1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2008-2013 Solarflare Communications Inc. 5 */ 6 7 #include <linux/delay.h> 8 #include <linux/moduleparam.h> 9 #include <linux/atomic.h> 10 #include "net_driver.h" 11 #include "nic.h" 12 #include "io.h" 13 #include "mcdi_pcol.h" 14 15 /************************************************************************** 16 * 17 * Management-Controller-to-Driver Interface 18 * 19 ************************************************************************** 20 */ 21 22 #define MCDI_RPC_TIMEOUT (10 * HZ) 23 24 /* A reboot/assertion causes the MCDI status word to be set after the 25 * command word is set or a REBOOT event is sent. If we notice a reboot 26 * via these mechanisms then wait 250ms for the status word to be set. 27 */ 28 #define MCDI_STATUS_DELAY_US 100 29 #define MCDI_STATUS_DELAY_COUNT 2500 30 #define MCDI_STATUS_SLEEP_MS \ 31 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000) 32 33 #define SEQ_MASK \ 34 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ)) 35 36 struct efx_mcdi_async_param { 37 struct list_head list; 38 unsigned int cmd; 39 size_t inlen; 40 size_t outlen; 41 bool quiet; 42 efx_mcdi_async_completer *complete; 43 unsigned long cookie; 44 /* followed by request/response buffer */ 45 }; 46 47 static void efx_mcdi_timeout_async(struct timer_list *t); 48 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, 49 bool *was_attached_out); 50 static bool efx_mcdi_poll_once(struct efx_nic *efx); 51 static void efx_mcdi_abandon(struct efx_nic *efx); 52 53 #ifdef CONFIG_SFC_MCDI_LOGGING 54 static bool mcdi_logging_default; 55 module_param(mcdi_logging_default, bool, 0644); 56 MODULE_PARM_DESC(mcdi_logging_default, 57 "Enable MCDI logging on newly-probed functions"); 58 #endif 59 60 int efx_mcdi_init(struct efx_nic *efx) 61 { 62 struct efx_mcdi_iface *mcdi; 63 bool already_attached; 64 int rc = -ENOMEM; 65 66 efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL); 67 if (!efx->mcdi) 68 goto fail; 69 70 mcdi = efx_mcdi(efx); 71 mcdi->efx = efx; 72 #ifdef CONFIG_SFC_MCDI_LOGGING 73 /* consuming code assumes buffer is page-sized */ 74 mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL); 75 if (!mcdi->logging_buffer) 76 goto fail1; 77 mcdi->logging_enabled = mcdi_logging_default; 78 #endif 79 init_waitqueue_head(&mcdi->wq); 80 init_waitqueue_head(&mcdi->proxy_rx_wq); 81 spin_lock_init(&mcdi->iface_lock); 82 mcdi->state = MCDI_STATE_QUIESCENT; 83 mcdi->mode = MCDI_MODE_POLL; 84 spin_lock_init(&mcdi->async_lock); 85 INIT_LIST_HEAD(&mcdi->async_list); 86 timer_setup(&mcdi->async_timer, efx_mcdi_timeout_async, 0); 87 88 (void) efx_mcdi_poll_reboot(efx); 89 mcdi->new_epoch = true; 90 91 /* Recover from a failed assertion before probing */ 92 rc = efx_mcdi_handle_assertion(efx); 93 if (rc) 94 goto fail2; 95 96 /* Let the MC (and BMC, if this is a LOM) know that the driver 97 * is loaded. We should do this before we reset the NIC. 98 */ 99 rc = efx_mcdi_drv_attach(efx, true, &already_attached); 100 if (rc) { 101 pci_err(efx->pci_dev, "Unable to register driver with MCPU\n"); 102 goto fail2; 103 } 104 if (already_attached) 105 /* Not a fatal error */ 106 pci_err(efx->pci_dev, "Host already registered with MCPU\n"); 107 108 if (efx->mcdi->fn_flags & 109 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) 110 efx->primary = efx; 111 112 return 0; 113 fail2: 114 #ifdef CONFIG_SFC_MCDI_LOGGING 115 free_page((unsigned long)mcdi->logging_buffer); 116 fail1: 117 #endif 118 kfree(efx->mcdi); 119 efx->mcdi = NULL; 120 fail: 121 return rc; 122 } 123 124 void efx_mcdi_detach(struct efx_nic *efx) 125 { 126 if (!efx->mcdi) 127 return; 128 129 BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT); 130 131 /* Relinquish the device (back to the BMC, if this is a LOM) */ 132 efx_mcdi_drv_attach(efx, false, NULL); 133 } 134 135 void efx_mcdi_fini(struct efx_nic *efx) 136 { 137 if (!efx->mcdi) 138 return; 139 140 #ifdef CONFIG_SFC_MCDI_LOGGING 141 free_page((unsigned long)efx->mcdi->iface.logging_buffer); 142 #endif 143 144 kfree(efx->mcdi); 145 } 146 147 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd, 148 const efx_dword_t *inbuf, size_t inlen) 149 { 150 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 151 #ifdef CONFIG_SFC_MCDI_LOGGING 152 char *buf = mcdi->logging_buffer; /* page-sized */ 153 #endif 154 efx_dword_t hdr[2]; 155 size_t hdr_len; 156 u32 xflags, seqno; 157 158 BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT); 159 160 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */ 161 spin_lock_bh(&mcdi->iface_lock); 162 ++mcdi->seqno; 163 seqno = mcdi->seqno & SEQ_MASK; 164 spin_unlock_bh(&mcdi->iface_lock); 165 166 xflags = 0; 167 if (mcdi->mode == MCDI_MODE_EVENTS) 168 xflags |= MCDI_HEADER_XFLAGS_EVREQ; 169 170 if (efx->type->mcdi_max_ver == 1) { 171 /* MCDI v1 */ 172 EFX_POPULATE_DWORD_7(hdr[0], 173 MCDI_HEADER_RESPONSE, 0, 174 MCDI_HEADER_RESYNC, 1, 175 MCDI_HEADER_CODE, cmd, 176 MCDI_HEADER_DATALEN, inlen, 177 MCDI_HEADER_SEQ, seqno, 178 MCDI_HEADER_XFLAGS, xflags, 179 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch); 180 hdr_len = 4; 181 } else { 182 /* MCDI v2 */ 183 BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2); 184 EFX_POPULATE_DWORD_7(hdr[0], 185 MCDI_HEADER_RESPONSE, 0, 186 MCDI_HEADER_RESYNC, 1, 187 MCDI_HEADER_CODE, MC_CMD_V2_EXTN, 188 MCDI_HEADER_DATALEN, 0, 189 MCDI_HEADER_SEQ, seqno, 190 MCDI_HEADER_XFLAGS, xflags, 191 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch); 192 EFX_POPULATE_DWORD_2(hdr[1], 193 MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd, 194 MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen); 195 hdr_len = 8; 196 } 197 198 #ifdef CONFIG_SFC_MCDI_LOGGING 199 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) { 200 int bytes = 0; 201 int i; 202 /* Lengths should always be a whole number of dwords, so scream 203 * if they're not. 204 */ 205 WARN_ON_ONCE(hdr_len % 4); 206 WARN_ON_ONCE(inlen % 4); 207 208 /* We own the logging buffer, as only one MCDI can be in 209 * progress on a NIC at any one time. So no need for locking. 210 */ 211 for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++) 212 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 213 " %08x", 214 le32_to_cpu(hdr[i].u32[0])); 215 216 for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++) 217 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 218 " %08x", 219 le32_to_cpu(inbuf[i].u32[0])); 220 221 netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf); 222 } 223 #endif 224 225 efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen); 226 227 mcdi->new_epoch = false; 228 } 229 230 static int efx_mcdi_errno(unsigned int mcdi_err) 231 { 232 switch (mcdi_err) { 233 case 0: 234 return 0; 235 #define TRANSLATE_ERROR(name) \ 236 case MC_CMD_ERR_ ## name: \ 237 return -name; 238 TRANSLATE_ERROR(EPERM); 239 TRANSLATE_ERROR(ENOENT); 240 TRANSLATE_ERROR(EINTR); 241 TRANSLATE_ERROR(EAGAIN); 242 TRANSLATE_ERROR(EACCES); 243 TRANSLATE_ERROR(EBUSY); 244 TRANSLATE_ERROR(EINVAL); 245 TRANSLATE_ERROR(EDEADLK); 246 TRANSLATE_ERROR(ENOSYS); 247 TRANSLATE_ERROR(ETIME); 248 TRANSLATE_ERROR(EALREADY); 249 TRANSLATE_ERROR(ENOSPC); 250 #undef TRANSLATE_ERROR 251 case MC_CMD_ERR_ENOTSUP: 252 return -EOPNOTSUPP; 253 case MC_CMD_ERR_ALLOC_FAIL: 254 return -ENOBUFS; 255 case MC_CMD_ERR_MAC_EXIST: 256 return -EADDRINUSE; 257 default: 258 return -EPROTO; 259 } 260 } 261 262 static void efx_mcdi_read_response_header(struct efx_nic *efx) 263 { 264 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 265 unsigned int respseq, respcmd, error; 266 #ifdef CONFIG_SFC_MCDI_LOGGING 267 char *buf = mcdi->logging_buffer; /* page-sized */ 268 #endif 269 efx_dword_t hdr; 270 271 efx->type->mcdi_read_response(efx, &hdr, 0, 4); 272 respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ); 273 respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE); 274 error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR); 275 276 if (respcmd != MC_CMD_V2_EXTN) { 277 mcdi->resp_hdr_len = 4; 278 mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN); 279 } else { 280 efx->type->mcdi_read_response(efx, &hdr, 4, 4); 281 mcdi->resp_hdr_len = 8; 282 mcdi->resp_data_len = 283 EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN); 284 } 285 286 #ifdef CONFIG_SFC_MCDI_LOGGING 287 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) { 288 size_t hdr_len, data_len; 289 int bytes = 0; 290 int i; 291 292 WARN_ON_ONCE(mcdi->resp_hdr_len % 4); 293 hdr_len = mcdi->resp_hdr_len / 4; 294 /* MCDI_DECLARE_BUF ensures that underlying buffer is padded 295 * to dword size, and the MCDI buffer is always dword size 296 */ 297 data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4); 298 299 /* We own the logging buffer, as only one MCDI can be in 300 * progress on a NIC at any one time. So no need for locking. 