1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2008-2013 Solarflare Communications Inc. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 as published 7 * by the Free Software Foundation, incorporated herein by reference. 8 */ 9 10 #include <linux/delay.h> 11 #include <asm/cmpxchg.h> 12 #include "net_driver.h" 13 #include "nic.h" 14 #include "io.h" 15 #include "farch_regs.h" 16 #include "mcdi_pcol.h" 17 #include "phy.h" 18 19 /************************************************************************** 20 * 21 * Management-Controller-to-Driver Interface 22 * 23 ************************************************************************** 24 */ 25 26 #define MCDI_RPC_TIMEOUT (10 * HZ) 27 28 /* A reboot/assertion causes the MCDI status word to be set after the 29 * command word is set or a REBOOT event is sent. If we notice a reboot 30 * via these mechanisms then wait 250ms for the status word to be set. 31 */ 32 #define MCDI_STATUS_DELAY_US 100 33 #define MCDI_STATUS_DELAY_COUNT 2500 34 #define MCDI_STATUS_SLEEP_MS \ 35 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000) 36 37 #define SEQ_MASK \ 38 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ)) 39 40 struct efx_mcdi_async_param { 41 struct list_head list; 42 unsigned int cmd; 43 size_t inlen; 44 size_t outlen; 45 bool quiet; 46 efx_mcdi_async_completer *complete; 47 unsigned long cookie; 48 /* followed by request/response buffer */ 49 }; 50 51 static void efx_mcdi_timeout_async(unsigned long context); 52 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, 53 bool *was_attached_out); 54 static bool efx_mcdi_poll_once(struct efx_nic *efx); 55 static void efx_mcdi_abandon(struct efx_nic *efx); 56 57 int efx_mcdi_init(struct efx_nic *efx) 58 { 59 struct efx_mcdi_iface *mcdi; 60 bool already_attached; 61 int rc; 62 63 efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL); 64 if (!efx->mcdi) 65 return -ENOMEM; 66 67 mcdi = efx_mcdi(efx); 68 mcdi->efx = efx; 69 init_waitqueue_head(&mcdi->wq); 70 spin_lock_init(&mcdi->iface_lock); 71 mcdi->state = MCDI_STATE_QUIESCENT; 72 mcdi->mode = MCDI_MODE_POLL; 73 spin_lock_init(&mcdi->async_lock); 74 INIT_LIST_HEAD(&mcdi->async_list); 75 setup_timer(&mcdi->async_timer, efx_mcdi_timeout_async, 76 (unsigned long)mcdi); 77 78 (void) efx_mcdi_poll_reboot(efx); 79 mcdi->new_epoch = true; 80 81 /* Recover from a failed assertion before probing */ 82 rc = efx_mcdi_handle_assertion(efx); 83 if (rc) 84 return rc; 85 86 /* Let the MC (and BMC, if this is a LOM) know that the driver 87 * is loaded. We should do this before we reset the NIC. 88 */ 89 rc = efx_mcdi_drv_attach(efx, true, &already_attached); 90 if (rc) { 91 netif_err(efx, probe, efx->net_dev, 92 "Unable to register driver with MCPU\n"); 93 return rc; 94 } 95 if (already_attached) 96 /* Not a fatal error */ 97 netif_err(efx, probe, efx->net_dev, 98 "Host already registered with MCPU\n"); 99 100 if (efx->mcdi->fn_flags & 101 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) 102 efx->primary = efx; 103 104 return 0; 105 } 106 107 void efx_mcdi_fini(struct efx_nic *efx) 108 { 109 if (!efx->mcdi) 110 return; 111 112 BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT); 113 114 /* Relinquish the device (back to the BMC, if this is a LOM) */ 115 efx_mcdi_drv_attach(efx, false, NULL); 116 117 kfree(efx->mcdi); 118 } 119 120 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd, 121 const efx_dword_t *inbuf, size_t inlen) 122 { 123 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 124 efx_dword_t hdr[2]; 125 size_t hdr_len; 126 u32 xflags, seqno; 127 128 BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT); 129 130 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */ 131 spin_lock_bh(&mcdi->iface_lock); 132 ++mcdi->seqno; 133 spin_unlock_bh(&mcdi->iface_lock); 134 135 seqno = mcdi->seqno & SEQ_MASK; 136 xflags = 0; 137 if (mcdi->mode == MCDI_MODE_EVENTS) 138 xflags |= MCDI_HEADER_XFLAGS_EVREQ; 139 140 if (efx->type->mcdi_max_ver == 1) { 141 /* MCDI v1 */ 142 EFX_POPULATE_DWORD_7(hdr[0], 143 MCDI_HEADER_RESPONSE, 0, 144 MCDI_HEADER_RESYNC, 1, 145 MCDI_HEADER_CODE, cmd, 146 MCDI_HEADER_DATALEN, inlen, 147 MCDI_HEADER_SEQ, seqno, 148 MCDI_HEADER_XFLAGS, xflags, 149 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch); 150 hdr_len = 4; 151 } else { 152 /* MCDI v2 */ 153 BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2); 154 EFX_POPULATE_DWORD_7(hdr[0], 155 MCDI_HEADER_RESPONSE, 0, 156 MCDI_HEADER_RESYNC, 1, 157 MCDI_HEADER_CODE, MC_CMD_V2_EXTN, 158 MCDI_HEADER_DATALEN, 0, 159 MCDI_HEADER_SEQ, seqno, 160 MCDI_HEADER_XFLAGS, xflags, 161 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch); 162 EFX_POPULATE_DWORD_2(hdr[1], 163 MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd, 164 MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen); 165 hdr_len = 8; 166 } 167 168 efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen); 169 170 mcdi->new_epoch = false; 171 } 172 173 static int efx_mcdi_errno(unsigned int mcdi_err) 174 { 175 switch (mcdi_err) { 176 case 0: 177 return 0; 178 #define TRANSLATE_ERROR(name) \ 179 case MC_CMD_ERR_ ## name: \ 180 return -name; 181 TRANSLATE_ERROR(EPERM); 182 TRANSLATE_ERROR(ENOENT); 183 TRANSLATE_ERROR(EINTR); 184 TRANSLATE_ERROR(EAGAIN); 185 TRANSLATE_ERROR(EACCES); 186 TRANSLATE_ERROR(EBUSY); 187 TRANSLATE_ERROR(EINVAL); 188 TRANSLATE_ERROR(EDEADLK); 189 TRANSLATE_ERROR(ENOSYS); 190 TRANSLATE_ERROR(ETIME); 191 TRANSLATE_ERROR(EALREADY); 192 TRANSLATE_ERROR(ENOSPC); 193 #undef TRANSLATE_ERROR 194 case MC_CMD_ERR_ENOTSUP: 195 return -EOPNOTSUPP; 196 case MC_CMD_ERR_ALLOC_FAIL: 197 return -ENOBUFS; 198 case MC_CMD_ERR_MAC_EXIST: 199 return -EADDRINUSE; 200 default: 201 return -EPROTO; 202 } 203 } 204 205 static void efx_mcdi_read_response_header(struct efx_nic *efx) 206 { 207 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 208 unsigned int respseq, respcmd, error; 209 efx_dword_t hdr; 210 211 efx->type->mcdi_read_response(efx, &hdr, 0, 4); 212 respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ); 213 respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE); 214 error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR); 215 216 if (respcmd != MC_CMD_V2_EXTN) { 217 mcdi->resp_hdr_len = 4; 218 mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN); 219 } else { 220 efx->type->mcdi_read_response(efx, &hdr, 4, 4); 221 mcdi->resp_hdr_len = 8; 222 mcdi->resp_data_len = 223 EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN); 224 } 225 226 if (error && mcdi->resp_data_len == 0) { 227 netif_err(efx, hw, efx->net_dev, "MC rebooted\n"); 228 mcdi->resprc = -EIO; 229 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) { 230 netif_err(efx, hw, efx->net_dev, 231 "MC response mismatch tx seq 0x%x rx seq 0x%x\n", 232 respseq, mcdi->seqno); 233 mcdi->resprc = -EIO; 234 } else if (error) { 235 efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4); 236 mcdi->resprc = 237 efx_mcdi_errno(EFX_DWORD_FIELD(hdr, EFX_DWORD_0)); 238 } else { 239 mcdi->resprc = 0; 240 } 241 } 242 243 static bool efx_mcdi_poll_once(struct efx_nic *efx) 244 { 245 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 246 