->resp_hdr_len = 8; 282 mcdi->resp_data_len = 283 EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN); 284 } 285 286 #ifdef CONFIG_SFC_MCDI_LOGGING 287 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) { 288 size_t hdr_len, data_len; 289 int bytes = 0; 290 int i; 291 292 WARN_ON_ONCE(mcdi->resp_hdr_len % 4); 293 hdr_len = mcdi->resp_hdr_len / 4; 294 /* MCDI_DECLARE_BUF ensures that underlying buffer is padded 295 * to dword size, and the MCDI buffer is always dword size 296 */ 297 data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4); 298 299 /* We own the logging buffer, as only one MCDI can be in 300 * progress on a NIC at any one time. So no need for locking. 301 */ 302 for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) { 303 efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4); 304 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 305 " %08x", le32_to_cpu(hdr.u32[0])); 306 } 307 308 for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) { 309 efx->type->mcdi_read_response(efx, &hdr, 310 mcdi->resp_hdr_len + (i * 4), 4); 311 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 312 " %08x", le32_to_cpu(hdr.u32[0])); 313 } 314 315 netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf); 316 } 317 #endif 318 319 mcdi->resprc_raw = 0; 320 if (error && mcdi->resp_data_len == 0) { 321 netif_err(efx, hw, efx->net_dev, "MC rebooted\n"); 322 mcdi->resprc = -EIO; 323 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) { 324 netif_err(efx, hw, efx->net_dev, 325 "MC response mismatch tx seq 0x%x rx seq 0x%x\n", 326 respseq, mcdi->seqno); 327 mcdi->resprc = -EIO; 328 } else if (error) { 329 efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4); 330 mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0); 331 mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw); 332 } else { 333 mcdi->resprc = 0; 334 } 335 } 336 337 static bool efx_mcdi_poll_once(struct efx_nic *efx) 338 { 339 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 340 341 rmb(); 342 if (!efx->type->mcdi_poll_response(efx)) 343 return false; 344 345 spin_lock_bh(&mcdi->iface_lock); 346 efx_mcdi_read_response_header(efx); 347 spin_unlock_bh(&mcdi->iface_lock); 348 349 return true; 350 } 351 352 static int efx_mcdi_poll(struct efx_nic *efx) 353 { 354 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 355 unsigned long time, finish; 356 unsigned int spins; 357 int rc; 358 359 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */ 360 rc = efx_mcdi_poll_reboot(efx); 361 if (rc) { 362 spin_lock_bh(&mcdi->iface_lock); 363 mcdi->resprc = rc; 364 mcdi->resp_hdr_len = 0; 365 mcdi->resp_data_len = 0; 366 spin_unlock_bh(&mcdi->iface_lock); 367 return 0; 368 } 369 370 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy, 371 * because generally mcdi responses are fast. After that, back off 372 * and poll once a jiffy (approximately) 373 */ 374 spins = USER_TICK_USEC; 375 finish = jiffies + MCDI_RPC_TIMEOUT; 376 377 while (1) { 378 if (spins != 0) { 379 --spins; 380 udelay(1); 381 } else { 382 schedule_timeout_uninterruptible(1); 383 } 384 385 time = jiffies; 386 387 if (efx_mcdi_poll_once(efx)) 388 break; 389 390 if (time_after(time, finish)) 391 return -ETIMEDOUT; 392 } 393 394 /* Return rc=0 like wait_event_timeout() */ 395 return 0; 396 } 397 398 /* Test and clear MC-rebooted flag for this port/function; reset 399 * software state as necessary. 400 */ 401 int efx_mcdi_poll_reboot(struct efx_nic *efx) 402 { 403 if (!efx->mcdi) 404 return 0; 405 406 return efx->type->mcdi_poll_reboot(efx); 407 } 408 409 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi) 410 { 411 return cmpxchg(&mcdi->state, 412 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) == 413 MCDI_STATE_QUIESCENT; 414 } 415 416 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi) 417 { 418 /* Wait until the interface becomes QUIESCENT and we win the race 419 * to mark it RUNNING_SYNC. 420 */ 421 wait_event(mcdi->wq, 422 cmpxchg(&mcdi->state, 423 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) == 424 MCDI_STATE_QUIESCENT); 425 } 426 427 static int efx_mcdi_await_completion(struct efx_nic *efx) 428 { 429 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 430 431 if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED, 432 MCDI_RPC_TIMEOUT) == 0) 433 return -ETIMEDOUT; 434 435 /* Check if efx_mcdi_set_mode() switched us back to polled completions. 436 * In which case, poll for completions directly. If efx_mcdi_ev_cpl() 437 * completed the request first, then we'll just end up completing the 438 * request again, which is safe. 439 * 440 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which 441 * wait_event_timeout() implicitly provides. 442 */ 443 if (mcdi->mode == MCDI_MODE_POLL) 444 return efx_mcdi_poll(efx); 445 446 return 0; 447 } 448 449 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the 450 * requester. Return whether this was done. Does not take any locks. 451 */ 452 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi) 453 { 454 if (cmpxchg(&mcdi->state, 455 MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) == 456 MCDI_STATE_RUNNING_SYNC) { 457 wake_up(&mcdi->wq); 458 return true; 459 } 460 461 return false; 462 } 463 464 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi) 465 { 466 if (mcdi->mode == MCDI_MODE_EVENTS) { 467 struct efx_mcdi_async_param *async; 468 struct efx_nic *efx = mcdi->efx; 469 470 /* Process the asynchronous request queue */ 471 spin_lock_bh(&mcdi->async_lock); 472 async = list_first_entry_or_null( 473 &mcdi->async_list, struct efx_mcdi_async_param, list); 474 if (async) { 475 mcdi->state = MCDI_STATE_RUNNING_ASYNC; 476 efx_mcdi_send_request(efx, async->cmd, 477 (const efx_dword_t *)(async + 1), 478 async->inlen); 479 mod_timer(&mcdi->async_timer, 480 jiffies + MCDI_RPC_TIMEOUT); 481 } 482 spin_unlock_bh(&mcdi->async_lock); 483 484 if (async) 485 return; 486 } 487 488 mcdi->state = MCDI_STATE_QUIESCENT; 489 wake_up(&mcdi->wq); 490 } 491 492 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the 493 * asynchronous completion function, and release the interface. 494 * Return whether this was done. Must be called in bh-disabled 495 * context. Will take iface_lock and async_lock. 496 */ 497 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout) 498 { 499 struct efx_nic *efx = mcdi->efx; 500 struct efx_mcdi_async_param *async; 501 size_t hdr_len, data_len, err_len; 502 efx_dword_t *outbuf; 503 MCDI_DECLARE_BUF_ERR(errbuf); 504 int rc; 505 506 if (cmpxchg(&mcdi->state, 507 MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) != 508 MCDI_STATE_RUNNING_ASYNC) 509 return false; 510 511 spin_lock(&mcdi->iface_lock); 512 if (timeout) { 513 /* Ensure that if the completion event arrives later, 514 * the seqno check in efx_mcdi_ev_cpl() will fail 515 */ 516 ++mcdi->seqno; 517 ++mcdi->credits; 518 rc = -ETIMEDOUT; 519 hdr_len = 0; 520 data_len = 0; 521 } else { 522 rc = mcdi->resprc; 523 hdr_len = mcdi->resp_hdr_len; 524 data_len = mcdi->resp_data_len; 525 } 526 spin_unlock(&mcdi->iface_lock); 527 528 /* Stop the timer. In case the timer function is running, we 529 * must wait for it to return so that there is no possibility 530 * of it aborting the next request. 531 */ 532 if (!timeout) 533 del_timer_sync(&mcdi->async_timer); 534 535 spin_lock(&mcdi->async_lock); 536 async = list_first_entry(&mcdi->async_list, 537 struct efx_mcdi_async_param, list); 538 list_del(&async->list); 539 spin_unlock(&mcdi->async_lock); 540 541 outbuf = (efx_dword_t *)(async + 1); 542 efx->type->mcdi_read_response(efx, outbuf, hdr_len, 543 min(async->outlen, data_len)); 544 if (!timeout && rc && !async->quiet) { 545 err_len = min(sizeof(errbuf), data_len); 546 efx->type->mcdi_read_response(efx, errbuf, hdr_len, 547 sizeof(errbuf)); 548 efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf, 549 err_len, rc); 550 } 551 552 if (async->complete) 553 async->complete(efx, async->cookie, rc, outbuf, 554 min(async->outlen, data_len)); 555 kfree(async); 556 557 efx_mcdi_release(mcdi); 558 559 return true; 560 } 561 562 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno, 563 unsigned int datalen, unsigned int mcdi_err) 564 { 565 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 566 bool wake = false; 567 568 spin_lock(&mcdi->iface_lock); 569 570 if ((seqno ^ mcdi->seqno) & SEQ_MASK) { 571 if (mcdi->credits) 572 /* The request has been cancelled */ 573 --mcdi->credits; 574 else 575 netif_err(efx, hw, efx->net_dev, 576 "MC response mismatch tx seq 0x%x rx " 577 "seq 0x%x\n", seqno, mcdi->seqno); 578 } else { 579 if (efx->type->mcdi_max_ver >= 2) { 580 /* MCDI v2 responses don't fit in an event */ 581 efx_mcdi_read_response_header(efx); 582 } else { 583 mcdi->resprc = efx_mcdi_errno(mcdi_err); 584 mcdi->resp_hdr_len = 4; 585 mcdi->resp_data_len = datalen; 586 } 587 588 wake = true; 589 } 590 591 spin_unlock(&mcdi->iface_lock); 592 593 if (wake) { 594 if (!efx_mcdi_complete_async(mcdi, false)) 595 (void) efx_mcdi_complete_sync(mcdi); 596 597 /* If the interface isn't RUNNING_ASYNC or 598 * RUNNING_SYNC then we've received a duplicate 599 * completion after we've already transitioned back to 600 * QUIESCENT. [A subsequent invocation would increment 601 * seqno, so would have failed the seqno check]. 