xref: /linux/drivers/net/ethernet/sfc/mcdi.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2008-2011 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9 
10 #include <linux/delay.h>
11 #include "net_driver.h"
12 #include "nic.h"
13 #include "io.h"
14 #include "regs.h"
15 #include "mcdi_pcol.h"
16 #include "phy.h"
17 
18 /**************************************************************************
19  *
20  * Management-Controller-to-Driver Interface
21  *
22  **************************************************************************
23  */
24 
25 #define MCDI_RPC_TIMEOUT       (10 * HZ)
26 
27 #define MCDI_PDU(efx)							\
28 	(efx_port_num(efx) ? MC_SMEM_P1_PDU_OFST : MC_SMEM_P0_PDU_OFST)
29 #define MCDI_DOORBELL(efx)						\
30 	(efx_port_num(efx) ? MC_SMEM_P1_DOORBELL_OFST : MC_SMEM_P0_DOORBELL_OFST)
31 #define MCDI_STATUS(efx)						\
32 	(efx_port_num(efx) ? MC_SMEM_P1_STATUS_OFST : MC_SMEM_P0_STATUS_OFST)
33 
34 /* A reboot/assertion causes the MCDI status word to be set after the
35  * command word is set or a REBOOT event is sent. If we notice a reboot
36  * via these mechanisms then wait 10ms for the status word to be set. */
37 #define MCDI_STATUS_DELAY_US		100
38 #define MCDI_STATUS_DELAY_COUNT		100
39 #define MCDI_STATUS_SLEEP_MS						\
40 	(MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
41 
42 #define SEQ_MASK							\
43 	EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
44 
45 static inline struct efx_mcdi_iface *efx_mcdi(struct efx_nic *efx)
46 {
47 	struct siena_nic_data *nic_data;
48 	EFX_BUG_ON_PARANOID(efx_nic_rev(efx) < EFX_REV_SIENA_A0);
49 	nic_data = efx->nic_data;
50 	return &nic_data->mcdi;
51 }
52 
53 void efx_mcdi_init(struct efx_nic *efx)
54 {
55 	struct efx_mcdi_iface *mcdi;
56 
57 	if (efx_nic_rev(efx) < EFX_REV_SIENA_A0)
58 		return;
59 
60 	mcdi = efx_mcdi(efx);
61 	init_waitqueue_head(&mcdi->wq);
62 	spin_lock_init(&mcdi->iface_lock);
63 	atomic_set(&mcdi->state, MCDI_STATE_QUIESCENT);
64 	mcdi->mode = MCDI_MODE_POLL;
65 
66 	(void) efx_mcdi_poll_reboot(efx);
67 }
68 
69 static void efx_mcdi_copyin(struct efx_nic *efx, unsigned cmd,
70 			    const u8 *inbuf, size_t inlen)
71 {
72 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
73 	unsigned pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
74 	unsigned doorbell = FR_CZ_MC_TREG_SMEM + MCDI_DOORBELL(efx);
75 	unsigned int i;
76 	efx_dword_t hdr;
77 	u32 xflags, seqno;
78 
79 	BUG_ON(atomic_read(&mcdi->state) == MCDI_STATE_QUIESCENT);
80 	BUG_ON(inlen & 3 || inlen >= MC_SMEM_PDU_LEN);
81 
82 	seqno = mcdi->seqno & SEQ_MASK;
83 	xflags = 0;
84 	if (mcdi->mode == MCDI_MODE_EVENTS)
85 		xflags |= MCDI_HEADER_XFLAGS_EVREQ;
86 
87 	EFX_POPULATE_DWORD_6(hdr,
88 			     MCDI_HEADER_RESPONSE, 0,
89 			     MCDI_HEADER_RESYNC, 1,
90 			     MCDI_HEADER_CODE, cmd,
91 			     MCDI_HEADER_DATALEN, inlen,
92 			     MCDI_HEADER_SEQ, seqno,
93 			     MCDI_HEADER_XFLAGS, xflags);
94 
95 	efx_writed(efx, &hdr, pdu);
96 
97 	for (i = 0; i < inlen; i += 4)
98 		_efx_writed(efx, *((__le32 *)(inbuf + i)), pdu + 4 + i);
99 
100 	/* Ensure the payload is written out before the header */
101 	wmb();
102 
103 	/* ring the doorbell with a distinctive value */
104 	_efx_writed(efx, (__force __le32) 0x45789abc, doorbell);
105 }
106 
107 static void efx_mcdi_copyout(struct efx_nic *efx, u8 *outbuf, size_t outlen)
108 {
109 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
110 	unsigned int pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
111 	int i;
112 
113 	BUG_ON(atomic_read(&mcdi->state) == MCDI_STATE_QUIESCENT);
114 	BUG_ON(outlen & 3 || outlen >= MC_SMEM_PDU_LEN);
115 
116 	for (i = 0; i < outlen; i += 4)
117 		*((__le32 *)(outbuf + i)) = _efx_readd(efx, pdu + 4 + i);
118 }
119 
120 static int efx_mcdi_poll(struct efx_nic *efx)
121 {
122 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
123 	unsigned long time, finish;
124 	unsigned int respseq, respcmd, error;
125 	unsigned int pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