301 */ 302 for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) { 303 efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4); 304 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 305 " %08x", le32_to_cpu(hdr.u32[0])); 306 } 307 308 for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) { 309 efx->type->mcdi_read_response(efx, &hdr, 310 mcdi->resp_hdr_len + (i * 4), 4); 311 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, 312 " %08x", le32_to_cpu(hdr.u32[0])); 313 } 314 315 netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf); 316 } 317 #endif 318 319 mcdi->resprc_raw = 0; 320 if (error && mcdi->resp_data_len == 0) { 321 netif_err(efx, hw, efx->net_dev, "MC rebooted\n"); 322 mcdi->resprc = -EIO; 323 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) { 324 netif_err(efx, hw, efx->net_dev, 325 "MC response mismatch tx seq 0x%x rx seq 0x%x\n", 326 respseq, mcdi->seqno); 327 mcdi->resprc = -EIO; 328 } else if (error) { 329 efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4); 330 mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0); 331 mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw); 332 } else { 333 mcdi->resprc = 0; 334 } 335 } 336 337 static bool efx_mcdi_poll_once(struct efx_nic *efx) 338 { 339 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 340 341 rmb(); 342 if (!efx->type->mcdi_poll_response(efx)) 343 return false; 344 345 spin_lock_bh(&mcdi->iface_lock); 346 efx_mcdi_read_response_header(efx); 347 spin_unlock_bh(&mcdi->iface_lock); 348 349 return true; 350 } 351 352 static int efx_mcdi_poll(struct efx_nic *efx) 353 { 354 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 355 unsigned long time, finish; 356 unsigned int spins; 357 int rc; 358 359 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */ 360 rc = efx_mcdi_poll_reboot(efx); 361 if (rc) { 362 spin_lock_bh(&mcdi->iface_lock); 363 mcdi->resprc = rc; 364 mcdi->resp_hdr_len = 0; 365 mcdi->resp_data_len = 0; 366 spin_unlock_bh(&mcdi->iface_lock); 367 return 0; 368 } 369 370 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy, 371 * because generally mcdi responses are fast. After that, back off 372 * and poll once a jiffy (approximately) 373 */ 374 spins = USER_TICK_USEC; 375 finish = jiffies + MCDI_RPC_TIMEOUT; 376 377 while (1) { 378 if (spins != 0) { 379 --spins; 380 udelay(1); 381 } else { 382 schedule_timeout_uninterruptible(1); 383 } 384 385 time = jiffies; 386 387 if (efx_mcdi_poll_once(efx)) 388 break; 389 390 if (time_after(time, finish)) 391 return -ETIMEDOUT; 392 } 393 394 /* Return rc=0 like wait_event_timeout() */ 395 return 0; 396 } 397 398 /* Test and clear MC-rebooted flag for this port/function; reset 399 * software state as necessary. 400 */ 401 int efx_mcdi_poll_reboot(struct efx_nic *efx) 402 { 403 if (!efx->mcdi) 404 return 0; 405 406 return efx->type->mcdi_poll_reboot(efx); 407 } 408 409 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi) 410 { 411 return cmpxchg(&mcdi->state, 412 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) == 413 MCDI_STATE_QUIESCENT; 414 } 415 416 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi) 417 { 418 /* Wait until the interface becomes QUIESCENT and we win the race 419 * to mark it RUNNING_SYNC. 420 */ 421 wait_event(mcdi->wq, 422 cmpxchg(&mcdi->state, 423 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) == 424 MCDI_STATE_QUIESCENT); 425 } 426 427 static int efx_mcdi_await_completion(struct efx_nic *efx) 428 { 429 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 430 431 if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED, 432 MCDI_RPC_TIMEOUT) == 0) 433 return -ETIMEDOUT; 434 435 /* Check if efx_mcdi_set_mode() switched us back to polled completions. 436 * In which case, poll for completions directly. If efx_mcdi_ev_cpl() 437 * completed the request first, then we'll just end up completing the 438 * request again, which is safe. 439 * 440 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which 441 * wait_event_timeout() implicitly provides. 442 */ 443 if (mcdi->mode == MCDI_MODE_POLL) 444 return efx_mcdi_poll(efx); 445 446 return 0; 447 } 448 449 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the 450 * requester. Return whether this was done. Does not take any locks. 451 */ 452 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi) 453 { 454 if (cmpxchg(&mcdi->state, 455 MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) == 456 MCDI_STATE_RUNNING_SYNC) { 457 wake_up(&mcdi->wq); 458 return true; 459 } 460 461 return false; 462 } 463 464 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi) 465 { 466 if (mcdi->mode == MCDI_MODE_EVENTS) { 467 struct efx_mcdi_async_param *async; 468 struct efx_nic *efx = mcdi->efx; 469 470 /* Process the asynchronous request queue */ 471 spin_lock_bh(&mcdi->async_lock); 472 async = list_first_entry_or_null( 473 &mcdi->async_list, struct efx_mcdi_async_param, list); 474 if (async) { 475 mcdi->state = MCDI_STATE_RUNNING_ASYNC; 476 efx_mcdi_send_request(efx, async->cmd, 477 (const efx_dword_t *)(async + 1), 478 async->inlen); 479 mod_timer(&mcdi->async_timer, 480 jiffies + MCDI_RPC_TIMEOUT); 481 } 482 spin_unlock_bh(&mcdi->async_lock); 483 484 if (async) 485 return; 486 } 487 488 mcdi->state = MCDI_STATE_QUIESCENT; 489 wake_up(&mcdi->wq); 490 } 491 492 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the 493 * asynchronous completion function, and release the interface. 494 * Return whether this was done. Must be called in bh-disabled 495 * context. Will take iface_lock and async_lock. 496 */ 497 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout) 498 { 499 struct efx_nic *efx = mcdi->efx; 500 struct efx_mcdi_async_param *async; 501 size_t hdr_len, data_len, err_len; 502 efx_dword_t *outbuf; 503 MCDI_DECLARE_BUF_ERR(errbuf); 504 int rc; 505 506 if (cmpxchg(&mcdi->state, 507 MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) != 508 MCDI_STATE_RUNNING_ASYNC) 509 return false; 510 511 spin_lock(&mcdi->iface_lock); 512 if (timeout) { 513 /* Ensure that if the completion event arrives later, 514 * the seqno check in efx_mcdi_ev_cpl() will fail 515 */ 516 ++mcdi->seqno; 517 ++mcdi->credits; 518 rc = -ETIMEDOUT; 519 hdr_len = 0; 520 data_len = 0; 521 } else { 522 rc = mcdi->resprc; 523 hdr_len = mcdi->resp_hdr_len; 524 data_len = mcdi->resp_data_len; 525 } 526 spin_unlock(&mcdi->iface_lock); 527 528 /* Stop the timer. In case the timer function is running, we 529 * must wait for it to return so that there is no possibility 530 * of it aborting the next request. 531 */ 532 if (!timeout) 533 del_timer_sync(&mcdi->async_timer); 534 535 spin_lock(&mcdi->async_lock); 536 async = list_first_entry(&mcdi->async_list, 537 struct efx_mcdi_async_param, list); 538 list_del(&async->list); 539 spin_unlock(&mcdi->async_lock); 540 541 outbuf = (efx_dword_t *)(async + 1); 542 efx->type->mcdi_read_response(efx, outbuf, hdr_len, 543 min(async->outlen, data_len)); 544 if (!timeout && rc && !async->quiet) { 545 err_len = min(sizeof(errbuf), data_len); 546 efx->type->mcdi_read_response(efx, errbuf, hdr_len, 547 sizeof(errbuf)); 548 efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf, 549 err_len, rc); 550 } 551 552 if (async->complete) 553 async->complete(efx, async->cookie, rc, outbuf, 554 min(async->outlen, data_len)); 555 kfree(async); 556 557 efx_mcdi_release(mcdi); 558 559 return true; 560 } 561 562 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno, 563 unsigned int datalen, unsigned int mcdi_err) 564 { 565 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 566 bool wake = false; 567 568 spin_lock(&mcdi->iface_lock); 569 570 if ((seqno ^ mcdi->seqno) & SEQ_MASK) { 571 if (mcdi->credits) 572 /* The request has been cancelled */ 573 --mcdi->credits; 574 else 575 netif_err(efx, hw, efx->net_dev, 576 "MC response mismatch tx seq 0x%x rx " 577 "seq 0x%x\n", seqno, mcdi->seqno); 578 } else { 579 if (efx->type->mcdi_max_ver >= 2) { 580 /* MCDI v2 responses don't fit in an event */ 581 efx_mcdi_read_response_header(efx); 582 } else { 583 mcdi->resprc = efx_mcdi_errno(mcdi_err); 584 mcdi->resp_hdr_len = 4; 585 mcdi->resp_data_len = datalen; 586 } 587 588 wake = true; 589 } 590 591 spin_unlock(&mcdi->iface_lock); 592 593 if (wake) { 594 if (!efx_mcdi_complete_async(mcdi, false)) 595 (void) efx_mcdi_complete_sync(mcdi); 596 597 /* If the interface isn't RUNNING_ASYNC or 598 * RUNNING_SYNC then we've received a duplicate 599 * completion after we've already transitioned back to 600 * QUIESCENT. [A subsequent invocation would increment 601 * seqno, so would have failed the seqno check]. 602 */ 603 } 604 } 605 606 static void efx_mcdi_timeout_async(struct timer_list *t) 607 { 608 struct efx_mcdi_iface *mcdi = from_timer(mcdi, t, async_timer); 609 610 efx_mcdi_complete_async(mcdi, true); 611 } 612 613 static int 614 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen) 615 { 616 if (efx->type->mcdi_max_ver < 0 || 617 (efx->type->mcdi_max_ver < 2 && 618 cmd > MC_CMD_CMD_SPACE_ESCAPE_7)) 619 return -EINVAL; 620 621 if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 || 622 (efx->type->mcdi_max_ver < 2 && 623 inlen > MCDI_CTL_SDU_LEN_MAX_V1)) 624 return -EMSGSIZE; 625 626 return 0; 627 } 628 629 static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx, 630 size_t hdr_len, size_t data_len, 631 u32 *proxy_handle) 632 { 633 MCDI_DECLARE_BUF_ERR(testbuf); 634 const size_t buflen = sizeof(testbuf); 635 636 if (!proxy_handle || data_len < buflen) 637 return false; 638 639 efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen); 640 if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) { 641 *proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE); 642 return true; 643 } 644 645 return false; 646 } 647 648 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd, 649 size_t inlen, 650 efx_dword_t *outbuf, size_t outlen, 651 size_t *outlen_actual, bool quiet, 652 u32 *proxy_handle, int *raw_rc) 653 { 654 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 655 MCDI_DECLARE_BUF_ERR(errbuf); 656 int rc; 657 658 if (mcdi->mode == MCDI_MODE_POLL) 659 rc = efx_mcdi_poll(efx); 660 else 661 rc = efx_mcdi_await_completion(efx); 662 663 if (rc != 0) { 664 netif_err(efx, hw, efx->net_dev, 665 "MC command 0x%x inlen %d mode %d timed out\n", 666 cmd, (int)inlen, mcdi->mode); 667 668 if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) { 669 netif_err(efx, hw, efx->net_dev, 670 "MCDI request was completed without an event\n"); 671 rc = 0; 672 } 673 674 efx_mcdi_abandon(efx); 675 676 /* Close the race with efx_mcdi_ev_cpl() executing just too late 677 * and completing a request we've just cancelled, by ensuring 678 * that the seqno check therein fails. 