602 */ 603 } 604 } 605 606 static void efx_mcdi_timeout_async(struct timer_list *t) 607 { 608 struct efx_mcdi_iface *mcdi = from_timer(mcdi, t, async_timer); 609 610 efx_mcdi_complete_async(mcdi, true); 611 } 612 613 static int 614 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen) 615 { 616 if (efx->type->mcdi_max_ver < 0 || 617 (efx->type->mcdi_max_ver < 2 && 618 cmd > MC_CMD_CMD_SPACE_ESCAPE_7)) 619 return -EINVAL; 620 621 if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 || 622 (efx->type->mcdi_max_ver < 2 && 623 inlen > MCDI_CTL_SDU_LEN_MAX_V1)) 624 return -EMSGSIZE; 625 626 return 0; 627 } 628 629 static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx, 630 size_t hdr_len, size_t data_len, 631 u32 *proxy_handle) 632 { 633 MCDI_DECLARE_BUF_ERR(testbuf); 634 const size_t buflen = sizeof(testbuf); 635 636 if (!proxy_handle || data_len < buflen) 637 return false; 638 639 efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen); 640 if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) { 641 *proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE); 642 return true; 643 } 644 645 return false; 646 } 647 648 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd, 649 size_t inlen, 650 efx_dword_t *outbuf, size_t outlen, 651 size_t *outlen_actual, bool quiet, 652 u32 *proxy_handle, int *raw_rc) 653 { 654 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 655 MCDI_DECLARE_BUF_ERR(errbuf); 656 int rc; 657 658 if (mcdi->mode == MCDI_MODE_POLL) 659 rc = efx_mcdi_poll(efx); 660 else 661 rc = efx_mcdi_await_completion(efx); 662 663 if (rc != 0) { 664 netif_err(efx, hw, efx->net_dev, 665 "MC command 0x%x inlen %d mode %d timed out\n", 666 cmd, (int)inlen, mcdi->mode); 667 668 if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) { 669 netif_err(efx, hw, efx->net_dev, 670 "MCDI request was completed without an event\n"); 671 rc = 0; 672 } 673 674 efx_mcdi_abandon(efx); 675 676 /* Close the race with efx_mcdi_ev_cpl() executing just too late 677 * and completing a request we've just cancelled, by ensuring 678 * that the seqno check therein fails. 679 */ 680 spin_lock_bh(&mcdi->iface_lock); 681 ++mcdi->seqno; 682 ++mcdi->credits; 683 spin_unlock_bh(&mcdi->iface_lock); 684 } 685 686 if (proxy_handle) 687 *proxy_handle = 0; 688 689 if (rc != 0) { 690 if (outlen_actual) 691 *outlen_actual = 0; 692 } else { 693 size_t hdr_len, data_len, err_len; 694 695 /* At the very least we need a memory barrier here to ensure 696 * we pick up changes from efx_mcdi_ev_cpl(). Protect against 697 * a spurious efx_mcdi_ev_cpl() running concurrently by 698 * acquiring the iface_lock. */ 699 spin_lock_bh(&mcdi->iface_lock); 700 rc = mcdi->resprc; 701 if (raw_rc) 702 *raw_rc = mcdi->resprc_raw; 703 hdr_len = mcdi->resp_hdr_len; 704 data_len = mcdi->resp_data_len; 705 err_len = min(sizeof(errbuf), data_len); 706 spin_unlock_bh(&mcdi->iface_lock); 707 708 BUG_ON(rc > 0); 709 710 efx->type->mcdi_read_response(efx, outbuf, hdr_len, 711 min(outlen, data_len)); 712 if (outlen_actual) 713 *outlen_actual = data_len; 714 715 efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len); 716 717 if (cmd == MC_CMD_REBOOT && rc == -EIO) { 718 /* Don't reset if MC_CMD_REBOOT returns EIO */ 719 } else if (rc == -EIO || rc == -EINTR) { 720 netif_err(efx, hw, efx->net_dev, "MC reboot detected\n"); 721 netif_dbg(efx, hw, efx->net_dev, "MC rebooted during command %d rc %d\n", 722 cmd, -rc); 723 if (efx->type->mcdi_reboot_detected) 724 efx->type->mcdi_reboot_detected(efx); 725 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 726 } else if (proxy_handle && (rc == -EPROTO) && 727 efx_mcdi_get_proxy_handle(efx, hdr_len, data_len, 728 proxy_handle)) { 729 mcdi->proxy_rx_status = 0; 730 mcdi->proxy_rx_handle = 0; 731 mcdi->state = MCDI_STATE_PROXY_WAIT; 732 } else if (rc && !quiet) { 733 efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len, 734 rc); 735 } 736 737 if (rc == -EIO || rc == -EINTR) { 738 msleep(MCDI_STATUS_SLEEP_MS); 739 efx_mcdi_poll_reboot(efx); 740 mcdi->new_epoch = true; 741 } 742 } 743 744 if (!proxy_handle || !*proxy_handle) 745 efx_mcdi_release(mcdi); 746 return rc; 747 } 748 749 static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi) 750 { 751 if (mcdi->state == MCDI_STATE_PROXY_WAIT) { 752 /* Interrupt the proxy wait. */ 753 mcdi->proxy_rx_status = -EINTR; 754 wake_up(&mcdi->proxy_rx_wq); 755 } 756 } 757 758 static void efx_mcdi_ev_proxy_response(struct efx_nic *efx, 759 u32 handle, int status) 760 { 761 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 762 763 WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT); 764 765 mcdi->proxy_rx_status = efx_mcdi_errno(status); 766 /* Ensure the status is written before we update the handle, since the 767 * latter is used to check if we've finished. 768 */ 769 wmb(); 770 mcdi->proxy_rx_handle = handle; 771 wake_up(&mcdi->proxy_rx_wq); 772 } 773 774 static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet) 775 { 776 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 777 int rc; 778 779 /* Wait for a proxy event, or timeout. */ 780 rc = wait_event_timeout(mcdi->proxy_rx_wq, 781 mcdi->proxy_rx_handle != 0 || 782 mcdi->proxy_rx_status == -EINTR, 783 MCDI_RPC_TIMEOUT); 784 785 if (rc <= 0) { 786 netif_dbg(efx, hw, efx->net_dev, 787 "MCDI proxy timeout %d\n", handle); 788 return -ETIMEDOUT; 789 } else if (mcdi->proxy_rx_handle != handle) { 790 netif_warn(efx, hw, efx->net_dev, 791 "MCDI proxy unexpected handle %d (expected %d)\n", 792 mcdi->proxy_rx_handle, handle); 793 return -EINVAL; 794 } 795 796 return mcdi->proxy_rx_status; 797 } 798 799 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd, 800 const efx_dword_t *inbuf, size_t inlen, 801 efx_dword_t *outbuf, size_t outlen, 802 size_t *outlen_actual, bool quiet, int *raw_rc) 803 { 804 u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */ 805 int rc; 806 807 if (inbuf && inlen && (inbuf == outbuf)) { 808 /* The input buffer can't be aliased with the output. */ 809 WARN_ON(1); 810 return -EINVAL; 811 } 812 813 rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen); 814 if (rc) 815 return rc; 816 817 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 818 outlen_actual, quiet, &proxy_handle, raw_rc); 819 820 if (proxy_handle) { 821 /* Handle proxy authorisation. This allows approval of MCDI 822 * operations to be delegated to the admin function, allowing 823 * fine control over (eg) multicast subscriptions. 824 */ 825 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 826 827 netif_dbg(efx, hw, efx->net_dev, 828 "MCDI waiting for proxy auth %d\n", 829 proxy_handle); 830 rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet); 831 832 if (rc == 0) { 833 netif_dbg(efx, hw, efx->net_dev, 834 "MCDI proxy retry %d\n", proxy_handle); 835 836 /* We now retry the original request. */ 837 mcdi->state = MCDI_STATE_RUNNING_SYNC; 838 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 839 840 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, 841 outbuf, outlen, outlen_actual, 842 quiet, NULL, raw_rc); 843 } else { 844 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err, 845 "MC command 0x%x failed after proxy auth rc=%d\n", 846 cmd, rc); 847 848 if (rc == -EINTR || rc == -EIO) 849 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 850 efx_mcdi_release(mcdi); 851 } 852 } 853 854 return rc; 855 } 856 857 static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd, 858 const efx_dword_t *inbuf, size_t inlen, 859 efx_dword_t *outbuf, size_t outlen, 860 size_t *outlen_actual, bool quiet) 861 { 862 int raw_rc = 0; 863 int rc; 864 865 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen, 866 outbuf, outlen, outlen_actual, true, &raw_rc); 867 868 if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) && 869 efx->type->is_vf) { 870 /* If the EVB port isn't available within a VF this may 871 * mean the PF is still bringing the switch up. We should 872 * retry our request shortly. 