247 rmb(); 248 if (!efx->type->mcdi_poll_response(efx)) 249 return false; 250 251 spin_lock_bh(&mcdi->iface_lock); 252 efx_mcdi_read_response_header(efx); 253 spin_unlock_bh(&mcdi->iface_lock); 254 255 return true; 256 } 257 258 static int efx_mcdi_poll(struct efx_nic *efx) 259 { 260 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 261 unsigned long time, finish; 262 unsigned int spins; 263 int rc; 264 265 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */ 266 rc = efx_mcdi_poll_reboot(efx); 267 if (rc) { 268 spin_lock_bh(&mcdi->iface_lock); 269 mcdi->resprc = rc; 270 mcdi->resp_hdr_len = 0; 271 mcdi->resp_data_len = 0; 272 spin_unlock_bh(&mcdi->iface_lock); 273 return 0; 274 } 275 276 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy, 277 * because generally mcdi responses are fast. After that, back off 278 * and poll once a jiffy (approximately) 279 */ 280 spins = TICK_USEC; 281 finish = jiffies + MCDI_RPC_TIMEOUT; 282 283 while (1) { 284 if (spins != 0) { 285 --spins; 286 udelay(1); 287 } else { 288 schedule_timeout_uninterruptible(1); 289 } 290 291 time = jiffies; 292 293 if (efx_mcdi_poll_once(efx)) 294 break; 295 296 if (time_after(time, finish)) 297 return -ETIMEDOUT; 298 } 299 300 /* Return rc=0 like wait_event_timeout() */ 301 return 0; 302 } 303 304 /* Test and clear MC-rebooted flag for this port/function; reset 305 * software state as necessary. 306 */ 307 int efx_mcdi_poll_reboot(struct efx_nic *efx) 308 { 309 if (!efx->mcdi) 310 return 0; 311 312 return efx->type->mcdi_poll_reboot(efx); 313 } 314 315 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi) 316 { 317 return cmpxchg(&mcdi->state, 318 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) == 319 MCDI_STATE_QUIESCENT; 320 } 321 322 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi) 323 { 324 /* Wait until the interface becomes QUIESCENT and we win the race 325 * to mark it RUNNING_SYNC. 326 */ 327 wait_event(mcdi->wq, 328 cmpxchg(&mcdi->state, 329 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) == 330 MCDI_STATE_QUIESCENT); 331 } 332 333 static int efx_mcdi_await_completion(struct efx_nic *efx) 334 { 335 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 336 337 if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED, 338 MCDI_RPC_TIMEOUT) == 0) 339 return -ETIMEDOUT; 340 341 /* Check if efx_mcdi_set_mode() switched us back to polled completions. 342 * In which case, poll for completions directly. If efx_mcdi_ev_cpl() 343 * completed the request first, then we'll just end up completing the 344 * request again, which is safe. 345 * 346 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which 347 * wait_event_timeout() implicitly provides. 348 */ 349 if (mcdi->mode == MCDI_MODE_POLL) 350 return efx_mcdi_poll(efx); 351 352 return 0; 353 } 354 355 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the 356 * requester. Return whether this was done. Does not take any locks. 357 */ 358 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi) 359 { 360 if (cmpxchg(&mcdi->state, 361 MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) == 362 MCDI_STATE_RUNNING_SYNC) { 363 wake_up(&mcdi->wq); 364 return true; 365 } 366 367 return false; 368 } 369 370 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi) 371 { 372 if (mcdi->mode == MCDI_MODE_EVENTS) { 373 struct efx_mcdi_async_param *async; 374 struct efx_nic *efx = mcdi->efx; 375 376 /* Process the asynchronous request queue */ 377 spin_lock_bh(&mcdi->async_lock); 378 async = list_first_entry_or_null( 379 &mcdi->async_list, struct efx_mcdi_async_param, list); 380 if (async) { 381 mcdi->state = MCDI_STATE_RUNNING_ASYNC; 382 efx_mcdi_send_request(efx, async->cmd, 383 (const efx_dword_t *)(async + 1), 384 async->inlen); 385 mod_timer(&mcdi->async_timer, 386 jiffies + MCDI_RPC_TIMEOUT); 387 } 388 spin_unlock_bh(&mcdi->async_lock); 389 390 if (async) 391 return; 392 } 393 394 mcdi->state = MCDI_STATE_QUIESCENT; 395 wake_up(&mcdi->wq); 396 } 397 398 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the 399 * asynchronous completion function, and release the interface. 400 * Return whether this was done. Must be called in bh-disabled 401 * context. Will take iface_lock and async_lock. 402 */ 403 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout) 404 { 405 struct efx_nic *efx = mcdi->efx; 406 struct efx_mcdi_async_param *async; 407 size_t hdr_len, data_len, err_len; 408 efx_dword_t *outbuf; 409 MCDI_DECLARE_BUF_OUT_OR_ERR(errbuf, 0); 410 int rc; 411 412 if (cmpxchg(&mcdi->state, 413 MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) != 414 MCDI_STATE_RUNNING_ASYNC) 415 return false; 416 417 spin_lock(&mcdi->iface_lock); 418 if (timeout) { 419 /* Ensure that if the completion event arrives later, 420 * the seqno check in efx_mcdi_ev_cpl() will fail 421 */ 422 ++mcdi->seqno; 423 ++mcdi->credits; 424 rc = -ETIMEDOUT; 425 hdr_len = 0; 426 data_len = 0; 427 } else { 428 rc = mcdi->resprc; 429 hdr_len = mcdi->resp_hdr_len; 430 data_len = mcdi->resp_data_len; 431 } 432 spin_unlock(&mcdi->iface_lock); 433 434 /* Stop the timer. In case the timer function is running, we 435 * must wait for it to return so that there is no possibility 436 * of it aborting the next request. 437 */ 438 if (!timeout) 439 del_timer_sync(&mcdi->async_timer); 440 441 spin_lock(&mcdi->async_lock); 442 async = list_first_entry(&mcdi->async_list, 443 struct efx_mcdi_async_param, list); 444 list_del(&async->list); 445 spin_unlock(&mcdi->async_lock); 446 447 outbuf = (efx_dword_t *)(async + 1); 448 efx->type->mcdi_read_response(efx, outbuf, hdr_len, 449 min(async->outlen, data_len)); 450 if (!timeout && rc && !async->quiet) { 451 err_len = min(sizeof(errbuf), data_len); 452 efx->type->mcdi_read_response(efx, errbuf, hdr_len, 453 sizeof(errbuf)); 454 efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf, 455 err_len, rc); 456 } 457 async->complete(efx, async->cookie, rc, outbuf, data_len); 458 kfree(async); 459 460 efx_mcdi_release(mcdi); 461 462 return true; 463 } 464 465 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno, 466 unsigned int datalen, unsigned int mcdi_err) 467 { 468 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 469 bool wake = false; 470 471 spin_lock(&mcdi->iface_lock); 472 473 if ((seqno ^ mcdi->seqno) & SEQ_MASK) { 474 if (mcdi->credits) 475 /* The request has been cancelled */ 476 --mcdi->credits; 477 else 478 netif_err(efx, hw, efx->net_dev, 479 "MC response mismatch tx seq 0x%x rx " 480 "seq 0x%x\n", seqno, mcdi->seqno); 481 } else { 482 if (efx->type->mcdi_max_ver >= 2) { 483 /* MCDI v2 responses don't fit in an event */ 484 efx_mcdi_read_response_header(efx); 485 } else { 486 mcdi->resprc = efx_mcdi_errno(mcdi_err); 487 mcdi->resp_hdr_len = 4; 488 mcdi->resp_data_len = datalen; 489 } 490 491 wake = true; 492 } 493 494 spin_unlock(&mcdi->iface_lock); 495 496 if (wake) { 497 if (!efx_mcdi_complete_async(mcdi, false)) 498 (void) efx_mcdi_complete_sync(mcdi); 499 500 /* If the interface isn't RUNNING_ASYNC or 501 * RUNNING_SYNC then we've received a duplicate 502 * completion after we've already transitioned back to 503 * QUIESCENT. [A subsequent invocation would increment 504 * seqno, so would have failed the seqno check]. 