679 */ 680 spin_lock_bh(&mcdi->iface_lock); 681 ++mcdi->seqno; 682 ++mcdi->credits; 683 spin_unlock_bh(&mcdi->iface_lock); 684 } 685 686 if (proxy_handle) 687 *proxy_handle = 0; 688 689 if (rc != 0) { 690 if (outlen_actual) 691 *outlen_actual = 0; 692 } else { 693 size_t hdr_len, data_len, err_len; 694 695 /* At the very least we need a memory barrier here to ensure 696 * we pick up changes from efx_mcdi_ev_cpl(). Protect against 697 * a spurious efx_mcdi_ev_cpl() running concurrently by 698 * acquiring the iface_lock. */ 699 spin_lock_bh(&mcdi->iface_lock); 700 rc = mcdi->resprc; 701 if (raw_rc) 702 *raw_rc = mcdi->resprc_raw; 703 hdr_len = mcdi->resp_hdr_len; 704 data_len = mcdi->resp_data_len; 705 err_len = min(sizeof(errbuf), data_len); 706 spin_unlock_bh(&mcdi->iface_lock); 707 708 BUG_ON(rc > 0); 709 710 efx->type->mcdi_read_response(efx, outbuf, hdr_len, 711 min(outlen, data_len)); 712 if (outlen_actual) 713 *outlen_actual = data_len; 714 715 efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len); 716 717 if (cmd == MC_CMD_REBOOT && rc == -EIO) { 718 /* Don't reset if MC_CMD_REBOOT returns EIO */ 719 } else if (rc == -EIO || rc == -EINTR) { 720 netif_err(efx, hw, efx->net_dev, "MC reboot detected\n"); 721 netif_dbg(efx, hw, efx->net_dev, "MC rebooted during command %d rc %d\n", 722 cmd, -rc); 723 if (efx->type->mcdi_reboot_detected) 724 efx->type->mcdi_reboot_detected(efx); 725 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 726 } else if (proxy_handle && (rc == -EPROTO) && 727 efx_mcdi_get_proxy_handle(efx, hdr_len, data_len, 728 proxy_handle)) { 729 mcdi->proxy_rx_status = 0; 730 mcdi->proxy_rx_handle = 0; 731 mcdi->state = MCDI_STATE_PROXY_WAIT; 732 } else if (rc && !quiet) { 733 efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len, 734 rc); 735 } 736 737 if (rc == -EIO || rc == -EINTR) { 738 msleep(MCDI_STATUS_SLEEP_MS); 739 efx_mcdi_poll_reboot(efx); 740 mcdi->new_epoch = true; 741 } 742 } 743 744 if (!proxy_handle || !*proxy_handle) 745 efx_mcdi_release(mcdi); 746 return rc; 747 } 748 749 static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi) 750 { 751 if (mcdi->state == MCDI_STATE_PROXY_WAIT) { 752 /* Interrupt the proxy wait. */ 753 mcdi->proxy_rx_status = -EINTR; 754 wake_up(&mcdi->proxy_rx_wq); 755 } 756 } 757 758 static void efx_mcdi_ev_proxy_response(struct efx_nic *efx, 759 u32 handle, int status) 760 { 761 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 762 763 WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT); 764 765 mcdi->proxy_rx_status = efx_mcdi_errno(status); 766 /* Ensure the status is written before we update the handle, since the 767 * latter is used to check if we've finished. 768 */ 769 wmb(); 770 mcdi->proxy_rx_handle = handle; 771 wake_up(&mcdi->proxy_rx_wq); 772 } 773 774 static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet) 775 { 776 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 777 int rc; 778 779 /* Wait for a proxy event, or timeout. */ 780 rc = wait_event_timeout(mcdi->proxy_rx_wq, 781 mcdi->proxy_rx_handle != 0 || 782 mcdi->proxy_rx_status == -EINTR, 783 MCDI_RPC_TIMEOUT); 784 785 if (rc <= 0) { 786 netif_dbg(efx, hw, efx->net_dev, 787 "MCDI proxy timeout %d\n", handle); 788 return -ETIMEDOUT; 789 } else if (mcdi->proxy_rx_handle != handle) { 790 netif_warn(efx, hw, efx->net_dev, 791 "MCDI proxy unexpected handle %d (expected %d)\n", 792 mcdi->proxy_rx_handle, handle); 793 return -EINVAL; 794 } 795 796 return mcdi->proxy_rx_status; 797 } 798 799 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd, 800 const efx_dword_t *inbuf, size_t inlen, 801 efx_dword_t *outbuf, size_t outlen, 802 size_t *outlen_actual, bool quiet, int *raw_rc) 803 { 804 u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */ 805 int rc; 806 807 if (inbuf && inlen && (inbuf == outbuf)) { 808 /* The input buffer can't be aliased with the output. */ 809 WARN_ON(1); 810 return -EINVAL; 811 } 812 813 rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen); 814 if (rc) 815 return rc; 816 817 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 818 outlen_actual, quiet, &proxy_handle, raw_rc); 819 820 if (proxy_handle) { 821 /* Handle proxy authorisation. This allows approval of MCDI 822 * operations to be delegated to the admin function, allowing 823 * fine control over (eg) multicast subscriptions. 824 */ 825 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 826 827 netif_dbg(efx, hw, efx->net_dev, 828 "MCDI waiting for proxy auth %d\n", 829 proxy_handle); 830 rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet); 831 832 if (rc == 0) { 833 netif_dbg(efx, hw, efx->net_dev, 834 "MCDI proxy retry %d\n", proxy_handle); 835 836 /* We now retry the original request. */ 837 mcdi->state = MCDI_STATE_RUNNING_SYNC; 838 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 839 840 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, 841 outbuf, outlen, outlen_actual, 842 quiet, NULL, raw_rc); 843 } else { 844 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err, 845 "MC command 0x%x failed after proxy auth rc=%d\n", 846 cmd, rc); 847 848 if (rc == -EINTR || rc == -EIO) 849 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 850 efx_mcdi_release(mcdi); 851 } 852 } 853 854 return rc; 855 } 856 857 static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd, 858 const efx_dword_t *inbuf, size_t inlen, 859 efx_dword_t *outbuf, size_t outlen, 860 size_t *outlen_actual, bool quiet) 861 { 862 int raw_rc = 0; 863 int rc; 864 865 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen, 866 outbuf, outlen, outlen_actual, true, &raw_rc); 867 868 if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) && 869 efx->type->is_vf) { 870 /* If the EVB port isn't available within a VF this may 871 * mean the PF is still bringing the switch up. We should 872 * retry our request shortly. 873 */ 874 unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT; 875 unsigned int delay_us = 10000; 876 877 netif_dbg(efx, hw, efx->net_dev, 878 "%s: NO_EVB_PORT; will retry request\n", 879 __func__); 880 881 do { 882 usleep_range(delay_us, delay_us + 10000); 883 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen, 884 outbuf, outlen, outlen_actual, 885 true, &raw_rc); 886 if (delay_us < 100000) 887 delay_us <<= 1; 888 } while ((rc == -EPROTO) && 889 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) && 890 time_before(jiffies, abort_time)); 891 } 892 893 if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO)) 894 efx_mcdi_display_error(efx, cmd, inlen, 895 outbuf, outlen, rc); 896 897 return rc; 898 } 899 900 /** 901 * efx_mcdi_rpc - Issue an MCDI command and wait for completion 902 * @efx: NIC through which to issue the command 903 * @cmd: Command type number 904 * @inbuf: Command parameters 905 * @inlen: Length of command parameters, in bytes. Must be a multiple 906 * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1. 907 * @outbuf: Response buffer. May be %NULL if @outlen is 0. 908 * @outlen: Length of response buffer, in bytes. If the actual 909 * response is longer than @outlen & ~3, it will be truncated 910 * to that length. 911 * @outlen_actual: Pointer through which to return the actual response 912 * length. May be %NULL if this is not needed. 913 * 914 * This function may sleep and therefore must be called in an appropriate 915 * context. 916 * 917 * Return: A negative error code, or zero if successful. The error 918 * code may come from the MCDI response or may indicate a failure 919 * to communicate with the MC. In the former case, the response 920 * will still be copied to @outbuf and *@outlen_actual will be 921 * set accordingly. In the latter case, *@outlen_actual will be 922 * set to zero. 923 */ 924 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd, 925 const efx_dword_t *inbuf, size_t inlen, 926 efx_dword_t *outbuf, size_t outlen, 927 size_t *outlen_actual) 928 { 929 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen, 930 outlen_actual, false); 931 } 932 933 /* Normally, on receiving an error code in the MCDI response, 934 * efx_mcdi_rpc will log an error message containing (among other 935 * things) the raw error code, by means of efx_mcdi_display_error. 