126 	unsigned int rc, spins;
127 	efx_dword_t reg;
128 
129 	/* Check for a reboot atomically with respect to efx_mcdi_copyout() */
130 	rc = -efx_mcdi_poll_reboot(efx);
131 	if (rc)
132 		goto out;
133 
134 	/* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
135 	 * because generally mcdi responses are fast. After that, back off
136 	 * and poll once a jiffy (approximately)
137 	 */
138 	spins = TICK_USEC;
139 	finish = jiffies + MCDI_RPC_TIMEOUT;
140 
141 	while (1) {
142 		if (spins != 0) {
143 			--spins;
144 			udelay(1);
145 		} else {
146 			schedule_timeout_uninterruptible(1);
147 		}
148 
149 		time = jiffies;
150 
151 		rmb();
152 		efx_readd(efx, &reg, pdu);
153 
154 		/* All 1's indicates that shared memory is in reset (and is
155 		 * not a valid header). Wait for it to come out reset before
156 		 * completing the command */
157 		if (EFX_DWORD_FIELD(reg, EFX_DWORD_0) != 0xffffffff &&
158 		    EFX_DWORD_FIELD(reg, MCDI_HEADER_RESPONSE))
159 			break;
160 
161 		if (time_after(time, finish))
162 			return -ETIMEDOUT;
163 	}
164 
165 	mcdi->resplen = EFX_DWORD_FIELD(reg, MCDI_HEADER_DATALEN);
166 	respseq = EFX_DWORD_FIELD(reg, MCDI_HEADER_SEQ);
167 	respcmd = EFX_DWORD_FIELD(reg, MCDI_HEADER_CODE);
168 	error = EFX_DWORD_FIELD(reg, MCDI_HEADER_ERROR);
169 
170 	if (error && mcdi->resplen == 0) {
171 		netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
172 		rc = EIO;
173 	} else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
174 		netif_err(efx, hw, efx->net_dev,
175 			  "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
176 			  respseq, mcdi->seqno);
177 		rc = EIO;
178 	} else if (error) {
179 		efx_readd(efx, &reg, pdu + 4);
180 		switch (EFX_DWORD_FIELD(reg, EFX_DWORD_0)) {
181 #define TRANSLATE_ERROR(name)					\
182 		case MC_CMD_ERR_ ## name:			\
183 			rc = name;				\
184 			break
185 			TRANSLATE_ERROR(ENOENT);
186 			TRANSLATE_ERROR(EINTR);
187 			TRANSLATE_ERROR(EACCES);
188 			TRANSLATE_ERROR(EBUSY);
189 			TRANSLATE_ERROR(EINVAL);
190 			TRANSLATE_ERROR(EDEADLK);
191 			TRANSLATE_ERROR(ENOSYS);
192 			TRANSLATE_ERROR(ETIME);
193 #undef TRANSLATE_ERROR
194 		default:
195 			rc = EIO;
196 			break;
197 		}
198 	} else
199 		rc = 0;
200 
201 out:
202 	mcdi->resprc = rc;
203 	if (rc)
204 		mcdi->resplen = 0;
205 
206 	/* Return rc=0 like wait_event_timeout() */
207 	return 0;
208 }
209 
210 /* Test and clear MC-rebooted flag for this port/function; reset
211  * software state as necessary.
212  */
213 int efx_mcdi_poll_reboot(struct efx_nic *efx)
214 {
215 	unsigned int addr = FR_CZ_MC_TREG_SMEM + MCDI_STATUS(efx);
216 	efx_dword_t reg;
217 	uint32_t value;
218 
219 	if (efx_nic_rev(efx) < EFX_REV_SIENA_A0)
220 		return false;
221 
222 	efx_readd(efx, &reg, addr);
223 	value = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
224 
225 	if (value == 0)
226 		return 0;
227 
228 	/* MAC statistics have been cleared on the NIC; clear our copy
229 	 * so that efx_update_diff_stat() can continue to work.
230 	 */
231 	memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
232 
233 	EFX_ZERO_DWORD(reg);
234 	efx_writed(efx, &reg, addr);
235 
236 	if (value == MC_STATUS_DWORD_ASSERT)
237 		return -EINTR;
238 	else
239 		return -EIO;
240 }
241 
242 static void efx_mcdi_acquire(struct efx_mcdi_iface *mcdi)
243 {
244 	/* Wait until the interface becomes QUIESCENT and we win the race
245 	 * to mark it RUNNING. */
246 	wait_event(mcdi->wq,
247 		   atomic_cmpxchg(&mcdi->state,
248 				  MCDI_STATE_QUIESCENT,
249 				  MCDI_STATE_RUNNING)
250 		   == MCDI_STATE_QUIESCENT);
251 }
252 
253 static int efx_mcdi_await_completion(struct efx_nic *efx)
254 {
255 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
256 
257 	if (wait_event_timeout(
258 		    mcdi->wq,
259 		    atomic_read(&mcdi->state) == MCDI_STATE_COMPLETED,
260 		    MCDI_RPC_TIMEOUT) == 0)
261 		return -ETIMEDOUT;
262 
263 	/* Check if efx_mcdi_set_mode() switched us back to polled completions.
