1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2008-2013 Solarflare Communications Inc. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 as published 7 * by the Free Software Foundation, incorporated herein by reference. 8 */ 9 10 #include <linux/delay.h> 11 #include <linux/moduleparam.h> 12 #include <linux/atomic.h> 13 #include "net_driver.h" 14 #include "nic.h" 15 #include "io.h" 16 #include "farch_regs.h" 17 #include "mcdi_pcol.h" 18 #include "phy.h" 19 20 /************************************************************************** 21 * 22 * Management-Controller-to-Driver Interface 23 * 24 ************************************************************************** 25 */ 26 27 #define MCDI_RPC_TIMEOUT (10 * HZ) 28 29 /* A reboot/assertion causes the MCDI status word to be set after the 30 * command word is set or a REBOOT event is sent. If we notice a reboot 31 * via these mechanisms then wait 250ms for the status word to be set. 32 */ 33 #define MCDI_STATUS_DELAY_US 100 34 #define MCDI_STATUS_DELAY_COUNT 2500 35 #define MCDI_STATUS_SLEEP_MS \ 36 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000) 37 38 #define SEQ_MASK \ 39 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ)) 40 41 struct efx_mcdi_async_param { 42 struct list_head list; 43 unsigned int cmd; 44 size_t inlen; 45 size_t outlen; 46 bool quiet; 47 efx_mcdi_async_completer *complete; 48 unsigned long cookie; 49 /* followed by request/response buffer */ 50 }; 51 52 static void efx_mcdi_timeout_async(unsigned long context); 53 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, 54 bool *was_attached_out); 55 static bool efx_mcdi_poll_once(struct efx_nic *efx); 56 static void efx_mcdi_abandon(struct efx_nic *efx); 57 58 #ifdef CONFIG_SFC_MCDI_LOGGING 59 static bool mcdi_logging_default; 60 module_param(mcdi_logging_default, bool, 0644); 61 MODULE_PARM_DESC(mcdi_logging_default, 62 "Enable MCDI logging on newly-probed functions"); 63 #endif 64 65 int efx_mcdi_init(struct efx_nic *efx) 66 { 67 struct efx_mcdi_iface *mcdi; 68 bool already_attached; 69 int rc = -ENOMEM; 70 71 efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL); 72 if (!efx->mcdi) 73 goto fail; 74 75 mcdi = efx_mcdi(efx); 76 mcdi->efx = efx; 77 #ifdef CONFIG_SFC_MCDI_LOGGING 78 /* consuming code assumes buffer is page-sized */ 79 mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL); 80 if (!mcdi->logging_buffer) 81 goto fail1; 82 mcdi->logging_enabled = mcdi_logging_default; 83 #endif 84 init_waitqueue_head(&mcdi->wq); 85 init_waitqueue_head(&mcdi->proxy_rx_wq); 86 spin_lock_init(&mcdi->iface_lock); 87 mcdi->state = MCDI_STATE_QUIESCENT; 88 mcdi->mode = MCDI_MODE_POLL; 89 spin_lock_init(&mcdi->async_lock); 90 INIT_LIST_HEAD(&mcdi->async_list); 91 setup_timer(&mcdi->async_timer, efx_mcdi_timeout_async, 92 (unsigned long)mcdi); 93 94 (void) efx_mcdi_poll_reboot(efx); 95 mcdi->new_epoch = true; 96 97 /* Recover from a failed assertion before probing */ 98 rc = efx_mcdi_handle_assertion(efx); 99 if (rc) 100 goto fail2; 101 102 /* Let the MC (and BMC, if this is a LOM) know that the driver 103 * is loaded. We should do this before we reset the NIC. 104 */ 105 rc = efx_mcdi_drv_attach(efx, true, &already_attached); 106 if (rc) { 107 netif_err(efx, probe, efx->net_dev, 108 "Unable to register driver with MCPU\n"); 109 goto fail2; 110 } 111 if (already_attached) 112 /* Not a fatal error */ 113 netif_err(efx, probe, efx->net_dev, 114 "Host already registered with MCPU\n"); 115 116 if (efx->mcdi->fn_flags & 117 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) 118 efx->primary = efx; 119 120 return 0; 121 fail2: 122 #ifdef CONFIG_SFC_MCDI_LOGGING 123 free_page((unsigned long)mcdi->logging_buffer); 124 fail1: 125 #endif 126 kfree(efx->mcdi); 127 efx->mcdi = NULL; 128 fail: 129 return rc; 130 } 131 132 void efx_mcdi_fini(struct efx_nic *efx) 133 { 134 if (!efx->mcdi) 135 return; 136 137 BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT); 138 139 /* Relinquish the device (back to the BMC, if this is a LOM) */ 140 efx_mcdi_drv_attach(efx, false, NULL); 141 142 #ifdef CONFIG_SFC_MCDI_LOGGING 143 free_page((unsigned long)efx->mcdi->iface.logging_buffer); 144 #endif 145 146 kfree(efx->mcdi); 147 } 148 149 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd, 150 const efx_dword_t *inbuf, size_t inlen) 151 { 152 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 153 #ifdef CONFIG_SFC_MCDI_LOGGING 154 char *buf = mcdi->logging_buffer; /* page-sized */ 155 #endif 156 efx_dword_t hdr[2]; 157 size_t hdr_len; 158 u32 xflags, seqno; 159 160 BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT); 161 162 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */ 163 spin_lock_bh(&mcdi->iface_lock); 164 ++mcdi->seqno; 165 spin_unlock_bh(&mcdi->iface_lock); 166 167 seqno = mcdi->seqno & SEQ_MASK; 168 xflags = 0; 169 if (mcdi->mode == MCDI_MODE_EVENTS) 170 xflags |= MCDI_HEADER_XFLAGS_EVREQ; 171 172 if (efx->type->mcdi_max_ver == 1) { 173 /* MCDI v1 */ 174 EFX_POPULATE_DWORD_7(hdr[0], 175 MCDI_HEADER_RESPONSE, 0, 176 MCDI_HEADER_RESYNC, 1, 177 MCDI_HEADER_CODE, cmd, 178 MCDI_HEADER_DATALEN, inlen, 179 MCDI_HEADER_SEQ, seqno, 180 MCDI_HEADER_XFLAGS, xflags, 181 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch); 182 hdr_len = 4; 183 } else { 184 /* MCDI v2 */ 185 BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2); 186 EFX_POPULATE_DWORD_7(hdr[0], 187 MCDI_HEADER_RESPONSE, 0, 188 MCDI_HEADER_RESYNC, 1, 189 MCDI_HEADER_CODE, MC_CMD_V2_EXTN, 190 MCDI_HEADER_DATALEN, 0, 191 MCDI_HEADER_SEQ, seqno, 192 MCDI_HEADER_XFLAGS, xflags, 193 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch); 194 EFX_POPULATE_DWORD_2(hdr[1], 195 MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd, 196 MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen); 197 hdr_len = 8; 198 } 199 200 #ifdef CONFIG_SFC_MCDI_LOGGING 201 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) { 202 int bytes = 0; 203 int i; 204 /* Lengths should always be a whole number of dwords, so scream 205 * if they're not. 206 */ 207 WARN_ON_ONCE(hdr_len % 4); 208 WARN_ON_ONCE(inlen % 4); 209 210 /* We own the logging buffer, as only one MCDI can be in 211 * progress on a NIC at any one time. So no need for locking. 212 */ 213 for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++) 214 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes, 215 " %08x", le32_to_cpu(hdr[i].u32[0])); 216 217 for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++) 218 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes, 219 " %08x", le32_to_cpu(inbuf[i].u32[0])); 220 221 netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf); 222 } 223 #endif 224 225 efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen); 226 227 mcdi->new_epoch = false; 228 } 229 230 static int efx_mcdi_errno(unsigned int mcdi_err) 231 { 232 switch (mcdi_err) { 233 case 0: 234 return 0; 235 #define TRANSLATE_ERROR(name) \ 236 case MC_CMD_ERR_ ## name: \ 237 return -name; 238 TRANSLATE_ERROR(EPERM); 239 TRANSLATE_ERROR(ENOENT); 240 TRANSLATE_ERROR(EINTR); 241 TRANSLATE_ERROR(EAGAIN); 242 TRANSLATE_ERROR(EACCES); 243 TRANSLATE_ERROR(EBUSY); 244 TRANSLATE_ERROR(EINVAL); 245 TRANSLATE_ERROR(EDEADLK); 246 TRANSLATE_ERROR(ENOSYS); 247 TRANSLATE_ERROR(ETIME); 248 TRANSLATE_ERROR(EALREADY); 249 TRANSLATE_ERROR(ENOSPC); 250 #undef TRANSLATE_ERROR 251 case MC_CMD_ERR_ENOTSUP: 252 return -EOPNOTSUPP; 253 case MC_CMD_ERR_ALLOC_FAIL: 254 return -ENOBUFS; 255 case MC_CMD_ERR_MAC_EXIST: 256 return -EADDRINUSE; 257 default: 258 return -EPROTO; 259 } 260 } 261 262 static void efx_mcdi_read_response_header(struct efx_nic *efx) 263 { 264 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 265 unsigned int respseq, respcmd, error; 266 #ifdef CONFIG_SFC_MCDI_LOGGING 267 char *buf = mcdi->logging_buffer; /* page-sized */ 268 #endif 269 efx_dword_t hdr; 270 271 efx->type->mcdi_read_response(efx, &hdr, 0, 4); 272 respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ); 273 respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE); 274 error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR); 275 276 if (respcmd != MC_CMD_V2_EXTN) { 277 mcdi->resp_hdr_len = 4; 278 mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN); 279 } else { 280 efx->type->mcdi_read_response(efx, &hdr, 4, 4); 281 mcdi->resp_hdr_len = 8; 282 mcdi->resp_data_len = 283 EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN); 284 } 285 286 #ifdef CONFIG_SFC_MCDI_LOGGING 287 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) { 288 size_t hdr_len, data_len; 289 int bytes = 0; 290 int i; 291 292 WARN_ON_ONCE(mcdi->resp_hdr_len % 4); 293 hdr_len = mcdi->resp_hdr_len / 4; 294 /* MCDI_DECLARE_BUF ensures that underlying buffer is padded 295 * to dword size, and the MCDI buffer is always dword size 296 */ 297 data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4); 298 299 /* We own the logging buffer, as only one MCDI can be in 300 * progress on a NIC at any one time. So no need for locking. 