xref: /linux/drivers/net/ethernet/sfc/mcdi.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2008-2013 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/moduleparam.h>
12 #include <linux/atomic.h>
13 #include "net_driver.h"
14 #include "nic.h"
15 #include "io.h"
16 #include "farch_regs.h"
17 #include "mcdi_pcol.h"
18 #include "phy.h"
19 
20 /**************************************************************************
21  *
22  * Management-Controller-to-Driver Interface
23  *
24  **************************************************************************
25  */
26 
27 #define MCDI_RPC_TIMEOUT       (10 * HZ)
28 
29 /* A reboot/assertion causes the MCDI status word to be set after the
30  * command word is set or a REBOOT event is sent. If we notice a reboot
31  * via these mechanisms then wait 250ms for the status word to be set.
32  */
33 #define MCDI_STATUS_DELAY_US		100
34 #define MCDI_STATUS_DELAY_COUNT		2500
35 #define MCDI_STATUS_SLEEP_MS						\
36 	(MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
37 
38 #define SEQ_MASK							\
39 	EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
40 
41 struct efx_mcdi_async_param {
42 	struct list_head list;
43 	unsigned int cmd;
44 	size_t inlen;
45 	size_t outlen;
46 	bool quiet;
47 	efx_mcdi_async_completer *complete;
48 	unsigned long cookie;
49 	/* followed by request/response buffer */
50 };
51 
52 static void efx_mcdi_timeout_async(unsigned long context);
53 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
54 			       bool *was_attached_out);
55 static bool efx_mcdi_poll_once(struct efx_nic *efx);
56 static void efx_mcdi_abandon(struct efx_nic *efx);
57 
58 #ifdef CONFIG_SFC_MCDI_LOGGING
59 static bool mcdi_logging_default;
60 module_param(mcdi_logging_default, bool, 0644);
61 MODULE_PARM_DESC(mcdi_logging_default,
62 		 "Enable MCDI logging on newly-probed functions");
63 #endif
64 
65 int efx_mcdi_init(struct efx_nic *efx)
66 {
67 	struct efx_mcdi_iface *mcdi;
68 	bool already_attached;
69 	int rc = -ENOMEM;
70 
71 	efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
72 	if (!efx->mcdi)
73 		goto fail;
74 
75 	mcdi = efx_mcdi(efx);
76 	mcdi->efx = efx;
77 #ifdef CONFIG_SFC_MCDI_LOGGING
78 	/* consuming code assumes buffer is page-sized */
79 	mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
80 	if (!mcdi->logging_buffer)
81 		goto fail1;
82 	mcdi->logging_enabled = mcdi_logging_default;
83 #endif
84 	init_waitqueue_head(&mcdi->wq);
85 	init_waitqueue_head(&mcdi->proxy_rx_wq);
86 	spin_lock_init(&mcdi->iface_lock);
87 	mcdi->state = MCDI_STATE_QUIESCENT;
88 	mcdi->mode = MCDI_MODE_POLL;
89 	spin_lock_init(&mcdi->async_lock);
90 	INIT_LIST_HEAD(&mcdi->async_list);
91 	setup_timer(&mcdi->async_timer, efx_mcdi_timeout_async,
92 		    (unsigned long)mcdi);
93 
94 	(void) efx_mcdi_poll_reboot(efx);
95 	mcdi->new_epoch = true;
96 
97 	/* Recover from a failed assertion before probing */
98 	rc = efx_mcdi_handle_assertion(efx);
99 	if (rc)
100 		goto fail2;
101 
102 	/* Let the MC (and BMC, if this is a LOM) know that the driver
103 	 * is loaded. We should do this before we reset the NIC.
104 	 */
105 	rc = efx_mcdi_drv_attach(efx, true, &already_attached);
106 	if (rc) {
107 		netif_err(efx, probe, efx->net_dev,
108 			  "Unable to register driver with MCPU\n");
109 		goto fail2;
110 	}
111 	if (already_attached)
112 		/* Not a fatal error */
113 		netif_err(efx, probe, efx->net_dev,
114 			  "Host already registered with MCPU\n");
115 
116 	if (efx->mcdi->fn_flags &
117 	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
118 		efx->primary = efx;
119 
120 	return 0;
121 fail2:
122 #ifdef CONFIG_SFC_MCDI_LOGGING
123 	free_page((unsigned long)mcdi->logging_buffer);
124 fail1:
125 #endif
126 	kfree(efx->mcdi);
127 	efx->mcdi = NULL;
128 fail:
129 	return rc;
130 }
131 
132 void efx_mcdi_fini(struct efx_nic *efx)
133 {
134 	if (!efx->mcdi)
135 		return;
136 
137 	BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
138 
139 	/* Relinquish the device (back to the BMC, if this is a LOM) */
140 	efx_mcdi_drv_attach(efx, false, NULL);
141 
142 #ifdef CONFIG_SFC_MCDI_LOGGING
143 	free_page((unsigned long)efx->mcdi->iface.logging_buffer);
144 #endif
145 
146 	kfree(efx->mcdi);
147 }
148 
149 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
150 				  const efx_dword_t *inbuf, size_t inlen)
151 {
152 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
153 #ifdef CONFIG_SFC_MCDI_LOGGING
154 	char *buf = mcdi->logging_buffer; /* page-sized */
155 #endif
156 	efx_dword_t hdr[2];
157 	size_t hdr_len;
158 	u32 xflags, seqno;
159 
160 	BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
161 
162 	/* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
163 	spin_lock_bh(&mcdi->iface_lock);
164 	++mcdi->seqno;
165 	spin_unlock_bh(&mcdi->iface_lock);
166 
167 	seqno = mcdi->seqno & SEQ_MASK;
168 	xflags = 0;
169 	if (mcdi->mode == MCDI_MODE_EVENTS)
170 		xflags |= MCDI_HEADER_XFLAGS_EVREQ;
171 
172 	if (efx->type->mcdi_max_ver == 1) {
173 		/* MCDI v1 */
174 		EFX_POPULATE_DWORD_7(hdr[0],
175 				     MCDI_HEADER_RESPONSE, 0,
176 				     MCDI_HEADER_RESYNC, 1,
177 				     MCDI_HEADER_CODE, cmd,
178 				     MCDI_HEADER_DATALEN, inlen,
179 				     MCDI_HEADER_SEQ, seqno,
180 				     MCDI_HEADER_XFLAGS, xflags,
181 				     MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
182 		hdr_len = 4;
183 	} else {
184 		/* MCDI v2 */
185 		BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
186 		EFX_POPULATE_DWORD_7(hdr[0],
187 				     MCDI_HEADER_RESPONSE, 0,
188 				     MCDI_HEADER_RESYNC, 1,
189 				     MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
190 				     MCDI_HEADER_DATALEN, 0,
191 				     MCDI_HEADER_SEQ, seqno,
192 				     MCDI_HEADER_XFLAGS, xflags,
193 				     MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
194 		EFX_POPULATE_DWORD_2(hdr[1],
195 				     MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
196 				     MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
197 		hdr_len = 8;
198 	}
199 
200 #ifdef CONFIG_SFC_MCDI_LOGGING
201 	if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
202 		int bytes = 0;
203 		int i;
204 		/* Lengths should always be a whole number of dwords, so scream
205 		 * if they're not.
206 		 */
207 		WARN_ON_ONCE(hdr_len % 4);
208 		WARN_ON_ONCE(inlen % 4);
209 
210 		/* We own the logging buffer, as only one MCDI can be in
211 		 * progress on a NIC at any one time.  So no need for locking.