264 	 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
265 	 * completed the request first, then we'll just end up completing the
266 	 * request again, which is safe.
267 	 *
268 	 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
269 	 * wait_event_timeout() implicitly provides.
270 	 */
271 	if (mcdi->mode == MCDI_MODE_POLL)
272 		return efx_mcdi_poll(efx);
273 
274 	return 0;
275 }
276 
277 static bool efx_mcdi_complete(struct efx_mcdi_iface *mcdi)
278 {
279 	/* If the interface is RUNNING, then move to COMPLETED and wake any
280 	 * waiters. If the interface isn't in RUNNING then we've received a
281 	 * duplicate completion after we've already transitioned back to
282 	 * QUIESCENT. [A subsequent invocation would increment seqno, so would
283 	 * have failed the seqno check].
284 	 */
285 	if (atomic_cmpxchg(&mcdi->state,
286 			   MCDI_STATE_RUNNING,
287 			   MCDI_STATE_COMPLETED) == MCDI_STATE_RUNNING) {
288 		wake_up(&mcdi->wq);
289 		return true;
290 	}
291 
292 	return false;
293 }
294 
295 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
296 {
297 	atomic_set(&mcdi->state, MCDI_STATE_QUIESCENT);
298 	wake_up(&mcdi->wq);
299 }
300 
301 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
302 			    unsigned int datalen, unsigned int errno)
303 {
304 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
305 	bool wake = false;
306 
307 	spin_lock(&mcdi->iface_lock);
308 
309 	if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
310 		if (mcdi->credits)
311 			/* The request has been cancelled */
312 			--mcdi->credits;
313 		else
314 			netif_err(efx, hw, efx->net_dev,
315 				  "MC response mismatch tx seq 0x%x rx "
316 				  "seq 0x%x\n", seqno, mcdi->seqno);
317 	} else {
318 		mcdi->resprc = errno;
319 		mcdi->resplen = datalen;
320 
321 		wake = true;
322 	}
323 
324 	spin_unlock(&mcdi->iface_lock);
325 
326 	if (wake)
327 		efx_mcdi_complete(mcdi);
328 }
329 
330 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
331 		 const u8 *inbuf, size_t inlen, u8 *outbuf, size_t outlen,
332 		 size_t *outlen_actual)
333 {
334 	efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
335 	return efx_mcdi_rpc_finish(efx, cmd, inlen,
336 				   outbuf, outlen, outlen_actual);
337 }
338 
339 void efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd, const u8 *inbuf,
340 			size_t inlen)
341 {
342 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
343 
344 	BUG_ON(efx_nic_rev(efx) < EFX_REV_SIENA_A0);
345 
346 	efx_mcdi_acquire(mcdi);
347 
348 	/* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
349 	spin_lock_bh(&mcdi->iface_lock);
350 	++mcdi->seqno;
351 	spin_unlock_bh(&mcdi->iface_lock);
352 
353 	efx_mcdi_copyin(efx, cmd, inbuf, inlen);
354 }
355 
356 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
357 			u8 *outbuf, size_t outlen, size_t *outlen_actual)
358 {
359 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
360 	int rc;
361 
362 	BUG_ON(efx_nic_rev(efx) < EFX_REV_SIENA_A0);
363 
364 	if (mcdi->mode == MCDI_MODE_POLL)
365 		rc = efx_mcdi_poll(efx);
366 	else
367 		rc = efx_mcdi_await_completion(efx);
368 
369 	if (rc != 0) {
370 		/* Close the race with efx_mcdi_ev_cpl() executing just too late
371 		 * and completing a request we've just cancelled, by ensuring
372 		 * that the seqno check therein fails.