301 */ 302 for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) { 303 efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4); 304 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes, 305 " %08x", le32_to_cpu(hdr.u32[0])); 306 } 307 308 for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) { 309 efx->type->mcdi_read_response(efx, &hdr, 310 mcdi->resp_hdr_len + (i * 4), 4); 311 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes, 312 " %08x", le32_to_cpu(hdr.u32[0])); 313 } 314 315 netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf); 316 } 317 #endif 318 319 mcdi->resprc_raw = 0; 320 if (error && mcdi->resp_data_len == 0) { 321 netif_err(efx, hw, efx->net_dev, "MC rebooted\n"); 322 mcdi->resprc = -EIO; 323 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) { 324 netif_err(efx, hw, efx->net_dev, 325 "MC response mismatch tx seq 0x%x rx seq 0x%x\n", 326 respseq, mcdi->seqno); 327 mcdi->resprc = -EIO; 328 } else if (error) { 329 efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4); 330 mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0); 331 mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw); 332 } else { 333 mcdi->resprc = 0; 334 } 335 } 336 337 static bool efx_mcdi_poll_once(struct efx_nic *efx) 338 { 339 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 340 341 rmb(); 342 if (!efx->type->mcdi_poll_response(efx)) 343 return false; 344 345 spin_lock_bh(&mcdi->iface_lock); 346 efx_mcdi_read_response_header(efx); 347 spin_unlock_bh(&mcdi->iface_lock); 348 349 return true; 350 } 351 352 static int efx_mcdi_poll(struct efx_nic *efx) 353 { 354 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 355 unsigned long time, finish; 356 unsigned int spins; 357 int rc; 358 359 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */ 360 rc = efx_mcdi_poll_reboot(efx); 361 if (rc) { 362 spin_lock_bh(&mcdi->iface_lock); 363 mcdi->resprc = rc; 364 mcdi->resp_hdr_len = 0; 365 mcdi->resp_data_len = 0; 366 spin_unlock_bh(&mcdi->iface_lock); 367 return 0; 368 } 369 370 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy, 371 * because generally mcdi responses are fast. After that, back off 372 * and poll once a jiffy (approximately) 373 */ 374 spins = TICK_USEC; 375 finish = jiffies + MCDI_RPC_TIMEOUT; 376 377 while (1) { 378 if (spins != 0) { 379 --spins; 380 udelay(1); 381 } else { 382 schedule_timeout_uninterruptible(1); 383 } 384 385 time = jiffies; 386 387 if (efx_mcdi_poll_once(efx)) 388 break; 389 390 if (time_after(time, finish)) 391 return -ETIMEDOUT; 392 } 393 394 /* Return rc=0 like wait_event_timeout() */ 395 return 0; 396 } 397 398 /* Test and clear MC-rebooted flag for this port/function; reset 399 * software state as necessary. 400 */ 401 int efx_mcdi_poll_reboot(struct efx_nic *efx) 402 { 403 if (!efx->mcdi) 404 return 0; 405 406 return efx->type->mcdi_poll_reboot(efx); 407 } 408 409 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi) 410 { 411 return cmpxchg(&mcdi->state, 412 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) == 413 MCDI_STATE_QUIESCENT; 414 } 415 416 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi) 417 { 418 /* Wait until the interface becomes QUIESCENT and we win the race 419 * to mark it RUNNING_SYNC. 420 */ 421 wait_event(mcdi->wq, 422 cmpxchg(&mcdi->state, 423 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) == 424 MCDI_STATE_QUIESCENT); 425 } 426 427 static int efx_mcdi_await_completion(struct efx_nic *efx) 428 { 429 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 430 431 if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED, 432 MCDI_RPC_TIMEOUT) == 0) 433 return -ETIMEDOUT; 434 435 /* Check if efx_mcdi_set_mode() switched us back to polled completions. 436 * In which case, poll for completions directly. If efx_mcdi_ev_cpl() 437 * completed the request first, then we'll just end up completing the 438 * request again, which is safe. 439 * 440 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which 441 * wait_event_timeout() implicitly provides. 442 */ 443 if (mcdi->mode == MCDI_MODE_POLL) 444 return efx_mcdi_poll(efx); 445 446 return 0; 447 } 448 449 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the 450 * requester. Return whether this was done. Does not take any locks. 451 */ 452 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi) 453 { 454 if (cmpxchg(&mcdi->state, 455 MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) == 456 MCDI_STATE_RUNNING_SYNC) { 457 wake_up(&mcdi->wq); 458 return true; 459 } 460 461 return false; 462 } 463 464 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi) 465 { 466 if (mcdi->mode == MCDI_MODE_EVENTS) { 467 struct efx_mcdi_async_param *async; 468 struct efx_nic *efx = mcdi->efx; 469 470 /* Process the asynchronous request queue */ 471 spin_lock_bh(&mcdi->async_lock); 472 async = list_first_entry_or_null( 473 &mcdi->async_list, struct efx_mcdi_async_param, list); 474 if (async) { 475 mcdi->state = MCDI_STATE_RUNNING_ASYNC; 476 efx_mcdi_send_request(efx, async->cmd, 477 (const efx_dword_t *)(async + 1), 478 async->inlen); 479 mod_timer(&mcdi->async_timer, 480 jiffies + MCDI_RPC_TIMEOUT); 481 } 482 spin_unlock_bh(&mcdi->async_lock); 483 484 if (async) 485 return; 486 } 487 488 mcdi->state = MCDI_STATE_QUIESCENT; 489 wake_up(&mcdi->wq); 490 } 491 492 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the 493 * asynchronous completion function, and release the interface. 494 * Return whether this was done. Must be called in bh-disabled 495 * context. Will take iface_lock and async_lock. 496 */ 497 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout) 498 { 499 struct efx_nic *efx = mcdi->efx; 500 struct efx_mcdi_async_param *async; 501 size_t hdr_len, data_len, err_len; 502 efx_dword_t *outbuf; 503 MCDI_DECLARE_BUF_ERR(errbuf); 504 int rc; 505 506 if (cmpxchg(&mcdi->state, 507 MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) != 508 MCDI_STATE_RUNNING_ASYNC) 509 return false; 510 511 spin_lock(&mcdi->iface_lock); 512 if (timeout) { 513 /* Ensure that if the completion event arrives later, 514 * the seqno check in efx_mcdi_ev_cpl() will fail 515 */ 516 ++mcdi->seqno; 517 ++mcdi->credits; 518 rc = -ETIMEDOUT; 519 hdr_len = 0; 520 data_len = 0; 521 } else { 522 rc = mcdi->resprc; 523 hdr_len = mcdi->resp_hdr_len; 524 data_len = mcdi->resp_data_len; 525 } 526 spin_unlock(&mcdi->iface_lock); 527 528 /* Stop the timer. In case the timer function is running, we 529 * must wait for it to return so that there is no possibility 530 * of it aborting the next request. 531 */ 532 if (!timeout) 533 del_timer_sync(&mcdi->async_timer); 534 535 spin_lock(&mcdi->async_lock); 536 async = list_first_entry(&mcdi->async_list, 537 struct efx_mcdi_async_param, list); 538 list_del(&async->list); 539 spin_unlock(&mcdi->async_lock); 540 541 outbuf = (efx_dword_t *)(async + 1); 542 efx->type->mcdi_read_response(efx, outbuf, hdr_len, 543 min(async->outlen, data_len)); 544 if (!timeout && rc && !async->quiet) { 545 err_len = min(sizeof(errbuf), data_len); 546 efx->type->mcdi_read_response(efx, errbuf, hdr_len, 547 sizeof(errbuf)); 548 efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf, 549 err_len, rc); 550 } 551 async->complete(efx, async->cookie, rc, outbuf, data_len); 552 kfree(async); 553 554 efx_mcdi_release(mcdi); 555 556 return true; 557 } 558 559 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno, 560 unsigned int datalen, unsigned int mcdi_err) 561 { 562 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 563 bool wake = false; 564 565 spin_lock(&mcdi->iface_lock); 566 567 if ((seqno ^ mcdi->seqno) & SEQ_MASK) { 568 if (mcdi->credits) 569 /* The request has been cancelled */ 570 --mcdi->credits; 571 else 572 netif_err(efx, hw, efx->net_dev, 573 "MC response mismatch tx seq 0x%x rx " 574 "seq 0x%x\n", seqno, mcdi->seqno); 575 } else { 576 if (efx->type->mcdi_max_ver >= 2) { 577 /* MCDI v2 responses don't fit in an event */ 578 efx_mcdi_read_response_header(efx); 579 } else { 580 mcdi->resprc = efx_mcdi_errno(mcdi_err); 581 mcdi->resp_hdr_len = 4; 582 mcdi->resp_data_len = datalen; 583 } 584 585 wake = true; 586 } 587 588 spin_unlock(&mcdi->iface_lock); 589 590 if (wake) { 591 if (!efx_mcdi_complete_async(mcdi, false)) 592 (void) efx_mcdi_complete_sync(mcdi); 593 594 /* If the interface isn't RUNNING_ASYNC or 595 * RUNNING_SYNC then we've received a duplicate 596 * completion after we've already transitioned back to 597 * QUIESCENT. [A subsequent invocation would increment 598 * seqno, so would have failed the seqno check]. 