212 		 */
213 		for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
214 			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
215 					  " %08x", le32_to_cpu(hdr[i].u32[0]));
216 
217 		for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
218 			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
219 					  " %08x", le32_to_cpu(inbuf[i].u32[0]));
220 
221 		netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
222 	}
223 #endif
224 
225 	efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
226 
227 	mcdi->new_epoch = false;
228 }
229 
230 static int efx_mcdi_errno(unsigned int mcdi_err)
231 {
232 	switch (mcdi_err) {
233 	case 0:
234 		return 0;
235 #define TRANSLATE_ERROR(name)					\
236 	case MC_CMD_ERR_ ## name:				\
237 		return -name;
238 	TRANSLATE_ERROR(EPERM);
239 	TRANSLATE_ERROR(ENOENT);
240 	TRANSLATE_ERROR(EINTR);
241 	TRANSLATE_ERROR(EAGAIN);
242 	TRANSLATE_ERROR(EACCES);
243 	TRANSLATE_ERROR(EBUSY);
244 	TRANSLATE_ERROR(EINVAL);
245 	TRANSLATE_ERROR(EDEADLK);
246 	TRANSLATE_ERROR(ENOSYS);
247 	TRANSLATE_ERROR(ETIME);
248 	TRANSLATE_ERROR(EALREADY);
249 	TRANSLATE_ERROR(ENOSPC);
250 #undef TRANSLATE_ERROR
251 	case MC_CMD_ERR_ENOTSUP:
252 		return -EOPNOTSUPP;
253 	case MC_CMD_ERR_ALLOC_FAIL:
254 		return -ENOBUFS;
255 	case MC_CMD_ERR_MAC_EXIST:
256 		return -EADDRINUSE;
257 	default:
258 		return -EPROTO;
259 	}
260 }
261 
262 static void efx_mcdi_read_response_header(struct efx_nic *efx)
263 {
264 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
265 	unsigned int respseq, respcmd, error;
266 #ifdef CONFIG_SFC_MCDI_LOGGING
267 	char *buf = mcdi->logging_buffer; /* page-sized */
268 #endif
269 	efx_dword_t hdr;
270 
271 	efx->type->mcdi_read_response(efx, &hdr, 0, 4);
272 	respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
273 	respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
274 	error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
275 
276 	if (respcmd != MC_CMD_V2_EXTN) {
277 		mcdi->resp_hdr_len = 4;
278 		mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
279 	} else {
280 		efx->type->mcdi_read_response(efx, &hdr, 4, 4);
281 		mcdi->resp_hdr_len = 8;
282 		mcdi->resp_data_len =
283 			EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
284 	}
285 
286 #ifdef CONFIG_SFC_MCDI_LOGGING
287 	if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
288 		size_t hdr_len, data_len;
289 		int bytes = 0;
290 		int i;
291 
292 		WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
293 		hdr_len = mcdi->resp_hdr_len / 4;
294 		/* MCDI_DECLARE_BUF ensures that underlying buffer is padded
295 		 * to dword size, and the MCDI buffer is always dword size
296 		 */
297 		data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);
298 
299 		/* We own the logging buffer, as only one MCDI can be in
300 		 * progress on a NIC at any one time.  So no need for locking.
301 		 */
302 		for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
303 			efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
304 			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
305 					  " %08x", le32_to_cpu(hdr.u32[0]));
306 		}
307 
308 		for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
309 			efx->type->mcdi_read_response(efx, &hdr,
310 					mcdi->resp_hdr_len + (i * 4), 4);
311 			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
312 					  " %08x", le32_to_cpu(hdr.u32[0]));
313 		}
314 
315 		netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
316 	}
317 #endif
318 
319 	mcdi->resprc_raw = 0;
320 	if (error && mcdi->resp_data_len == 0) {
321 		netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
322 		mcdi->resprc = -EIO;
323 	} else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
324 		netif_err(efx, hw, efx->net_dev,
325 			  "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
326 			  respseq, mcdi->seqno);
327 		mcdi->resprc = -EIO;
328 	} else if (error) {
329 		efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
330 		mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0);
331 		mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw);
332 	} else {
333 		mcdi->resprc = 0;
334 	}
335 }
336 
337 static bool efx_mcdi_poll_once(struct efx_nic *efx)
338 {
339 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
340 
341 	rmb();
342 	if (!efx->type->mcdi_poll_response(efx))
343 		return false;
344 
345 	spin_lock_bh(&mcdi->iface_lock);
346 	efx_mcdi_read_response_header(efx);
347 	spin_unlock_bh(&mcdi->iface_lock);
348 
349 	return true;
350 }
351 
352 static int efx_mcdi_poll(struct efx_nic *efx)
353 {
354 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
355 	unsigned long time, finish;
356 	unsigned int spins;
357 	int rc;
358 
359 	/* Check for a reboot atomically with respect to efx_mcdi_copyout() */
360 	rc = efx_mcdi_poll_reboot(efx);
361 	if (rc) {
362 		spin_lock_bh(&mcdi->iface_lock);
363 		mcdi->resprc = rc;
364 		mcdi->resp_hdr_len = 0;
365 		mcdi->resp_data_len = 0;
366 		spin_unlock_bh(&mcdi->iface_lock);
367 		return 0;
368 	}
369 
370 	/* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
371 	 * because generally mcdi responses are fast. After that, back off
372 	 * and poll once a jiffy (approximately)
373 	 */
374 	spins = TICK_USEC;
375 	finish = jiffies + MCDI_RPC_TIMEOUT;
376 
377 	while (1) {
378 		if (spins != 0) {
379 			--spins;
380 			udelay(1);
381 		} else {
382 			schedule_timeout_uninterruptible(1);
383 		}
384 
385 		time = jiffies;
386 
387 		if (efx_mcdi_poll_once(efx))
388 			break;
389 
390 		if (time_after(time, finish))
391 			return -ETIMEDOUT;
392 	}
393 
394 	/* Return rc=0 like wait_event_timeout() */
395 	return 0;
396 }
397 
398 /* Test and clear MC-rebooted flag for this port/function; reset
399  * software state as necessary.
400  */
401 int efx_mcdi_poll_reboot(struct efx_nic *efx)
402 {
403 	if (!efx->mcdi)
404 		return 0;
405 
406 	return efx->type->mcdi_poll_reboot(efx);
407 }
408 
409 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
410 {
411 	return cmpxchg(&mcdi->state,
412 		       MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
413 		MCDI_STATE_QUIESCENT;
414 }
415 
416 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
417 {
418 	/* Wait until the interface becomes QUIESCENT and we win the race
419 	 * to mark it RUNNING_SYNC.
420 	 */
421 	wait_event(mcdi->wq,
422 		   cmpxchg(&mcdi->state,
423 			   MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
424 		   MCDI_STATE_QUIESCENT);
425 }
426 
427 static int efx_mcdi_await_completion(struct efx_nic *efx)
428 {
429 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
430 
431 	if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
432 			       MCDI_RPC_TIMEOUT) == 0)
433 		return -ETIMEDOUT;
434 
435 	/* Check if efx_mcdi_set_mode() switched us back to polled completions.
436 	 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
437 	 * completed the request first, then we'll just end up completing the
438 	 * request again, which is safe.
439 	 *
440 	 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
441 	 * wait_event_timeout() implicitly provides.
442 	 */
443 	if (mcdi->mode == MCDI_MODE_POLL)
444 		return efx_mcdi_poll(efx);
445 
446 	return 0;
447 }
448 
449 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
450  * requester.  Return whether this was done.  Does not take any locks.
451  */
452 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
453 {
454 	if (cmpxchg(&mcdi->state,
455 		    MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
456 	    MCDI_STATE_RUNNING_SYNC) {
457 		wake_up(&mcdi->wq);
458 		return true;
459 	}
460 
461 	return false;
462 }
463 
464 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
465 {
466 	if (mcdi->mode == MCDI_MODE_EVENTS) {
467 		struct efx_mcdi_async_param *async;
468 		struct efx_nic *efx = mcdi->efx;
469 
470 		/* Process the asynchronous request queue */
471 		spin_lock_bh(&mcdi->async_lock);
472 		async = list_first_entry_or_null(
473 			&mcdi->async_list, struct efx_mcdi_async_param, list);
474 		if (async) {
475 			mcdi->state = MCDI_STATE_RUNNING_ASYNC;
476 			efx_mcdi_send_request(efx, async->cmd,
477 					      (const efx_dword_t *)(async + 1),
478 					      async->inlen);
479 			mod_timer(&mcdi->async_timer,
480 				  jiffies + MCDI_RPC_TIMEOUT);
481 		}
482 		spin_unlock_bh(&mcdi->async_lock);
483 
484 		if (async)
485 			return;
486 	}
487 
488 	mcdi->state = MCDI_STATE_QUIESCENT;
489 	wake_up(&mcdi->wq);
490 }
491 
492 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
493  * asynchronous completion function, and release the interface.
494  * Return whether this was done.  Must be called in bh-disabled
495  * context.  Will take iface_lock and async_lock.
496  */
497 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
498 {
499 	struct efx_nic *efx = mcdi->efx;
500 	struct efx_mcdi_async_param *async;
501 	size_t hdr_len, data_len, err_len;
502 	efx_dword_t *outbuf;
503 	MCDI_DECLARE_BUF_ERR(errbuf);
504 	int rc;
505 
506 	if (cmpxchg(&mcdi->state,
507 		    MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
508 	    MCDI_STATE_RUNNING_ASYNC)
509 		return false;
510 
511 	spin_lock(&mcdi->iface_lock);
512 	if (timeout) {
513 		/* Ensure that if the completion event arrives later,
514 		 * the seqno check in efx_mcdi_ev_cpl() will fail
515 		 */
516 		++mcdi->seqno;
517 		++mcdi->credits;
518 		rc = -ETIMEDOUT;
519 		hdr_len = 0;
520 		data_len = 0;
521 	} else {
522 		rc = mcdi->resprc;
523 		hdr_len = mcdi->resp_hdr_len;
524 		data_len = mcdi->resp_data_len;
525 	}
526 	spin_unlock(&mcdi->iface_lock);
527 
528 	/* Stop the timer.  In case the timer function is running, we
529 	 * must wait for it to return so that there is no possibility
530 	 * of it aborting the next request.