873 */ 874 unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT; 875 unsigned int delay_us = 10000; 876 877 netif_dbg(efx, hw, efx->net_dev, 878 "%s: NO_EVB_PORT; will retry request\n", 879 __func__); 880 881 do { 882 usleep_range(delay_us, delay_us + 10000); 883 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen, 884 outbuf, outlen, outlen_actual, 885 true, &raw_rc); 886 if (delay_us < 100000) 887 delay_us <<= 1; 888 } while ((rc == -EPROTO) && 889 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) && 890 time_before(jiffies, abort_time)); 891 } 892 893 if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO)) 894 efx_mcdi_display_error(efx, cmd, inlen, 895 outbuf, outlen, rc); 896 897 return rc; 898 } 899 900 /** 901 * efx_mcdi_rpc - Issue an MCDI command and wait for completion 902 * @efx: NIC through which to issue the command 903 * @cmd: Command type number 904 * @inbuf: Command parameters 905 * @inlen: Length of command parameters, in bytes. Must be a multiple 906 * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1. 907 * @outbuf: Response buffer. May be %NULL if @outlen is 0. 908 * @outlen: Length of response buffer, in bytes. If the actual 909 * response is longer than @outlen & ~3, it will be truncated 910 * to that length. 911 * @outlen_actual: Pointer through which to return the actual response 912 * length. May be %NULL if this is not needed. 913 * 914 * This function may sleep and therefore must be called in an appropriate 915 * context. 916 * 917 * Return: A negative error code, or zero if successful. The error 918 * code may come from the MCDI response or may indicate a failure 919 * to communicate with the MC. In the former case, the response 920 * will still be copied to @outbuf and *@outlen_actual will be 921 * set accordingly. In the latter case, *@outlen_actual will be 922 * set to zero. 923 */ 924 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd, 925 const efx_dword_t *inbuf, size_t inlen, 926 efx_dword_t *outbuf, size_t outlen, 927 size_t *outlen_actual) 928 { 929 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen, 930 outlen_actual, false); 931 } 932 933 /* Normally, on receiving an error code in the MCDI response, 934 * efx_mcdi_rpc will log an error message containing (among other 935 * things) the raw error code, by means of efx_mcdi_display_error. 936 * This _quiet version suppresses that; if the caller wishes to log 937 * the error conditionally on the return code, it should call this 938 * function and is then responsible for calling efx_mcdi_display_error 939 * as needed. 940 */ 941 int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd, 942 const efx_dword_t *inbuf, size_t inlen, 943 efx_dword_t *outbuf, size_t outlen, 944 size_t *outlen_actual) 945 { 946 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen, 947 outlen_actual, true); 948 } 949 950 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd, 951 const efx_dword_t *inbuf, size_t inlen) 952 { 953 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 954 int rc; 955 956 rc = efx_mcdi_check_supported(efx, cmd, inlen); 957 if (rc) 958 return rc; 959 960 if (efx->mc_bist_for_other_fn) 961 return -ENETDOWN; 962 963 if (mcdi->mode == MCDI_MODE_FAIL) 964 return -ENETDOWN; 965 966 efx_mcdi_acquire_sync(mcdi); 967 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 968 return 0; 969 } 970 971 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd, 972 const efx_dword_t *inbuf, size_t inlen, 973 size_t outlen, 974 efx_mcdi_async_completer *complete, 975 unsigned long cookie, bool quiet) 976 { 977 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 978 struct efx_mcdi_async_param *async; 979 int rc; 980 981 rc = efx_mcdi_check_supported(efx, cmd, inlen); 982 if (rc) 983 return rc; 984 985 if (efx->mc_bist_for_other_fn) 986 return -ENETDOWN; 987 988 async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4), 989 GFP_ATOMIC); 990 if (!async) 991 return -ENOMEM; 992 993 async->cmd = cmd; 994 async->inlen = inlen; 995 async->outlen = outlen; 996 async->quiet = quiet; 997 async->complete = complete; 998 async->cookie = cookie; 999 memcpy(async + 1, inbuf, inlen); 1000 1001 spin_lock_bh(&mcdi->async_lock); 1002 1003 if (mcdi->mode == MCDI_MODE_EVENTS) { 1004 list_add_tail(&async->list, &mcdi->async_list); 1005 1006 /* If this is at the front of the queue, try to start it 1007 * immediately 1008 */ 1009 if (mcdi->async_list.next == &async->list && 1010 efx_mcdi_acquire_async(mcdi)) { 1011 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 1012 mod_timer(&mcdi->async_timer, 1013 jiffies + MCDI_RPC_TIMEOUT); 1014 } 1015 } else { 1016 kfree(async); 1017 rc = -ENETDOWN; 1018 } 1019 1020 spin_unlock_bh(&mcdi->async_lock); 1021 1022 return rc; 1023 } 1024 1025 /** 1026 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously 1027 * @efx: NIC through which to issue the command 1028 * @cmd: Command type number 1029 * @inbuf: Command parameters 1030 * @inlen: Length of command parameters, in bytes 1031 * @outlen: Length to allocate for response buffer, in bytes 1032 * @complete: Function to be called on completion or cancellation. 1033 * @cookie: Arbitrary value to be passed to @complete. 1034 * 1035 * This function does not sleep and therefore may be called in atomic 1036 * context. It will fail if event queues are disabled or if MCDI 1037 * event completions have been disabled due to an error. 1038 * 1039 * If it succeeds, the @complete function will be called exactly once 1040 * in atomic context, when one of the following occurs: 1041 * (a) the completion event is received (in NAPI context) 1042 * (b) event queues are disabled (in the process that disables them) 1043 * (c) the request times-out (in timer context) 1044 */ 1045 int 1046 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd, 1047 const efx_dword_t *inbuf, size_t inlen, size_t outlen, 1048 efx_mcdi_async_completer *complete, unsigned long cookie) 1049 { 1050 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete, 1051 cookie, false); 1052 } 1053 1054 int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd, 1055 const efx_dword_t *inbuf, size_t inlen, 1056 size_t outlen, efx_mcdi_async_completer *complete, 1057 unsigned long cookie) 1058 { 1059 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete, 1060 cookie, true); 1061 } 1062 1063 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen, 1064 efx_dword_t *outbuf, size_t outlen, 1065 size_t *outlen_actual) 1066 { 1067 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 1068 outlen_actual, false, NULL, NULL); 1069 } 1070 1071 int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen, 1072 efx_dword_t *outbuf, size_t outlen, 1073 size_t *outlen_actual) 1074 { 1075 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 1076 outlen_actual, true, NULL, NULL); 1077 } 1078 1079 void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd, 1080 size_t inlen, efx_dword_t *outbuf, 1081 size_t outlen, int rc) 1082 { 1083 int code = 0, err_arg = 0; 1084 1085 if (outlen >= MC_CMD_ERR_CODE_OFST + 4) 1086 code = MCDI_DWORD(outbuf, ERR_CODE); 1087 if (outlen >= MC_CMD_ERR_ARG_OFST + 4) 1088 err_arg = MCDI_DWORD(outbuf, ERR_ARG); 1089 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err, 1090 "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n", 1091 cmd, inlen, rc, code, err_arg); 1092 } 1093 1094 /* Switch to polled MCDI completions. This can be called in various 1095 * error conditions with various locks held, so it must be lockless. 1096 * Caller is responsible for flushing asynchronous requests later. 1097 */ 1098 void efx_mcdi_mode_poll(struct efx_nic *efx) 1099 { 1100 struct efx_mcdi_iface *mcdi; 1101 1102 if (!efx->mcdi) 1103 return; 1104 1105 mcdi = efx_mcdi(efx); 1106 /* If already in polling mode, nothing to do. 1107 * If in fail-fast state, don't switch to polled completion. 1108 * FLR recovery will do that later. 1109 */ 1110 if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL) 1111 return; 1112 1113 /* We can switch from event completion to polled completion, because 1114 * mcdi requests are always completed in shared memory. We do this by 1115 * switching the mode to POLL'd then completing the request. 1116 * efx_mcdi_await_completion() will then call efx_mcdi_poll(). 