505 */ 506 } 507 } 508 509 static void efx_mcdi_timeout_async(unsigned long context) 510 { 511 struct efx_mcdi_iface *mcdi = (struct efx_mcdi_iface *)context; 512 513 efx_mcdi_complete_async(mcdi, true); 514 } 515 516 static int 517 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen) 518 { 519 if (efx->type->mcdi_max_ver < 0 || 520 (efx->type->mcdi_max_ver < 2 && 521 cmd > MC_CMD_CMD_SPACE_ESCAPE_7)) 522 return -EINVAL; 523 524 if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 || 525 (efx->type->mcdi_max_ver < 2 && 526 inlen > MCDI_CTL_SDU_LEN_MAX_V1)) 527 return -EMSGSIZE; 528 529 return 0; 530 } 531 532 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen, 533 efx_dword_t *outbuf, size_t outlen, 534 size_t *outlen_actual, bool quiet) 535 { 536 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 537 MCDI_DECLARE_BUF_OUT_OR_ERR(errbuf, 0); 538 int rc; 539 540 if (mcdi->mode == MCDI_MODE_POLL) 541 rc = efx_mcdi_poll(efx); 542 else 543 rc = efx_mcdi_await_completion(efx); 544 545 if (rc != 0) { 546 netif_err(efx, hw, efx->net_dev, 547 "MC command 0x%x inlen %d mode %d timed out\n", 548 cmd, (int)inlen, mcdi->mode); 549 550 if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) { 551 netif_err(efx, hw, efx->net_dev, 552 "MCDI request was completed without an event\n"); 553 rc = 0; 554 } 555 556 efx_mcdi_abandon(efx); 557 558 /* Close the race with efx_mcdi_ev_cpl() executing just too late 559 * and completing a request we've just cancelled, by ensuring 560 * that the seqno check therein fails. 561 */ 562 spin_lock_bh(&mcdi->iface_lock); 563 ++mcdi->seqno; 564 ++mcdi->credits; 565 spin_unlock_bh(&mcdi->iface_lock); 566 } 567 568 if (rc != 0) { 569 if (outlen_actual) 570 *outlen_actual = 0; 571 } else { 572 size_t hdr_len, data_len, err_len; 573 574 /* At the very least we need a memory barrier here to ensure 575 * we pick up changes from efx_mcdi_ev_cpl(). Protect against 576 * a spurious efx_mcdi_ev_cpl() running concurrently by 577 * acquiring the iface_lock. */ 578 spin_lock_bh(&mcdi->iface_lock); 579 rc = mcdi->resprc; 580 hdr_len = mcdi->resp_hdr_len; 581 data_len = mcdi->resp_data_len; 582 err_len = min(sizeof(errbuf), data_len); 583 spin_unlock_bh(&mcdi->iface_lock); 584 585 BUG_ON(rc > 0); 586 587 efx->type->mcdi_read_response(efx, outbuf, hdr_len, 588 min(outlen, data_len)); 589 if (outlen_actual) 590 *outlen_actual = data_len; 591 592 efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len); 593 594 if (cmd == MC_CMD_REBOOT && rc == -EIO) { 595 /* Don't reset if MC_CMD_REBOOT returns EIO */ 596 } else if (rc == -EIO || rc == -EINTR) { 597 netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n", 598 -rc); 599 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 600 } else if (rc && !quiet) { 601 efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len, 602 rc); 603 } 604 605 if (rc == -EIO || rc == -EINTR) { 606 msleep(MCDI_STATUS_SLEEP_MS); 607 efx_mcdi_poll_reboot(efx); 608 mcdi->new_epoch = true; 609 } 610 } 611 612 efx_mcdi_release(mcdi); 613 return rc; 614 } 615 616 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd, 617 const efx_dword_t *inbuf, size_t inlen, 618 efx_dword_t *outbuf, size_t outlen, 619 size_t *outlen_actual, bool quiet) 620 { 621 int rc; 622 623 rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen); 624 if (rc) { 625 if (outlen_actual) 626 *outlen_actual = 0; 627 return rc; 628 } 629 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 630 outlen_actual, quiet); 631 } 632 633 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd, 634 const efx_dword_t *inbuf, size_t inlen, 635 efx_dword_t *outbuf, size_t outlen, 636 size_t *outlen_actual) 637 { 638 return _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen, 639 outlen_actual, false); 640 } 641 642 /* Normally, on receiving an error code in the MCDI response, 643 * efx_mcdi_rpc will log an error message containing (among other 644 * things) the raw error code, by means of efx_mcdi_display_error. 645 * This _quiet version suppresses that; if the caller wishes to log 646 * the error conditionally on the return code, it should call this 647 * function and is then responsible for calling efx_mcdi_display_error 648 * as needed. 649 */ 650 int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd, 651 const efx_dword_t *inbuf, size_t inlen, 652 efx_dword_t *outbuf, size_t outlen, 653 size_t *outlen_actual) 654 { 655 return _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen, 656 outlen_actual, true); 657 } 658 659 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd, 660 const efx_dword_t *inbuf, size_t inlen) 661 { 662 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 663 int rc; 664 665 rc = efx_mcdi_check_supported(efx, cmd, inlen); 666 if (rc) 667 return rc; 668 669 if (efx->mc_bist_for_other_fn) 670 return -ENETDOWN; 671 672 if (mcdi->mode == MCDI_MODE_FAIL) 673 return -ENETDOWN; 674 675 efx_mcdi_acquire_sync(mcdi); 676 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 677 return 0; 678 } 679 680 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd, 681 const efx_dword_t *inbuf, size_t inlen, 682 size_t outlen, 683 efx_mcdi_async_completer *complete, 684 unsigned long cookie, bool quiet) 685 { 686 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 687 struct efx_mcdi_async_param *async; 688 int rc; 689 690 rc = efx_mcdi_check_supported(efx, cmd, inlen); 691 if (rc) 692 return rc; 693 694 if (efx->mc_bist_for_other_fn) 695 return -ENETDOWN; 696 697 async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4), 698 GFP_ATOMIC); 699 if (!async) 700 return -ENOMEM; 701 702 async->cmd = cmd; 703 async->inlen = inlen; 704 async->outlen = outlen; 705 async->quiet = quiet; 706 async->complete = complete; 707 async->cookie = cookie; 708 memcpy(async + 1, inbuf, inlen); 709 710 spin_lock_bh(&mcdi->async_lock); 711 712 if (mcdi->mode == MCDI_MODE_EVENTS) { 713 list_add_tail(&async->list, &mcdi->async_list); 714 715 /* If this is at the front of the queue, try to start it 716 * immediately 717 */ 718 if (mcdi->async_list.next == &async->list && 719 efx_mcdi_acquire_async(mcdi)) { 720 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 721 mod_timer(&mcdi->async_timer, 722 jiffies + MCDI_RPC_TIMEOUT); 723 } 724 } else { 725 kfree(async); 726 rc = -ENETDOWN; 727 } 728 729 spin_unlock_bh(&mcdi->async_lock); 730 731 return rc; 732 } 733 734 /** 735 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously 736 * @efx: NIC through which to issue the command 737 * @cmd: Command type number 738 * @inbuf: Command parameters 739 * @inlen: Length of command parameters, in bytes 740 * @outlen: Length to allocate for response buffer, in bytes 741 * @complete: Function to be called on completion or cancellation. 742 * @cookie: Arbitrary value to be passed to @complete. 743 * 744 * This function does not sleep and therefore may be called in atomic 745 * context. It will fail if event queues are disabled or if MCDI 746 * event completions have been disabled due to an error. 