531 	 */
532 	if (!timeout)
533 		del_timer_sync(&mcdi->async_timer);
534 
535 	spin_lock(&mcdi->async_lock);
536 	async = list_first_entry(&mcdi->async_list,
537 				 struct efx_mcdi_async_param, list);
538 	list_del(&async->list);
539 	spin_unlock(&mcdi->async_lock);
540 
541 	outbuf = (efx_dword_t *)(async + 1);
542 	efx->type->mcdi_read_response(efx, outbuf, hdr_len,
543 				      min(async->outlen, data_len));
544 	if (!timeout && rc && !async->quiet) {
545 		err_len = min(sizeof(errbuf), data_len);
546 		efx->type->mcdi_read_response(efx, errbuf, hdr_len,
547 					      sizeof(errbuf));
548 		efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
549 				       err_len, rc);
550 	}
551 	async->complete(efx, async->cookie, rc, outbuf, data_len);
552 	kfree(async);
553 
554 	efx_mcdi_release(mcdi);
555 
556 	return true;
557 }
558 
559 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
560 			    unsigned int datalen, unsigned int mcdi_err)
561 {
562 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
563 	bool wake = false;
564 
565 	spin_lock(&mcdi->iface_lock);
566 
567 	if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
568 		if (mcdi->credits)
569 			/* The request has been cancelled */
570 			--mcdi->credits;
571 		else
572 			netif_err(efx, hw, efx->net_dev,
573 				  "MC response mismatch tx seq 0x%x rx "
574 				  "seq 0x%x\n", seqno, mcdi->seqno);
575 	} else {
576 		if (efx->type->mcdi_max_ver >= 2) {
577 			/* MCDI v2 responses don't fit in an event */
578 			efx_mcdi_read_response_header(efx);
579 		} else {
580 			mcdi->resprc = efx_mcdi_errno(mcdi_err);
581 			mcdi->resp_hdr_len = 4;
582 			mcdi->resp_data_len = datalen;
583 		}
584 
585 		wake = true;
586 	}
587 
588 	spin_unlock(&mcdi->iface_lock);
589 
590 	if (wake) {
591 		if (!efx_mcdi_complete_async(mcdi, false))
592 			(void) efx_mcdi_complete_sync(mcdi);
593 
594 		/* If the interface isn't RUNNING_ASYNC or
595 		 * RUNNING_SYNC then we've received a duplicate
596 		 * completion after we've already transitioned back to
597 		 * QUIESCENT. [A subsequent invocation would increment
598 		 * seqno, so would have failed the seqno check].
599 		 */
600 	}
601 }
602 
603 static void efx_mcdi_timeout_async(unsigned long context)
604 {
605 	struct efx_mcdi_iface *mcdi = (struct efx_mcdi_iface *)context;
606 
607 	efx_mcdi_complete_async(mcdi, true);
608 }
609 
610 static int
611 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
612 {
613 	if (efx->type->mcdi_max_ver < 0 ||
614 	     (efx->type->mcdi_max_ver < 2 &&
615 	      cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
616 		return -EINVAL;
617 
618 	if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
619 	    (efx->type->mcdi_max_ver < 2 &&
620 	     inlen > MCDI_CTL_SDU_LEN_MAX_V1))
621 		return -EMSGSIZE;
622 
623 	return 0;
624 }
625 
626 static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx,
627 				      size_t hdr_len, size_t data_len,
628 				      u32 *proxy_handle)
629 {
630 	MCDI_DECLARE_BUF_ERR(testbuf);
631 	const size_t buflen = sizeof(testbuf);
632 
633 	if (!proxy_handle || data_len < buflen)
634 		return false;
635 
636 	efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen);
637 	if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) {
638 		*proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE);
639 		return true;
640 	}
641 
642 	return false;
643 }
644 
645 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd,
646 				size_t inlen,
647 				efx_dword_t *outbuf, size_t outlen,
648 				size_t *outlen_actual, bool quiet,
649 				u32 *proxy_handle, int *raw_rc)
650 {
651 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
652 	MCDI_DECLARE_BUF_ERR(errbuf);
653 	int rc;
654 
655 	if (mcdi->mode == MCDI_MODE_POLL)
656 		rc = efx_mcdi_poll(efx);
657 	else
658 		rc = efx_mcdi_await_completion(efx);
659 
660 	if (rc != 0) {
661 		netif_err(efx, hw, efx->net_dev,
662 			  "MC command 0x%x inlen %d mode %d timed out\n",
663 			  cmd, (int)inlen, mcdi->mode);
664 
665 		if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
666 			netif_err(efx, hw, efx->net_dev,
667 				  "MCDI request was completed without an event\n");
668 			rc = 0;
669 		}
670 
671 		efx_mcdi_abandon(efx);
672 
673 		/* Close the race with efx_mcdi_ev_cpl() executing just too late
674 		 * and completing a request we've just cancelled, by ensuring
675 		 * that the seqno check therein fails.
676 		 */
677 		spin_lock_bh(&mcdi->iface_lock);
678 		++mcdi->seqno;
679 		++mcdi->credits;
680 		spin_unlock_bh(&mcdi->iface_lock);
681 	}
682 
683 	if (proxy_handle)
684 		*proxy_handle = 0;
685 
686 	if (rc != 0) {
687 		if (outlen_actual)
688 			*outlen_actual = 0;
689 	} else {
690 		size_t hdr_len, data_len, err_len;
691 
692 		/* At the very least we need a memory barrier here to ensure
693 		 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
694 		 * a spurious efx_mcdi_ev_cpl() running concurrently by
695 		 * acquiring the iface_lock. */
696 		spin_lock_bh(&mcdi->iface_lock);
697 		rc = mcdi->resprc;
698 		if (raw_rc)
699 			*raw_rc = mcdi->resprc_raw;
700 		hdr_len = mcdi->resp_hdr_len;
701 		data_len = mcdi->resp_data_len;
702 		err_len = min(sizeof(errbuf), data_len);
703 		spin_unlock_bh(&mcdi->iface_lock);
704 
705 		BUG_ON(rc > 0);
706 
707 		efx->type->mcdi_read_response(efx, outbuf, hdr_len,
708 					      min(outlen, data_len));
709 		if (outlen_actual)
710 			*outlen_actual = data_len;
711 
712 		efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
713 
714 		if (cmd == MC_CMD_REBOOT && rc == -EIO) {
715 			/* Don't reset if MC_CMD_REBOOT returns EIO */
716 		} else if (rc == -EIO || rc == -EINTR) {
717 			netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n",
718 				  -rc);
719 			efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
720 		} else if (proxy_handle && (rc == -EPROTO) &&
721 			   efx_mcdi_get_proxy_handle(efx, hdr_len, data_len,
722 						     proxy_handle)) {
723 			mcdi->proxy_rx_status = 0;
724 			mcdi->proxy_rx_handle = 0;
725 			mcdi->state = MCDI_STATE_PROXY_WAIT;
726 		} else if (rc && !quiet) {
727 			efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
728 					       rc);
729 		}
730 
731 		if (rc == -EIO || rc == -EINTR) {
732 			msleep(MCDI_STATUS_SLEEP_MS);
733 			efx_mcdi_poll_reboot(efx);
734 			mcdi->new_epoch = true;
735 		}
736 	}
737 
738 	if (!proxy_handle || !*proxy_handle)
739 		efx_mcdi_release(mcdi);
740 	return rc;
741 }
742 
743 static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi)
744 {
745 	if (mcdi->state == MCDI_STATE_PROXY_WAIT) {
746 		/* Interrupt the proxy wait. */
747 		mcdi->proxy_rx_status = -EINTR;
748 		wake_up(&mcdi->proxy_rx_wq);
749 	}
750 }
751 
752 static void efx_mcdi_ev_proxy_response(struct efx_nic *efx,
753 				       u32 handle, int status)
754 {
755 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
756 
757 	WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT);
758 
759 	mcdi->proxy_rx_status = efx_mcdi_errno(status);
760 	/* Ensure the status is written before we update the handle, since the
761 	 * latter is used to check if we've finished.