599 */ 600 } 601 } 602 603 static void efx_mcdi_timeout_async(unsigned long context) 604 { 605 struct efx_mcdi_iface *mcdi = (struct efx_mcdi_iface *)context; 606 607 efx_mcdi_complete_async(mcdi, true); 608 } 609 610 static int 611 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen) 612 { 613 if (efx->type->mcdi_max_ver < 0 || 614 (efx->type->mcdi_max_ver < 2 && 615 cmd > MC_CMD_CMD_SPACE_ESCAPE_7)) 616 return -EINVAL; 617 618 if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 || 619 (efx->type->mcdi_max_ver < 2 && 620 inlen > MCDI_CTL_SDU_LEN_MAX_V1)) 621 return -EMSGSIZE; 622 623 return 0; 624 } 625 626 static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx, 627 size_t hdr_len, size_t data_len, 628 u32 *proxy_handle) 629 { 630 MCDI_DECLARE_BUF_ERR(testbuf); 631 const size_t buflen = sizeof(testbuf); 632 633 if (!proxy_handle || data_len < buflen) 634 return false; 635 636 efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen); 637 if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) { 638 *proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE); 639 return true; 640 } 641 642 return false; 643 } 644 645 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd, 646 size_t inlen, 647 efx_dword_t *outbuf, size_t outlen, 648 size_t *outlen_actual, bool quiet, 649 u32 *proxy_handle, int *raw_rc) 650 { 651 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 652 MCDI_DECLARE_BUF_ERR(errbuf); 653 int rc; 654 655 if (mcdi->mode == MCDI_MODE_POLL) 656 rc = efx_mcdi_poll(efx); 657 else 658 rc = efx_mcdi_await_completion(efx); 659 660 if (rc != 0) { 661 netif_err(efx, hw, efx->net_dev, 662 "MC command 0x%x inlen %d mode %d timed out\n", 663 cmd, (int)inlen, mcdi->mode); 664 665 if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) { 666 netif_err(efx, hw, efx->net_dev, 667 "MCDI request was completed without an event\n"); 668 rc = 0; 669 } 670 671 efx_mcdi_abandon(efx); 672 673 /* Close the race with efx_mcdi_ev_cpl() executing just too late 674 * and completing a request we've just cancelled, by ensuring 675 * that the seqno check therein fails. 676 */ 677 spin_lock_bh(&mcdi->iface_lock); 678 ++mcdi->seqno; 679 ++mcdi->credits; 680 spin_unlock_bh(&mcdi->iface_lock); 681 } 682 683 if (proxy_handle) 684 *proxy_handle = 0; 685 686 if (rc != 0) { 687 if (outlen_actual) 688 *outlen_actual = 0; 689 } else { 690 size_t hdr_len, data_len, err_len; 691 692 /* At the very least we need a memory barrier here to ensure 693 * we pick up changes from efx_mcdi_ev_cpl(). Protect against 694 * a spurious efx_mcdi_ev_cpl() running concurrently by 695 * acquiring the iface_lock. */ 696 spin_lock_bh(&mcdi->iface_lock); 697 rc = mcdi->resprc; 698 if (raw_rc) 699 *raw_rc = mcdi->resprc_raw; 700 hdr_len = mcdi->resp_hdr_len; 701 data_len = mcdi->resp_data_len; 702 err_len = min(sizeof(errbuf), data_len); 703 spin_unlock_bh(&mcdi->iface_lock); 704 705 BUG_ON(rc > 0); 706 707 efx->type->mcdi_read_response(efx, outbuf, hdr_len, 708 min(outlen, data_len)); 709 if (outlen_actual) 710 *outlen_actual = data_len; 711 712 efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len); 713 714 if (cmd == MC_CMD_REBOOT && rc == -EIO) { 715 /* Don't reset if MC_CMD_REBOOT returns EIO */ 716 } else if (rc == -EIO || rc == -EINTR) { 717 netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n", 718 -rc); 719 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 720 } else if (proxy_handle && (rc == -EPROTO) && 721 efx_mcdi_get_proxy_handle(efx, hdr_len, data_len, 722 proxy_handle)) { 723 mcdi->proxy_rx_status = 0; 724 mcdi->proxy_rx_handle = 0; 725 mcdi->state = MCDI_STATE_PROXY_WAIT; 726 } else if (rc && !quiet) { 727 efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len, 728 rc); 729 } 730 731 if (rc == -EIO || rc == -EINTR) { 732 msleep(MCDI_STATUS_SLEEP_MS); 733 efx_mcdi_poll_reboot(efx); 734 mcdi->new_epoch = true; 735 } 736 } 737 738 if (!proxy_handle || !*proxy_handle) 739 efx_mcdi_release(mcdi); 740 return rc; 741 } 742 743 static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi) 744 { 745 if (mcdi->state == MCDI_STATE_PROXY_WAIT) { 746 /* Interrupt the proxy wait. */ 747 mcdi->proxy_rx_status = -EINTR; 748 wake_up(&mcdi->proxy_rx_wq); 749 } 750 } 751 752 static void efx_mcdi_ev_proxy_response(struct efx_nic *efx, 753 u32 handle, int status) 754 { 755 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 756 757 WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT); 758 759 mcdi->proxy_rx_status = efx_mcdi_errno(status); 760 /* Ensure the status is written before we update the handle, since the 761 * latter is used to check if we've finished. 762 */ 763 wmb(); 764 mcdi->proxy_rx_handle = handle; 765 wake_up(&mcdi->proxy_rx_wq); 766 } 767 768 static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet) 769 { 770 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 771 int rc; 772 773 /* Wait for a proxy event, or timeout. */ 774 rc = wait_event_timeout(mcdi->proxy_rx_wq, 775 mcdi->proxy_rx_handle != 0 || 776 mcdi->proxy_rx_status == -EINTR, 777 MCDI_RPC_TIMEOUT); 778 779 if (rc <= 0) { 780 netif_dbg(efx, hw, efx->net_dev, 781 "MCDI proxy timeout %d\n", handle); 782 return -ETIMEDOUT; 783 } else if (mcdi->proxy_rx_handle != handle) { 784 netif_warn(efx, hw, efx->net_dev, 785 "MCDI proxy unexpected handle %d (expected %d)\n", 786 mcdi->proxy_rx_handle, handle); 787 return -EINVAL; 788 } 789 790 return mcdi->proxy_rx_status; 791 } 792 793 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd, 794 const efx_dword_t *inbuf, size_t inlen, 795 efx_dword_t *outbuf, size_t outlen, 796 size_t *outlen_actual, bool quiet, int *raw_rc) 797 { 798 u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */ 799 int rc; 800 801 if (inbuf && inlen && (inbuf == outbuf)) { 802 /* The input buffer can't be aliased with the output. */ 803 WARN_ON(1); 804 return -EINVAL; 805 } 806 807 rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen); 808 if (rc) 809 return rc; 810 811 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 812 outlen_actual, quiet, &proxy_handle, raw_rc); 813 814 if (proxy_handle) { 815 /* Handle proxy authorisation. This allows approval of MCDI 816 * operations to be delegated to the admin function, allowing 817 * fine control over (eg) multicast subscriptions. 818 */ 819 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 820 821 netif_dbg(efx, hw, efx->net_dev, 822 "MCDI waiting for proxy auth %d\n", 823 proxy_handle); 824 rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet); 825 826 if (rc == 0) { 827 netif_dbg(efx, hw, efx->net_dev, 828 "MCDI proxy retry %d\n", proxy_handle); 829 830 /* We now retry the original request. */ 831 mcdi->state = MCDI_STATE_RUNNING_SYNC; 832 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 833 834 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, 835 outbuf, outlen, outlen_actual, 836 quiet, NULL, raw_rc); 837 } else { 838 netif_printk(efx, hw, 839 rc == -EPERM ? KERN_DEBUG : KERN_ERR, 840 efx->net_dev, 841 "MC command 0x%x failed after proxy auth rc=%d\n", 842 cmd, rc); 843 844 if (rc == -EINTR || rc == -EIO) 845 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 846 efx_mcdi_release(mcdi); 847 } 848 } 849 850 return rc; 851 } 852 853 static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd, 854 const efx_dword_t *inbuf, size_t inlen, 855 efx_dword_t *outbuf, size_t outlen, 856 size_t *outlen_actual, bool quiet) 857 { 858 int raw_rc = 0; 859 int rc; 860 861 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen, 862 outbuf, outlen, outlen_actual, true, &raw_rc); 863 864 if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) && 865 efx->type->is_vf) { 866 /* If the EVB port isn't available within a VF this may 867 * mean the PF is still bringing the switch up. We should 868 * retry our request shortly. 869 */ 870 unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT; 871 unsigned int delay_us = 10000; 872 873 netif_dbg(efx, hw, efx->net_dev, 874 "%s: NO_EVB_PORT; will retry request\n", 875 __func__); 876 877 do { 878 usleep_range(delay_us, delay_us + 10000); 879 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen, 880 outbuf, outlen, outlen_actual, 881 true, &raw_rc); 882 if (delay_us < 100000) 883 delay_us <<= 1; 884 } while ((rc == -EPROTO) && 885 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) && 886 time_before(jiffies, abort_time)); 887 } 888 889 if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO)) 890 efx_mcdi_display_error(efx, cmd, inlen, 891 outbuf, outlen, rc); 892 893 return rc; 894 } 895 896 /** 897 * efx_mcdi_rpc - Issue an MCDI command and wait for completion 898 * @efx: NIC through which to issue the command 899 * @cmd: Command type number 900 * @inbuf: Command parameters 901 * @inlen: Length of command parameters, in bytes. Must be a multiple 902 * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1. 