373 		 */
374 		spin_lock_bh(&mcdi->iface_lock);
375 		++mcdi->seqno;
376 		++mcdi->credits;
377 		spin_unlock_bh(&mcdi->iface_lock);
378 
379 		netif_err(efx, hw, efx->net_dev,
380 			  "MC command 0x%x inlen %d mode %d timed out\n",
381 			  cmd, (int)inlen, mcdi->mode);
382 	} else {
383 		size_t resplen;
384 
385 		/* At the very least we need a memory barrier here to ensure
386 		 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
387 		 * a spurious efx_mcdi_ev_cpl() running concurrently by
388 		 * acquiring the iface_lock. */
389 		spin_lock_bh(&mcdi->iface_lock);
390 		rc = -mcdi->resprc;
391 		resplen = mcdi->resplen;
392 		spin_unlock_bh(&mcdi->iface_lock);
393 
394 		if (rc == 0) {
395 			efx_mcdi_copyout(efx, outbuf,
396 					 min(outlen, mcdi->resplen + 3) & ~0x3);
397 			if (outlen_actual != NULL)
398 				*outlen_actual = resplen;
399 		} else if (cmd == MC_CMD_REBOOT && rc == -EIO)
400 			; /* Don't reset if MC_CMD_REBOOT returns EIO */
401 		else if (rc == -EIO || rc == -EINTR) {
402 			netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n",
403 				  -rc);
404 			efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
405 		} else
406 			netif_dbg(efx, hw, efx->net_dev,
407 				  "MC command 0x%x inlen %d failed rc=%d\n",
408 				  cmd, (int)inlen, -rc);
409 
410 		if (rc == -EIO || rc == -EINTR) {
411 			msleep(MCDI_STATUS_SLEEP_MS);
412 			efx_mcdi_poll_reboot(efx);
413 		}
414 	}
415 
416 	efx_mcdi_release(mcdi);
417 	return rc;
418 }
419 
420 void efx_mcdi_mode_poll(struct efx_nic *efx)
421 {
422 	struct efx_mcdi_iface *mcdi;
423 
424 	if (efx_nic_rev(efx) < EFX_REV_SIENA_A0)
425 		return;
426 
427 	mcdi = efx_mcdi(efx);
428 	if (mcdi->mode == MCDI_MODE_POLL)
429 		return;
430 
431 	/* We can switch from event completion to polled completion, because
432 	 * mcdi requests are always completed in shared memory. We do this by
433 	 * switching the mode to POLL'd then completing the request.
434 	 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
435 	 *
436 	 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
437 	 * which efx_mcdi_complete() provides for us.
438 	 */
439 	mcdi->mode = MCDI_MODE_POLL;
440 
441 	efx_mcdi_complete(mcdi);
442 }
443 
444 void efx_mcdi_mode_event(struct efx_nic *efx)
445 {
446 	struct efx_mcdi_iface *mcdi;
447 
448 	if (efx_nic_rev(efx) < EFX_REV_SIENA_A0)
449 		return;
450 
451 	mcdi = efx_mcdi(efx);
452 
453 	if (mcdi->mode == MCDI_MODE_EVENTS)
454 		return;
455 
456 	/* We can't switch from polled to event completion in the middle of a
457 	 * request, because the completion method is specified in the request.
458 	 * So acquire the interface to serialise the requestors. We don't need
459 	 * to acquire the iface_lock to change the mode here, but we do need a
460 	 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
461 	 * efx_mcdi_acquire() provides.
462 	 */
463 	efx_mcdi_acquire(mcdi);
464 	mcdi->mode = MCDI_MODE_EVENTS;
465 	efx_mcdi_release(mcdi);
466 }
467 
468 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
469 {
470 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
471 
472 	/* If there is an outstanding MCDI request, it has been terminated
473 	 * either by a BADASSERT or REBOOT event. If the mcdi interface is
474 	 * in polled mode, then do nothing because the MC reboot handler will
475 	 * set the header correctly. However, if the mcdi interface is waiting
476 	 * for a CMDDONE event it won't receive it [and since all MCDI events
477 	 * are sent to the same queue, we can't be racing with
478 	 * efx_mcdi_ev_cpl()]
479 	 *
480 	 * There's a race here with efx_mcdi_rpc(), because we might receive
481 	 * a REBOOT event *before* the request has been copied out. In polled
482 	 * mode (during startup) this is irrelevant, because efx_mcdi_complete()
483 	 * is ignored. In event mode, this condition is just an edge-case of
484 	 * receiving a REBOOT event after posting the MCDI request. Did the mc
485 	 * reboot before or after the copyout? The best we can do always is
486 	 * just return failure.