762 	 */
763 	wmb();
764 	mcdi->proxy_rx_handle = handle;
765 	wake_up(&mcdi->proxy_rx_wq);
766 }
767 
768 static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet)
769 {
770 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
771 	int rc;
772 
773 	/* Wait for a proxy event, or timeout. */
774 	rc = wait_event_timeout(mcdi->proxy_rx_wq,
775 				mcdi->proxy_rx_handle != 0 ||
776 				mcdi->proxy_rx_status == -EINTR,
777 				MCDI_RPC_TIMEOUT);
778 
779 	if (rc <= 0) {
780 		netif_dbg(efx, hw, efx->net_dev,
781 			  "MCDI proxy timeout %d\n", handle);
782 		return -ETIMEDOUT;
783 	} else if (mcdi->proxy_rx_handle != handle) {
784 		netif_warn(efx, hw, efx->net_dev,
785 			   "MCDI proxy unexpected handle %d (expected %d)\n",
786 			   mcdi->proxy_rx_handle, handle);
787 		return -EINVAL;
788 	}
789 
790 	return mcdi->proxy_rx_status;
791 }
792 
793 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd,
794 			 const efx_dword_t *inbuf, size_t inlen,
795 			 efx_dword_t *outbuf, size_t outlen,
796 			 size_t *outlen_actual, bool quiet, int *raw_rc)
797 {
798 	u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */
799 	int rc;
800 
801 	if (inbuf && inlen && (inbuf == outbuf)) {
802 		/* The input buffer can't be aliased with the output. */
803 		WARN_ON(1);
804 		return -EINVAL;
805 	}
806 
807 	rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
808 	if (rc)
809 		return rc;
810 
811 	rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
812 				  outlen_actual, quiet, &proxy_handle, raw_rc);
813 
814 	if (proxy_handle) {
815 		/* Handle proxy authorisation. This allows approval of MCDI
816 		 * operations to be delegated to the admin function, allowing
817 		 * fine control over (eg) multicast subscriptions.
818 		 */
819 		struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
820 
821 		netif_dbg(efx, hw, efx->net_dev,
822 			  "MCDI waiting for proxy auth %d\n",
823 			  proxy_handle);
824 		rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet);
825 
826 		if (rc == 0) {
827 			netif_dbg(efx, hw, efx->net_dev,
828 				  "MCDI proxy retry %d\n", proxy_handle);
829 
830 			/* We now retry the original request. */
831 			mcdi->state = MCDI_STATE_RUNNING_SYNC;
832 			efx_mcdi_send_request(efx, cmd, inbuf, inlen);
833 
834 			rc = _efx_mcdi_rpc_finish(efx, cmd, inlen,
835 						  outbuf, outlen, outlen_actual,
836 						  quiet, NULL, raw_rc);
837 		} else {
838 			netif_printk(efx, hw,
839 				     rc == -EPERM ? KERN_DEBUG : KERN_ERR,
840 				     efx->net_dev,
841 				     "MC command 0x%x failed after proxy auth rc=%d\n",
842 				     cmd, rc);
843 
844 			if (rc == -EINTR || rc == -EIO)
845 				efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
846 			efx_mcdi_release(mcdi);
847 		}
848 	}
849 
850 	return rc;
851 }
852 
853 static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd,
854 				   const efx_dword_t *inbuf, size_t inlen,
855 				   efx_dword_t *outbuf, size_t outlen,
856 				   size_t *outlen_actual, bool quiet)
857 {
858 	int raw_rc = 0;
859 	int rc;
860 
861 	rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
862 			   outbuf, outlen, outlen_actual, true, &raw_rc);
863 
864 	if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
865 	    efx->type->is_vf) {
866 		/* If the EVB port isn't available within a VF this may
867 		 * mean the PF is still bringing the switch up. We should
868 		 * retry our request shortly.
869 		 */
870 		unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT;
871 		unsigned int delay_us = 10000;
872 
873 		netif_dbg(efx, hw, efx->net_dev,
874 			  "%s: NO_EVB_PORT; will retry request\n",
875 			  __func__);
876 
877 		do {
878 			usleep_range(delay_us, delay_us + 10000);
879 			rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
880 					   outbuf, outlen, outlen_actual,
881 					   true, &raw_rc);
882 			if (delay_us < 100000)
883 				delay_us <<= 1;
884 		} while ((rc == -EPROTO) &&
885 			 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
886 			 time_before(jiffies, abort_time));
887 	}
888 
889 	if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO))
890 		efx_mcdi_display_error(efx, cmd, inlen,
891 				       outbuf, outlen, rc);
892 
893 	return rc;
894 }
895 
896 /**
897  * efx_mcdi_rpc - Issue an MCDI command and wait for completion
898  * @efx: NIC through which to issue the command
899  * @cmd: Command type number
900  * @inbuf: Command parameters
901  * @inlen: Length of command parameters, in bytes.  Must be a multiple
902  *	of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
903  * @outbuf: Response buffer.  May be %NULL if @outlen is 0.
904  * @outlen: Length of response buffer, in bytes.  If the actual
905  *	response is longer than @outlen & ~3, it will be truncated
906  *	to that length.
907  * @outlen_actual: Pointer through which to return the actual response
908  *	length.  May be %NULL if this is not needed.
909  *
910  * This function may sleep and therefore must be called in an appropriate
911  * context.
912  *
913  * Return: A negative error code, or zero if successful.  The error
914  *	code may come from the MCDI response or may indicate a failure
915  *	to communicate with the MC.  In the former case, the response
916  *	will still be copied to @outbuf and *@outlen_actual will be
917  *	set accordingly.  In the latter case, *@outlen_actual will be
918  *	set to zero.
919  */
920 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
921 		 const efx_dword_t *inbuf, size_t inlen,
922 		 efx_dword_t *outbuf, size_t outlen,
923 		 size_t *outlen_actual)
924 {
925 	return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
926 				       outlen_actual, false);
927 }
928 
929 /* Normally, on receiving an error code in the MCDI response,
930  * efx_mcdi_rpc will log an error message containing (among other
931  * things) the raw error code, by means of efx_mcdi_display_error.
932  * This _quiet version suppresses that; if the caller wishes to log
933  * the error conditionally on the return code, it should call this
934  * function and is then responsible for calling efx_mcdi_display_error
935  * as needed.
936  */
937 int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
938 		       const efx_dword_t *inbuf, size_t inlen,
939 		       efx_dword_t *outbuf, size_t outlen,
940 		       size_t *outlen_actual)
941 {
942 	return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
943 				       outlen_actual, true);
944 }
945 
946 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
947 		       const efx_dword_t *inbuf, size_t inlen)
948 {
949 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
950 	int rc;
951 
952 	rc = efx_mcdi_check_supported(efx, cmd, inlen);
953 	if (rc)
954 		return rc;
955 
956 	if (efx->mc_bist_for_other_fn)
957 		return -ENETDOWN;
958 
959 	if (mcdi->mode == MCDI_MODE_FAIL)
960 		return -ENETDOWN;
961 
962 	efx_mcdi_acquire_sync(mcdi);
963 	efx_mcdi_send_request(efx, cmd, inbuf, inlen);
964 	return 0;
965 }
966 
967 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
968 			       const efx_dword_t *inbuf, size_t inlen,
969 			       size_t outlen,
970 			       efx_mcdi_async_completer *complete,
971 			       unsigned long cookie, bool quiet)
972 {
973 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
974 	struct efx_mcdi_async_param *async;
975 	int rc;
976 
977 	rc = efx_mcdi_check_supported(efx, cmd, inlen);
978 	if (rc)
979 		return rc;
980 
981 	if (efx->mc_bist_for_other_fn)
982 		return -ENETDOWN;
983 
984 	async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
985 			GFP_ATOMIC);
986 	if (!async)
987 		return -ENOMEM;
988 
989 	async->cmd = cmd;
990 	async->inlen = inlen;
991 	async->outlen = outlen;
992 	async->quiet = quiet;
993 	async->complete = complete;
994 	async->cookie = cookie;
995 	memcpy(async + 1, inbuf, inlen);
996 
997 	spin_lock_bh(&mcdi->async_lock);
998 
999 	if (mcdi->mode == MCDI_MODE_EVENTS) {
1000 		list_add_tail(&async->list, &mcdi->async_list);
1001 
1002 		/* If this is at the front of the queue, try to start it
1003 		 * immediately
1004 		 */
1005 		if (mcdi->async_list.next == &async->list &&
1006 		    efx_mcdi_acquire_async(mcdi)) {
1007 			efx_mcdi_send_request(efx, cmd, inbuf, inlen);
1008 			mod_timer(&mcdi->async_timer,
1009 				  jiffies + MCDI_RPC_TIMEOUT);
1010 		}
1011 	} else {
1012 		kfree(async);
1013 		rc = -ENETDOWN;
1014 	}
1015 
1016 	spin_unlock_bh(&mcdi->async_lock);
1017 
1018 	return rc;
1019 }
1020 
1021 /**
1022  * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
1023  * @efx: NIC through which to issue the command
1024  * @cmd: Command type number
1025  * @inbuf: Command parameters
1026  * @inlen: Length of command parameters, in bytes
1027  * @outlen: Length to allocate for response buffer, in bytes
1028  * @complete: Function to be called on completion or cancellation.