903 * @outbuf: Response buffer. May be %NULL if @outlen is 0. 904 * @outlen: Length of response buffer, in bytes. If the actual 905 * response is longer than @outlen & ~3, it will be truncated 906 * to that length. 907 * @outlen_actual: Pointer through which to return the actual response 908 * length. May be %NULL if this is not needed. 909 * 910 * This function may sleep and therefore must be called in an appropriate 911 * context. 912 * 913 * Return: A negative error code, or zero if successful. The error 914 * code may come from the MCDI response or may indicate a failure 915 * to communicate with the MC. In the former case, the response 916 * will still be copied to @outbuf and *@outlen_actual will be 917 * set accordingly. In the latter case, *@outlen_actual will be 918 * set to zero. 919 */ 920 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd, 921 const efx_dword_t *inbuf, size_t inlen, 922 efx_dword_t *outbuf, size_t outlen, 923 size_t *outlen_actual) 924 { 925 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen, 926 outlen_actual, false); 927 } 928 929 /* Normally, on receiving an error code in the MCDI response, 930 * efx_mcdi_rpc will log an error message containing (among other 931 * things) the raw error code, by means of efx_mcdi_display_error. 932 * This _quiet version suppresses that; if the caller wishes to log 933 * the error conditionally on the return code, it should call this 934 * function and is then responsible for calling efx_mcdi_display_error 935 * as needed. 936 */ 937 int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd, 938 const efx_dword_t *inbuf, size_t inlen, 939 efx_dword_t *outbuf, size_t outlen, 940 size_t *outlen_actual) 941 { 942 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen, 943 outlen_actual, true); 944 } 945 946 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd, 947 const efx_dword_t *inbuf, size_t inlen) 948 { 949 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 950 int rc; 951 952 rc = efx_mcdi_check_supported(efx, cmd, inlen); 953 if (rc) 954 return rc; 955 956 if (efx->mc_bist_for_other_fn) 957 return -ENETDOWN; 958 959 if (mcdi->mode == MCDI_MODE_FAIL) 960 return -ENETDOWN; 961 962 efx_mcdi_acquire_sync(mcdi); 963 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 964 return 0; 965 } 966 967 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd, 968 const efx_dword_t *inbuf, size_t inlen, 969 size_t outlen, 970 efx_mcdi_async_completer *complete, 971 unsigned long cookie, bool quiet) 972 { 973 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 974 struct efx_mcdi_async_param *async; 975 int rc; 976 977 rc = efx_mcdi_check_supported(efx, cmd, inlen); 978 if (rc) 979 return rc; 980 981 if (efx->mc_bist_for_other_fn) 982 return -ENETDOWN; 983 984 async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4), 985 GFP_ATOMIC); 986 if (!async) 987 return -ENOMEM; 988 989 async->cmd = cmd; 990 async->inlen = inlen; 991 async->outlen = outlen; 992 async->quiet = quiet; 993 async->complete = complete; 994 async->cookie = cookie; 995 memcpy(async + 1, inbuf, inlen); 996 997 spin_lock_bh(&mcdi->async_lock); 998 999 if (mcdi->mode == MCDI_MODE_EVENTS) { 1000 list_add_tail(&async->list, &mcdi->async_list); 1001 1002 /* If this is at the front of the queue, try to start it 1003 * immediately 1004 */ 1005 if (mcdi->async_list.next == &async->list && 1006 efx_mcdi_acquire_async(mcdi)) { 1007 efx_mcdi_send_request(efx, cmd, inbuf, inlen); 1008 mod_timer(&mcdi->async_timer, 1009 jiffies + MCDI_RPC_TIMEOUT); 1010 } 1011 } else { 1012 kfree(async); 1013 rc = -ENETDOWN; 1014 } 1015 1016 spin_unlock_bh(&mcdi->async_lock); 1017 1018 return rc; 1019 } 1020 1021 /** 1022 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously 1023 * @efx: NIC through which to issue the command 1024 * @cmd: Command type number 1025 * @inbuf: Command parameters 1026 * @inlen: Length of command parameters, in bytes 1027 * @outlen: Length to allocate for response buffer, in bytes 1028 * @complete: Function to be called on completion or cancellation. 1029 * @cookie: Arbitrary value to be passed to @complete. 1030 * 1031 * This function does not sleep and therefore may be called in atomic 1032 * context. It will fail if event queues are disabled or if MCDI 1033 * event completions have been disabled due to an error. 1034 * 1035 * If it succeeds, the @complete function will be called exactly once 1036 * in atomic context, when one of the following occurs: 1037 * (a) the completion event is received (in NAPI context) 1038 * (b) event queues are disabled (in the process that disables them) 1039 * (c) the request times-out (in timer context) 1040 */ 1041 int 1042 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd, 1043 const efx_dword_t *inbuf, size_t inlen, size_t outlen, 1044 efx_mcdi_async_completer *complete, unsigned long cookie) 1045 { 1046 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete, 1047 cookie, false); 1048 } 1049 1050 int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd, 1051 const efx_dword_t *inbuf, size_t inlen, 1052 size_t outlen, efx_mcdi_async_completer *complete, 1053 unsigned long cookie) 1054 { 1055 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete, 1056 cookie, true); 1057 } 1058 1059 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen, 1060 efx_dword_t *outbuf, size_t outlen, 1061 size_t *outlen_actual) 1062 { 1063 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 1064 outlen_actual, false, NULL, NULL); 1065 } 1066 1067 int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen, 1068 efx_dword_t *outbuf, size_t outlen, 1069 size_t *outlen_actual) 1070 { 1071 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, 1072 outlen_actual, true, NULL, NULL); 1073 } 1074 1075 void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd, 1076 size_t inlen, efx_dword_t *outbuf, 1077 size_t outlen, int rc) 1078 { 1079 int code = 0, err_arg = 0; 1080 1081 if (outlen >= MC_CMD_ERR_CODE_OFST + 4) 1082 code = MCDI_DWORD(outbuf, ERR_CODE); 1083 if (outlen >= MC_CMD_ERR_ARG_OFST + 4) 1084 err_arg = MCDI_DWORD(outbuf, ERR_ARG); 1085 netif_printk(efx, hw, rc == -EPERM ? KERN_DEBUG : KERN_ERR, 1086 efx->net_dev, 1087 "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n", 1088 cmd, inlen, rc, code, err_arg); 1089 } 1090 1091 /* Switch to polled MCDI completions. This can be called in various 1092 * error conditions with various locks held, so it must be lockless. 1093 * Caller is responsible for flushing asynchronous requests later. 1094 */ 1095 void efx_mcdi_mode_poll(struct efx_nic *efx) 1096 { 1097 struct efx_mcdi_iface *mcdi; 1098 1099 if (!efx->mcdi) 1100 return; 1101 1102 mcdi = efx_mcdi(efx); 1103 /* If already in polling mode, nothing to do. 1104 * If in fail-fast state, don't switch to polled completion. 1105 * FLR recovery will do that later. 1106 */ 1107 if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL) 1108 return; 1109 1110 /* We can switch from event completion to polled completion, because 1111 * mcdi requests are always completed in shared memory. We do this by 1112 * switching the mode to POLL'd then completing the request. 1113 * efx_mcdi_await_completion() will then call efx_mcdi_poll(). 1114 * 1115 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(), 1116 * which efx_mcdi_complete_sync() provides for us. 1117 */ 1118 mcdi->mode = MCDI_MODE_POLL; 1119 1120 efx_mcdi_complete_sync(mcdi); 1121 } 1122 1123 /* Flush any running or queued asynchronous requests, after event processing 1124 * is stopped 1125 */ 1126 void efx_mcdi_flush_async(struct efx_nic *efx) 1127 { 1128 struct efx_mcdi_async_param *async, *next; 1129 struct efx_mcdi_iface *mcdi; 1130 1131 if (!efx->mcdi) 1132 return; 1133 1134 mcdi = efx_mcdi(efx); 1135 1136 /* We must be in poll or fail mode so no more requests can be queued */ 1137 BUG_ON(mcdi->mode == MCDI_MODE_EVENTS); 1138 1139 del_timer_sync(&mcdi->async_timer); 1140 1141 /* If a request is still running, make sure we give the MC 1142 * time to complete it so that the response won't overwrite our 1143 * next request. 