487 	 */
488 	spin_lock(&mcdi->iface_lock);
489 	if (efx_mcdi_complete(mcdi)) {
490 		if (mcdi->mode == MCDI_MODE_EVENTS) {
491 			mcdi->resprc = rc;
492 			mcdi->resplen = 0;
493 			++mcdi->credits;
494 		}
495 	} else {
496 		int count;
497 
498 		/* Nobody was waiting for an MCDI request, so trigger a reset */
499 		efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
500 
501 		/* Consume the status word since efx_mcdi_rpc_finish() won't */
502 		for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
503 			if (efx_mcdi_poll_reboot(efx))
504 				break;
505 			udelay(MCDI_STATUS_DELAY_US);
506 		}
507 	}
508 
509 	spin_unlock(&mcdi->iface_lock);
510 }
511 
512 static unsigned int efx_mcdi_event_link_speed[] = {
513 	[MCDI_EVENT_LINKCHANGE_SPEED_100M] = 100,
514 	[MCDI_EVENT_LINKCHANGE_SPEED_1G] = 1000,
515 	[MCDI_EVENT_LINKCHANGE_SPEED_10G] = 10000,
516 };
517 
518 
519 static void efx_mcdi_process_link_change(struct efx_nic *efx, efx_qword_t *ev)
520 {
521 	u32 flags, fcntl, speed, lpa;
522 
523 	speed = EFX_QWORD_FIELD(*ev, MCDI_EVENT_LINKCHANGE_SPEED);
524 	EFX_BUG_ON_PARANOID(speed >= ARRAY_SIZE(efx_mcdi_event_link_speed));
525 	speed = efx_mcdi_event_link_speed[speed];
526 
527 	flags = EFX_QWORD_FIELD(*ev, MCDI_EVENT_LINKCHANGE_LINK_FLAGS);
528 	fcntl = EFX_QWORD_FIELD(*ev, MCDI_EVENT_LINKCHANGE_FCNTL);
529 	lpa = EFX_QWORD_FIELD(*ev, MCDI_EVENT_LINKCHANGE_LP_CAP);
530 
531 	/* efx->link_state is only modified by efx_mcdi_phy_get_link(),
532 	 * which is only run after flushing the event queues. Therefore, it
533 	 * is safe to modify the link state outside of the mac_lock here.
534 	 */
535 	efx_mcdi_phy_decode_link(efx, &efx->link_state, speed, flags, fcntl);
536 
537 	efx_mcdi_phy_check_fcntl(efx, lpa);
538 
539 	efx_link_status_changed(efx);
540 }
541 
542 /* Called from  falcon_process_eventq for MCDI events */
543 void efx_mcdi_process_event(struct efx_channel *channel,
544 			    efx_qword_t *event)
545 {
546 	struct efx_nic *efx = channel->efx;
547 	int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
548 	u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
549 
550 	switch (code) {
551 	case MCDI_EVENT_CODE_BADSSERT:
552 		netif_err(efx, hw, efx->net_dev,
553 			  "MC watchdog or assertion failure at 0x%x\n", data);
554 		efx_mcdi_ev_death(efx, EINTR);
555 		break;
556 
557 	case MCDI_EVENT_CODE_PMNOTICE:
558 		netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
559 		break;
560 
561 	case MCDI_EVENT_CODE_CMDDONE:
562 		efx_mcdi_ev_cpl(efx,
563 				MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
564 				MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
565 				MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
566 		break;
567 
568 	case MCDI_EVENT_CODE_LINKCHANGE:
569 		efx_mcdi_process_link_change(efx, event);
570 		break;
571 	case MCDI_EVENT_CODE_SENSOREVT:
572 		efx_mcdi_sensor_event(efx, event);
573 		break;
574 	case MCDI_EVENT_CODE_SCHEDERR:
575 		netif_info(efx, hw, efx->net_dev,
576 			   "MC Scheduler error address=0x%x\n", data);
577 		break;
578 	case MCDI_EVENT_CODE_REBOOT:
579 		netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
580 		efx_mcdi_ev_death(efx, EIO);
581 		break;
582 	case MCDI_EVENT_CODE_MAC_STATS_DMA:
583 		/* MAC stats are gather lazily.  We can ignore this. */
584 		break;
585 	case MCDI_EVENT_CODE_FLR:
586 		efx_sriov_flr(efx, MCDI_EVENT_FIELD(*event, FLR_VF));
587 		break;
588 	case MCDI_EVENT_CODE_PTP_RX:
589 	case MCDI_EVENT_CODE_PTP_FAULT:
590 	case MCDI_EVENT_CODE_PTP_PPS:
591 		efx_ptp_event(efx, event);
592 		break;
593 
594 	default:
595 		netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n",
596 			  code);
597 	}
598 }
599 
600 /**************************************************************************
601  *
602  * Specific request functions
603  *
604  **************************************************************************
605  */
606 
607 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
608 {
609 	u8 outbuf[ALIGN(MC_CMD_GET_VERSION_OUT_LEN, 4)];
610 	size_t outlength;
611 	const __le16 *ver_words;
612 	int rc;
613 
614 	BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
615 
616 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
617 			  outbuf, sizeof(outbuf), &outlength);
618 	if (rc)
619 		goto fail;
620 
621 	if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
622 		rc = -EIO;
623 		goto fail;
624 	}
625 
626 	ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
627 	snprintf(buf, len, "%u.%u.%u.%u",
628 		 le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]),
629 		 le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3]));
630 	return;
631 
632 fail:
633 	netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
634 	buf[0] = 0;
635 }
636 
637 int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
638 			bool *was_attached)
639 {
640 	u8 inbuf[MC_CMD_DRV_ATTACH_IN_LEN];
641 	u8 outbuf[MC_CMD_DRV_ATTACH_OUT_LEN];
642 	size_t outlen;
643 	int rc;
644 
645 	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
646 		       driver_operating ? 1 : 0);
647 	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
648 
649 	rc = efx_mcdi_rpc(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
650 			  outbuf, sizeof(outbuf), &outlen);
651 	if (rc)
652 		goto fail;
653 	if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
654 		rc = -EIO;
655 		goto fail;
656 	}
657 
658 	if (was_attached != NULL)
659 		*was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
660 	return 0;
661 
662 fail:
663 	netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
664 	return rc;
665 }
666 
667 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
668 			   u16 *fw_subtype_list, u32 *capabilities)
669 {
670 	uint8_t outbuf[MC_CMD_GET_BOARD_CFG_OUT_LENMIN];
671 	size_t outlen, offset, i;
672 	int port_num = efx_port_num(efx);
673 	int rc;
674 
675 	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
676 
677 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
678 			  outbuf, sizeof(outbuf), &outlen);
679 	if (rc)
680 		goto fail;
681 
682 	if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
683 		rc = -EIO;
684 		goto fail;
685 	}
686 
687 	offset = (port_num)
688 		? MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST
689 		: MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST;
690 	if (mac_address)
691 		memcpy(mac_address, outbuf + offset, ETH_ALEN);
692 	if (fw_subtype_list) {
693 		/* Byte-swap and truncate or zero-pad as necessary */
694 		offset = MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_OFST;
695 		for (i = 0;
696 		     i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM;
697 		     i++) {
698 			fw_subtype_list[i] =
699 				(offset + 2 <= outlen) ?