1029  * @cookie: Arbitrary value to be passed to @complete.
1030  *
1031  * This function does not sleep and therefore may be called in atomic
1032  * context.  It will fail if event queues are disabled or if MCDI
1033  * event completions have been disabled due to an error.
1034  *
1035  * If it succeeds, the @complete function will be called exactly once
1036  * in atomic context, when one of the following occurs:
1037  * (a) the completion event is received (in NAPI context)
1038  * (b) event queues are disabled (in the process that disables them)
1039  * (c) the request times-out (in timer context)
1040  */
1041 int
1042 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
1043 		   const efx_dword_t *inbuf, size_t inlen, size_t outlen,
1044 		   efx_mcdi_async_completer *complete, unsigned long cookie)
1045 {
1046 	return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1047 				   cookie, false);
1048 }
1049 
1050 int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
1051 			     const efx_dword_t *inbuf, size_t inlen,
1052 			     size_t outlen, efx_mcdi_async_completer *complete,
1053 			     unsigned long cookie)
1054 {
1055 	return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1056 				   cookie, true);
1057 }
1058 
1059 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
1060 			efx_dword_t *outbuf, size_t outlen,
1061 			size_t *outlen_actual)
1062 {
1063 	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1064 				    outlen_actual, false, NULL, NULL);
1065 }
1066 
1067 int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
1068 			      efx_dword_t *outbuf, size_t outlen,
1069 			      size_t *outlen_actual)
1070 {
1071 	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1072 				    outlen_actual, true, NULL, NULL);
1073 }
1074 
1075 void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
1076 			    size_t inlen, efx_dword_t *outbuf,
1077 			    size_t outlen, int rc)
1078 {
1079 	int code = 0, err_arg = 0;
1080 
1081 	if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
1082 		code = MCDI_DWORD(outbuf, ERR_CODE);
1083 	if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
1084 		err_arg = MCDI_DWORD(outbuf, ERR_ARG);
1085 	netif_printk(efx, hw, rc == -EPERM ? KERN_DEBUG : KERN_ERR,
1086 		     efx->net_dev,
1087 		     "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
1088 		     cmd, inlen, rc, code, err_arg);
1089 }
1090 
1091 /* Switch to polled MCDI completions.  This can be called in various
1092  * error conditions with various locks held, so it must be lockless.
1093  * Caller is responsible for flushing asynchronous requests later.
1094  */
1095 void efx_mcdi_mode_poll(struct efx_nic *efx)
1096 {
1097 	struct efx_mcdi_iface *mcdi;
1098 
1099 	if (!efx->mcdi)
1100 		return;
1101 
1102 	mcdi = efx_mcdi(efx);
1103 	/* If already in polling mode, nothing to do.
1104 	 * If in fail-fast state, don't switch to polled completion.
1105 	 * FLR recovery will do that later.
1106 	 */
1107 	if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
1108 		return;
1109 
1110 	/* We can switch from event completion to polled completion, because
1111 	 * mcdi requests are always completed in shared memory. We do this by
1112 	 * switching the mode to POLL'd then completing the request.
1113 	 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
1114 	 *
1115 	 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
1116 	 * which efx_mcdi_complete_sync() provides for us.
1117 	 */
1118 	mcdi->mode = MCDI_MODE_POLL;
1119 
1120 	efx_mcdi_complete_sync(mcdi);
1121 }
1122 
1123 /* Flush any running or queued asynchronous requests, after event processing
1124  * is stopped
1125  */
1126 void efx_mcdi_flush_async(struct efx_nic *efx)
1127 {
1128 	struct efx_mcdi_async_param *async, *next;
1129 	struct efx_mcdi_iface *mcdi;
1130 
1131 	if (!efx->mcdi)
1132 		return;
1133 
1134 	mcdi = efx_mcdi(efx);
1135 
1136 	/* We must be in poll or fail mode so no more requests can be queued */
1137 	BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
1138 
1139 	del_timer_sync(&mcdi->async_timer);
1140 
1141 	/* If a request is still running, make sure we give the MC
1142 	 * time to complete it so that the response won't overwrite our
1143 	 * next request.
1144 	 */
1145 	if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
1146 		efx_mcdi_poll(efx);
1147 		mcdi->state = MCDI_STATE_QUIESCENT;
1148 	}
1149 
1150 	/* Nothing else will access the async list now, so it is safe
1151 	 * to walk it without holding async_lock.  If we hold it while
1152 	 * calling a completer then lockdep may warn that we have
1153 	 * acquired locks in the wrong order.
1154 	 */
1155 	list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
1156 		async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
1157 		list_del(&async->list);
1158 		kfree(async);
1159 	}
1160 }
1161 
1162 void efx_mcdi_mode_event(struct efx_nic *efx)
1163 {
1164 	struct efx_mcdi_iface *mcdi;
1165 
1166 	if (!efx->mcdi)
1167 		return;
1168 
1169 	mcdi = efx_mcdi(efx);
1170 	/* If already in event completion mode, nothing to do.
1171 	 * If in fail-fast state, don't switch to event completion.  FLR
1172 	 * recovery will do that later.
1173 	 */
1174 	if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
1175 		return;
1176 
1177 	/* We can't switch from polled to event completion in the middle of a
1178 	 * request, because the completion method is specified in the request.
1179 	 * So acquire the interface to serialise the requestors. We don't need
1180 	 * to acquire the iface_lock to change the mode here, but we do need a
1181 	 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
1182 	 * efx_mcdi_acquire() provides.
1183 	 */
1184 	efx_mcdi_acquire_sync(mcdi);
1185 	mcdi->mode = MCDI_MODE_EVENTS;
1186 	efx_mcdi_release(mcdi);
1187 }
1188 
1189 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
1190 {
1191 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1192 
1193 	/* If there is an outstanding MCDI request, it has been terminated
1194 	 * either by a BADASSERT or REBOOT event. If the mcdi interface is
1195 	 * in polled mode, then do nothing because the MC reboot handler will
1196 	 * set the header correctly. However, if the mcdi interface is waiting
1197 	 * for a CMDDONE event it won't receive it [and since all MCDI events
1198 	 * are sent to the same queue, we can't be racing with
1199 	 * efx_mcdi_ev_cpl()]
1200 	 *
1201 	 * If there is an outstanding asynchronous request, we can't
1202 	 * complete it now (efx_mcdi_complete() would deadlock).  The
1203 	 * reset process will take care of this.
1204 	 *
1205 	 * There's a race here with efx_mcdi_send_request(), because
1206 	 * we might receive a REBOOT event *before* the request has
1207 	 * been copied out. In polled mode (during startup) this is
1208 	 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1209 	 * event mode, this condition is just an edge-case of
1210 	 * receiving a REBOOT event after posting the MCDI
1211 	 * request. Did the mc reboot before or after the copyout? The
1212 	 * best we can do always is just return failure.
1213 	 *
1214 	 * If there is an outstanding proxy response expected it is not going
1215 	 * to arrive. We should thus abort it.
1216 	 */
1217 	spin_lock(&mcdi->iface_lock);
1218 	efx_mcdi_proxy_abort(mcdi);
1219 
1220 	if (efx_mcdi_complete_sync(mcdi)) {
1221 		if (mcdi->mode == MCDI_MODE_EVENTS) {
1222 			mcdi->resprc = rc;
1223 			mcdi->resp_hdr_len = 0;
1224 			mcdi->resp_data_len = 0;
1225 			++mcdi->credits;
1226 		}
1227 	} else {
1228 		int count;
1229 
1230 		/* Consume the status word since efx_mcdi_rpc_finish() won't */
1231 		for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
1232 			rc = efx_mcdi_poll_reboot(efx);
1233 			if (rc)
1234 				break;
1235 			udelay(MCDI_STATUS_DELAY_US);
1236 		}
1237 
1238 		/* On EF10, a CODE_MC_REBOOT event can be received without the
1239 		 * reboot detection in efx_mcdi_poll_reboot() being triggered.
1240 		 * If zero was returned from the final call to
1241 		 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
1242 		 * MC has definitely rebooted so prepare for the reset.
1243 		 */
1244 		if (!rc && efx->type->mcdi_reboot_detected)
1245 			efx->type->mcdi_reboot_detected(efx);
1246 
1247 		mcdi->new_epoch = true;
1248 
1249 		/* Nobody was waiting for an MCDI request, so trigger a reset */
1250 		efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
1251 	}
1252 
1253 	spin_unlock(&mcdi->iface_lock);
1254 }
1255 
1256 /* The MC is going down in to BIST mode. set the BIST flag to block
1257  * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
1258  * (which doesn't actually execute a reset, it waits for the controlling
1259  * function to reset it).