1144 */ 1145 if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) { 1146 efx_mcdi_poll(efx); 1147 mcdi->state = MCDI_STATE_QUIESCENT; 1148 } 1149 1150 /* Nothing else will access the async list now, so it is safe 1151 * to walk it without holding async_lock. If we hold it while 1152 * calling a completer then lockdep may warn that we have 1153 * acquired locks in the wrong order. 1154 */ 1155 list_for_each_entry_safe(async, next, &mcdi->async_list, list) { 1156 async->complete(efx, async->cookie, -ENETDOWN, NULL, 0); 1157 list_del(&async->list); 1158 kfree(async); 1159 } 1160 } 1161 1162 void efx_mcdi_mode_event(struct efx_nic *efx) 1163 { 1164 struct efx_mcdi_iface *mcdi; 1165 1166 if (!efx->mcdi) 1167 return; 1168 1169 mcdi = efx_mcdi(efx); 1170 /* If already in event completion mode, nothing to do. 1171 * If in fail-fast state, don't switch to event completion. FLR 1172 * recovery will do that later. 1173 */ 1174 if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL) 1175 return; 1176 1177 /* We can't switch from polled to event completion in the middle of a 1178 * request, because the completion method is specified in the request. 1179 * So acquire the interface to serialise the requestors. We don't need 1180 * to acquire the iface_lock to change the mode here, but we do need a 1181 * write memory barrier ensure that efx_mcdi_rpc() sees it, which 1182 * efx_mcdi_acquire() provides. 1183 */ 1184 efx_mcdi_acquire_sync(mcdi); 1185 mcdi->mode = MCDI_MODE_EVENTS; 1186 efx_mcdi_release(mcdi); 1187 } 1188 1189 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc) 1190 { 1191 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1192 1193 /* If there is an outstanding MCDI request, it has been terminated 1194 * either by a BADASSERT or REBOOT event. If the mcdi interface is 1195 * in polled mode, then do nothing because the MC reboot handler will 1196 * set the header correctly. However, if the mcdi interface is waiting 1197 * for a CMDDONE event it won't receive it [and since all MCDI events 1198 * are sent to the same queue, we can't be racing with 1199 * efx_mcdi_ev_cpl()] 1200 * 1201 * If there is an outstanding asynchronous request, we can't 1202 * complete it now (efx_mcdi_complete() would deadlock). The 1203 * reset process will take care of this. 1204 * 1205 * There's a race here with efx_mcdi_send_request(), because 1206 * we might receive a REBOOT event *before* the request has 1207 * been copied out. In polled mode (during startup) this is 1208 * irrelevant, because efx_mcdi_complete_sync() is ignored. In 1209 * event mode, this condition is just an edge-case of 1210 * receiving a REBOOT event after posting the MCDI 1211 * request. Did the mc reboot before or after the copyout? The 1212 * best we can do always is just return failure. 1213 * 1214 * If there is an outstanding proxy response expected it is not going 1215 * to arrive. We should thus abort it. 1216 */ 1217 spin_lock(&mcdi->iface_lock); 1218 efx_mcdi_proxy_abort(mcdi); 1219 1220 if (efx_mcdi_complete_sync(mcdi)) { 1221 if (mcdi->mode == MCDI_MODE_EVENTS) { 1222 mcdi->resprc = rc; 1223 mcdi->resp_hdr_len = 0; 1224 mcdi->resp_data_len = 0; 1225 ++mcdi->credits; 1226 } 1227 } else { 1228 int count; 1229 1230 /* Consume the status word since efx_mcdi_rpc_finish() won't */ 1231 for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) { 1232 rc = efx_mcdi_poll_reboot(efx); 1233 if (rc) 1234 break; 1235 udelay(MCDI_STATUS_DELAY_US); 1236 } 1237 1238 /* On EF10, a CODE_MC_REBOOT event can be received without the 1239 * reboot detection in efx_mcdi_poll_reboot() being triggered. 1240 * If zero was returned from the final call to 1241 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the 1242 * MC has definitely rebooted so prepare for the reset. 1243 */ 1244 if (!rc && efx->type->mcdi_reboot_detected) 1245 efx->type->mcdi_reboot_detected(efx); 1246 1247 mcdi->new_epoch = true; 1248 1249 /* Nobody was waiting for an MCDI request, so trigger a reset */ 1250 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); 1251 } 1252 1253 spin_unlock(&mcdi->iface_lock); 1254 } 1255 1256 /* The MC is going down in to BIST mode. set the BIST flag to block 1257 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset 1258 * (which doesn't actually execute a reset, it waits for the controlling 1259 * function to reset it). 1260 */ 1261 static void efx_mcdi_ev_bist(struct efx_nic *efx) 1262 { 1263 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1264 1265 spin_lock(&mcdi->iface_lock); 1266 efx->mc_bist_for_other_fn = true; 1267 efx_mcdi_proxy_abort(mcdi); 1268 1269 if (efx_mcdi_complete_sync(mcdi)) { 1270 if (mcdi->mode == MCDI_MODE_EVENTS) { 1271 mcdi->resprc = -EIO; 1272 mcdi->resp_hdr_len = 0; 1273 mcdi->resp_data_len = 0; 1274 ++mcdi->credits; 1275 } 1276 } 1277 mcdi->new_epoch = true; 1278 efx_schedule_reset(efx, RESET_TYPE_MC_BIST); 1279 spin_unlock(&mcdi->iface_lock); 1280 } 1281 1282 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try 1283 * to recover. 1284 */ 1285 static void efx_mcdi_abandon(struct efx_nic *efx) 1286 { 1287 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1288 1289 if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL) 1290 return; /* it had already been done */ 1291 netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n"); 1292 efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT); 1293 } 1294 1295 /* Called from falcon_process_eventq for MCDI events */ 1296 void efx_mcdi_process_event(struct efx_channel *channel, 1297 efx_qword_t *event) 1298 { 1299 struct efx_nic *efx = channel->efx; 1300 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE); 1301 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA); 1302 1303 switch (code) { 1304 case MCDI_EVENT_CODE_BADSSERT: 1305 netif_err(efx, hw, efx->net_dev, 1306 "MC watchdog or assertion failure at 0x%x\n", data); 1307 efx_mcdi_ev_death(efx, -EINTR); 1308 break; 1309 1310 case MCDI_EVENT_CODE_PMNOTICE: 1311 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n"); 1312 break; 1313 1314 case MCDI_EVENT_CODE_CMDDONE: 1315 efx_mcdi_ev_cpl(efx, 1316 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ), 1317 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN), 1318 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO)); 1319 break; 1320 1321 case MCDI_EVENT_CODE_LINKCHANGE: 1322 efx_mcdi_process_link_change(efx, event); 1323 break; 1324 case MCDI_EVENT_CODE_SENSOREVT: 1325 efx_mcdi_sensor_event(efx, event); 1326 break; 1327 case MCDI_EVENT_CODE_SCHEDERR: 1328 netif_dbg(efx, hw, efx->net_dev, 1329 "MC Scheduler alert (0x%x)\n", data); 1330 break; 1331 case MCDI_EVENT_CODE_REBOOT: 1332 case MCDI_EVENT_CODE_MC_REBOOT: 1333 netif_info(efx, hw, efx->net_dev, "MC Reboot\n"); 1334 efx_mcdi_ev_death(efx, -EIO); 1335 break; 1336 case MCDI_EVENT_CODE_MC_BIST: 1337 netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n"); 1338 efx_mcdi_ev_bist(efx); 1339 break; 1340 case MCDI_EVENT_CODE_MAC_STATS_DMA: 1341 /* MAC stats are gather lazily. We can ignore this. */ 1342 break; 1343 case MCDI_EVENT_CODE_FLR: 1344 if (efx->type->sriov_flr) 1345 efx->type->sriov_flr(efx, 1346 MCDI_EVENT_FIELD(*event, FLR_VF)); 1347 break; 1348 case MCDI_EVENT_CODE_PTP_RX: 1349 case MCDI_EVENT_CODE_PTP_FAULT: 1350 case MCDI_EVENT_CODE_PTP_PPS: 1351 efx_ptp_event(efx, event); 1352 break; 1353 case MCDI_EVENT_CODE_PTP_TIME: 1354 efx_time_sync_event(channel, event); 1355 break; 1356 case MCDI_EVENT_CODE_TX_FLUSH: 1357 case MCDI_EVENT_CODE_RX_FLUSH: 1358 /* Two flush events will be sent: one to the same event 1359 * queue as completions, and one to event queue 0. 1360 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER 1361 * flag will be set, and we should ignore the event 1362 * because we want to wait for all completions. 1363 */ 1364 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN != 1365 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN); 1366 if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER)) 1367 efx_ef10_handle_drain_event(efx); 1368 break; 1369 case MCDI_EVENT_CODE_TX_ERR: 1370 case MCDI_EVENT_CODE_RX_ERR: 1371 netif_err(efx, hw, efx->net_dev, 1372 "%s DMA error (event: "EFX_QWORD_FMT")\n", 1373 code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX", 1374 EFX_QWORD_VAL(*event)); 1375 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR); 1376 break; 1377 case MCDI_EVENT_CODE_PROXY_RESPONSE: 1378 efx_mcdi_ev_proxy_response(efx, 1379 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE), 1380 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC)); 1381 break; 1382 default: 1383 netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n", 1384 code); 1385 } 1386 } 1387 1388 /************************************************************************** 1389 * 1390 * Specific request functions 1391 * 1392 ************************************************************************** 1393 */ 1394 1395 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len) 1396 { 1397 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN); 1398 size_t outlength; 1399 const __le16 *ver_words; 1400 size_t offset; 1401 int rc; 1402 1403 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0); 1404 rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0, 1405 outbuf, sizeof(outbuf), &outlength); 1406 if (rc) 1407 goto fail; 1408 if (outlength < MC_CMD_GET_VERSION_OUT_LEN) { 1409 rc = -EIO; 1410 goto fail; 1411 } 1412 1413 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION); 1414 offset = snprintf(buf, len, "%u.