1117 * 1118 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(), 1119 * which efx_mcdi_complete_sync() provides for us. 1120 */ 1121 mcdi->mode = MCDI_MODE_POLL; 1122 1123 efx_mcdi_complete_sync(mcdi); 1124 } 1125 1126 /* Flush any running or queued asynchronous requests, after event processing 1127 * is stopped 1128 */ 1129 void efx_mcdi_flush_async(struct efx_nic *efx) 1130 { 1131 struct efx_mcdi_async_param *async, *next; 1132 struct efx_mcdi_iface *mcdi; 1133 1134 if (!efx->mcdi) 1135 return; 1136 1137 mcdi = efx_mcdi(efx); 1138 1139 /* We must be in poll or fail mode so no more requests can be queued */ 1140 BUG_ON(mcdi->mode == MCDI_MODE_EVENTS); 1141 1142 del_timer_sync(&mcdi->async_timer); 1143 1144 /* If a request is still running, make sure we give the MC 1145 * time to complete it so that the response won't overwrite our 1146 * next request. 1147 */ 1148 if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) { 1149 efx_mcdi_poll(efx); 1150 mcdi->state = MCDI_STATE_QUIESCENT; 1151 } 1152 1153 /* Nothing else will access the async list now, so it is safe 1154 * to walk it without holding async_lock. If we hold it while 1155 * calling a completer then lockdep may warn that we have 1156 * acquired locks in the wrong order. 1157 */ 1158 list_for_each_entry_safe(async, next, &mcdi->async_list, list) { 1159 if (async->complete) 1160 async->complete(efx, async->cookie, -ENETDOWN, NULL, 0); 1161 list_del(&async->list); 1162 kfree(async); 1163 } 1164 } 1165 1166 void efx_mcdi_mode_event(struct efx_nic *efx) 1167 { 1168 struct efx_mcdi_iface *mcdi; 1169 1170 if (!efx->mcdi) 1171 return; 1172 1173 mcdi = efx_mcdi(efx); 1174 /* If already in event completion mode, nothing to do. 1175 * If in fail-fast state, don't switch to event completion. FLR 1176 * recovery will do that later. 1177 */ 1178 if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL) 1179 return; 1180 1181 /* We can't switch from polled to event completion in the middle of a 1182 * request, because the completion method is specified in the request. 1183 * So acquire the interface to serialise the requestors. We don't need 1184 * to acquire the iface_lock to change the mode here, but we do need a 1185 * write memory barrier ensure that efx_mcdi_rpc() sees it, which 1186 * efx_mcdi_acquire() provides. 1187 */ 1188 efx_mcdi_acquire_sync(mcdi); 1189 mcdi->mode = MCDI_MODE_EVENTS; 1190 efx_mcdi_release(mcdi); 1191 } 1192 1193 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc) 1194 { 1195 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1196 1197 /* If there is an outstanding MCDI request, it has been terminated 1198 * either by a BADASSERT or REBOOT event. If the mcdi interface is 1199 * in polled mode, then do nothing because the MC reboot handler will 1200 * set the header correctly. However, if the mcdi interface is waiting 1201 * for a CMDDONE event it won't receive it [and since all MCDI events 1202 * are sent to the same queue, we can't be racing with 1203 * efx_mcdi_ev_cpl()] 1204 * 1205 * If there is an outstanding asynchronous request, we can't 1206 * complete it now (efx_mcdi_complete() would deadlock). The 1207 * reset process will take care of this. 1208 * 1209 * There's a race here with efx_mcdi_send_request(), because 1210 * we might receive a REBOOT event *before* the request has 1211 * been copied out. In polled mode (during startup) this is 1212 * irrelevant, because efx_mcdi_complete_sync() is ignored. In 1213 * event mode, this condition is just an edge-case of 1214 * receiving a REBOOT event after posting the MCDI 1215 * request. Did the mc reboot before or after the copyout? The 1216 * best we can do always is just return failure. 1217 * 1218 * If there is an outstanding proxy response expected it is not going 1219 * to arrive. We should thus abort it. 1220 */ 1221 spin_lock(&mcdi->iface_lock); 1222 efx_mcdi_proxy_abort(mcdi); 1223 1224 if (efx_mcdi_complete_sync(mcdi)) { 1225 if (mcdi->mode == MCDI_MODE_EVENTS) { 1226 mcdi->resprc = rc; 1227 mcdi->resp_hdr_len = 0; 1228 mcdi->resp_data_len = 0; 1229 ++mcdi->credits; 1230 } 1231 } else { 1232 int count; 1233 1234 /* Consume the status word since efx_mcdi_rpc_finish() won't */ 1235 for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) { 1236 rc = efx_mcdi_poll_reboot(efx); 1237 if (rc) 1238 break; 1239 udelay(MCDI_STATUS_DELAY_US); 1240 } 1241 1242 /* On EF10, a CODE_MC_REBOOT event can be received without the 1243 * reboot detection in efx_mcdi_poll_reboot() being triggered. 1244 * If zero was returned from the final call to 1245 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the 1246 * MC has definitely rebooted so prepare for the reset. 1247 */ 1248 if (!rc && efx->type->mcdi_reboot_detected) 1249 efx->type->mcdi_reboot_detected(efx); 1250 1251 mcdi->new_epoch = true; 1252 1253 /* Nobody was waiting for an MCDI request, so trigger a reset */ 1254 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 1255 } 1256 1257 spin_unlock(&mcdi->iface_lock); 1258 } 1259 1260 /* The MC is going down in to BIST mode. set the BIST flag to block 1261 * new MCDI, cancel any outstanding MCDI and schedule a BIST-type reset 1262 * (which doesn't actually execute a reset, it waits for the controlling 1263 * function to reset it). 1264 */ 1265 static void efx_mcdi_ev_bist(struct efx_nic *efx) 1266 { 1267 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1268 1269 spin_lock(&mcdi->iface_lock); 1270 efx->mc_bist_for_other_fn = true; 1271 efx_mcdi_proxy_abort(mcdi); 1272 1273 if (efx_mcdi_complete_sync(mcdi)) { 1274 if (mcdi->mode == MCDI_MODE_EVENTS) { 1275 mcdi->resprc = -EIO; 1276 mcdi->resp_hdr_len = 0; 1277 mcdi->resp_data_len = 0; 1278 ++mcdi->credits; 1279 } 1280 } 1281 mcdi->new_epoch = true; 1282 efx_schedule_reset(efx, RESET_TYPE_MC_BIST); 1283 spin_unlock(&mcdi->iface_lock); 1284 } 1285 1286 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try 1287 * to recover. 1288 */ 1289 static void efx_mcdi_abandon(struct efx_nic *efx) 1290 { 1291 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1292 1293 if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL) 1294 return; /* it had already been done */ 1295 netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n"); 1296 efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT); 1297 } 1298 1299 static void efx_handle_drain_event(struct efx_nic *efx) 1300 { 1301 if (atomic_dec_and_test(&efx->active_queues)) 1302 wake_up(&efx->flush_wq); 1303 1304 WARN_ON(atomic_read(&efx->active_queues) < 0); 1305 } 1306 1307 /* Called from efx_farch_ev_process and efx_ef10_ev_process for MCDI events */ 1308 void efx_mcdi_process_event(struct efx_channel *channel, 1309 efx_qword_t *event) 1310 { 1311 struct efx_nic *efx = channel->efx; 1312 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE); 1313 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA); 1314 1315 switch (code) { 1316 case MCDI_EVENT_CODE_BADSSERT: 1317 netif_err(efx, hw, efx->net_dev, 1318 "MC watchdog or assertion failure at 0x%x\n", data); 1319 efx_mcdi_ev_death(efx, -EINTR); 1320 break; 1321 1322 case MCDI_EVENT_CODE_PMNOTICE: 1323 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n"); 1324 break; 1325 1326 case MCDI_EVENT_CODE_CMDDONE: 1327 efx_mcdi_ev_cpl(efx, 1328 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ), 1329 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN), 1330 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO)); 1331 break; 1332 1333 case MCDI_EVENT_CODE_LINKCHANGE: 1334 efx_mcdi_process_link_change(efx, event); 1335 break; 1336 case MCDI_EVENT_CODE_SENSOREVT: 1337 efx_sensor_event(efx, event); 1338 break; 1339 case MCDI_EVENT_CODE_SCHEDERR: 1340 netif_dbg(efx, hw, efx->net_dev, 1341 "MC Scheduler alert (0x%x)\n", data); 1342 break; 1343 case MCDI_EVENT_CODE_REBOOT: 1344 case MCDI_EVENT_CODE_MC_REBOOT: 1345 netif_info(efx, hw, efx->net_dev, "MC Reboot\n"); 1346 efx_mcdi_ev_death(efx, -EIO); 1347 break; 1348 case MCDI_EVENT_CODE_MC_BIST: 1349 netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n"); 1350 efx_mcdi_ev_bist(efx); 1351 break; 1352 case MCDI_EVENT_CODE_MAC_STATS_DMA: 1353 /* MAC stats are gather lazily. We can ignore this. */ 1354 break; 1355 case MCDI_EVENT_CODE_PTP_FAULT: 1356 case MCDI_EVENT_CODE_PTP_PPS: 1357 efx_ptp_event(efx, event); 1358 break; 1359 case MCDI_EVENT_CODE_PTP_TIME: 1360 efx_time_sync_event(channel, event); 1361 break; 1362 case MCDI_EVENT_CODE_TX_FLUSH: 1363 case MCDI_EVENT_CODE_RX_FLUSH: 1364 /* Two flush events will be sent: one to the same event 1365 * queue as completions, and one to event queue 0. 