700 				le16_to_cpup((__le16 *)(outbuf + offset)) : 0;
701 			offset += 2;
702 		}
703 	}
704 	if (capabilities) {
705 		if (port_num)
706 			*capabilities = MCDI_DWORD(outbuf,
707 					GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
708 		else
709 			*capabilities = MCDI_DWORD(outbuf,
710 					GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
711 	}
712 
713 	return 0;
714 
715 fail:
716 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
717 		  __func__, rc, (int)outlen);
718 
719 	return rc;
720 }
721 
722 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
723 {
724 	u8 inbuf[MC_CMD_LOG_CTRL_IN_LEN];
725 	u32 dest = 0;
726 	int rc;
727 
728 	if (uart)
729 		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
730 	if (evq)
731 		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
732 
733 	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
734 	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
735 
736 	BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
737 
738 	rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
739 			  NULL, 0, NULL);
740 	if (rc)
741 		goto fail;
742 
743 	return 0;
744 
745 fail:
746 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
747 	return rc;
748 }
749 
750 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
751 {
752 	u8 outbuf[MC_CMD_NVRAM_TYPES_OUT_LEN];
753 	size_t outlen;
754 	int rc;
755 
756 	BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
757 
758 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
759 			  outbuf, sizeof(outbuf), &outlen);
760 	if (rc)
761 		goto fail;
762 	if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
763 		rc = -EIO;
764 		goto fail;
765 	}
766 
767 	*nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
768 	return 0;
769 
770 fail:
771 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
772 		  __func__, rc);
773 	return rc;
774 }
775 
776 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
777 			size_t *size_out, size_t *erase_size_out,
778 			bool *protected_out)
779 {
780 	u8 inbuf[MC_CMD_NVRAM_INFO_IN_LEN];
781 	u8 outbuf[MC_CMD_NVRAM_INFO_OUT_LEN];
782 	size_t outlen;
783 	int rc;
784 
785 	MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
786 
787 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
788 			  outbuf, sizeof(outbuf), &outlen);
789 	if (rc)
790 		goto fail;
791 	if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
792 		rc = -EIO;
793 		goto fail;
794 	}
795 
796 	*size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
797 	*erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
798 	*protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
799 				(1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
800 	return 0;
801 
802 fail:
803 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
804 	return rc;
805 }
806 
807 int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
808 {
809 	u8 inbuf[MC_CMD_NVRAM_UPDATE_START_IN_LEN];
810 	int rc;
811 
812 	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
813 
814 	BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
815 
816 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
817 			  NULL, 0, NULL);
818 	if (rc)
819 		goto fail;
820 
821 	return 0;
822 
823 fail:
824 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
825 	return rc;
826 }
827 
828 int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
829 			loff_t offset, u8 *buffer, size_t length)
830 {
831 	u8 inbuf[MC_CMD_NVRAM_READ_IN_LEN];
832 	u8 outbuf[MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX)];
833 	size_t outlen;
834 	int rc;
835 
836 	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
837 	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
838 	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
839 
840 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
841 			  outbuf, sizeof(outbuf), &outlen);
842 	if (rc)
843 		goto fail;
844 
845 	memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
846 	return 0;
847 
848 fail:
849 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
850 	return rc;
851 }
852 
853 int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
854 			   loff_t offset, const u8 *buffer, size_t length)
855 {
856 	u8 inbuf[MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX)];
857 	int rc;
858 
859 	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
860 	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
861 	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
862 	memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
863 
864 	BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
865 
866 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
867 			  ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
868 			  NULL, 0, NULL);
869 	if (rc)
870 		goto fail;
871 
872 	return 0;
873 
874 fail:
875 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
876 	return rc;