936 * This _quiet version suppresses that; if the caller wishes to log 937 * the error conditionally on the return code, it should call this 938 * function and is then responsible for calling efx_mcdi_display_error 939 * as needed. 940 */ 941 int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd, 942 const efx_dword_t *inbuf, size_t inlen, 943 efx_dword_t *outbuf, size_t outlen, 944 size_t *outlen_actual) 945 { 946 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen, 947 outlen_actual, true); 948 } 949 950 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd, 951 const efx_dword_t *inbuf, size_t inlen) 952 { 953 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 954 int rc; 955 956 rc = efx_mcdi_check_supported(efx, cmd, inlen); 957 if (rc) 958 return rc; 959 960 if (efx->mc_bist_for_other_fn) 961 return -ENETDOWN; 962 963 if (mcdi->mode == MCDI_MODE_FAIL) 964 return -ENETDOWN; 965 966 efx_mcdi_acquire_sync(mcdi); 967 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 968 return 0; 969 } 970 971 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd, 972 const efx_dword_t *inbuf, size_t inlen, 973 size_t outlen, 974 efx_mcdi_async_completer *complete, 975 unsigned long cookie, bool quiet) 976 { 977 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 978 struct efx_mcdi_async_param *async; 979 int rc; 980 981 rc = efx_mcdi_check_supported(efx, cmd, inlen); 982 if (rc) 983 return rc; 984 985 if (efx->mc_bist_for_other_fn) 986 return -ENETDOWN; 987 988 async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4), 989 GFP_ATOMIC); 990 if (!async) 991 return -ENOMEM; 992 993 async->cmd = cmd; 994 async->inlen = inlen; 995 async->outlen = outlen; 996 async->quiet = quiet; 997 async->complete = complete; 998 async->cookie = cookie; 999 memcpy(async + 1, inbuf, inlen); 1000 1001 spin_lock_bh(&mcdi->async_lock); 1002 1003 if (mcdi->mode == MCDI_MODE_EVENTS) { 1004 list_add_tail(&async->list, &mcdi->async_list); 1005 1006 /* If this is at the front of the queue, try to start it 1007 * immediately 1008 */ 1009 if (mcdi->async_list.next == &async->list && 1010 efx_mcdi_acquire_async(mcdi)) { 1011 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 1012 mod_timer(&mcdi->async_timer, 1013 jiffies + MCDI_RPC_TIMEOUT); 1014 } 1015 } else { 1016 kfree(async); 1017 rc = -ENETDOWN; 1018 } 1019 1020 spin_unlock_bh(&mcdi->async_lock); 1021 1022 return rc; 1023 } 1024 1025 /** 1026 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously 1027 * @efx: NIC through which to issue the command 1028 * @cmd: Command type number 1029 * @inbuf: Command parameters 1030 * @inlen: Length of command parameters, in bytes 1031 * @outlen: Length to allocate for response buffer, in bytes 1032 * @complete: Function to be called on completion or cancellation. 1033 * @cookie: Arbitrary value to be passed to @complete. 1034 * 1035 * This function does not sleep and therefore may be called in atomic 1036 * context. It will fail if event queues are disabled or if MCDI 1037 * event completions have been disabled due to an error. 1038 * 1039 * If it succeeds, the @complete function will be called exactly once 1040 * in atomic context, when one of the following occurs: 1041 * (a) the completion event is received (in NAPI context) 1042 * (b) event queues are disabled (in the process that disables them) 1043 * (c) the request times-out (in timer context) 1044 */ 1045 int 1046 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd, 1047 const efx_dword_t *inbuf, size_t inlen, size_t outlen, 1048 efx_mcdi_async_completer *complete, unsigned long cookie) 1049 { 1050 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete, 1051 cookie, false); 1052 } 1053 1054 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen, 1055 efx_dword_t *outbuf, size_t outlen, 1056 size_t *outlen_actual) 1057 { 1058 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 1059 outlen_actual, false, NULL, NULL); 1060 } 1061 1062 void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd, 1063 size_t inlen, efx_dword_t *outbuf, 1064 size_t outlen, int rc) 1065 { 1066 int code = 0, err_arg = 0; 1067 1068 if (outlen >= MC_CMD_ERR_CODE_OFST + 4) 1069 code = MCDI_DWORD(outbuf, ERR_CODE); 1070 if (outlen >= MC_CMD_ERR_ARG_OFST + 4) 1071 err_arg = MCDI_DWORD(outbuf, ERR_ARG); 1072 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err, 1073 "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n", 1074 cmd, inlen, rc, code, err_arg); 1075 } 1076 1077 /* Switch to polled MCDI completions. This can be called in various 1078 * error conditions with various locks held, so it must be lockless. 1079 * Caller is responsible for flushing asynchronous requests later. 1080 */ 1081 void efx_mcdi_mode_poll(struct efx_nic *efx) 1082 { 1083 struct efx_mcdi_iface *mcdi; 1084 1085 if (!efx->mcdi) 1086 return; 1087 1088 mcdi = efx_mcdi(efx); 1089 /* If already in polling mode, nothing to do. 1090 * If in fail-fast state, don't switch to polled completion. 1091 * FLR recovery will do that later. 1092 */ 1093 if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL) 1094 return; 1095 1096 /* We can switch from event completion to polled completion, because 1097 * mcdi requests are always completed in shared memory. We do this by 1098 * switching the mode to POLL'd then completing the request. 1099 * efx_mcdi_await_completion() will then call efx_mcdi_poll(). 1100 * 1101 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(), 1102 * which efx_mcdi_complete_sync() provides for us. 1103 */ 1104 mcdi->mode = MCDI_MODE_POLL; 1105 1106 efx_mcdi_complete_sync(mcdi); 1107 } 1108 1109 /* Flush any running or queued asynchronous requests, after event processing 1110 * is stopped 1111 */ 1112 void efx_mcdi_flush_async(struct efx_nic *efx) 1113 { 1114 struct efx_mcdi_async_param *async, *next; 1115 struct efx_mcdi_iface *mcdi; 1116 1117 if (!efx->mcdi) 1118 return; 1119 1120 mcdi = efx_mcdi(efx); 1121 1122 /* We must be in poll or fail mode so no more requests can be queued */ 1123 BUG_ON(mcdi->mode == MCDI_MODE_EVENTS); 1124 1125 del_timer_sync(&mcdi->async_timer); 1126 1127 /* If a request is still running, make sure we give the MC 1128 * time to complete it so that the response won't overwrite our 1129 * next request. 1130 */ 1131 if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) { 1132 efx_mcdi_poll(efx); 1133 mcdi->state = MCDI_STATE_QUIESCENT; 1134 } 1135 1136 /* Nothing else will access the async list now, so it is safe 1137 * to walk it without holding async_lock. If we hold it while 1138 * calling a completer then lockdep may warn that we have 1139 * acquired locks in the wrong order. 1140 */ 1141 list_for_each_entry_safe(async, next, &mcdi->async_list, list) { 1142 if (async->complete) 1143 async->complete(efx, async->cookie, -ENETDOWN, NULL, 0); 1144 list_del(&async->list); 1145 kfree(async); 1146 } 1147 } 1148 1149 void efx_mcdi_mode_event(struct efx_nic *efx) 1150 { 1151 struct efx_mcdi_iface *mcdi; 1152 1153 if (!efx->mcdi) 1154 return; 1155 1156 mcdi = efx_mcdi(efx); 1157 /* If already in event completion mode, nothing to do. 1158 * If in fail-fast state, don't switch to event completion. FLR 1159 * recovery will do that later. 1160 */ 1161 if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL) 1162 return; 1163 1164 /* We can't switch from polled to event completion in the middle of a 1165 * request, because the completion method is specified in the request. 1166 * So acquire the interface to serialise the requestors. We don't need 1167 * to acquire the iface_lock to change the mode here, but we do need a 1168 * write memory barrier ensure that efx_mcdi_rpc() sees it, which 1169 * efx_mcdi_acquire() provides. 1170 */ 1171 efx_mcdi_acquire_sync(mcdi); 1172 mcdi->mode = MCDI_MODE_EVENTS; 1173 efx_mcdi_release(mcdi); 1174 } 1175 1176 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc) 1177 { 1178 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1179 1180 /* If there is an outstanding MCDI request, it has been terminated 1181 * either by a BADASSERT or REBOOT event. If the mcdi interface is 1182 * in polled mode, then do nothing because the MC reboot handler will 1183 * set the header correctly. However, if the mcdi interface is waiting 1184 * for a CMDDONE event it won't receive it [and since all MCDI events 1185 * are sent to the same queue, we can't be racing with 1186 * efx_mcdi_ev_cpl()] 1187 * 1188 * If there is an outstanding asynchronous request, we can't 1189 * complete it now (efx_mcdi_complete() would deadlock). The 1190 * reset process will take care of this. 1191 * 1192 * There's a race here with efx_mcdi_send_request(), because 1193 * we might receive a REBOOT event *before* the request has 1194 * been copied out. In polled mode (during startup) this is 1195 * irrelevant, because efx_mcdi_complete_sync() is ignored. In 1196 * event mode, this condition is just an edge-case of 1197 * receiving a REBOOT event after posting the MCDI 1198 * request. Did the mc reboot before or after the copyout? The 1199 * best we can do always is just return failure. 