747 * 748 * If it succeeds, the @complete function will be called exactly once 749 * in atomic context, when one of the following occurs: 750 * (a) the completion event is received (in NAPI context) 751 * (b) event queues are disabled (in the process that disables them) 752 * (c) the request times-out (in timer context) 753 */ 754 int 755 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd, 756 const efx_dword_t *inbuf, size_t inlen, size_t outlen, 757 efx_mcdi_async_completer *complete, unsigned long cookie) 758 { 759 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete, 760 cookie, false); 761 } 762 763 int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd, 764 const efx_dword_t *inbuf, size_t inlen, 765 size_t outlen, efx_mcdi_async_completer *complete, 766 unsigned long cookie) 767 { 768 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete, 769 cookie, true); 770 } 771 772 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen, 773 efx_dword_t *outbuf, size_t outlen, 774 size_t *outlen_actual) 775 { 776 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 777 outlen_actual, false); 778 } 779 780 int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen, 781 efx_dword_t *outbuf, size_t outlen, 782 size_t *outlen_actual) 783 { 784 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 785 outlen_actual, true); 786 } 787 788 void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd, 789 size_t inlen, efx_dword_t *outbuf, 790 size_t outlen, int rc) 791 { 792 int code = 0, err_arg = 0; 793 794 if (outlen >= MC_CMD_ERR_CODE_OFST + 4) 795 code = MCDI_DWORD(outbuf, ERR_CODE); 796 if (outlen >= MC_CMD_ERR_ARG_OFST + 4) 797 err_arg = MCDI_DWORD(outbuf, ERR_ARG); 798 netif_err(efx, hw, efx->net_dev, 799 "MC command 0x%x inlen %d failed rc=%d (raw=%d) arg=%d\n", 800 cmd, (int)inlen, rc, code, err_arg); 801 } 802 803 /* Switch to polled MCDI completions. This can be called in various 804 * error conditions with various locks held, so it must be lockless. 805 * Caller is responsible for flushing asynchronous requests later. 806 */ 807 void efx_mcdi_mode_poll(struct efx_nic *efx) 808 { 809 struct efx_mcdi_iface *mcdi; 810 811 if (!efx->mcdi) 812 return; 813 814 mcdi = efx_mcdi(efx); 815 /* If already in polling mode, nothing to do. 816 * If in fail-fast state, don't switch to polled completion. 817 * FLR recovery will do that later. 818 */ 819 if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL) 820 return; 821 822 /* We can switch from event completion to polled completion, because 823 * mcdi requests are always completed in shared memory. We do this by 824 * switching the mode to POLL'd then completing the request. 825 * efx_mcdi_await_completion() will then call efx_mcdi_poll(). 826 * 827 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(), 828 * which efx_mcdi_complete_sync() provides for us. 829 */ 830 mcdi->mode = MCDI_MODE_POLL; 831 832 efx_mcdi_complete_sync(mcdi); 833 } 834 835 /* Flush any running or queued asynchronous requests, after event processing 836 * is stopped 837 */ 838 void efx_mcdi_flush_async(struct efx_nic *efx) 839 { 840 struct efx_mcdi_async_param *async, *next; 841 struct efx_mcdi_iface *mcdi; 842 843 if (!efx->mcdi) 844 return; 845 846 mcdi = efx_mcdi(efx); 847 848 /* We must be in poll or fail mode so no more requests can be queued */ 849 BUG_ON(mcdi->mode == MCDI_MODE_EVENTS); 850 851 del_timer_sync(&mcdi->async_timer); 852 853 /* If a request is still running, make sure we give the MC 854 * time to complete it so that the response won't overwrite our 855 * next request. 856 */ 857 if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) { 858 efx_mcdi_poll(efx); 859 mcdi->state = MCDI_STATE_QUIESCENT; 860 } 861 862 /* Nothing else will access the async list now, so it is safe 863 * to walk it without holding async_lock. If we hold it while 864 * calling a completer then lockdep may warn that we have 865 * acquired locks in the wrong order. 866 */ 867 list_for_each_entry_safe(async, next, &mcdi->async_list, list) { 868 async->complete(efx, async->cookie, -ENETDOWN, NULL, 0); 869 list_del(&async->list); 870 kfree(async); 871 } 872 } 873 874 void efx_mcdi_mode_event(struct efx_nic *efx) 875 { 876 struct efx_mcdi_iface *mcdi; 877 878 if (!efx->mcdi) 879 return; 880 881 mcdi = efx_mcdi(efx); 882 /* If already in event completion mode, nothing to do. 883 * If in fail-fast state, don't switch to event completion. FLR 884 * recovery will do that later. 885 */ 886 if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL) 887 return; 888 889 /* We can't switch from polled to event completion in the middle of a 890 * request, because the completion method is specified in the request. 891 * So acquire the interface to serialise the requestors. We don't need 892 * to acquire the iface_lock to change the mode here, but we do need a 893 * write memory barrier ensure that efx_mcdi_rpc() sees it, which 894 * efx_mcdi_acquire() provides. 895 */ 896 efx_mcdi_acquire_sync(mcdi); 897 mcdi->mode = MCDI_MODE_EVENTS; 898 efx_mcdi_release(mcdi); 899 } 900 901 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc) 902 { 903 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 904 905 /* If there is an outstanding MCDI request, it has been terminated 906 * either by a BADASSERT or REBOOT event. If the mcdi interface is 907 * in polled mode, then do nothing because the MC reboot handler will 908 * set the header correctly. However, if the mcdi interface is waiting 909 * for a CMDDONE event it won't receive it [and since all MCDI events 910 * are sent to the same queue, we can't be racing with 911 * efx_mcdi_ev_cpl()] 912 * 913 * If there is an outstanding asynchronous request, we can't 914 * complete it now (efx_mcdi_complete() would deadlock). The 915 * reset process will take care of this. 916 * 917 * There's a race here with efx_mcdi_send_request(), because 918 * we might receive a REBOOT event *before* the request has 919 * been copied out. In polled mode (during startup) this is 920 * irrelevant, because efx_mcdi_complete_sync() is ignored. In 921 * event mode, this condition is just an edge-case of 922 * receiving a REBOOT event after posting the MCDI 923 * request. Did the mc reboot before or after the copyout? The 924 * best we can do always is just return failure. 925 */ 926 spin_lock(&mcdi->iface_lock); 927 if (efx_mcdi_complete_sync(mcdi)) { 928 if (mcdi->mode == MCDI_MODE_EVENTS) { 929 mcdi->resprc = rc; 930 mcdi->resp_hdr_len = 0; 931 mcdi->resp_data_len = 0; 932 ++mcdi->credits; 933 } 934 } else { 935 int count; 936 937 /* Consume the status word since efx_mcdi_rpc_finish() won't */ 938 for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) { 939 if (efx_mcdi_poll_reboot(efx)) 940 break; 941 udelay(MCDI_STATUS_DELAY_US); 942 } 943 mcdi->new_epoch = true; 944 945 /* Nobody was waiting for an MCDI request, so trigger a reset */ 946 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 947 } 948 949 spin_unlock(&mcdi->iface_lock); 950 } 951 952 /* The MC is going down in to BIST mode. set the BIST flag to block 953 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset 954 * (which doesn't actually execute a reset, it waits for the controlling 955 * function to reset it). 