1260  */
1261 static void efx_mcdi_ev_bist(struct efx_nic *efx)
1262 {
1263 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1264 
1265 	spin_lock(&mcdi->iface_lock);
1266 	efx->mc_bist_for_other_fn = true;
1267 	efx_mcdi_proxy_abort(mcdi);
1268 
1269 	if (efx_mcdi_complete_sync(mcdi)) {
1270 		if (mcdi->mode == MCDI_MODE_EVENTS) {
1271 			mcdi->resprc = -EIO;
1272 			mcdi->resp_hdr_len = 0;
1273 			mcdi->resp_data_len = 0;
1274 			++mcdi->credits;
1275 		}
1276 	}
1277 	mcdi->new_epoch = true;
1278 	efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
1279 	spin_unlock(&mcdi->iface_lock);
1280 }
1281 
1282 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1283  * to recover.
1284  */
1285 static void efx_mcdi_abandon(struct efx_nic *efx)
1286 {
1287 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1288 
1289 	if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
1290 		return; /* it had already been done */
1291 	netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
1292 	efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
1293 }
1294 
1295 /* Called from  falcon_process_eventq for MCDI events */
1296 void efx_mcdi_process_event(struct efx_channel *channel,
1297 			    efx_qword_t *event)
1298 {
1299 	struct efx_nic *efx = channel->efx;
1300 	int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
1301 	u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
1302 
1303 	switch (code) {
1304 	case MCDI_EVENT_CODE_BADSSERT:
1305 		netif_err(efx, hw, efx->net_dev,
1306 			  "MC watchdog or assertion failure at 0x%x\n", data);
1307 		efx_mcdi_ev_death(efx, -EINTR);
1308 		break;
1309 
1310 	case MCDI_EVENT_CODE_PMNOTICE:
1311 		netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
1312 		break;
1313 
1314 	case MCDI_EVENT_CODE_CMDDONE:
1315 		efx_mcdi_ev_cpl(efx,
1316 				MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
1317 				MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
1318 				MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
1319 		break;
1320 
1321 	case MCDI_EVENT_CODE_LINKCHANGE:
1322 		efx_mcdi_process_link_change(efx, event);
1323 		break;
1324 	case MCDI_EVENT_CODE_SENSOREVT:
1325 		efx_mcdi_sensor_event(efx, event);
1326 		break;
1327 	case MCDI_EVENT_CODE_SCHEDERR:
1328 		netif_dbg(efx, hw, efx->net_dev,
1329 			  "MC Scheduler alert (0x%x)\n", data);
1330 		break;
1331 	case MCDI_EVENT_CODE_REBOOT:
1332 	case MCDI_EVENT_CODE_MC_REBOOT:
1333 		netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1334 		efx_mcdi_ev_death(efx, -EIO);
1335 		break;
1336 	case MCDI_EVENT_CODE_MC_BIST:
1337 		netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1338 		efx_mcdi_ev_bist(efx);
1339 		break;
1340 	case MCDI_EVENT_CODE_MAC_STATS_DMA:
1341 		/* MAC stats are gather lazily.  We can ignore this. */
1342 		break;
1343 	case MCDI_EVENT_CODE_FLR:
1344 		if (efx->type->sriov_flr)
1345 			efx->type->sriov_flr(efx,
1346 					     MCDI_EVENT_FIELD(*event, FLR_VF));
1347 		break;
1348 	case MCDI_EVENT_CODE_PTP_RX:
1349 	case MCDI_EVENT_CODE_PTP_FAULT:
1350 	case MCDI_EVENT_CODE_PTP_PPS:
1351 		efx_ptp_event(efx, event);
1352 		break;
1353 	case MCDI_EVENT_CODE_PTP_TIME:
1354 		efx_time_sync_event(channel, event);
1355 		break;
1356 	case MCDI_EVENT_CODE_TX_FLUSH:
1357 	case MCDI_EVENT_CODE_RX_FLUSH:
1358 		/* Two flush events will be sent: one to the same event
1359 		 * queue as completions, and one to event queue 0.
1360 		 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1361 		 * flag will be set, and we should ignore the event
1362 		 * because we want to wait for all completions.
1363 		 */
1364 		BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1365 			     MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1366 		if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1367 			efx_ef10_handle_drain_event(efx);
1368 		break;
1369 	case MCDI_EVENT_CODE_TX_ERR:
1370 	case MCDI_EVENT_CODE_RX_ERR:
1371 		netif_err(efx, hw, efx->net_dev,
1372 			  "%s DMA error (event: "EFX_QWORD_FMT")\n",
1373 			  code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1374 			  EFX_QWORD_VAL(*event));
1375 		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1376 		break;
1377 	case MCDI_EVENT_CODE_PROXY_RESPONSE:
1378 		efx_mcdi_ev_proxy_response(efx,
1379 				MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE),
1380 				MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC));
1381 		break;
1382 	default:
1383 		netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n",
1384 			  code);
1385 	}
1386 }
1387 
1388 /**************************************************************************
1389  *
1390  * Specific request functions
1391  *
1392  **************************************************************************
1393  */
1394 
1395 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1396 {
1397 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
1398 	size_t outlength;
1399 	const __le16 *ver_words;
1400 	size_t offset;
1401 	int rc;
1402 
1403 	BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1404 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1405 			  outbuf, sizeof(outbuf), &outlength);
1406 	if (rc)
1407 		goto fail;
1408 	if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1409 		rc = -EIO;
1410 		goto fail;
1411 	}
1412 
1413 	ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1414 	offset = snprintf(buf, len, "%u.%u.%u.%u",
1415 			  le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]),
1416 			  le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3]));
1417 
1418 	/* EF10 may have multiple datapath firmware variants within a
1419 	 * single version.  Report which variants are running.
1420 	 */
1421 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
1422 		struct efx_ef10_nic_data *nic_data = efx->nic_data;
1423 
1424 		offset += snprintf(buf + offset, len - offset, " rx%x tx%x",
1425 				   nic_data->rx_dpcpu_fw_id,
1426 				   nic_data->tx_dpcpu_fw_id);
1427 
1428 		/* It's theoretically possible for the string to exceed 31
1429 		 * characters, though in practice the first three version
1430 		 * components are short enough that this doesn't happen.
1431 		 */
1432 		if (WARN_ON(offset >= len))
1433 			buf[0] = 0;
1434 	}
1435 
1436 	return;
1437 
1438 fail:
1439 	netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1440 	buf[0] = 0;
1441 }
1442 
1443 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1444 			       bool *was_attached)
1445 {
1446 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1447 	MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1448 	size_t outlen;
1449 	int rc;
1450 
1451 	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1452 		       driver_operating ? 1 : 0);
1453 	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1454 	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1455 
1456 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
1457 				outbuf, sizeof(outbuf), &outlen);
1458 	/* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1459 	 * specified will fail with EPERM, and we have to tell the MC we don't
1460 	 * care what firmware we get.
1461 	 */
1462 	if (rc == -EPERM) {
1463 		netif_dbg(efx, probe, efx->net_dev,
1464 			  "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
1465 		MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
1466 			       MC_CMD_FW_DONT_CARE);
1467 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
1468 					sizeof(inbuf), outbuf, sizeof(outbuf),
1469 					&outlen);
1470 	}
1471 	if (rc) {
1472 		efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf),
1473 				       outbuf, outlen, rc);
1474 		goto fail;
1475 	}
1476 	if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1477 		rc = -EIO;
1478 		goto fail;
1479 	}
1480 
1481 	if (driver_operating) {
1482 		if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1483 			efx->mcdi->fn_flags =
1484 				MCDI_DWORD(outbuf,
1485 					   DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1486 		} else {
1487 			/* Synthesise flags for Siena */
1488 			efx->mcdi->fn_flags =
1489 				1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1490 				1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1491 				(efx_port_num(efx) == 0) <<
1492 				MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1493 		}
1494 	}
1495 
1496 	/* We currently assume we have control of the external link
1497 	 * and are completely trusted by firmware.  Abort probing
1498 	 * if that's not true for this function.
1499 	 */
1500 
1501 	if (was_attached != NULL)
1502 		*was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1503 	return 0;
1504 
1505 fail:
1506 	netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1507 	return rc;
1508 }
1509 
1510 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1511 			   u16 *fw_subtype_list, u32 *capabilities)
1512 {
1513 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1514 	size_t outlen, i;
1515 	int port_num = efx_port_num(efx);
1516 	int rc;
1517 
1518 	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1519 	/* we need __aligned(2) for ether_addr_copy */
1520 	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
1521 	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
1522 
1523 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1524 			  outbuf, sizeof(outbuf), &outlen);
1525 	if (rc)
1526 		goto fail;
1527 
1528 	if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1529 		rc = -EIO;
1530 		goto fail;
1531 	}
1532 
1533 	if (mac_address)
1534 		ether_addr_copy(mac_address,
1535 				port_num ?