1200 * 1201 * If there is an outstanding proxy response expected it is not going 1202 * to arrive. We should thus abort it. 1203 */ 1204 spin_lock(&mcdi->iface_lock); 1205 efx_mcdi_proxy_abort(mcdi); 1206 1207 if (efx_mcdi_complete_sync(mcdi)) { 1208 if (mcdi->mode == MCDI_MODE_EVENTS) { 1209 mcdi->resprc = rc; 1210 mcdi->resp_hdr_len = 0; 1211 mcdi->resp_data_len = 0; 1212 ++mcdi->credits; 1213 } 1214 } else { 1215 int count; 1216 1217 /* Consume the status word since efx_mcdi_rpc_finish() won't */ 1218 for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) { 1219 rc = efx_mcdi_poll_reboot(efx); 1220 if (rc) 1221 break; 1222 udelay(MCDI_STATUS_DELAY_US); 1223 } 1224 1225 /* On EF10, a CODE_MC_REBOOT event can be received without the 1226 * reboot detection in efx_mcdi_poll_reboot() being triggered. 1227 * If zero was returned from the final call to 1228 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the 1229 * MC has definitely rebooted so prepare for the reset. 1230 */ 1231 if (!rc && efx->type->mcdi_reboot_detected) 1232 efx->type->mcdi_reboot_detected(efx); 1233 1234 mcdi->new_epoch = true; 1235 1236 /* Nobody was waiting for an MCDI request, so trigger a reset */ 1237 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 1238 } 1239 1240 spin_unlock(&mcdi->iface_lock); 1241 } 1242 1243 /* The MC is going down in to BIST mode. set the BIST flag to block 1244 * new MCDI, cancel any outstanding MCDI and schedule a BIST-type reset 1245 * (which doesn't actually execute a reset, it waits for the controlling 1246 * function to reset it). 1247 */ 1248 static void efx_mcdi_ev_bist(struct efx_nic *efx) 1249 { 1250 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1251 1252 spin_lock(&mcdi->iface_lock); 1253 efx->mc_bist_for_other_fn = true; 1254 efx_mcdi_proxy_abort(mcdi); 1255 1256 if (efx_mcdi_complete_sync(mcdi)) { 1257 if (mcdi->mode == MCDI_MODE_EVENTS) { 1258 mcdi->resprc = -EIO; 1259 mcdi->resp_hdr_len = 0; 1260 mcdi->resp_data_len = 0; 1261 ++mcdi->credits; 1262 } 1263 } 1264 mcdi->new_epoch = true; 1265 efx_schedule_reset(efx, RESET_TYPE_MC_BIST); 1266 spin_unlock(&mcdi->iface_lock); 1267 } 1268 1269 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try 1270 * to recover. 1271 */ 1272 static void efx_mcdi_abandon(struct efx_nic *efx) 1273 { 1274 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1275 1276 if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL) 1277 return; /* it had already been done */ 1278 netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n"); 1279 efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT); 1280 } 1281 1282 static void efx_handle_drain_event(struct efx_nic *efx) 1283 { 1284 if (atomic_dec_and_test(&efx->active_queues)) 1285 wake_up(&efx->flush_wq); 1286 1287 WARN_ON(atomic_read(&efx->active_queues) < 0); 1288 } 1289 1290 /* Called from efx_farch_ev_process and efx_ef10_ev_process for MCDI events */ 1291 void efx_mcdi_process_event(struct efx_channel *channel, 1292 efx_qword_t *event) 1293 { 1294 struct efx_nic *efx = channel->efx; 1295 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE); 1296 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA); 1297 1298 switch (code) { 1299 case MCDI_EVENT_CODE_BADSSERT: 1300 netif_err(efx, hw, efx->net_dev, 1301 "MC watchdog or assertion failure at 0x%x\n", data); 1302 efx_mcdi_ev_death(efx, -EINTR); 1303 break; 1304 1305 case MCDI_EVENT_CODE_PMNOTICE: 1306 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n"); 1307 break; 1308 1309 case MCDI_EVENT_CODE_CMDDONE: 1310 efx_mcdi_ev_cpl(efx, 1311 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ), 1312 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN), 1313 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO)); 1314 break; 1315 1316 case MCDI_EVENT_CODE_LINKCHANGE: 1317 efx_mcdi_process_link_change(efx, event); 1318 break; 1319 case MCDI_EVENT_CODE_SENSOREVT: 1320 efx_sensor_event(efx, event); 1321 break; 1322 case MCDI_EVENT_CODE_SCHEDERR: 1323 netif_dbg(efx, hw, efx->net_dev, 1324 "MC Scheduler alert (0x%x)\n", data); 1325 break; 1326 case MCDI_EVENT_CODE_REBOOT: 1327 case MCDI_EVENT_CODE_MC_REBOOT: 1328 netif_info(efx, hw, efx->net_dev, "MC Reboot\n"); 1329 efx_mcdi_ev_death(efx, -EIO); 1330 break; 1331 case MCDI_EVENT_CODE_MC_BIST: 1332 netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n"); 1333 efx_mcdi_ev_bist(efx); 1334 break; 1335 case MCDI_EVENT_CODE_MAC_STATS_DMA: 1336 /* MAC stats are gather lazily. We can ignore this. */ 1337 break; 1338 case MCDI_EVENT_CODE_PTP_FAULT: 1339 case MCDI_EVENT_CODE_PTP_PPS: 1340 efx_ptp_event(efx, event); 1341 break; 1342 case MCDI_EVENT_CODE_PTP_TIME: 1343 efx_time_sync_event(channel, event); 1344 break; 1345 case MCDI_EVENT_CODE_TX_FLUSH: 1346 case MCDI_EVENT_CODE_RX_FLUSH: 1347 /* Two flush events will be sent: one to the same event 1348 * queue as completions, and one to event queue 0. 1349 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER 1350 * flag will be set, and we should ignore the event 1351 * because we want to wait for all completions. 1352 */ 1353 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN != 1354 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN); 1355 if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER)) 1356 efx_handle_drain_event(efx); 1357 break; 1358 case MCDI_EVENT_CODE_TX_ERR: 1359 case MCDI_EVENT_CODE_RX_ERR: 1360 netif_err(efx, hw, efx->net_dev, 1361 "%s DMA error (event: "EFX_QWORD_FMT")\n", 1362 code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX", 1363 EFX_QWORD_VAL(*event)); 1364 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR); 1365 break; 1366 case MCDI_EVENT_CODE_PROXY_RESPONSE: 1367 efx_mcdi_ev_proxy_response(efx, 1368 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE), 1369 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC)); 1370 break; 1371 default: 1372 netif_err(efx, hw, efx->net_dev, 1373 "Unknown MCDI event " EFX_QWORD_FMT "\n", 1374 EFX_QWORD_VAL(*event)); 1375 } 1376 } 1377 1378 /************************************************************************** 1379 * 1380 * Specific request functions 1381 * 1382 ************************************************************************** 1383 */ 1384 1385 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len) 1386 { 1387 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN); 1388 size_t outlength; 1389 const __le16 *ver_words; 1390 size_t offset; 1391 int rc; 1392 1393 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0); 1394 rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0, 1395 outbuf, sizeof(outbuf), &outlength); 1396 if (rc) 1397 goto fail; 1398 if (outlength < MC_CMD_GET_VERSION_OUT_LEN) { 1399 rc = -EIO; 1400 goto fail; 1401 } 1402 1403 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION); 1404 offset = scnprintf(buf, len, "%u.%u.%u.%u", 1405 le16_to_cpu(ver_words[0]), 1406 le16_to_cpu(ver_words[1]), 1407 le16_to_cpu(ver_words[2]), 1408 le16_to_cpu(ver_words[3])); 1409 1410 if (efx->type->print_additional_fwver) 1411 offset += efx->type->print_additional_fwver(efx, buf + offset, 1412 len - offset); 1413 1414 /* It's theoretically possible for the string to exceed 31 1415 * characters, though in practice the first three version 1416 * components are short enough that this doesn't happen. 1417 */ 1418 if (WARN_ON(offset >= len)) 1419 buf[0] = 0; 1420 1421 return; 1422 1423 fail: 1424 pci_err(efx->pci_dev, "%s: failed rc=%d\n", __func__, rc); 1425 buf[0] = 0; 1426 } 1427 1428 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, 1429 bool *was_attached) 1430 { 1431 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN); 1432 MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN); 1433 size_t outlen; 1434 int rc; 1435 1436 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE, 1437 driver_operating ? 1 : 0); 1438 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1); 1439 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY); 1440 1441 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf), 1442 outbuf, sizeof(outbuf), &outlen); 1443 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID 1444 * specified will fail with EPERM, and we have to tell the MC we don't 1445 * care what firmware we get. 1446 */ 1447 if (rc == -EPERM) { 1448 pci_dbg(efx->pci_dev, 1449 "%s with fw-variant setting failed EPERM, trying without it\n", 1450 __func__); 1451 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, 1452 MC_CMD_FW_DONT_CARE); 1453 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, 1454 sizeof(inbuf), outbuf, sizeof(outbuf), 1455 &outlen); 1456 } 1457 if (rc) { 1458 efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf), 1459 outbuf, outlen, rc); 1460 goto fail; 1461 } 1462 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) { 1463 rc = -EIO; 1464 goto fail; 1465 } 1466 1467 if (driver_operating) { 1468 if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) { 1469 efx->mcdi->fn_flags = 1470 MCDI_DWORD(outbuf, 1471 DRV_ATTACH_EXT_OUT_FUNC_FLAGS); 1472 } else { 1473 /* Synthesise flags for Siena */ 1474 efx->mcdi->fn_flags = 1475 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL | 1476 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED | 1477 (efx_port_num(efx) == 0) << 1478 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY; 1479 } 1480 } 1481 1482 /* We currently assume we have control of the external link 1483 * and are completely trusted by firmware. Abort probing 1484 * if that's not true for this function. 