956 */ 957 static void efx_mcdi_ev_bist(struct efx_nic *efx) 958 { 959 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 960 961 spin_lock(&mcdi->iface_lock); 962 efx->mc_bist_for_other_fn = true; 963 if (efx_mcdi_complete_sync(mcdi)) { 964 if (mcdi->mode == MCDI_MODE_EVENTS) { 965 mcdi->resprc = -EIO; 966 mcdi->resp_hdr_len = 0; 967 mcdi->resp_data_len = 0; 968 ++mcdi->credits; 969 } 970 } 971 mcdi->new_epoch = true; 972 efx_schedule_reset(efx, RESET_TYPE_MC_BIST); 973 spin_unlock(&mcdi->iface_lock); 974 } 975 976 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try 977 * to recover. 978 */ 979 static void efx_mcdi_abandon(struct efx_nic *efx) 980 { 981 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 982 983 if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL) 984 return; /* it had already been done */ 985 netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n"); 986 efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT); 987 } 988 989 /* Called from falcon_process_eventq for MCDI events */ 990 void efx_mcdi_process_event(struct efx_channel *channel, 991 efx_qword_t *event) 992 { 993 struct efx_nic *efx = channel->efx; 994 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE); 995 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA); 996 997 switch (code) { 998 case MCDI_EVENT_CODE_BADSSERT: 999 netif_err(efx, hw, efx->net_dev, 1000 "MC watchdog or assertion failure at 0x%x\n", data); 1001 efx_mcdi_ev_death(efx, -EINTR); 1002 break; 1003 1004 case MCDI_EVENT_CODE_PMNOTICE: 1005 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n"); 1006 break; 1007 1008 case MCDI_EVENT_CODE_CMDDONE: 1009 efx_mcdi_ev_cpl(efx, 1010 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ), 1011 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN), 1012 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO)); 1013 break; 1014 1015 case MCDI_EVENT_CODE_LINKCHANGE: 1016 efx_mcdi_process_link_change(efx, event); 1017 break; 1018 case MCDI_EVENT_CODE_SENSOREVT: 1019 efx_mcdi_sensor_event(efx, event); 1020 break; 1021 case MCDI_EVENT_CODE_SCHEDERR: 1022 netif_dbg(efx, hw, efx->net_dev, 1023 "MC Scheduler alert (0x%x)\n", data); 1024 break; 1025 case MCDI_EVENT_CODE_REBOOT: 1026 case MCDI_EVENT_CODE_MC_REBOOT: 1027 netif_info(efx, hw, efx->net_dev, "MC Reboot\n"); 1028 efx_mcdi_ev_death(efx, -EIO); 1029 break; 1030 case MCDI_EVENT_CODE_MC_BIST: 1031 netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n"); 1032 efx_mcdi_ev_bist(efx); 1033 break; 1034 case MCDI_EVENT_CODE_MAC_STATS_DMA: 1035 /* MAC stats are gather lazily. We can ignore this. */ 1036 break; 1037 case MCDI_EVENT_CODE_FLR: 1038 efx_sriov_flr(efx, MCDI_EVENT_FIELD(*event, FLR_VF)); 1039 break; 1040 case MCDI_EVENT_CODE_PTP_RX: 1041 case MCDI_EVENT_CODE_PTP_FAULT: 1042 case MCDI_EVENT_CODE_PTP_PPS: 1043 efx_ptp_event(efx, event); 1044 break; 1045 case MCDI_EVENT_CODE_PTP_TIME: 1046 efx_time_sync_event(channel, event); 1047 break; 1048 case MCDI_EVENT_CODE_TX_FLUSH: 1049 case MCDI_EVENT_CODE_RX_FLUSH: 1050 /* Two flush events will be sent: one to the same event 1051 * queue as completions, and one to event queue 0. 1052 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER 1053 * flag will be set, and we should ignore the event 1054 * because we want to wait for all completions. 1055 */ 1056 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN != 1057 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN); 1058 if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER)) 1059 efx_ef10_handle_drain_event(efx); 1060 break; 1061 case MCDI_EVENT_CODE_TX_ERR: 1062 case MCDI_EVENT_CODE_RX_ERR: 1063 netif_err(efx, hw, efx->net_dev, 1064 "%s DMA error (event: "EFX_QWORD_FMT")\n", 1065 code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX", 1066 EFX_QWORD_VAL(*event)); 1067 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR); 1068 break; 1069 default: 1070 netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n", 1071 code); 1072 } 1073 } 1074 1075 /************************************************************************** 1076 * 1077 * Specific request functions 1078 * 1079 ************************************************************************** 1080 */ 1081 1082 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len) 1083 { 1084 MCDI_DECLARE_BUF(outbuf, 1085 max(MC_CMD_GET_VERSION_OUT_LEN, 1086 MC_CMD_GET_CAPABILITIES_OUT_LEN)); 1087 size_t outlength; 1088 const __le16 *ver_words; 1089 size_t offset; 1090 int rc; 1091 1092 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0); 1093 rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0, 1094 outbuf, sizeof(outbuf), &outlength); 1095 if (rc) 1096 goto fail; 1097 if (outlength < MC_CMD_GET_VERSION_OUT_LEN) { 1098 rc = -EIO; 1099 goto fail; 1100 } 1101 1102 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION); 1103 offset = snprintf(buf, len, "%u.%u.%u.%u", 1104 le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]), 1105 le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3])); 1106 1107 /* EF10 may have multiple datapath firmware variants within a 1108 * single version. Report which variants are running. 1109 */ 1110 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) { 1111 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0); 1112 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0, 1113 outbuf, sizeof(outbuf), &outlength); 1114 if (rc || outlength < MC_CMD_GET_CAPABILITIES_OUT_LEN) 1115 offset += snprintf( 1116 buf + offset, len - offset, " rx? tx?"); 1117 else 1118 offset += snprintf( 1119 buf + offset, len - offset, " rx%x tx%x", 1120 MCDI_WORD(outbuf, 1121 GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID), 1122 MCDI_WORD(outbuf, 1123 GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID)); 1124 1125 /* It's theoretically possible for the string to exceed 31 1126 * characters, though in practice the first three version 1127 * components are short enough that this doesn't happen. 1128 */ 1129 if (WARN_ON(offset >= len)) 1130 buf[0] = 0; 1131 } 1132 1133 return; 1134 1135 fail: 1136 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1137 buf[0] = 0; 1138 } 1139 1140 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, 1141 bool *was_attached) 1142 { 1143 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN); 1144 MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN); 1145 size_t outlen; 1146 int rc; 1147 1148 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE, 1149 driver_operating ? 1 : 0); 1150 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1); 1151 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY); 1152 1153 rc = efx_mcdi_rpc(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf), 1154 outbuf, sizeof(outbuf), &outlen); 1155 if (rc) 1156 goto fail; 1157 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) { 1158 rc = -EIO; 1159 goto fail; 1160 } 1161 1162 if (driver_operating) { 1163 if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) { 1164 efx->mcdi->fn_flags = 1165 MCDI_DWORD(outbuf, 1166 DRV_ATTACH_EXT_OUT_FUNC_FLAGS); 1167 } else { 1168 /* Synthesise flags for Siena */ 1169 efx->mcdi->fn_flags = 1170 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL | 1171 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED | 1172 (efx_port_num(efx) == 0) << 1173 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY; 1174 } 1175 } 1176 1177 /* We currently assume we have control of the external link 1178 * and are completely trusted by firmware. Abort probing 1179 * if that's not true for this function. 