%u.%u.%u", 1415 le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]), 1416 le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3])); 1417 1418 /* EF10 may have multiple datapath firmware variants within a 1419 * single version. Report which variants are running. 1420 */ 1421 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) { 1422 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1423 1424 offset += snprintf(buf + offset, len - offset, " rx%x tx%x", 1425 nic_data->rx_dpcpu_fw_id, 1426 nic_data->tx_dpcpu_fw_id); 1427 1428 /* It's theoretically possible for the string to exceed 31 1429 * characters, though in practice the first three version 1430 * components are short enough that this doesn't happen. 1431 */ 1432 if (WARN_ON(offset >= len)) 1433 buf[0] = 0; 1434 } 1435 1436 return; 1437 1438 fail: 1439 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1440 buf[0] = 0; 1441 } 1442 1443 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, 1444 bool *was_attached) 1445 { 1446 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN); 1447 MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN); 1448 size_t outlen; 1449 int rc; 1450 1451 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE, 1452 driver_operating ? 1 : 0); 1453 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1); 1454 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY); 1455 1456 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf), 1457 outbuf, sizeof(outbuf), &outlen); 1458 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID 1459 * specified will fail with EPERM, and we have to tell the MC we don't 1460 * care what firmware we get. 1461 */ 1462 if (rc == -EPERM) { 1463 netif_dbg(efx, probe, efx->net_dev, 1464 "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n"); 1465 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, 1466 MC_CMD_FW_DONT_CARE); 1467 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, 1468 sizeof(inbuf), outbuf, sizeof(outbuf), 1469 &outlen); 1470 } 1471 if (rc) { 1472 efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf), 1473 outbuf, outlen, rc); 1474 goto fail; 1475 } 1476 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) { 1477 rc = -EIO; 1478 goto fail; 1479 } 1480 1481 if (driver_operating) { 1482 if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) { 1483 efx->mcdi->fn_flags = 1484 MCDI_DWORD(outbuf, 1485 DRV_ATTACH_EXT_OUT_FUNC_FLAGS); 1486 } else { 1487 /* Synthesise flags for Siena */ 1488 efx->mcdi->fn_flags = 1489 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL | 1490 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED | 1491 (efx_port_num(efx) == 0) << 1492 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY; 1493 } 1494 } 1495 1496 /* We currently assume we have control of the external link 1497 * and are completely trusted by firmware. Abort probing 1498 * if that's not true for this function. 1499 */ 1500 1501 if (was_attached != NULL) 1502 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE); 1503 return 0; 1504 1505 fail: 1506 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1507 return rc; 1508 } 1509 1510 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address, 1511 u16 *fw_subtype_list, u32 *capabilities) 1512 { 1513 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX); 1514 size_t outlen, i; 1515 int port_num = efx_port_num(efx); 1516 int rc; 1517 1518 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0); 1519 /* we need __aligned(2) for ether_addr_copy */ 1520 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1); 1521 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1); 1522 1523 rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0, 1524 outbuf, sizeof(outbuf), &outlen); 1525 if (rc) 1526 goto fail; 1527 1528 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) { 1529 rc = -EIO; 1530 goto fail; 1531 } 1532 1533 if (mac_address) 1534 ether_addr_copy(mac_address, 1535 port_num ? 1536 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) : 1537 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0)); 1538 if (fw_subtype_list) { 1539 for (i = 0; 1540 i < MCDI_VAR_ARRAY_LEN(outlen, 1541 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST); 1542 i++) 1543 fw_subtype_list[i] = MCDI_ARRAY_WORD( 1544 outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i); 1545 for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++) 1546 fw_subtype_list[i] = 0; 1547 } 1548 if (capabilities) { 1549 if (port_num) 1550 *capabilities = MCDI_DWORD(outbuf, 1551 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1); 1552 else 1553 *capabilities = MCDI_DWORD(outbuf, 1554 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0); 1555 } 1556 1557 return 0; 1558 1559 fail: 1560 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n", 1561 __func__, rc, (int)outlen); 1562 1563 return rc; 1564 } 1565 1566 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq) 1567 { 1568 MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN); 1569 u32 dest = 0; 1570 int rc; 1571 1572 if (uart) 1573 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART; 1574 if (evq) 1575 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ; 1576 1577 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest); 1578 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq); 1579 1580 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0); 1581 1582 rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf), 1583 NULL, 0, NULL); 1584 return rc; 1585 } 1586 1587 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out) 1588 { 1589 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN); 1590 size_t outlen; 1591 int rc; 1592 1593 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0); 1594 1595 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0, 1596 outbuf, sizeof(outbuf), &outlen); 1597 if (rc) 1598 goto fail; 1599 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) { 1600 rc = -EIO; 1601 goto fail; 1602 } 1603 1604 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES); 1605 return 0; 1606 1607 fail: 1608 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", 1609 __func__, rc); 1610 return rc; 1611 } 1612 1613 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type, 1614 size_t *size_out, size_t *erase_size_out, 1615 bool *protected_out) 1616 { 1617 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN); 1618 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN); 1619 size_t outlen; 1620 int rc; 1621 1622 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type); 1623 1624 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf), 1625 outbuf, sizeof(outbuf), &outlen); 1626 if (rc) 1627 goto fail; 1628 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) { 1629 rc = -EIO; 1630 goto fail; 1631 } 1632 1633 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE); 1634 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE); 1635 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) & 1636 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN)); 1637 return 0; 1638 1639 fail: 1640 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1641 return rc; 1642 } 1643 1644 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type) 1645 { 1646 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN); 1647 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN); 1648 int rc; 1649 1650 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type); 1651 1652 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf), 1653 outbuf, sizeof(outbuf), NULL); 1654 if (rc) 1655 return rc; 1656 1657 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) { 1658 case MC_CMD_NVRAM_TEST_PASS: 1659 case MC_CMD_NVRAM_TEST_NOTSUPP: 1660 return 0; 1661 default: 1662 return -EIO; 1663 } 1664 } 1665 1666 int efx_mcdi_nvram_test_all(struct efx_nic *efx) 1667 { 1668 u32 nvram_types; 1669 unsigned int type; 1670 int rc; 1671 1672 rc = efx_mcdi_nvram_types(efx, &nvram_types); 1673 if (rc) 1674 goto fail1; 1675 1676 type = 0; 1677 while (nvram_types != 0) { 1678 if (nvram_types & 1) { 1679 rc = efx_mcdi_nvram_test(efx, type); 1680 if (rc) 1681 goto fail2; 1682 } 1683 type++; 1684 nvram_types >>= 1; 1685 } 1686 1687 return 0; 1688 1689 fail2: 1690 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n", 1691 __func__, type); 1692 fail1: 1693 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1694 return rc; 1695 } 1696 1697 /* Returns 1 if an assertion was read, 0 if no assertion had fired, 1698 * negative on error. 