1485 */ 1486 1487 if (was_attached != NULL) 1488 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE); 1489 return 0; 1490 1491 fail: 1492 pci_err(efx->pci_dev, "%s: failed rc=%d\n", __func__, rc); 1493 return rc; 1494 } 1495 1496 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address, 1497 u16 *fw_subtype_list, u32 *capabilities) 1498 { 1499 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX); 1500 size_t outlen, i; 1501 int port_num = efx_port_num(efx); 1502 int rc; 1503 1504 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0); 1505 /* we need __aligned(2) for ether_addr_copy */ 1506 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1); 1507 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1); 1508 1509 rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0, 1510 outbuf, sizeof(outbuf), &outlen); 1511 if (rc) 1512 goto fail; 1513 1514 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) { 1515 rc = -EIO; 1516 goto fail; 1517 } 1518 1519 if (mac_address) 1520 ether_addr_copy(mac_address, 1521 port_num ? 1522 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) : 1523 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0)); 1524 if (fw_subtype_list) { 1525 for (i = 0; 1526 i < MCDI_VAR_ARRAY_LEN(outlen, 1527 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST); 1528 i++) 1529 fw_subtype_list[i] = MCDI_ARRAY_WORD( 1530 outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i); 1531 for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++) 1532 fw_subtype_list[i] = 0; 1533 } 1534 if (capabilities) { 1535 if (port_num) 1536 *capabilities = MCDI_DWORD(outbuf, 1537 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1); 1538 else 1539 *capabilities = MCDI_DWORD(outbuf, 1540 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0); 1541 } 1542 1543 return 0; 1544 1545 fail: 1546 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n", 1547 __func__, rc, (int)outlen); 1548 1549 return rc; 1550 } 1551 1552 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq) 1553 { 1554 MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN); 1555 u32 dest = 0; 1556 int rc; 1557 1558 if (uart) 1559 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART; 1560 if (evq) 1561 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ; 1562 1563 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest); 1564 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq); 1565 1566 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0); 1567 1568 rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf), 1569 NULL, 0, NULL); 1570 return rc; 1571 } 1572 1573 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out) 1574 { 1575 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN); 1576 size_t outlen; 1577 int rc; 1578 1579 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0); 1580 1581 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0, 1582 outbuf, sizeof(outbuf), &outlen); 1583 if (rc) 1584 goto fail; 1585 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) { 1586 rc = -EIO; 1587 goto fail; 1588 } 1589 1590 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES); 1591 return 0; 1592 1593 fail: 1594 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", 1595 __func__, rc); 1596 return rc; 1597 } 1598 1599 /* This function finds types using the new NVRAM_PARTITIONS mcdi. */ 1600 static int efx_new_mcdi_nvram_types(struct efx_nic *efx, u32 *number, 1601 u32 *nvram_types) 1602 { 1603 efx_dword_t *outbuf = kzalloc(MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2, 1604 GFP_KERNEL); 1605 size_t outlen; 1606 int rc; 1607 1608 if (!outbuf) 1609 return -ENOMEM; 1610 1611 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0); 1612 1613 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0, 1614 outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2, &outlen); 1615 if (rc) 1616 goto fail; 1617 1618 *number = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS); 1619 1620 memcpy(nvram_types, MCDI_PTR(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID), 1621 *number * sizeof(u32)); 1622 1623 fail: 1624 kfree(outbuf); 1625 return rc; 1626 } 1627 1628 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type, 1629 size_t *size_out, size_t *erase_size_out, 1630 bool *protected_out) 1631 { 1632 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN); 1633 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN); 1634 size_t outlen; 1635 int rc; 1636 1637 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type); 1638 1639 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf), 1640 outbuf, sizeof(outbuf), &outlen); 1641 if (rc) 1642 goto fail; 1643 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) { 1644 rc = -EIO; 1645 goto fail; 1646 } 1647 1648 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE); 1649 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE); 1650 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) & 1651 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN)); 1652 return 0; 1653 1654 fail: 1655 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1656 return rc; 1657 } 1658 1659 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type) 1660 { 1661 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN); 1662 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN); 1663 int rc; 1664 1665 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type); 1666 1667 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf), 1668 outbuf, sizeof(outbuf), NULL); 1669 if (rc) 1670 return rc; 1671 1672 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) { 1673 case MC_CMD_NVRAM_TEST_PASS: 1674 case MC_CMD_NVRAM_TEST_NOTSUPP: 1675 return 0; 1676 default: 1677 return -EIO; 1678 } 1679 } 1680 1681 /* This function tests nvram partitions using the new mcdi partition lookup scheme */ 1682 int efx_new_mcdi_nvram_test_all(struct efx_nic *efx) 1683 { 1684 u32 *nvram_types = kzalloc(MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2, 1685 GFP_KERNEL); 1686 unsigned int number; 1687 int rc, i; 1688 1689 if (!nvram_types) 1690 return -ENOMEM; 1691 1692 rc = efx_new_mcdi_nvram_types(efx, &number, nvram_types); 1693 if (rc) 1694 goto fail; 1695 1696 /* Require at least one check */ 1697 rc = -EAGAIN; 1698 1699 for (i = 0; i < number; i++) { 1700 if (nvram_types[i] == NVRAM_PARTITION_TYPE_PARTITION_MAP || 1701 nvram_types[i] == NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG) 1702 continue; 1703 1704 rc = efx_mcdi_nvram_test(efx, nvram_types[i]); 1705 if (rc) 1706 goto fail; 1707 } 1708 1709 fail: 1710 kfree(nvram_types); 1711 return rc; 1712 } 1713 1714 int efx_mcdi_nvram_test_all(struct efx_nic *efx) 1715 { 1716 u32 nvram_types; 1717 unsigned int type; 1718 int rc; 1719 1720 rc = efx_mcdi_nvram_types(efx, &nvram_types); 1721 if (rc) 1722 goto fail1; 1723 1724 type = 0; 1725 while (nvram_types != 0) { 1726 if (nvram_types & 1) { 1727 rc = efx_mcdi_nvram_test(efx, type); 1728 if (rc) 1729 goto fail2; 1730 } 1731 type++; 1732 nvram_types >>= 1; 1733 } 1734 1735 return 0; 1736 1737 fail2: 1738 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n", 1739 __func__, type); 1740 fail1: 1741 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1742 return rc; 1743 } 1744 1745 /* Returns 1 if an assertion was read, 0 if no assertion had fired, 1746 * negative on error. 1747 */ 1748 static int efx_mcdi_read_assertion(struct efx_nic *efx) 1749 { 1750 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN); 1751 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN); 1752 unsigned int flags, index; 1753 const char *reason; 1754 size_t outlen; 1755 int retry; 1756 int rc; 1757 1758 /* Attempt to read any stored assertion state before we reboot 1759 * the mcfw out of the assertion handler. Retry twice, once 1760 * because a boot-time assertion might cause this command to fail 1761 * with EINTR. And once again because GET_ASSERTS can race with 1762 * MC_CMD_REBOOT running on the other port. */ 1763 retry = 2; 1764 do { 1765 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1); 1766 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS, 1767 inbuf, MC_CMD_GET_ASSERTS_IN_LEN, 1768 outbuf, sizeof(outbuf), &outlen); 1769 if (rc == -EPERM) 1770 return 0; 1771 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0); 1772 1773 if (rc) { 1774 efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS, 1775 MC_CMD_GET_ASSERTS_IN_LEN, outbuf, 1776 outlen, rc); 1777 return rc; 1778 } 1779 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN) 1780 return -EIO; 1781 1782 /* Print out any recorded assertion state */ 1783 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS); 1784 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS) 1785 return 0; 1786 1787 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL) 1788 ? "system-level assertion" 1789 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL) 1790 ? "thread-level assertion" 1791 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED) 1792 ? "watchdog reset" 1793 : "unknown assertion"; 1794 netif_err(efx, hw, efx->net_dev, 1795 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason, 1796 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS), 1797 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS)); 1798 1799 /* Print