1180 */ 1181 if (driver_operating && 1182 (efx->mcdi->fn_flags & 1183 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL | 1184 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED)) != 1185 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL | 1186 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED)) { 1187 netif_err(efx, probe, efx->net_dev, 1188 "This driver version only supports one function per port\n"); 1189 return -ENODEV; 1190 } 1191 1192 if (was_attached != NULL) 1193 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE); 1194 return 0; 1195 1196 fail: 1197 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1198 return rc; 1199 } 1200 1201 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address, 1202 u16 *fw_subtype_list, u32 *capabilities) 1203 { 1204 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX); 1205 size_t outlen, i; 1206 int port_num = efx_port_num(efx); 1207 int rc; 1208 1209 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0); 1210 /* we need __aligned(2) for ether_addr_copy */ 1211 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1); 1212 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1); 1213 1214 rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0, 1215 outbuf, sizeof(outbuf), &outlen); 1216 if (rc) 1217 goto fail; 1218 1219 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) { 1220 rc = -EIO; 1221 goto fail; 1222 } 1223 1224 if (mac_address) 1225 ether_addr_copy(mac_address, 1226 port_num ? 1227 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) : 1228 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0)); 1229 if (fw_subtype_list) { 1230 for (i = 0; 1231 i < MCDI_VAR_ARRAY_LEN(outlen, 1232 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST); 1233 i++) 1234 fw_subtype_list[i] = MCDI_ARRAY_WORD( 1235 outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i); 1236 for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++) 1237 fw_subtype_list[i] = 0; 1238 } 1239 if (capabilities) { 1240 if (port_num) 1241 *capabilities = MCDI_DWORD(outbuf, 1242 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1); 1243 else 1244 *capabilities = MCDI_DWORD(outbuf, 1245 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0); 1246 } 1247 1248 return 0; 1249 1250 fail: 1251 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n", 1252 __func__, rc, (int)outlen); 1253 1254 return rc; 1255 } 1256 1257 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq) 1258 { 1259 MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN); 1260 u32 dest = 0; 1261 int rc; 1262 1263 if (uart) 1264 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART; 1265 if (evq) 1266 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ; 1267 1268 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest); 1269 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq); 1270 1271 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0); 1272 1273 rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf), 1274 NULL, 0, NULL); 1275 return rc; 1276 } 1277 1278 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out) 1279 { 1280 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN); 1281 size_t outlen; 1282 int rc; 1283 1284 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0); 1285 1286 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0, 1287 outbuf, sizeof(outbuf), &outlen); 1288 if (rc) 1289 goto fail; 1290 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) { 1291 rc = -EIO; 1292 goto fail; 1293 } 1294 1295 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES); 1296 return 0; 1297 1298 fail: 1299 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", 1300 __func__, rc); 1301 return rc; 1302 } 1303 1304 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type, 1305 size_t *size_out, size_t *erase_size_out, 1306 bool *protected_out) 1307 { 1308 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN); 1309 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN); 1310 size_t outlen; 1311 int rc; 1312 1313 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type); 1314 1315 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf), 1316 outbuf, sizeof(outbuf), &outlen); 1317 if (rc) 1318 goto fail; 1319 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) { 1320 rc = -EIO; 1321 goto fail; 1322 } 1323 1324 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE); 1325 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE); 1326 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) & 1327 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN)); 1328 return 0; 1329 1330 fail: 1331 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1332 return rc; 1333 } 1334 1335 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type) 1336 { 1337 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN); 1338 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN); 1339 int rc; 1340 1341 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type); 1342 1343 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf), 1344 outbuf, sizeof(outbuf), NULL); 1345 if (rc) 1346 return rc; 1347 1348 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) { 1349 case MC_CMD_NVRAM_TEST_PASS: 1350 case MC_CMD_NVRAM_TEST_NOTSUPP: 1351 return 0; 1352 default: 1353 return -EIO; 1354 } 1355 } 1356 1357 int efx_mcdi_nvram_test_all(struct efx_nic *efx) 1358 { 1359 u32 nvram_types; 1360 unsigned int type; 1361 int rc; 1362 1363 rc = efx_mcdi_nvram_types(efx, &nvram_types); 1364 if (rc) 1365 goto fail1; 1366 1367 type = 0; 1368 while (nvram_types != 0) { 1369 if (nvram_types & 1) { 1370 rc = efx_mcdi_nvram_test(efx, type); 1371 if (rc) 1372 goto fail2; 1373 } 1374 type++; 1375 nvram_types >>= 1; 1376 } 1377 1378 return 0; 1379 1380 fail2: 1381 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n", 1382 __func__, type); 1383 fail1: 1384 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1385 return rc; 1386 } 1387 1388 static int efx_mcdi_read_assertion(struct efx_nic *efx) 1389 { 1390 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN); 1391 MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN); 1392 unsigned int flags, index; 1393 const char *reason; 1394 size_t outlen; 1395 int retry; 1396 int rc; 1397 1398 /* Attempt to read any stored assertion state before we reboot 1399 * the mcfw out of the assertion handler. Retry twice, once 1400 * because a boot-time assertion might cause this command to fail 1401 * with EINTR. And once again because GET_ASSERTS can race with 1402 * MC_CMD_REBOOT running on the other port. */ 1403 retry = 2; 1404 do { 1405 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1); 1406 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS, 1407 inbuf, MC_CMD_GET_ASSERTS_IN_LEN, 1408 