1699 */ 1700 static int efx_mcdi_read_assertion(struct efx_nic *efx) 1701 { 1702 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN); 1703 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN); 1704 unsigned int flags, index; 1705 const char *reason; 1706 size_t outlen; 1707 int retry; 1708 int rc; 1709 1710 /* Attempt to read any stored assertion state before we reboot 1711 * the mcfw out of the assertion handler. Retry twice, once 1712 * because a boot-time assertion might cause this command to fail 1713 * with EINTR. And once again because GET_ASSERTS can race with 1714 * MC_CMD_REBOOT running on the other port. */ 1715 retry = 2; 1716 do { 1717 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1); 1718 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS, 1719 inbuf, MC_CMD_GET_ASSERTS_IN_LEN, 1720 outbuf, sizeof(outbuf), &outlen); 1721 if (rc == -EPERM) 1722 return 0; 1723 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0); 1724 1725 if (rc) { 1726 efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS, 1727 MC_CMD_GET_ASSERTS_IN_LEN, outbuf, 1728 outlen, rc); 1729 return rc; 1730 } 1731 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN) 1732 return -EIO; 1733 1734 /* Print out any recorded assertion state */ 1735 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS); 1736 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS) 1737 return 0; 1738 1739 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL) 1740 ? "system-level assertion" 1741 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL) 1742 ? "thread-level assertion" 1743 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED) 1744 ? "watchdog reset" 1745 : "unknown assertion"; 1746 netif_err(efx, hw, efx->net_dev, 1747 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason, 1748 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS), 1749 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS)); 1750 1751 /* Print out the registers */ 1752 for (index = 0; 1753 index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM; 1754 index++) 1755 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n", 1756 1 + index, 1757 MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS, 1758 index)); 1759 1760 return 1; 1761 } 1762 1763 static int efx_mcdi_exit_assertion(struct efx_nic *efx) 1764 { 1765 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN); 1766 int rc; 1767 1768 /* If the MC is running debug firmware, it might now be 1769 * waiting for a debugger to attach, but we just want it to 1770 * reboot. We set a flag that makes the command a no-op if it 1771 * has already done so. 1772 * The MCDI will thus return either 0 or -EIO. 1773 */ 1774 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); 1775 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 1776 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION); 1777 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN, 1778 NULL, 0, NULL); 1779 if (rc == -EIO) 1780 rc = 0; 1781 if (rc) 1782 efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN, 1783 NULL, 0, rc); 1784 return rc; 1785 } 1786 1787 int efx_mcdi_handle_assertion(struct efx_nic *efx) 1788 { 1789 int rc; 1790 1791 rc = efx_mcdi_read_assertion(efx); 1792 if (rc <= 0) 1793 return rc; 1794 1795 return efx_mcdi_exit_assertion(efx); 1796 } 1797 1798 void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode) 1799 { 1800 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN); 1801 int rc; 1802 1803 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF); 1804 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON); 1805 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT); 1806 1807 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0); 1808 1809 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode); 1810 1811 rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf), 1812 NULL, 0, NULL); 1813 } 1814 1815 static int efx_mcdi_reset_func(struct efx_nic *efx) 1816 { 1817 MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN); 1818 int rc; 1819 1820 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0); 1821 MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG, 1822 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1); 1823 rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf), 1824 NULL, 0, NULL); 1825 return rc; 1826 } 1827 1828 static int efx_mcdi_reset_mc(struct efx_nic *efx) 1829 { 1830 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN); 1831 int rc; 1832 1833 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); 1834 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0); 1835 rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf), 1836 NULL, 0, NULL); 1837 /* White is black, and up is down */ 1838 if (rc == -EIO) 1839 return 0; 1840 if (rc == 0) 1841 rc = -EIO; 1842 return rc; 1843 } 1844 1845 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason) 1846 { 1847 return RESET_TYPE_RECOVER_OR_ALL; 1848 } 1849 1850 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method) 1851 { 1852 int rc; 1853 1854 /* If MCDI is down, we can't handle_assertion */ 1855 if (method == RESET_TYPE_MCDI_TIMEOUT) { 1856 rc = pci_reset_function(efx->pci_dev); 1857 if (rc) 1858 return rc; 1859 /* Re-enable polled MCDI completion */ 1860 if (efx->mcdi) { 1861 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 1862 mcdi->mode = MCDI_MODE_POLL; 1863 } 1864 return 0; 1865 } 1866 1867 /* Recover from a failed assertion pre-reset */ 1868 rc = efx_mcdi_handle_assertion(efx); 1869 if (rc) 1870 return rc; 1871 1872 if (method == RESET_TYPE_DATAPATH) 1873 return 0; 1874 else if (method == RESET_TYPE_WORLD) 1875 return efx_mcdi_reset_mc(efx); 1876 else 1877 return efx_mcdi_reset_func(efx); 1878 } 1879 1880 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type, 1881 const u8 *mac, int *id_out) 1882 { 1883 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN); 1884 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN); 1885 size_t outlen; 1886 int rc; 1887 1888 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type); 1889 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE, 1890 MC_CMD_FILTER_MODE_SIMPLE); 1891 ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac); 1892 1893 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf), 1894 outbuf, sizeof(outbuf), &outlen); 1895 if (rc) 1896 goto fail; 1897 1898 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) { 1899 rc = -EIO; 1900 goto fail; 1901 } 1902 1903 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID); 1904 1905 return 0; 1906 1907 fail: 1908 *id_out = -1; 1909 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1910 return rc; 1911 1912 } 1913 1914 1915 int 1916 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out) 1917 { 1918 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out); 1919 } 1920 1921 1922 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out) 1923 { 1924 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN); 1925 size_t outlen; 1926 int rc; 1927 1928 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0, 1929 outbuf, sizeof(outbuf), &outlen); 1930 if (rc) 1931 goto fail; 1932 1933 if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) { 1934 rc = -EIO; 1935 goto fail; 1936 } 1937 1938 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID); 1939 1940 return 0; 1941 1942 fail: 1943 *id_out = -1; 1944 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 1945 return rc; 1946 } 1947 1948 1949 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id) 1950 { 1951 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN); 1952 int rc; 1953 1954 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id); 1955 1956 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf), 1957 NULL, 0, NULL); 1958 return rc; 1959 } 1960 1961 int efx_mcdi_flush_rxqs(struct efx_nic *efx) 1962 { 1963 struct efx_channel *channel; 1964 struct efx_rx_queue *rx_queue; 1965 MCDI_DECLARE_BUF(inbuf, 1966 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS)); 1967 int rc, count; 1968 1969 BUILD_BUG_ON(EFX_MAX_CHANNELS > 1970 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM); 1971 1972 count = 0; 1973 efx_for_each_channel(channel, efx) { 1974 efx_for_each_channel_rx_queue(rx_queue, channel) { 1975 if (rx_queue->flush_pending) { 1976 rx_queue->flush_pending = false; 1977 atomic_dec(&efx->rxq_flush_pending); 1978 MCDI_SET_ARRAY_DWORD( 1979 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST, 1980 count, efx_rx_queue_index(rx_queue)); 1981 count++; 1982 } 1983 } 1984 } 1985 1986 rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf, 1987 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL); 1988 WARN_ON(rc < 0); 1989 1990 return rc; 1991 } 1992 1993 int efx_mcdi_wol_filter_reset(struct efx_nic *efx) 1994 { 1995 int rc; 1996 1997 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL); 1998 return rc; 1999 } 2000 2001 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled, 2002 unsigned int *flags) 2003 { 2004 MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN); 2005 MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN); 2006 size_t outlen; 2007 int rc; 2008 2009 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0); 2010 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type); 2011 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled); 2012 rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf), 2013 outbuf, sizeof(outbuf), &outlen); 2014 if (rc) 2015 return rc; 2016 2017 if (!flags) 2018 return 0; 2019 2020 if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN) 2021 *flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS); 2022 else 2023 *flags = 0; 2024 2025 return 0; 2026 } 2027 2028 int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out, 2029 unsigned int *enabled_out) 2030 { 2031 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN); 2032 size_t outlen; 2033 int rc; 2034 2035 rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0, 2036 outbuf, sizeof(outbuf), &outlen); 2037 if (rc) 2038 goto fail; 2039 2040 if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) { 2041 rc = -EIO; 2042 goto fail; 2043 } 2044 2045 if (impl_out) 2046 *impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED); 2047 2048 if (enabled_out) 2049 *enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED); 2050 2051 return 0; 2052 2053 fail: 2054 /* Older firmware lacks GET_WORKAROUNDS and this isn't especially 2055 * terrifying. The call site will have to deal with it though. 2056 */ 2057 netif_printk(efx, hw, rc == -ENOSYS ? KERN_DEBUG : KERN_ERR, 2058 efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 2059 return rc; 2060 } 2061 2062 #ifdef CONFIG_SFC_MTD 2063 2064 #define EFX_MCDI_NVRAM_LEN_MAX 128 2065 2066 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type) 2067 { 2068 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN); 2069 int rc; 2070 2071 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type); 2072 2073 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0); 2074 2075 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf), 2076 NULL, 0, NULL); 2077 return rc; 2078 } 2079 2080 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type, 2081 loff_t offset, u8 *buffer, size_t length) 2082 { 2083 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN); 2084 MCDI_DECLARE_BUF(outbuf, 2085 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX)); 2086 size_t outlen; 2087 int rc; 2088 2089 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type); 2090 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset); 2091 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length); 2092 2093 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf), 2094 outbuf, sizeof(outbuf), &outlen); 2095 if (rc) 2096 return rc; 2097 2098 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length); 2099 return 0; 2100 } 2101 2102 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type, 2103 loff_t offset, const u8 *buffer, size_t length) 2104 { 2105 MCDI_DECLARE_BUF(inbuf, 2106 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX)); 2107 int rc; 2108 2109 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type); 2110 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset); 2111 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length); 2112 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length); 2113 2114 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0); 2115 2116 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf, 2117 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4), 2118 NULL, 0, NULL); 2119 return rc; 2120 } 2121 2122 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type, 2123 loff_t offset, size_t length) 2124 { 2125 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN); 2126 int rc; 2127 2128 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type); 2129 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset); 2130 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length); 2131 2132 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0); 2133 2134 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf), 2135 NULL, 0, NULL); 2136 return rc; 2137 } 2138 2139 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type) 2140 { 2141 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN); 2142 int rc; 2143 2144 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type); 2145 2146 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0); 2147 2148 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf), 2149 NULL, 0, NULL); 2150 return rc; 2151 } 2152 2153 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start, 2154 size_t len, size_t *retlen, u8 *buffer) 2155 { 2156 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2157 struct efx_nic *efx = mtd->priv; 2158 loff_t offset = start; 2159 loff_t end = min_t(loff_t, start + len, mtd->size); 2160 size_t chunk; 2161 int rc = 0; 2162 2163 while (offset < end) { 2164 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); 2165 rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset, 2166 buffer, chunk); 2167 if (rc) 2168 goto out; 2169 offset += chunk; 2170 buffer += chunk; 2171 } 2172 out: 2173 *retlen = offset - start; 2174 return rc; 2175 } 2176 2177 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len) 2178 { 2179 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2180 struct efx_nic *efx = mtd->priv; 2181 loff_t offset = start & ~((loff_t)(mtd->erasesize - 1)); 2182 loff_t end = min_t(loff_t, start + len, mtd->size); 2183 size_t chunk = part->common.mtd.erasesize; 2184 int rc = 0; 2185 2186 if (!part->updating) { 2187 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type); 2188 if (rc) 2189 goto out; 2190 part->updating = true; 2191 } 2192 2193 /* The MCDI interface can in fact do multiple erase blocks at once; 2194 * but erasing may be slow, so we make multiple calls here to avoid 2195 * tripping the MCDI RPC timeout. */ 2196 while (offset < end) { 2197 rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset, 2198 chunk); 2199 if (rc) 2200 goto out; 2201 offset += chunk; 2202 } 2203 out: 2204 return rc; 2205 } 2206 2207 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start, 2208 size_t len, size_t *retlen, const u8 *buffer) 2209 { 2210 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2211 struct efx_nic *efx = mtd->priv; 2212 loff_t offset = start; 2213 loff_t end = min_t(loff_t, start + len, mtd->size); 2214 size_t chunk; 2215 int rc = 0; 2216 2217 if (!part->updating) { 2218 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type); 2219 if (rc) 2220 goto out; 2221 part->updating = true; 2222 } 2223 2224 while (offset < end) { 2225 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); 2226 rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset, 2227 buffer, chunk); 2228 if (rc) 2229 goto out; 2230 offset += chunk; 2231 buffer += chunk; 2232 } 2233 out: 2234 *retlen = offset - start; 2235 return rc; 2236 } 2237 2238 int efx_mcdi_mtd_sync(struct mtd_info *mtd) 2239 { 2240 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); 2241 struct efx_nic *efx = mtd->priv; 2242 int rc = 0; 2243 2244 if (part->updating) { 2245 part->updating = false; 2246 rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type); 2247 } 2248 2249 return rc; 2250 } 2251 2252 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part) 2253 { 2254 struct efx_mcdi_mtd_partition *mcdi_part = 2255 container_of(part, struct efx_mcdi_mtd_partition, common); 2256 struct efx_nic *efx = part->mtd.priv; 2257 2258 snprintf(part->name, sizeof(part->name), "%s %s:%02x", 2259 efx->name, part->type_name, mcdi_part->fw_subtype); 2260 } 2261 2262 #endif /* CONFIG_SFC_MTD */ 2263