1366 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER 1367 * flag will be set, and we should ignore the event 1368 * because we want to wait for all completions. 1369 */ 1370 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN != 1371 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN); 1372 if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER)) 1373 efx_handle_drain_event(efx); 1374 break; 1375 case MCDI_EVENT_CODE_TX_ERR: 1376 case MCDI_EVENT_CODE_RX_ERR: 1377 netif_err(efx, hw, efx->net_dev, 1378 "%s DMA error (event: "EFX_QWORD_FMT")\n", 1379 code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX", 1380 EFX_QWORD_VAL(*event)); 1381 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR); 1382 break; 1383 case MCDI_EVENT_CODE_PROXY_RESPONSE: 1384 efx_mcdi_ev_proxy_response(efx, 1385 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE), 1386 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC)); 1387 break; 1388 default: 1389 netif_err(efx, hw, efx->net_dev, 1390 "Unknown MCDI event " EFX_QWORD_FMT "\n", 1391 EFX_QWORD_VAL(*event)); 1392 } 1393 } 1394 1395 /************************************************************************** 1396 * 1397 * Specific request functions 1398 * 1399 ************************************************************************** 1400 */ 1401 1402 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len) 1403 { 1404 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN); 1405 size_t outlength; 1406 const __le16 *ver_words; 1407 size_t offset; 1408 int rc; 1409 1410 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0); 1411 rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0, 1412 outbuf, sizeof(outbuf), &outlength); 1413 if (rc) 1414 goto fail; 1415 if (outlength < MC_CMD_GET_VERSION_OUT_LEN) { 1416 rc = -EIO; 1417 goto fail; 1418 } 1419 1420 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION); 1421 offset = scnprintf(buf, len, "%u.%u.%u.%u", 1422 le16_to_cpu(ver_words[0]), 1423 le16_to_cpu(ver_words[1]), 1424 le16_to_cpu(ver_words[2]), 1425 le16_to_cpu(ver_words[3])); 1426 1427 if (efx->type->print_additional_fwver) 1428 offset += efx->type->print_additional_fwver(efx, buf + offset, 1429 len - offset); 1430 1431 /* It's theoretically possible for the string to exceed 31 1432 * characters, though in practice the first three version 1433 * components are short enough that this doesn't happen. 1434 */ 1435 if (WARN_ON(offset >= len)) 1436 buf[0] = 0; 1437 1438 return; 1439 1440 fail: 1441 pci_err(efx->pci_dev, "%s: failed rc=%d\n", __func__, rc); 1442 buf[0] = 0; 1443 } 1444 1445 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, 1446 bool *was_attached) 1447 { 1448 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN); 1449 MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN); 1450 size_t outlen; 1451 int rc; 1452 1453 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE, 1454 driver_operating ? 1 : 0); 1455 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1); 1456 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY); 1457 1458 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf), 1459 outbuf, sizeof(outbuf), &outlen); 1460 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID 1461 * specified will fail with EPERM, and we have to tell the MC we don't 1462 * care what firmware we get. 1463 */ 1464 if (rc == -EPERM) { 1465 pci_dbg(efx->pci_dev, 1466 "%s with fw-variant setting failed EPERM, trying without it\n", 1467 __func__); 1468 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, 1469 MC_CMD_FW_DONT_CARE); 1470 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, 1471 sizeof(inbuf), outbuf, sizeof(outbuf), 1472 &outlen); 1473 } 1474 if (rc) { 1475 efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf), 1476 outbuf, outlen, rc); 1477 goto fail; 1478 } 1479 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) { 1480 rc = -EIO; 1481 goto fail; 1482 } 1483 1484 if (driver_operating) { 1485 if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) { 1486 efx->mcdi->fn_flags = 1487 MCDI_DWORD(outbuf, 1488 DRV_ATTACH_EXT_OUT_FUNC_FLAGS); 1489 } else { 1490 /* Synthesise flags for Siena */ 1491 efx->mcdi->fn_flags = 1492 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL | 1493 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED | 1494 (efx_port_num(efx) == 0) << 1495 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY; 1496 } 1497 } 1498 1499 /* We currently assume we have control of the external link 1500 * and are completely trusted by firmware. Abort probing 1501 * if that's not true for this function. 1502 */ 1503 1504 if (was_attached != NULL) 1505 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE); 1506 return 0; 1507 1508 fail: 1509 pci_err(efx->pci_dev, "%s: failed rc=%d\n", __func__, rc); 1510 return rc; 1511 } 1512 1513 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address, 1514 u16 *fw_subtype_list, u32 *capabilities) 1515 { 1516 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX); 1517 size_t outlen, i; 1518 int port_num = efx_port_num(efx); 1519 int rc; 1520 1521 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0); 1522 /* we need __aligned(2) for ether_addr_copy */ 1523 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1); 1524 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1); 1525 1526 rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0, 1527 outbuf, sizeof(outbuf), &outlen); 1528 if (rc) 1529 goto fail; 1530 1531 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) { 1532 rc = -EIO; 1533 goto fail; 1534 } 1535 1536 if (mac_address) 1537 ether_addr_copy(mac_address, 1538 port_num ? 1539 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) : 1540 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0)); 1541 if (fw_subtype_list) { 1542 for (i = 0; 1543 i < MCDI_VAR_ARRAY_LEN(outlen, 1544 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST); 1545 i++) 1546 fw_subtype_list[i] = MCDI_ARRAY_WORD( 1547 outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i); 1548 for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++) 1549 fw_subtype_list[i] = 0; 1550 } 1551 if (capabilities) { 1552 if (port_num) 1553 *capabilities = MCDI_DWORD(outbuf, 1554 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1); 1555 else 1556 *capabilities = MCDI_DWORD(outbuf, 1557 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0); 1558 } 1559 1560 return 0; 1561 1562 fail: 1563 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n", 1564 __func__, rc, (int)outlen); 1565 1566 return rc; 1567 } 1568 1569 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq) 1570 { 1571 MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN); 1572 u32 dest = 0; 1573 int rc; 1574 1575 if (uart) 1576 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART; 1577 if (evq) 1578 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ; 1579 1580 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest); 1581 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq); 1582 1583 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0); 1584 1585 rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf), 1586 NULL, 0, NULL); 1587 return rc; 1588 } 1589 1590 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out) 1591 { 1592 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN); 1593 size_t outlen; 1594 int rc; 1595 1596 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0); 1597 1598 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0, 1599 outbuf, sizeof(outbuf), &outlen); 1600 if (rc) 1601 goto fail; 1602 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) { 1603 rc = -EIO; 1604 goto fail; 1605 } 1606 1607 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES); 1608 return 0; 1609 1610 fail: 1611 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", 1612 __func__, rc); 1613 return rc; 1614 } 1615 1616 /* This function finds types using the new NVRAM_PARTITIONS mcdi. */ 1617 static int efx_new_mcdi_nvram_types(struct efx_nic *efx, u32 *number, 1618 u32 *nvram_types) 1619 { 1620 efx_dword_t *outbuf = kzalloc(MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2, 1621 GFP_KERNEL); 1622 size_t outlen; 1623 int rc; 1624 1625 if (!outbuf) 1626 return -ENOMEM; 1627 1628 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0); 1629 1630 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0, 1631 outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2, &outlen); 1632 if (rc) 1633 goto fail; 1634 1635 *number = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS); 1636 1637 memcpy(nvram_types, MCDI_PTR(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID), 1638 *number * sizeof(u32)); 1639 1640 fail: 1641 kfree(outbuf); 1642 return rc; 1643 } 1644 1645 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type, 1646 size_t *size_out, size_t *erase_size_out, 1647 bool *protected_out) 1648 { 1649 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN); 1650 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN); 1651 size_t outlen; 1652 int rc; 1653 1654 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type); 1655 1656 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf), 1657 outbuf, sizeof(outbuf), &outlen); 1658 if (rc) 1659 goto fail; 1660 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) { 1661 rc = -EIO; 1662 goto fail; 1663 } 1664 1665 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE); 1666 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE); 1667 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) & 1668 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN)); 1669 return 0; 1670 1671 fail: 1672 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1673 return rc; 1674 } 1675 1676 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type) 1677 { 1678 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN); 1679 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN); 1680 int rc; 1681 1682 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type); 1683 1684 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf), 1685 outbuf, sizeof(outbuf), NULL); 1686 if (rc) 1687 return rc; 1688 1689 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) { 1690 case MC_CMD_NVRAM_TEST_PASS: 1691 case MC_CMD_NVRAM_TEST_NOTSUPP: 1692 return 0; 1693 default: 1694 return -EIO; 1695 } 1696 } 1697 1698 /* This function tests nvram partitions using the new mcdi partition lookup scheme */ 1699 int efx_new_mcdi_nvram_test_all(struct efx_nic *efx) 1700 { 1701 u32 *nvram_types = kzalloc(MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2, 1702 GFP_KERNEL); 1703 unsigned int number; 1704 int rc, i; 1705 1706 if (!nvram_types) 1707 return -ENOMEM; 1708 1709 rc = efx_new_mcdi_nvram_types(efx, &number, nvram_types); 1710 if (rc) 1711 goto fail; 1712 1713 /* Require at least one check */ 1714 rc = -EAGAIN; 1715 1716 for (i = 0; i < number; i++) { 1717 if (nvram_types[i] == NVRAM_PARTITION_TYPE_PARTITION_MAP || 1718 nvram_types[i] == NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG) 1719 continue; 1720 1721 rc = efx_mcdi_nvram_test(efx, nvram_types[i]); 1722 if (rc) 1723 goto fail; 1724 } 1725 1726 fail: 1727 kfree(nvram_types); 1728 return rc; 1729 } 1730 1731 int efx_mcdi_nvram_test_all(struct efx_nic *efx) 1732 { 1733 u32 nvram_types; 1734 unsigned int type; 1735 int rc; 1736 1737 rc = efx_mcdi_nvram_types(efx, &nvram_types); 1738 if (rc) 1739 goto fail1; 1740 1741 type = 0; 1742 while (nvram_types != 0) { 1743 if (nvram_types & 1) { 1744 rc = efx_mcdi_nvram_test(efx, type); 1745 if (rc) 1746 goto fail2; 1747 } 1748 type++; 1749 nvram_types >>= 1; 1750 } 1751 1752 return 0; 1753 1754 fail2: 1755 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n", 1756 __func__, type); 1757 fail1: 1758 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1759 return rc; 1760 } 1761 1762 /* Returns 1 if an assertion was read, 0 if no assertion had fired, 1763 * negative on error. 1764 */ 1765 static int efx_mcdi_read_assertion(struct efx_nic *efx) 1766 { 1767 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN); 1768 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN); 1769 unsigned int flags, index; 1770 const char *reason; 1771 size_t outlen; 1772 int retry; 1773 int rc; 1774 1775 /* Attempt to read any stored assertion state before we reboot 1776 * the mcfw out of the assertion handler. Retry twice, once 1777 * because a boot-time assertion might cause this command to fail 1778 * with EINTR. And once again because GET_ASSERTS can race with 1779 * MC_CMD_REBOOT running on the other port. */ 1780 retry = 2; 1781 do { 1782 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1); 1783 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS, 1784 inbuf, MC_CMD_GET_ASSERTS_IN_LEN, 1785 outbuf, sizeof(outbuf), &outlen); 1786 if (rc == -EPERM) 1787 return 0; 1788 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0); 1789 1790 if (rc) { 1791 efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS, 1792 MC_CMD_GET_ASSERTS_IN_LEN, outbuf, 1793 outlen, rc); 1794 return rc; 1795 } 1796 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN) 1797 return -EIO; 1798 1799 /* Print out any recorded assertion state */ 1800 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS); 1801 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS) 1802 return 0; 1803 1804 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL) 1805 ? "system-level assertion" 1806 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL) 1807 ? "thread-level assertion" 1808 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED) 1809 ? "watchdog reset" 1810 : "unknown assertion"; 1811 netif_err(efx, hw, efx->net_dev, 1812 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason, 1813 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS), 1814 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS)); 1815 1816 /* Print out the registers */ 1817 for (index = 0; 1818 index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM; 1819 index++) 1820 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n", 1821 1 + index, 1822 MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS, 1823 index)); 1824 1825 return 1; 1826 } 1827 1828 static int efx_mcdi_exit_assertion(struct efx_nic *efx) 1829 { 1830 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN); 1831 int rc; 1832 1833 /* If the MC is running debug firmware, it might now be 1834 * waiting for a debugger to attach, but we just want it to 1835 * reboot. We set a flag that makes the command a no-op if it 1836 * has already done so. 1837 * The MCDI will thus return either 0 or -EIO. 1838 */ 1839 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); 1840 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 1841 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION); 1842 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN, 1843 NULL, 0, NULL); 1844 if (rc == -EIO) 1845 rc = 0; 1846 if (rc) 1847 efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN, 1848 NULL, 0, rc); 1849 return rc; 1850 } 1851 1852 int efx_mcdi_handle_assertion(struct efx_nic *efx) 1853 { 1854 int rc; 1855 1856 rc = efx_mcdi_read_assertion(efx); 1857 if (rc <= 0) 1858 return rc; 1859 1860 return efx_mcdi_exit_assertion(efx); 1861 } 1862 1863 int efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode) 1864 { 1865 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN); 1866 1867 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF); 1868 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON); 1869 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT); 1870 1871 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0); 1872 1873 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode); 1874 1875 return efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf), NULL, 0, NULL); 1876 } 1877 1878 static int efx_mcdi_reset_func(struct efx_nic *efx) 1879 { 1880 MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN); 1881 int rc; 1882 1883 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0); 1884 MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG, 1885 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1); 1886 rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf), 1887 NULL, 0, NULL); 1888 return rc; 1889 } 1890 1891 static int efx_mcdi_reset_mc(struct efx_nic *efx) 1892 { 1893 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN); 1894 int rc; 1895 1896 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); 1897 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0); 1898 rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf), 1899 NULL, 0, NULL); 1900 /* White is black, and up is down */ 1901 if (rc == -EIO) 1902 return 0; 1903 if (rc == 0) 1904 rc = -EIO; 1905 return rc; 1906 } 1907 1908 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason) 1909 { 1910 return RESET_TYPE_RECOVER_OR_ALL; 1911 } 1912 1913 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method) 1914 { 1915 int rc; 1916 1917 /* If MCDI is down, we can't handle_assertion */ 1918 if (method == RESET_TYPE_MCDI_TIMEOUT) { 1919 rc = pci_reset_function(efx->pci_dev); 1920 if (rc) 1921 return rc; 1922 /* Re-enable polled MCDI completion */ 1923 if (efx->mcdi) { 1924 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1925 mcdi->mode = MCDI_MODE_POLL; 1926 } 1927 return 0; 1928 } 1929 1930 /* Recover from a failed assertion pre-reset */ 1931 rc = efx_mcdi_handle_assertion(efx); 1932 if (rc) 1933 return rc; 1934 1935 if (method == RESET_TYPE_DATAPATH) 1936 return 0; 1937 else if (method == RESET_TYPE_WORLD) 1938 return efx_mcdi_reset_mc(efx); 1939 else 1940 return efx_mcdi_reset_func(efx); 1941 } 1942 1943 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type, 1944 const u8 *mac, int *id_out) 1945 { 1946 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN); 1947 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN); 1948 size_t outlen; 1949 int rc; 1950 1951 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type); 1952 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE, 1953 MC_CMD_FILTER_MODE_SIMPLE); 1954 ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac); 1955 1956 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf), 1957 outbuf, sizeof(outbuf), &outlen); 1958 if (rc) 1959 goto fail; 1960 1961 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) { 1962 rc = -EIO; 1963 goto fail; 1964 } 1965 1966 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID); 1967 1968 return 0; 1969 1970 fail: 1971 *id_out = -1; 1972 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1973 return rc; 1974 1975 } 1976 1977 1978 int 1979 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out) 1980 { 1981 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out); 1982 } 1983 1984 1985 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out) 1986 { 1987 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN); 1988 size_t outlen; 1989 int rc; 1990 1991 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0, 1992 outbuf, sizeof(outbuf), &outlen); 1993 if (rc) 1994 goto fail; 1995 1996 if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) { 1997 rc = -EIO; 1998 goto fail; 1999 } 2000 2001 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID); 2002 2003 return 0; 2004 2005 fail: 2006 *id_out = -1; 2007 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 2008 return rc; 2009 } 2010 2011 2012 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id) 2013 { 2014 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN); 2015 int rc; 2016 2017 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id); 2018 2019 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf), 2020 NULL, 0, NULL); 2021 return rc; 2022 } 2023 2024 int efx_mcdi_flush_rxqs(struct efx_nic *efx) 2025 { 2026 struct efx_channel *channel; 2027 struct efx_rx_queue *rx_queue; 2028 MCDI_DECLARE_BUF(inbuf, 2029 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS)); 2030 int rc, count; 2031 2032 BUILD_BUG_ON(EFX_MAX_CHANNELS > 2033 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM); 2034 2035 count = 0; 2036 efx_for_each_channel(channel, efx) { 2037 efx_for_each_channel_rx_queue(rx_queue, channel) { 2038 if (rx_queue->flush_pending) { 2039 rx_queue->flush_pending = false; 2040 atomic_dec(&efx->rxq_flush_pending); 2041 MCDI_SET_ARRAY_DWORD( 2042 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST, 2043 count, efx_rx_queue_index(rx_queue)); 2044 count++; 2045 } 2046 } 2047 } 2048 2049 rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf, 2050 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL); 2051 WARN_ON(rc < 0); 2052 2053 return rc; 2054 } 2055 2056 int efx_mcdi_wol_filter_reset(struct efx_nic *efx) 2057 { 2058 int rc; 2059 2060 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL); 2061 return rc; 2062 } 2063 2064 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled, 2065 unsigned int *flags) 2066 { 2067 MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN); 2068 MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN); 2069 size_t outlen; 2070 int rc; 2071 2072 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0); 2073 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type); 2074 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled); 2075 rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf), 2076 outbuf, sizeof(outbuf), &outlen); 2077 if (rc) 2078 return rc; 2079 2080 if (!flags) 2081 return 0; 2082 2083 if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN) 2084 *flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS); 2085 else 2086 *flags = 0; 2087 2088 return 0; 2089 } 2090 2091 int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out, 2092 unsigned int *enabled_out) 2093 { 2094 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN); 2095 size_t outlen; 2096 int rc; 2097 2098 rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0, 2099 outbuf, sizeof(outbuf), &outlen); 2100 if (rc) 2101 goto fail; 2102 2103 if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) { 2104 rc = -EIO; 2105 goto fail; 2106 } 2107 2108 if (impl_out) 2109 *impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED); 2110 2111 if (enabled_out) 2112 *enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED); 2113 2114 return 0; 2115 2116 fail: 2117 /* Older firmware lacks GET_WORKAROUNDS and this isn't especially 2118 * terrifying. The call site will have to deal with it though. 2119 */ 2120 netif_cond_dbg(efx, hw, efx->net_dev, rc == -ENOSYS, err, 2121 "%s: failed rc=%d\n", __func__, rc); 2122 return rc; 2123 } 2124 2125 /* Failure to read a privilege mask is never fatal, because we can always 2126 * carry on as though we didn't have the privilege we were interested in. 2127 * So use efx_mcdi_rpc_quiet(). 2128 */ 2129 int efx_mcdi_get_privilege_mask(struct efx_nic *efx, u32 *mask) 2130 { 2131 MCDI_DECLARE_BUF(fi_outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN); 2132 MCDI_DECLARE_BUF(pm_inbuf, MC_CMD_PRIVILEGE_MASK_IN_LEN); 2133 MCDI_DECLARE_BUF(pm_outbuf, MC_CMD_PRIVILEGE_MASK_OUT_LEN); 2134 size_t outlen; 2135 u16 pf, vf; 2136 int rc; 2137 2138 if (!efx || !mask) 2139 return -EINVAL; 2140 2141 /* Get our function number */ 2142 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, 2143 fi_outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN, 2144 &outlen); 2145 if (rc != 0) 2146 return rc; 2147 if (outlen < MC_CMD_GET_FUNCTION_INFO_OUT_LEN) 2148 return -EIO; 2149 2150 pf = MCDI_DWORD(fi_outbuf, GET_FUNCTION_INFO_OUT_PF); 2151 vf = MCDI_DWORD(fi_outbuf, GET_FUNCTION_INFO_OUT_VF); 2152 2153 MCDI_POPULATE_DWORD_2(pm_inbuf, PRIVILEGE_MASK_IN_FUNCTION, 2154 PRIVILEGE_MASK_IN_FUNCTION_PF, pf, 2155 PRIVILEGE_MASK_IN_FUNCTION_VF, vf); 2156 2157 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PRIVILEGE_MASK, 2158 pm_inbuf, sizeof(pm_inbuf), 2159 pm_outbuf, sizeof(pm_outbuf), &outlen); 2160 2161 if (rc != 0) 2162 return rc; 2163 if (outlen < MC_CMD_PRIVILEGE_MASK_OUT_LEN) 2164 return -EIO; 2165 2166 *mask = MCDI_DWORD(pm_outbuf, PRIVILEGE_MASK_OUT_OLD_MASK); 2167 2168 return 0; 2169 } 2170 2171 int efx_mcdi_nvram_metadata(struct efx_nic *efx, unsigned int type, 2172 u32 *subtype, u16 version[4], char *desc, 2173 size_t descsize) 2174 { 2175 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN); 2176 efx_dword_t *outbuf; 2177 size_t outlen; 2178 u32 flags; 2179 int rc; 2180 2181 outbuf = kzalloc(MC_CMD_NVRAM_METADATA_OUT_LENMAX_MCDI2, GFP_KERNEL); 2182 if (!outbuf) 2183 return -ENOMEM; 2184 2185 MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type); 2186 2187 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_NVRAM_METADATA, inbuf, 2188 sizeof(inbuf), outbuf, 2189 MC_CMD_NVRAM_METADATA_OUT_LENMAX_MCDI2, 2190 &outlen); 2191 if (rc) 2192 goto out_free; 2193 if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN) { 2194 rc = -EIO; 2195 goto out_free; 2196 } 2197 2198 flags = MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS); 2199 2200 if (desc && descsize > 0) { 2201 if (flags & BIT(MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_VALID_LBN)) { 2202 if (descsize <= 2203 MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_NUM(outlen)) { 2204 rc = -E2BIG; 2205 goto out_free; 2206 } 2207 2208 strncpy(desc, 2209 MCDI_PTR(outbuf, NVRAM_METADATA_OUT_DESCRIPTION), 2210 MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_NUM(outlen)); 2211 desc[MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_NUM(outlen)] = '\0'; 2212 } else { 2213 desc[0] = '\0'; 2214 } 2215 } 2216 2217 if (subtype) { 