outbuf, sizeof(outbuf), &outlen); 1409 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0); 1410 1411 if (rc) { 1412 efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS, 1413 MC_CMD_GET_ASSERTS_IN_LEN, outbuf, 1414 outlen, rc); 1415 return rc; 1416 } 1417 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN) 1418 return -EIO; 1419 1420 /* Print out any recorded assertion state */ 1421 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS); 1422 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS) 1423 return 0; 1424 1425 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL) 1426 ? "system-level assertion" 1427 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL) 1428 ? "thread-level assertion" 1429 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED) 1430 ? "watchdog reset" 1431 : "unknown assertion"; 1432 netif_err(efx, hw, efx->net_dev, 1433 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason, 1434 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS), 1435 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS)); 1436 1437 /* Print out the registers */ 1438 for (index = 0; 1439 index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM; 1440 index++) 1441 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n", 1442 1 + index, 1443 MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS, 1444 index)); 1445 1446 return 0; 1447 } 1448 1449 static void efx_mcdi_exit_assertion(struct efx_nic *efx) 1450 { 1451 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN); 1452 1453 /* If the MC is running debug firmware, it might now be 1454 * waiting for a debugger to attach, but we just want it to 1455 * reboot. We set a flag that makes the command a no-op if it 1456 * has already done so. We don't know what return code to 1457 * expect (0 or -EIO), so ignore it. 1458 */ 1459 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); 1460 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 1461 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION); 1462 (void) efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN, 1463 NULL, 0, NULL); 1464 } 1465 1466 int efx_mcdi_handle_assertion(struct efx_nic *efx) 1467 { 1468 int rc; 1469 1470 rc = efx_mcdi_read_assertion(efx); 1471 if (rc) 1472 return rc; 1473 1474 efx_mcdi_exit_assertion(efx); 1475 1476 return 0; 1477 } 1478 1479 void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode) 1480 { 1481 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN); 1482 int rc; 1483 1484 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF); 1485 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON); 1486 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT); 1487 1488 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0); 1489 1490 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode); 1491 1492 rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf), 1493 NULL, 0, NULL); 1494 } 1495 1496 static int efx_mcdi_reset_func(struct efx_nic *efx) 1497 { 1498 MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN); 1499 int rc; 1500 1501 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0); 1502 MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG, 1503 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1); 1504 rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf), 1505 NULL, 0, NULL); 1506 return rc; 1507 } 1508 1509 static int efx_mcdi_reset_mc(struct efx_nic *efx) 1510 { 1511 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN); 1512 int rc; 1513 1514 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); 1515 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0); 1516 rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf), 1517 NULL, 0, NULL); 1518 /* White is black, and up is down */ 1519 if (rc == -EIO) 1520 return 0; 1521 if (rc == 0) 1522 rc = -EIO; 1523 return rc; 1524 } 1525 1526 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason) 1527 { 1528 return RESET_TYPE_RECOVER_OR_ALL; 1529 } 1530 1531 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method) 1532 { 1533 int rc; 1534 1535 /* If MCDI is down, we can't handle_assertion */ 1536 if (method == RESET_TYPE_MCDI_TIMEOUT) { 1537 rc = pci_reset_function(efx->pci_dev); 1538 if (rc) 1539 return rc; 1540 /* Re-enable polled MCDI completion */ 1541 if (efx->mcdi) { 1542 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1543 mcdi->mode = MCDI_MODE_POLL; 1544 } 1545 return 0; 1546 } 1547 1548 /* Recover from a failed assertion pre-reset */ 1549 rc = efx_mcdi_handle_assertion(efx); 1550 if (rc) 1551 return rc; 1552 1553 if (method == RESET_TYPE_WORLD) 1554 return efx_mcdi_reset_mc(efx); 1555 else 1556 return efx_mcdi_reset_func(efx); 1557 } 1558 1559 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type, 1560 const u8 *mac, int *id_out) 1561 { 1562 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN); 1563 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN); 1564 size_t outlen; 1565 int rc; 1566 1567 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type); 1568 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE, 1569 MC_CMD_FILTER_MODE_SIMPLE); 1570 ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac); 1571 1572 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf), 1573 outbuf, sizeof(outbuf), &outlen); 1574 if (rc) 1575 goto fail; 1576 1577 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) { 1578 rc = -EIO; 1579 goto fail; 1580 } 1581 1582 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID); 1583 1584 return 0; 1585 1586 fail: 1587 *id_out = -1; 1588 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1589 return rc; 1590 1591 } 1592 1593 1594 int 1595 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out) 1596 { 1597 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out); 1598 } 1599 1600 1601 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out) 1602 { 1603 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN); 1604 size_t outlen; 1605 int rc; 1606 1607 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0, 1608 outbuf, sizeof(outbuf), &outlen); 1609 if (rc) 1610 goto fail; 1611 1612 if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) { 1613 rc = -EIO; 1614 goto fail; 1615 } 1616 1617 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID); 1618 1619 return 0; 1620 1621 fail: 1622 *id_out = -1; 1623 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1624 return rc; 1625 } 1626 1627 1628 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id) 1629 { 1630 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN); 1631 int rc; 1632 1633 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id); 1634 1635 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf), 1636 NULL, 0, NULL); 1637 return rc; 1638 } 1639 1640 int efx_mcdi_flush_rxqs(struct efx_nic *efx) 1641 { 1642 struct efx_channel *channel; 1643 struct efx_rx_queue *rx_queue; 1644 MCDI_DECLARE_BUF(inbuf, 1645 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS)); 1646 int rc, count; 1647 1648 BUILD_BUG_ON(EFX_MAX_CHANNELS > 1649 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM); 1650 1651 count = 0; 1652 efx_for_each_channel(channel, efx) { 1653 