out the registers */ 1800 for (index = 0; 1801 index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM; 1802 index++) 1803 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n", 1804 1 + index, 1805 MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS, 1806 index)); 1807 1808 return 1; 1809 } 1810 1811 static int efx_mcdi_exit_assertion(struct efx_nic *efx) 1812 { 1813 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN); 1814 int rc; 1815 1816 /* If the MC is running debug firmware, it might now be 1817 * waiting for a debugger to attach, but we just want it to 1818 * reboot. We set a flag that makes the command a no-op if it 1819 * has already done so. 1820 * The MCDI will thus return either 0 or -EIO. 1821 */ 1822 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); 1823 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 1824 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION); 1825 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN, 1826 NULL, 0, NULL); 1827 if (rc == -EIO) 1828 rc = 0; 1829 if (rc) 1830 efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN, 1831 NULL, 0, rc); 1832 return rc; 1833 } 1834 1835 int efx_mcdi_handle_assertion(struct efx_nic *efx) 1836 { 1837 int rc; 1838 1839 rc = efx_mcdi_read_assertion(efx); 1840 if (rc <= 0) 1841 return rc; 1842 1843 return efx_mcdi_exit_assertion(efx); 1844 } 1845 1846 int efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode) 1847 { 1848 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN); 1849 1850 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF); 1851 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON); 1852 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT); 1853 1854 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0); 1855 1856 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode); 1857 1858 return efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf), NULL, 0, NULL); 1859 } 1860 1861 static int efx_mcdi_reset_func(struct efx_nic *efx) 1862 { 1863 MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN); 1864 int rc; 1865 1866 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0); 1867 MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG, 1868 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1); 1869 rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf), 1870 NULL, 0, NULL); 1871 return rc; 1872 } 1873 1874 static int efx_mcdi_reset_mc(struct efx_nic *efx) 1875 { 1876 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN); 1877 int rc; 1878 1879 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); 1880 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0); 1881 rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf), 1882 NULL, 0, NULL); 1883 /* White is black, and up is down */ 1884 if (rc == -EIO) 1885 return 0; 1886 if (rc == 0) 1887 rc = -EIO; 1888 return rc; 1889 } 1890 1891 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason) 1892 { 1893 return RESET_TYPE_RECOVER_OR_ALL; 1894 } 1895 1896 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method) 1897 { 1898 int rc; 1899 1900 /* If MCDI is down, we can't handle_assertion */ 1901 if (method == RESET_TYPE_MCDI_TIMEOUT) { 1902 rc = pci_reset_function(efx->pci_dev); 1903 if (rc) 1904 return rc; 1905 /* Re-enable polled MCDI completion */ 1906 if (efx->mcdi) { 1907 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1908 mcdi->mode = MCDI_MODE_POLL; 1909 } 1910 return 0; 1911 } 1912 1913 /* Recover from a failed assertion pre-reset */ 1914 rc = efx_mcdi_handle_assertion(efx); 1915 if (rc) 1916 return rc; 1917 1918 if (method == RESET_TYPE_DATAPATH) 1919 return 0; 1920 else if (method == RESET_TYPE_WORLD) 1921 return efx_mcdi_reset_mc(efx); 1922 else 1923 return efx_mcdi_reset_func(efx); 1924 } 1925 1926 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type, 1927 const u8 *mac, int *id_out) 1928 { 1929 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN); 1930 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN); 1931 size_t outlen; 1932 int rc; 1933 1934 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type); 1935 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE, 1936 MC_CMD_FILTER_MODE_SIMPLE); 1937 ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac); 1938 1939 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf), 1940 outbuf, sizeof(outbuf), &outlen); 1941 if (rc) 1942 goto fail; 1943 1944 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) { 1945 rc = -EIO; 1946 goto fail; 1947 } 1948 1949 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID); 1950 1951 return 0; 1952 1953 fail: 1954 *id_out = -1; 1955 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1956 return rc; 1957 1958 } 1959 1960 1961 int 1962 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out) 1963 { 1964 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out); 1965 } 1966 1967 1968 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id) 1969 { 1970 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN); 1971 int rc; 1972 1973 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id); 1974 1975 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf), 1976 NULL, 0, NULL); 1977 return rc; 1978 } 1979 1980 int efx_mcdi_wol_filter_reset(struct efx_nic *efx) 1981 { 1982 int rc; 1983 1984 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL); 1985 return rc; 1986 } 1987 1988 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled, 1989 unsigned int *flags) 1990 { 1991 MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN); 1992 MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN); 1993 size_t outlen; 1994 int rc; 1995 1996 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0); 1997 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type); 1998 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled); 1999 rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf), 2000 outbuf, sizeof(outbuf), &outlen); 2001 if (rc) 2002 return rc; 2003 2004 if (!flags) 2005 return 0; 2006 2007 if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN) 2008 *flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS); 2009 else 2010 *flags = 0; 2011 2012 return 0; 2013 } 2014 2015 int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out, 2016 unsigned int *enabled_out) 2017 { 2018 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN); 2019 size_t outlen; 2020 int rc; 2021 2022 rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0, 2023 outbuf, sizeof(outbuf), &outlen); 2024 if (rc) 2025 goto fail; 2026 2027 if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) { 2028 rc = -EIO; 2029 goto fail; 2030 } 2031 2032 if (impl_out) 2033 *impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED); 2034 2035 if (enabled_out) 2036 *enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED); 2037 2038 return 0; 2039 2040 fail: 2041 /* Older firmware lacks GET_WORKAROUNDS and this isn't especially 2042 * terrifying. The call site will have to deal with it though. 2043 */ 2044 netif_cond_dbg(efx, hw, efx->net_dev, rc == -ENOSYS, err, 2045 "%s: failed rc=%d\n", __func__, rc); 2046 return rc; 2047 } 2048 2049 /* Failure to read a privilege mask is never fatal, because we can always 2050 * carry on as though we didn't have the privilege we were interested in. 2051 * So use efx_mcdi_rpc_quiet(). 2052 */ 2053 int efx_mcdi_get_privilege_mask(struct efx_nic *efx, u32 *mask) 2054 { 2055 MCDI_DECLARE_BUF(fi_outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN); 2056 MCDI_DECLARE_BUF(pm_inbuf, MC_CMD_PRIVILEGE_MASK_IN_LEN); 2057 MCDI_DECLARE_BUF(pm_outbuf, MC_CMD_PRIVILEGE_MASK_OUT_LEN); 2058 size_t outlen; 2059 u16 pf, vf; 2060 int rc; 2061 2062 if (!efx || !mask) 2063 return -EINVAL; 2064 2065 /* Get our function number */ 2066 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, 2067 fi_outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN, 2068 &outlen); 2069 if (rc != 0) 2070 return rc; 2071 if (outlen < MC_CMD_GET_FUNCTION_INFO_OUT_LEN) 2072 return -EIO; 2073 2074 pf = MCDI_DWORD(fi_outbuf, GET_FUNCTION_INFO_OUT_PF); 2075 vf = MCDI_DWORD(fi_outbuf, GET_FUNCTION_INFO_OUT_VF); 2076 2077 MCDI_POPULATE_DWORD_2(pm_inbuf, PRIVILEGE_MASK_IN_FUNCTION, 2078 PRIVILEGE_MASK_IN_FUNCTION_PF, pf, 2079 PRIVILEGE_MASK_IN_FUNCTION_VF, vf); 2080 2081 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PRIVILEGE_MASK, 2082 pm_inbuf, sizeof(pm_inbuf), 2083 pm_outbuf, sizeof(pm_outbuf), &outlen); 2084 2085 if (rc != 0) 2086 return rc; 2087 if (outlen < MC_CMD_PRIVILEGE_MASK_OUT_LEN) 2088 return -EIO; 2089 2090 *mask = MCDI_DWORD(pm_outbuf, PRIVILEGE_MASK_OUT_OLD_MASK); 2091 2092 return 0; 2093 } 2094 2095 int efx_mcdi_nvram_metadata(struct efx_nic *efx, unsigned int type, 2096 u32 *subtype, u16 version[4], char *desc, 2097 size_t descsize) 2098 { 2099 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN); 2100 efx_dword_t *outbuf; 2101 size_t outlen; 2102 u32 flags; 2103 int rc; 2104 2105 outbuf = kzalloc(MC_CMD_NVRAM_METADATA_OUT_LENMAX_MCDI2, GFP_KERNEL); 2106 if (!outbuf) 2107 return -ENOMEM; 2108 2109 MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type); 2110 2111 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_NVRAM_METADATA, inbuf, 2112 sizeof(inbuf), outbuf, 2113 MC_CMD_NVRAM_METADATA_OUT_LENMAX_MCDI2, 