877 }
878 
879 int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
880 			 loff_t offset, size_t length)
881 {
882 	u8 inbuf[MC_CMD_NVRAM_ERASE_IN_LEN];
883 	int rc;
884 
885 	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
886 	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
887 	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
888 
889 	BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
890 
891 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
892 			  NULL, 0, NULL);
893 	if (rc)
894 		goto fail;
895 
896 	return 0;
897 
898 fail:
899 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
900 	return rc;
901 }
902 
903 int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
904 {
905 	u8 inbuf[MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN];
906 	int rc;
907 
908 	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
909 
910 	BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0);
911 
912 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
913 			  NULL, 0, NULL);
914 	if (rc)
915 		goto fail;
916 
917 	return 0;
918 
919 fail:
920 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
921 	return rc;
922 }
923 
924 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
925 {
926 	u8 inbuf[MC_CMD_NVRAM_TEST_IN_LEN];
927 	u8 outbuf[MC_CMD_NVRAM_TEST_OUT_LEN];
928 	int rc;
929 
930 	MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
931 
932 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
933 			  outbuf, sizeof(outbuf), NULL);
934 	if (rc)
935 		return rc;
936 
937 	switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
938 	case MC_CMD_NVRAM_TEST_PASS:
939 	case MC_CMD_NVRAM_TEST_NOTSUPP:
940 		return 0;
941 	default:
942 		return -EIO;
943 	}
944 }
945 
946 int efx_mcdi_nvram_test_all(struct efx_nic *efx)
947 {
948 	u32 nvram_types;
949 	unsigned int type;
950 	int rc;
951 
952 	rc = efx_mcdi_nvram_types(efx, &nvram_types);
953 	if (rc)
954 		goto fail1;
955 
956 	type = 0;
957 	while (nvram_types != 0) {
958 		if (nvram_types & 1) {
959 			rc = efx_mcdi_nvram_test(efx, type);
960 			if (rc)
961 				goto fail2;
962 		}
963 		type++;
964 		nvram_types >>= 1;
965 	}
966 
967 	return 0;
968 
969 fail2:
970 	netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
971 		  __func__, type);
972 fail1:
973 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
974 	return rc;
975 }
976 
977 static int efx_mcdi_read_assertion(struct efx_nic *efx)
978 {
979 	u8 inbuf[MC_CMD_GET_ASSERTS_IN_LEN];
980 	u8 outbuf[MC_CMD_GET_ASSERTS_OUT_LEN];
981 	unsigned int flags, index, ofst;
982 	const char *reason;
983 	size_t outlen;
984 	int retry;
985 	int rc;
986 
987 	/* Attempt to read any stored assertion state before we reboot
988 	 * the mcfw out of the assertion handler. Retry twice, once
989 	 * because a boot-time assertion might cause this command to fail
990 	 * with EINTR. And once again because GET_ASSERTS can race with
991 	 * MC_CMD_REBOOT running on the other port. */
992 	retry = 2;
993 	do {
994 		MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
995 		rc = efx_mcdi_rpc(efx, MC_CMD_GET_ASSERTS,
996 				  inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
997 				  outbuf, sizeof(outbuf), &outlen);
998 	} while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
999 
1000 	if (rc)
1001 		return rc;
1002 	if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1003 		return -EIO;
1004 
1005 	/* Print out any recorded assertion state */
1006 	flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1007 	if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1008 		return 0;
1009 
1010 	reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1011 		? "system-level assertion"
1012 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1013 		? "thread-level assertion"
1014 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1015 		? "watchdog reset"
1016 		: "unknown assertion";
1017 	netif_err(efx, hw, efx->net_dev,
1018 		  "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1019 		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1020 		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1021 
1022 	/* Print out the registers */
1023 	ofst = MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_OFST;
1024 	for (index = 1; index < 32; index++) {
1025 		netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n", index,
1026 			MCDI_DWORD2(outbuf, ofst));
1027 		ofst += sizeof(efx_dword_t);
1028 	}
1029 
1030 	return 0;
1031 }
1032 
1033 static void efx_mcdi_exit_assertion(struct efx_nic *efx)
1034 {
1035 	u8 inbuf[MC_CMD_REBOOT_IN_LEN];
1036 
1037 	/* If the MC is running debug firmware, it might now be
1038 	 * waiting for a debugger to attach, but we just want it to
1039 	 * reboot.  We set a flag that makes the command a no-op if it
1040 	 * has already done so.  We don't know what return code to
1041 	 * expect (0 or -EIO), so ignore it.