1536 				MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1537 				MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
1538 	if (fw_subtype_list) {
1539 		for (i = 0;
1540 		     i < MCDI_VAR_ARRAY_LEN(outlen,
1541 					    GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1542 		     i++)
1543 			fw_subtype_list[i] = MCDI_ARRAY_WORD(
1544 				outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1545 		for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1546 			fw_subtype_list[i] = 0;
1547 	}
1548 	if (capabilities) {
1549 		if (port_num)
1550 			*capabilities = MCDI_DWORD(outbuf,
1551 					GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1552 		else
1553 			*capabilities = MCDI_DWORD(outbuf,
1554 					GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1555 	}
1556 
1557 	return 0;
1558 
1559 fail:
1560 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1561 		  __func__, rc, (int)outlen);
1562 
1563 	return rc;
1564 }
1565 
1566 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
1567 {
1568 	MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1569 	u32 dest = 0;
1570 	int rc;
1571 
1572 	if (uart)
1573 		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1574 	if (evq)
1575 		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1576 
1577 	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1578 	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1579 
1580 	BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1581 
1582 	rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1583 			  NULL, 0, NULL);
1584 	return rc;
1585 }
1586 
1587 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1588 {
1589 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1590 	size_t outlen;
1591 	int rc;
1592 
1593 	BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1594 
1595 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1596 			  outbuf, sizeof(outbuf), &outlen);
1597 	if (rc)
1598 		goto fail;
1599 	if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1600 		rc = -EIO;
1601 		goto fail;
1602 	}
1603 
1604 	*nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1605 	return 0;
1606 
1607 fail:
1608 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1609 		  __func__, rc);
1610 	return rc;
1611 }
1612 
1613 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1614 			size_t *size_out, size_t *erase_size_out,
1615 			bool *protected_out)
1616 {
1617 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1618 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1619 	size_t outlen;
1620 	int rc;
1621 
1622 	MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1623 
1624 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1625 			  outbuf, sizeof(outbuf), &outlen);
1626 	if (rc)
1627 		goto fail;
1628 	if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1629 		rc = -EIO;
1630 		goto fail;
1631 	}
1632 
1633 	*size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1634 	*erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1635 	*protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1636 				(1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1637 	return 0;
1638 
1639 fail:
1640 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1641 	return rc;
1642 }
1643 
1644 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1645 {
1646 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1647 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1648 	int rc;
1649 
1650 	MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1651 
1652 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1653 			  outbuf, sizeof(outbuf), NULL);
1654 	if (rc)
1655 		return rc;
1656 
1657 	switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1658 	case MC_CMD_NVRAM_TEST_PASS:
1659 	case MC_CMD_NVRAM_TEST_NOTSUPP:
1660 		return 0;
1661 	default:
1662 		return -EIO;
1663 	}
1664 }
1665 
1666 int efx_mcdi_nvram_test_all(struct efx_nic *efx)
1667 {
1668 	u32 nvram_types;
1669 	unsigned int type;
1670 	int rc;
1671 
1672 	rc = efx_mcdi_nvram_types(efx, &nvram_types);
1673 	if (rc)
1674 		goto fail1;
1675 
1676 	type = 0;
1677 	while (nvram_types != 0) {
1678 		if (nvram_types & 1) {
1679 			rc = efx_mcdi_nvram_test(efx, type);
1680 			if (rc)
1681 				goto fail2;
1682 		}
1683 		type++;
1684 		nvram_types >>= 1;
1685 	}
1686 
1687 	return 0;
1688 
1689 fail2:
1690 	netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1691 		  __func__, type);
1692 fail1:
1693 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1694 	return rc;
1695 }
1696 
1697 /* Returns 1 if an assertion was read, 0 if no assertion had fired,
1698  * negative on error.
1699  */
1700 static int efx_mcdi_read_assertion(struct efx_nic *efx)
1701 {
1702 	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1703 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1704 	unsigned int flags, index;
1705 	const char *reason;
1706 	size_t outlen;
1707 	int retry;
1708 	int rc;
1709 
1710 	/* Attempt to read any stored assertion state before we reboot
1711 	 * the mcfw out of the assertion handler. Retry twice, once
1712 	 * because a boot-time assertion might cause this command to fail
1713 	 * with EINTR. And once again because GET_ASSERTS can race with
1714 	 * MC_CMD_REBOOT running on the other port. */
1715 	retry = 2;
1716 	do {
1717 		MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1718 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1719 					inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1720 					outbuf, sizeof(outbuf), &outlen);
1721 		if (rc == -EPERM)
1722 			return 0;
1723 	} while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1724 
1725 	if (rc) {
1726 		efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1727 				       MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1728 				       outlen, rc);
1729 		return rc;
1730 	}
1731 	if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1732 		return -EIO;
1733 
1734 	/* Print out any recorded assertion state */
1735 	flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1736 	if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1737 		return 0;
1738 
1739 	reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1740 		? "system-level assertion"
1741 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1742 		? "thread-level assertion"
1743 		: (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1744 		? "watchdog reset"
1745 		: "unknown assertion";
1746 	netif_err(efx, hw, efx->net_dev,
1747 		  "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1748 		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1749 		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1750 
1751 	/* Print out the registers */
1752 	for (index = 0;
1753 	     index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1754 	     index++)
1755 		netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1756 			  1 + index,
1757 			  MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1758 					   index));
1759 
1760 	return 1;
1761 }
1762 
1763 static int efx_mcdi_exit_assertion(struct efx_nic *efx)
1764 {
1765 	MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1766 	int rc;
1767 
1768 	/* If the MC is running debug firmware, it might now be
1769 	 * waiting for a debugger to attach, but we just want it to
1770 	 * reboot.  We set a flag that makes the command a no-op if it
1771 	 * has already done so.
1772 	 * The MCDI will thus return either 0 or -EIO.
1773 	 */
1774 	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1775 	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1776 		       MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1777 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
1778 				NULL, 0, NULL);
1779 	if (rc == -EIO)
1780 		rc = 0;
1781 	if (rc)
1782 		efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN,
1783 				       NULL, 0, rc);
1784 	return rc;
1785 }
1786 
1787 int efx_mcdi_handle_assertion(struct efx_nic *efx)
1788 {
1789 	int rc;
1790 
1791 	rc = efx_mcdi_read_assertion(efx);
1792 	if (rc <= 0)
1793 		return rc;
1794 
1795 	return efx_mcdi_exit_assertion(efx);
1796 }
1797 
1798 void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1799 {
1800 	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1801 	int rc;
1802 
1803 	BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1804 	BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1805 	BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1806 
1807 	BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1808 
1809 	MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1810 
1811 	rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
1812 			  NULL, 0, NULL);
1813 }
1814 
1815 static int efx_mcdi_reset_func(struct efx_nic *efx)
1816 {
1817 	MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
1818 	int rc;
1819 
1820 	BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
1821 	MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
1822 			      ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1823 	rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
1824 			  NULL, 0, NULL);
1825 	return rc;
1826 }
1827 
1828 static int efx_mcdi_reset_mc(struct efx_nic *efx)
1829 {
1830 	MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1831 	int rc;
1832 
1833 	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1834 	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1835 	rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1836 			  NULL, 0, NULL);
1837 	/* White is black, and up is down */
1838 	if (rc == -EIO)
1839 		return 0;
1840 	if (rc == 0)
1841 		rc = -EIO;
1842 	return rc;
1843 }
1844 
1845 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
1846 {
1847 	return RESET_TYPE_RECOVER_OR_ALL;
1848 }
1849 
1850 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1851 {
1852 	int rc;
1853 
1854 	/* If MCDI is down, we can't handle_assertion */
1855 	if (method == RESET_TYPE_MCDI_TIMEOUT) {
1856 		rc = pci_reset_function(efx->pci_dev);
1857 		if (rc)
1858 			return rc;
1859 		/* Re-enable polled MCDI completion */
1860 		if (efx->mcdi) {
1861 			struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1862 			mcdi->mode = MCDI_MODE_POLL;
1863 		}
1864 		return 0;
1865 	}
1866 
1867 	/* Recover from a failed assertion pre-reset */
1868 	rc = efx_mcdi_handle_assertion(efx);
1869 	if (rc)
1870 		return rc;
1871 
1872 	if (method == RESET_TYPE_DATAPATH)
1873 		return 0;
1874 	else if (method == RESET_TYPE_WORLD)
1875 		return efx_mcdi_reset_mc(efx);
1876 	else
1877 		return efx_mcdi_reset_func(efx);
1878 }
1879 
1880 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1881 				   const u8 *mac, int *id_out)
1882 {
1883 	MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1884 	MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1885 	size_t outlen;
1886 	int rc;
1887 