2114 &outlen); 2115 if (rc) 2116 goto out_free; 2117 if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN) { 2118 rc = -EIO; 2119 goto out_free; 2120 } 2121 2122 flags = MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS); 2123 2124 if (desc && descsize > 0) { 2125 if (flags & BIT(MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_VALID_LBN)) { 2126 if (descsize <= 2127 MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_NUM(outlen)) { 2128 rc = -E2BIG; 2129 goto out_free; 2130 } 2131 2132 strscpy(desc, 2133 MCDI_PTR(outbuf, NVRAM_METADATA_OUT_DESCRIPTION), 2134 MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_NUM(outlen)); 2135 } else { 2136 desc[0] = '\0'; 2137 } 2138 } 2139 2140 if (subtype) { 2141 if (flags & BIT(MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN)) 2142 *subtype = MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_SUBTYPE); 2143 else 2144 *subtype = 0; 2145 } 2146 2147 if (version) { 2148 if (flags & BIT(MC_CMD_NVRAM_METADATA_OUT_VERSION_VALID_LBN)) { 2149 version[0] = MCDI_WORD(outbuf, NVRAM_METADATA_OUT_VERSION_W); 2150 version[1] = MCDI_WORD(outbuf, NVRAM_METADATA_OUT_VERSION_X); 2151 version[2] = MCDI_WORD(outbuf, NVRAM_METADATA_OUT_VERSION_Y); 2152 version[3] = MCDI_WORD(outbuf, NVRAM_METADATA_OUT_VERSION_Z); 2153 } else { 2154 version[0] = 0; 2155 version[1] = 0; 2156 version[2] = 0; 2157 version[3] = 0; 2158 } 2159 } 2160 2161 out_free: 2162 kfree(outbuf); 2163 return rc; 2164 } 2165 2166 #ifdef CONFIG_SFC_MTD 2167 2168 #define EFX_MCDI_NVRAM_LEN_MAX 128 2169 2170 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type) 2171 { 2172 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_V2_IN_LEN); 2173 int rc; 2174 2175 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type); 2176 MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_START_V2_IN_FLAGS, 2177 NVRAM_UPDATE_START_V2_IN_FLAG_REPORT_VERIFY_RESULT, 2178 1); 2179 2180 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0); 2181 2182 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf), 2183 NULL, 0, NULL); 2184 2185 return rc; 2186 } 2187 2188 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type, 2189 loff_t offset, u8 *buffer, size_t length) 2190 { 2191 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_V2_LEN); 2192 MCDI_DECLARE_BUF(outbuf, 2193 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX)); 2194 size_t outlen; 2195 int rc; 2196 2197 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type); 2198 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset); 2199 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length); 2200 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_V2_MODE, 2201 MC_CMD_NVRAM_READ_IN_V2_DEFAULT); 2202 2203 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf), 2204 outbuf, sizeof(outbuf), &outlen); 2205 if (rc) 2206 return rc; 2207 2208 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length); 2209 return 0; 2210 } 2211 2212 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type, 2213 loff_t offset, const u8 *buffer, size_t length) 2214 { 2215 MCDI_DECLARE_BUF(inbuf, 2216 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX)); 2217 int rc; 2218 2219 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type); 2220 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset); 2221 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length); 2222 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length); 2223 2224 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0); 2225 2226 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf, 2227 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4), 2228 NULL, 0, NULL); 2229 return rc; 2230 } 2231 2232 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type, 2233 loff_t offset, size_t length) 2234 { 2235 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN); 2236 int rc; 2237 2238 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type); 2239 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset); 2240 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length); 2241 2242 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0); 2243 2244 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf), 2245 NULL, 0, NULL); 2246 return rc; 2247 } 2248 2249 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type) 2250 { 2251 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_IN_LEN); 2252 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN); 2253 size_t outlen; 2254 int rc, rc2; 2255 2256 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type); 2257 /* Always set this flag. Old firmware ignores it */ 2258 MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_FINISH_V2_IN_FLAGS, 2259 NVRAM_UPDATE_FINISH_V2_IN_FLAG_REPORT_VERIFY_RESULT, 2260 1); 2261 2262 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf), 2263 outbuf, sizeof(outbuf), &outlen); 2264 if (!rc && outlen >= MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN) { 2265 rc2 = MCDI_DWORD(outbuf, NVRAM_UPDATE_FINISH_V2_OUT_RESULT_CODE); 2266 if (rc2 != MC_CMD_NVRAM_VERIFY_RC_SUCCESS) 2267 netif_err(efx, drv, efx->net_dev, 2268 "NVRAM update failed verification with code 0x%x\n", 2269 rc2); 2270 switch (rc2) { 2271 case MC_CMD_NVRAM_VERIFY_RC_SUCCESS: 2272 break; 2273 case MC_CMD_NVRAM_VERIFY_RC_CMS_CHECK_FAILED: 2274 case MC_CMD_NVRAM_VERIFY_RC_MESSAGE_DIGEST_CHECK_FAILED: 2275 case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHECK_FAILED: 2276 case MC_CMD_NVRAM_VERIFY_RC_TRUSTED_APPROVERS_CHECK_FAILED: 2277 case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHAIN_CHECK_FAILED: 2278 rc = -EIO; 2279 break; 2280 case MC_CMD_NVRAM_VERIFY_RC_INVALID_CMS_FORMAT: 2281 case MC_CMD_NVRAM_VERIFY_RC_BAD_MESSAGE_DIGEST: 2282 rc = -EINVAL; 2283 break; 2284 case MC_CMD_NVRAM_VERIFY_RC_NO_VALID_SIGNATURES: 2285 case MC_CMD_NVRAM_VERIFY_RC_NO_TRUSTED_APPROVERS: 2286 case MC_CMD_NVRAM_VERIFY_RC_NO_SIGNATURE_MATCH: 2287 rc = -EPERM; 2288 break; 2289 default: 2290 netif_err(efx, drv, efx->net_dev, 2291 "Unknown response to NVRAM_UPDATE_FINISH\n"); 2292 rc = -EIO; 2293 } 2294 } 2295 2296 return rc; 2297 } 2298 2299 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start, 2300 size_t len, size_t *retlen, u8 *buffer) 2301 { 2302 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2303 struct efx_nic *efx = mtd->priv; 2304 loff_t offset = start; 2305 loff_t end = min_t(loff_t, start + len, mtd->size); 2306 size_t chunk; 2307 int rc = 0; 2308 2309 while (offset < end) { 2310 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); 2311 rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset, 2312 buffer, chunk); 2313 if (rc) 2314 goto out; 2315 offset += chunk; 2316 buffer += chunk; 2317 } 2318 out: 2319 *retlen = offset - start; 2320 return rc; 2321 } 2322 2323 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len) 2324 { 2325 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2326 struct efx_nic *efx = mtd->priv; 2327 loff_t offset = start & ~((loff_t)(mtd->erasesize - 1)); 2328 loff_t end = min_t(loff_t, start + len, mtd->size); 2329 size_t chunk = part->common.mtd.erasesize; 2330 int rc = 0; 2331 2332 if (!part->updating) { 2333 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type); 2334 if (rc) 2335 goto out; 2336 part->updating = true; 2337 } 2338 2339 /* The MCDI interface can in fact do multiple erase blocks at once; 2340 * but erasing may be slow, so we make multiple calls here to avoid 2341 * tripping the MCDI RPC timeout. */ 2342 while (offset < end) { 2343 rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset, 2344 chunk); 2345 if (rc) 2346 goto out; 2347 offset += chunk; 2348 } 2349 out: 2350 return rc; 2351 } 2352 2353 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start, 2354 size_t len, size_t *retlen, const u8 *buffer) 2355 { 2356 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2357 struct efx_nic *efx = mtd->priv; 2358 loff_t offset = start; 2359 loff_t end = min_t(loff_t, start + len, mtd->size); 2360 size_t chunk; 2361 int rc = 0; 2362 2363 if (!part->updating) { 2364 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type); 2365 if (rc) 2366 goto out; 2367 part->updating = true; 2368 } 2369 2370 while (offset < end) { 2371 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); 2372 rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset, 2373 buffer, chunk); 2374 if (rc) 2375 goto out; 2376 offset += chunk; 2377 buffer += chunk; 2378 } 2379 out: 2380 *retlen = offset - start; 2381 return rc; 2382 } 2383 2384 int efx_mcdi_mtd_sync(struct mtd_info *mtd) 2385 { 2386 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2387 struct efx_nic *efx = mtd->priv; 2388 int rc = 0; 2389 2390 if (part->updating) { 2391 part->updating = false; 2392 rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type); 2393 } 2394 2395 return rc; 2396 } 2397 2398 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part) 2399 { 2400 struct efx_mcdi_mtd_partition *mcdi_part = 2401 container_of(part, struct efx_mcdi_mtd_partition, common); 2402 struct efx_nic *efx = part->mtd.priv; 2403 2404 snprintf(part->name, sizeof(part->name), "%s %s:%02x", 2405 efx->name, part->type_name, mcdi_part->fw_subtype); 2406 } 2407 2408 #endif /* CONFIG_SFC_MTD */ 2409