1042 	 */
1043 	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1044 	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1045 		       MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1046 	(void) efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
1047 			    NULL, 0, NULL);
1048 }
1049 
1050 int efx_mcdi_handle_assertion(struct efx_nic *efx)
1051 {
1052 	int rc;
1053 
1054 	rc = efx_mcdi_read_assertion(efx);
1055 	if (rc)
1056 		return rc;
1057 
1058 	efx_mcdi_exit_assertion(efx);
1059 
1060 	return 0;
1061 }
1062 
1063 void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1064 {
1065 	u8 inbuf[MC_CMD_SET_ID_LED_IN_LEN];
1066 	int rc;
1067 
1068 	BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1069 	BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1070 	BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1071 
1072 	BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1073 
1074 	MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1075 
1076 	rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
1077 			  NULL, 0, NULL);
1078 	if (rc)
1079 		netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1080 			  __func__, rc);
1081 }
1082 
1083 int efx_mcdi_reset_port(struct efx_nic *efx)
1084 {
1085 	int rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, NULL, 0, NULL, 0, NULL);
1086 	if (rc)
1087 		netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1088 			  __func__, rc);
1089 	return rc;
1090 }
1091 
1092 int efx_mcdi_reset_mc(struct efx_nic *efx)
1093 {
1094 	u8 inbuf[MC_CMD_REBOOT_IN_LEN];
1095 	int rc;
1096 
1097 	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1098 	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1099 	rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1100 			  NULL, 0, NULL);
1101 	/* White is black, and up is down */
1102 	if (rc == -EIO)
1103 		return 0;
1104 	if (rc == 0)
1105 		rc = -EIO;
1106 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1107 	return rc;
1108 }
1109 
1110 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1111 				   const u8 *mac, int *id_out)
1112 {
1113 	u8 inbuf[MC_CMD_WOL_FILTER_SET_IN_LEN];
1114 	u8 outbuf[MC_CMD_WOL_FILTER_SET_OUT_LEN];
1115 	size_t outlen;
1116 	int rc;
1117 
1118 	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1119 	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1120 		       MC_CMD_FILTER_MODE_SIMPLE);
1121 	memcpy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac, ETH_ALEN);
1122 
1123 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
1124 			  outbuf, sizeof(outbuf), &outlen);
1125 	if (rc)
1126 		goto fail;
1127 
1128 	if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1129 		rc = -EIO;
1130 		goto fail;
1131 	}
1132 
1133 	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1134 
1135 	return 0;
1136 
1137 fail:
1138 	*id_out = -1;
1139 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1140 	return rc;
1141 
1142 }
1143 
1144 
1145 int
1146 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx,  const u8 *mac, int *id_out)
1147 {
1148 	return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1149 }
1150 
1151 
1152 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1153 {
1154 	u8 outbuf[MC_CMD_WOL_FILTER_GET_OUT_LEN];
1155 	size_t outlen;
1156 	int rc;
1157 
1158 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
1159 			  outbuf, sizeof(outbuf), &outlen);
1160 	if (rc)
1161 		goto fail;
1162 
1163 	if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
1164 		rc = -EIO;
1165 		goto fail;
1166 	}
1167 
1168 	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
1169 
1170 	return 0;
1171 
1172 fail:
1173 	*id_out = -1;
1174 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1175 	return rc;
1176 }
1177 
1178 
1179 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
1180 {
1181 	u8 inbuf[MC_CMD_WOL_FILTER_REMOVE_IN_LEN];
1182 	int rc;
1183 
1184 	MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
1185 
1186 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
1187 			  NULL, 0, NULL);
1188 	if (rc)
1189 		goto fail;
1190 
1191 	return 0;
1192 
1193 fail:
1194 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1195 	return rc;
1196 }
1197 
1198 int efx_mcdi_flush_rxqs(struct efx_nic *efx)
1199 {
1200 	struct efx_channel *channel;
1201 	struct efx_rx_queue *rx_queue;
1202 	__le32 *qid;
1203 	int rc, count;
1204 
1205 	BUILD_BUG_ON(EFX_MAX_CHANNELS >
1206 		     MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
1207 
1208 	qid = kmalloc(EFX_MAX_CHANNELS * sizeof(*qid), GFP_KERNEL);
1209 	if (qid == NULL)
1210 		return -ENOMEM;
1211 
1212 	count = 0;
1213 	efx_for_each_channel(channel, efx) {
1214 		efx_for_each_channel_rx_queue(rx_queue, channel) {
1215 			if (rx_queue->flush_pending) {
1216 				rx_queue->flush_pending = false;
1217 				atomic_dec(&efx->rxq_flush_pending);
1218 				qid[count++] = cpu_to_le32(
1219 					efx_rx_queue_index(rx_queue));
1220 			}
1221 		}
1222 	}
1223 
1224 	rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, (u8 *)qid,
1225 			  count * sizeof(*qid), NULL, 0, NULL);
1226 	WARN_ON(rc < 0);
1227 
1228 	kfree(qid);
1229 
1230 	return rc;
1231 }
1232 
1233 int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
1234 {
1235 	int rc;
1236 
1237 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
1238 	if (rc)
1239 		goto fail;
1240 
1241 	return 0;
1242 
1243 fail:
1244 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1245 	return rc;
1246 }
1247 
1248