1888 	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1889 	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1890 		       MC_CMD_FILTER_MODE_SIMPLE);
1891 	ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
1892 
1893 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
1894 			  outbuf, sizeof(outbuf), &outlen);
1895 	if (rc)
1896 		goto fail;
1897 
1898 	if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1899 		rc = -EIO;
1900 		goto fail;
1901 	}
1902 
1903 	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1904 
1905 	return 0;
1906 
1907 fail:
1908 	*id_out = -1;
1909 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1910 	return rc;
1911 
1912 }
1913 
1914 
1915 int
1916 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx,  const u8 *mac, int *id_out)
1917 {
1918 	return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1919 }
1920 
1921 
1922 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1923 {
1924 	MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1925 	size_t outlen;
1926 	int rc;
1927 
1928 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
1929 			  outbuf, sizeof(outbuf), &outlen);
1930 	if (rc)
1931 		goto fail;
1932 
1933 	if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
1934 		rc = -EIO;
1935 		goto fail;
1936 	}
1937 
1938 	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
1939 
1940 	return 0;
1941 
1942 fail:
1943 	*id_out = -1;
1944 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1945 	return rc;
1946 }
1947 
1948 
1949 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
1950 {
1951 	MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
1952 	int rc;
1953 
1954 	MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
1955 
1956 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
1957 			  NULL, 0, NULL);
1958 	return rc;
1959 }
1960 
1961 int efx_mcdi_flush_rxqs(struct efx_nic *efx)
1962 {
1963 	struct efx_channel *channel;
1964 	struct efx_rx_queue *rx_queue;
1965 	MCDI_DECLARE_BUF(inbuf,
1966 			 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
1967 	int rc, count;
1968 
1969 	BUILD_BUG_ON(EFX_MAX_CHANNELS >
1970 		     MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
1971 
1972 	count = 0;
1973 	efx_for_each_channel(channel, efx) {
1974 		efx_for_each_channel_rx_queue(rx_queue, channel) {
1975 			if (rx_queue->flush_pending) {
1976 				rx_queue->flush_pending = false;
1977 				atomic_dec(&efx->rxq_flush_pending);
1978 				MCDI_SET_ARRAY_DWORD(
1979 					inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
1980 					count, efx_rx_queue_index(rx_queue));
1981 				count++;
1982 			}
1983 		}
1984 	}
1985 
1986 	rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
1987 			  MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
1988 	WARN_ON(rc < 0);
1989 
1990 	return rc;
1991 }
1992 
1993 int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
1994 {
1995 	int rc;
1996 
1997 	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
1998 	return rc;
1999 }
2000 
2001 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled,
2002 			    unsigned int *flags)
2003 {
2004 	MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
2005 	MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN);
2006 	size_t outlen;
2007 	int rc;
2008 
2009 	BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
2010 	MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
2011 	MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
2012 	rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
2013 			  outbuf, sizeof(outbuf), &outlen);
2014 	if (rc)
2015 		return rc;
2016 
2017 	if (!flags)
2018 		return 0;
2019 
2020 	if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
2021 		*flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS);
2022 	else
2023 		*flags = 0;
2024 
2025 	return 0;
2026 }
2027 
2028 int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out,
2029 			     unsigned int *enabled_out)
2030 {
2031 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
2032 	size_t outlen;
2033 	int rc;
2034 
2035 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0,
2036 			  outbuf, sizeof(outbuf), &outlen);
2037 	if (rc)
2038 		goto fail;
2039 
2040 	if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
2041 		rc = -EIO;
2042 		goto fail;
2043 	}
2044 
2045 	if (impl_out)
2046 		*impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED);
2047 
2048 	if (enabled_out)
2049 		*enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED);
2050 
2051 	return 0;
2052 
2053 fail:
2054 	/* Older firmware lacks GET_WORKAROUNDS and this isn't especially
2055 	 * terrifying.  The call site will have to deal with it though.
2056 	 */
2057 	netif_printk(efx, hw, rc == -ENOSYS ? KERN_DEBUG : KERN_ERR,
2058 		     efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2059 	return rc;
2060 }
2061 
2062 #ifdef CONFIG_SFC_MTD
2063 
2064 #define EFX_MCDI_NVRAM_LEN_MAX 128
2065 
2066 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
2067 {
2068 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN);
2069 	int rc;
2070 
2071 	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
2072 
2073 	BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
2074 
2075 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
2076 			  NULL, 0, NULL);
2077 	return rc;
2078 }
2079 
2080 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
2081 			       loff_t offset, u8 *buffer, size_t length)
2082 {
2083 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN);
2084 	MCDI_DECLARE_BUF(outbuf,
2085 			 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2086 	size_t outlen;
2087 	int rc;
2088 
2089 	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
2090 	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
2091 	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
2092 
2093 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
2094 			  outbuf, sizeof(outbuf), &outlen);
2095 	if (rc)
2096 		return rc;
2097 
2098 	memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
2099 	return 0;
2100 }
2101 
2102 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
2103 				loff_t offset, const u8 *buffer, size_t length)
2104 {
2105 	MCDI_DECLARE_BUF(inbuf,
2106 			 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2107 	int rc;
2108 
2109 	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
2110 	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
2111 	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
2112 	memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
2113 
2114 	BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
2115 
2116 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
2117 			  ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
2118 			  NULL, 0, NULL);
2119 	return rc;
2120 }
2121 
2122 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
2123 				loff_t offset, size_t length)
2124 {
2125 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
2126 	int rc;
2127 
2128 	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
2129 	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
2130 	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
2131 
2132 	BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
2133 
2134 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
2135 			  NULL, 0, NULL);
2136 	return rc;
2137 }
2138 
2139 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
2140 {
2141 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN);
2142 	int rc;
2143 
2144 	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
2145 
2146 	BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0);
2147 
2148 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
2149 			  NULL, 0, NULL);
2150 	return rc;
2151 }
2152 
2153 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
2154 		      size_t len, size_t *retlen, u8 *buffer)
2155 {
2156 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2157 	struct efx_nic *efx = mtd->priv;
2158 	loff_t offset = start;
2159 	loff_t end = min_t(loff_t, start + len, mtd->size);
2160 	size_t chunk;
2161 	int rc = 0;
2162 
2163 	while (offset < end) {
2164 		chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2165 		rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
2166 					 buffer, chunk);
2167 		if (rc)
2168 			goto out;
2169 		offset += chunk;
2170 		buffer += chunk;
2171 	}
2172 out:
2173 	*retlen = offset - start;
2174 	return rc;
2175 }
2176 
2177 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
2178 {
2179 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2180 	struct efx_nic *efx = mtd->priv;
2181 	loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
2182 	loff_t end = min_t(loff_t, start + len, mtd->size);
2183 	size_t chunk = part->common.mtd.erasesize;
2184 	int rc = 0;
2185 
2186 	if (!part->updating) {
2187 		rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2188 		if (rc)
2189 			goto out;
2190 		part->updating = true;
2191 	}
2192 
2193 	/* The MCDI interface can in fact do multiple erase blocks at once;
2194 	 * but erasing may be slow, so we make multiple calls here to avoid
2195 	 * tripping the MCDI RPC timeout. */
2196 	while (offset < end) {
2197 		rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
2198 					  chunk);
2199 		if (rc)
2200 			goto out;
2201 		offset += chunk;
2202 	}
2203 out:
2204 	return rc;
2205 }
2206 
2207 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
2208 		       size_t len, size_t *retlen, const u8 *buffer)
2209 {
2210 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2211 	struct efx_nic *efx = mtd->priv;
2212 	loff_t offset = start;
2213 	loff_t end = min_t(loff_t, start + len, mtd->size);
2214 	size_t chunk;
2215 	int rc = 0;
2216 
2217 	if (!part->updating) {
2218 		rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2219 		if (rc)
2220 			goto out;
2221 		part->updating = true;
2222 	}
2223 
2224 	while (offset < end) {
2225 		chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2226 		rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
2227 					  buffer, chunk);
2228 		if (rc)
2229 			goto out;
2230 		offset += chunk;
2231 		buffer += chunk;
2232 	}
2233 out:
2234 	*retlen = offset - start;
2235 	return rc;
2236 }
2237 
2238 int efx_mcdi_mtd_sync(struct mtd_info *mtd)
2239 {
2240 	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2241 	struct efx_nic *efx = mtd->priv;
2242 	int rc = 0;
2243 
2244 	if (part->updating) {
2245 		part->updating = false;
2246 		rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
2247 	}
2248 
2249 	return rc;
2250 }
2251 
2252 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
2253 {
2254 	struct efx_mcdi_mtd_partition *mcdi_part =
2255 		container_of(part, struct efx_mcdi_mtd_partition, common);
2256 	struct efx_nic *efx = part->mtd.priv;
2257 
2258 	snprintf(part->name, sizeof(part->name), "%s %s:%02x",
2259 		 efx->name, part->type_name, mcdi_part->fw_subtype);
2260 }
2261 
2262 #endif /* CONFIG_SFC_MTD */
2263