efx_for_each_channel_rx_queue(rx_queue, channel) { 1654 if (rx_queue->flush_pending) { 1655 rx_queue->flush_pending = false; 1656 atomic_dec(&efx->rxq_flush_pending); 1657 MCDI_SET_ARRAY_DWORD( 1658 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST, 1659 count, efx_rx_queue_index(rx_queue)); 1660 count++; 1661 } 1662 } 1663 } 1664 1665 rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf, 1666 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL); 1667 WARN_ON(rc < 0); 1668 1669 return rc; 1670 } 1671 1672 int efx_mcdi_wol_filter_reset(struct efx_nic *efx) 1673 { 1674 int rc; 1675 1676 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL); 1677 return rc; 1678 } 1679 1680 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled) 1681 { 1682 MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN); 1683 1684 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0); 1685 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type); 1686 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled); 1687 return efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf), 1688 NULL, 0, NULL); 1689 } 1690 1691 #ifdef CONFIG_SFC_MTD 1692 1693 #define EFX_MCDI_NVRAM_LEN_MAX 128 1694 1695 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type) 1696 { 1697 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN); 1698 int rc; 1699 1700 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type); 1701 1702 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0); 1703 1704 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf), 1705 NULL, 0, NULL); 1706 return rc; 1707 } 1708 1709 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type, 1710 loff_t offset, u8 *buffer, size_t length) 1711 { 1712 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN); 1713 MCDI_DECLARE_BUF(outbuf, 1714 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX)); 1715 size_t outlen; 1716 int rc; 1717 1718 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type); 1719 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset); 1720 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length); 1721 1722 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf), 1723 outbuf, sizeof(outbuf), &outlen); 1724 if (rc) 1725 return rc; 1726 1727 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length); 1728 return 0; 1729 } 1730 1731 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type, 1732 loff_t offset, const u8 *buffer, size_t length) 1733 { 1734 MCDI_DECLARE_BUF(inbuf, 1735 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX)); 1736 int rc; 1737 1738 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type); 1739 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset); 1740 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length); 1741 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length); 1742 1743 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0); 1744 1745 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf, 1746 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4), 1747 NULL, 0, NULL); 1748 return rc; 1749 } 1750 1751 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type, 1752 loff_t offset, size_t length) 1753 { 1754 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN); 1755 int rc; 1756 1757 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type); 1758 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset); 1759 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length); 1760 1761 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0); 1762 1763 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf), 1764 NULL, 0, NULL); 1765 return rc; 1766 } 1767 1768 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type) 1769 { 1770 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN); 1771 int rc; 1772 1773 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type); 1774 1775 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0); 1776 1777 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf), 1778 NULL, 0, NULL); 1779 return rc; 1780 } 1781 1782 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start, 1783 size_t len, size_t *retlen, u8 *buffer) 1784 { 1785 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 1786 struct efx_nic *efx = mtd->priv; 1787 loff_t offset = start; 1788 loff_t end = min_t(loff_t, start + len, mtd->size); 1789 size_t chunk; 1790 int rc = 0; 1791 1792 while (offset < end) { 1793 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); 1794 rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset, 1795 buffer, chunk); 1796 if (rc) 1797 goto out; 1798 offset += chunk; 1799 buffer += chunk; 1800 } 1801 out: 1802 *retlen = offset - start; 1803 return rc; 1804 } 1805 1806 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len) 1807 { 1808 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 1809 struct efx_nic *efx = mtd->priv; 1810 loff_t offset = start & ~((loff_t)(mtd->erasesize - 1)); 1811 loff_t end = min_t(loff_t, start + len, mtd->size); 1812 size_t chunk = part->common.mtd.erasesize; 1813 int rc = 0; 1814 1815 if (!part->updating) { 1816 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type); 1817 if (rc) 1818 goto out; 1819 part->updating = true; 1820 } 1821 1822 /* The MCDI interface can in fact do multiple erase blocks at once; 1823 * but erasing may be slow, so we make multiple calls here to avoid 1824 * tripping the MCDI RPC timeout. */ 1825 while (offset < end) { 1826 rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset, 1827 chunk); 1828 if (rc) 1829 goto out; 1830 offset += chunk; 1831 } 1832 out: 1833 return rc; 1834 } 1835 1836 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start, 1837 size_t len, size_t *retlen, const u8 *buffer) 1838 { 1839 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 1840 struct efx_nic *efx = mtd->priv; 1841 loff_t offset = start; 1842 loff_t end = min_t(loff_t, start + len, mtd->size); 1843 size_t chunk; 1844 int rc = 0; 1845 1846 if (!part->updating) { 1847 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type); 1848 if (rc) 1849 goto out; 1850 part->updating = true; 1851 } 1852 1853 while (offset < end) { 1854 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); 1855 rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset, 1856 buffer, chunk); 1857 if (rc) 1858 goto out; 1859 offset += chunk; 1860 buffer += chunk; 1861 } 1862 out: 1863 *retlen = offset - start; 1864 return rc; 1865 } 1866 1867 int efx_mcdi_mtd_sync(struct mtd_info *mtd) 1868 { 1869 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 1870 struct efx_nic *efx = mtd->priv; 1871 int rc = 0; 1872 1873 if (part->updating) { 1874 part->updating = false; 1875 rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type); 1876 } 1877 1878 return rc; 1879 } 1880 1881 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part) 1882 { 1883 struct efx_mcdi_mtd_partition *mcdi_part = 1884 container_of(part, struct efx_mcdi_mtd_partition, common); 1885 struct efx_nic *efx = part->mtd.priv; 1886 1887 snprintf(part->name, sizeof(part->name), "%s %s:%02x", 1888 efx->name, part->type_name, mcdi_part->fw_subtype); 1889 } 1890 1891 #endif /* CONFIG_SFC_MTD */ 1892