2218 if (flags & BIT(MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN)) 2219 *subtype = MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_SUBTYPE); 2220 else 2221 *subtype = 0; 2222 } 2223 2224 if (version) { 2225 if (flags & BIT(MC_CMD_NVRAM_METADATA_OUT_VERSION_VALID_LBN)) { 2226 version[0] = MCDI_WORD(outbuf, NVRAM_METADATA_OUT_VERSION_W); 2227 version[1] = MCDI_WORD(outbuf, NVRAM_METADATA_OUT_VERSION_X); 2228 version[2] = MCDI_WORD(outbuf, NVRAM_METADATA_OUT_VERSION_Y); 2229 version[3] = MCDI_WORD(outbuf, NVRAM_METADATA_OUT_VERSION_Z); 2230 } else { 2231 version[0] = 0; 2232 version[1] = 0; 2233 version[2] = 0; 2234 version[3] = 0; 2235 } 2236 } 2237 2238 out_free: 2239 kfree(outbuf); 2240 return rc; 2241 } 2242 2243 #ifdef CONFIG_SFC_MTD 2244 2245 #define EFX_MCDI_NVRAM_LEN_MAX 128 2246 2247 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type) 2248 { 2249 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_V2_IN_LEN); 2250 int rc; 2251 2252 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type); 2253 MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_START_V2_IN_FLAGS, 2254 NVRAM_UPDATE_START_V2_IN_FLAG_REPORT_VERIFY_RESULT, 2255 1); 2256 2257 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0); 2258 2259 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf), 2260 NULL, 0, NULL); 2261 2262 return rc; 2263 } 2264 2265 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type, 2266 loff_t offset, u8 *buffer, size_t length) 2267 { 2268 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_V2_LEN); 2269 MCDI_DECLARE_BUF(outbuf, 2270 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX)); 2271 size_t outlen; 2272 int rc; 2273 2274 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type); 2275 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset); 2276 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length); 2277 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_V2_MODE, 2278 MC_CMD_NVRAM_READ_IN_V2_DEFAULT); 2279 2280 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf), 2281 outbuf, sizeof(outbuf), &outlen); 2282 if (rc) 2283 return rc; 2284 2285 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length); 2286 return 0; 2287 } 2288 2289 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type, 2290 loff_t offset, const u8 *buffer, size_t length) 2291 { 2292 MCDI_DECLARE_BUF(inbuf, 2293 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX)); 2294 int rc; 2295 2296 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type); 2297 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset); 2298 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length); 2299 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length); 2300 2301 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0); 2302 2303 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf, 2304 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4), 2305 NULL, 0, NULL); 2306 return rc; 2307 } 2308 2309 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type, 2310 loff_t offset, size_t length) 2311 { 2312 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN); 2313 int rc; 2314 2315 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type); 2316 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset); 2317 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length); 2318 2319 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0); 2320 2321 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf), 2322 NULL, 0, NULL); 2323 return rc; 2324 } 2325 2326 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type) 2327 { 2328 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_IN_LEN); 2329 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN); 2330 size_t outlen; 2331 int rc, rc2; 2332 2333 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type); 2334 /* Always set this flag. Old firmware ignores it */ 2335 MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_FINISH_V2_IN_FLAGS, 2336 NVRAM_UPDATE_FINISH_V2_IN_FLAG_REPORT_VERIFY_RESULT, 2337 1); 2338 2339 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf), 2340 outbuf, sizeof(outbuf), &outlen); 2341 if (!rc && outlen >= MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN) { 2342 rc2 = MCDI_DWORD(outbuf, NVRAM_UPDATE_FINISH_V2_OUT_RESULT_CODE); 2343 if (rc2 != MC_CMD_NVRAM_VERIFY_RC_SUCCESS) 2344 netif_err(efx, drv, efx->net_dev, 2345 "NVRAM update failed verification with code 0x%x\n", 2346 rc2); 2347 switch (rc2) { 2348 case MC_CMD_NVRAM_VERIFY_RC_SUCCESS: 2349 break; 2350 case MC_CMD_NVRAM_VERIFY_RC_CMS_CHECK_FAILED: 2351 case MC_CMD_NVRAM_VERIFY_RC_MESSAGE_DIGEST_CHECK_FAILED: 2352 case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHECK_FAILED: 2353 case MC_CMD_NVRAM_VERIFY_RC_TRUSTED_APPROVERS_CHECK_FAILED: 2354 case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHAIN_CHECK_FAILED: 2355 rc = -EIO; 2356 break; 2357 case MC_CMD_NVRAM_VERIFY_RC_INVALID_CMS_FORMAT: 2358 case MC_CMD_NVRAM_VERIFY_RC_BAD_MESSAGE_DIGEST: 2359 rc = -EINVAL; 2360 break; 2361 case MC_CMD_NVRAM_VERIFY_RC_NO_VALID_SIGNATURES: 2362 case MC_CMD_NVRAM_VERIFY_RC_NO_TRUSTED_APPROVERS: 2363 case MC_CMD_NVRAM_VERIFY_RC_NO_SIGNATURE_MATCH: 2364 rc = -EPERM; 2365 break; 2366 default: 2367 netif_err(efx, drv, efx->net_dev, 2368 "Unknown response to NVRAM_UPDATE_FINISH\n"); 2369 rc = -EIO; 2370 } 2371 } 2372 2373 return rc; 2374 } 2375 2376 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start, 2377 size_t len, size_t *retlen, u8 *buffer) 2378 { 2379 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2380 struct efx_nic *efx = mtd->priv; 2381 loff_t offset = start; 2382 loff_t end = min_t(loff_t, start + len, mtd->size); 2383 size_t chunk; 2384 int rc = 0; 2385 2386 while (offset < end) { 2387 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); 2388 rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset, 2389 buffer, chunk); 2390 if (rc) 2391 goto out; 2392 offset += chunk; 2393 buffer += chunk; 2394 } 2395 out: 2396 *retlen = offset - start; 2397 return rc; 2398 } 2399 2400 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len) 2401 { 2402 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2403 struct efx_nic *efx = mtd->priv; 2404 loff_t offset = start & ~((loff_t)(mtd->erasesize - 1)); 2405 loff_t end = min_t(loff_t, start + len, mtd->size); 2406 size_t chunk = part->common.mtd.erasesize; 2407 int rc = 0; 2408 2409 if (!part->updating) { 2410 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type); 2411 if (rc) 2412 goto out; 2413 part->updating = true; 2414 } 2415 2416 /* The MCDI interface can in fact do multiple erase blocks at once; 2417 * but erasing may be slow, so we make multiple calls here to avoid 2418 * tripping the MCDI RPC timeout. */ 2419 while (offset < end) { 2420 rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset, 2421 chunk); 2422 if (rc) 2423 goto out; 2424 offset += chunk; 2425 } 2426 out: 2427 return rc; 2428 } 2429 2430 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start, 2431 size_t len, size_t *retlen, const u8 *buffer) 2432 { 2433 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2434 struct efx_nic *efx = mtd->priv; 2435 loff_t offset = start; 2436 loff_t end = min_t(loff_t, start + len, mtd->size); 2437 size_t chunk; 2438 int rc = 0; 2439 2440 if (!part->updating) { 2441 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type); 2442 if (rc) 2443 goto out; 2444 part->updating = true; 2445 } 2446 2447 while (offset < end) { 2448 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); 2449 rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset, 2450 buffer, chunk); 2451 if (rc) 2452 goto out; 2453 offset += chunk; 2454 buffer += chunk; 2455 } 2456 out: 2457 *retlen = offset - start; 2458 return rc; 2459 } 2460 2461 int efx_mcdi_mtd_sync(struct mtd_info *mtd) 2462 { 2463 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2464 struct efx_nic *efx = mtd->priv; 2465 int rc = 0; 2466 2467 if (part->updating) { 2468 part->updating = false; 2469 rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type); 2470 } 2471 2472 return rc; 2473 } 2474 2475 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part) 2476 { 2477 struct efx_mcdi_mtd_partition *mcdi_part = 2478 container_of(part, struct efx_mcdi_mtd_partition, common); 2479 struct efx_nic *efx = part->mtd.priv; 2480 2481 snprintf(part->name, sizeof(part->name), "%s %s:%02x", 2482 efx->name, part->type_name, mcdi_part->fw_subtype); 2483 } 2484 2485 #endif /* CONFIG_SFC_MTD */ 2486