xref: /linux/drivers/net/ethernet/sfc/falcon/tx.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7 
8 #include <linux/pci.h>
9 #include <linux/tcp.h>
10 #include <linux/ip.h>
11 #include <linux/in.h>
12 #include <linux/ipv6.h>
13 #include <linux/slab.h>
14 #include <net/ipv6.h>
15 #include <linux/if_ether.h>
16 #include <linux/highmem.h>
17 #include <linux/cache.h>
18 #include "net_driver.h"
19 #include "efx.h"
20 #include "io.h"
21 #include "nic.h"
22 #include "tx.h"
23 #include "workarounds.h"
24 
25 static inline u8 *ef4_tx_get_copy_buffer(struct ef4_tx_queue *tx_queue,
26 					 struct ef4_tx_buffer *buffer)
27 {
28 	unsigned int index = ef4_tx_queue_get_insert_index(tx_queue);
29 	struct ef4_buffer *page_buf =
30 		&tx_queue->cb_page[index >> (PAGE_SHIFT - EF4_TX_CB_ORDER)];
31 	unsigned int offset =
32 		((index << EF4_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
33 
34 	if (unlikely(!page_buf->addr) &&
35 	    ef4_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
36 				 GFP_ATOMIC))
37 		return NULL;
38 	buffer->dma_addr = page_buf->dma_addr + offset;
39 	buffer->unmap_len = 0;
40 	return (u8 *)page_buf->addr + offset;
41 }
42 
43 static void ef4_dequeue_buffer(struct ef4_tx_queue *tx_queue,
44 			       struct ef4_tx_buffer *buffer,
45 			       unsigned int *pkts_compl,
46 			       unsigned int *bytes_compl)
47 {
48 	if (buffer->unmap_len) {
49 		struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
50 		dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
51 		if (buffer->flags & EF4_TX_BUF_MAP_SINGLE)
52 			dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
53 					 DMA_TO_DEVICE);
54 		else
55 			dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
56 				       DMA_TO_DEVICE);
57 		buffer->unmap_len = 0;
58 	}
59 
60 	if (buffer->flags & EF4_TX_BUF_SKB) {
61 		(*pkts_compl)++;
62 		(*bytes_compl) += buffer->skb->len;
63 		dev_consume_skb_any((struct sk_buff *)buffer->skb);
64 		netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
65 			   "TX queue %d transmission id %x complete\n",
66 			   tx_queue->queue, tx_queue->read_count);
67 	}
68 
69 	buffer->len = 0;
70 	buffer->flags = 0;
71 }
72 
73 unsigned int ef4_tx_max_skb_descs(struct ef4_nic *efx)
74 {
75 	/* This is probably too much since we don't have any TSO support;
76 	 * it's a left-over from when we had Software TSO.  But it's safer
77 	 * to leave it as-is than try to determine a new bound.
78 	 */
79 	/* Header and payload descriptor for each output segment, plus
80 	 * one for every input fragment boundary within a segment
81 	 */
82 	unsigned int max_descs = EF4_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
83 
84 	/* Possibly one more per segment for the alignment workaround,
85 	 * or for option descriptors
86 	 */
87 	if (EF4_WORKAROUND_5391(efx))
88 		max_descs += EF4_TSO_MAX_SEGS;
89 
90 	/* Possibly more for PCIe page boundaries within input fragments */
91 	if (PAGE_SIZE > EF4_PAGE_SIZE)
92 		max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
93 				   DIV_ROUND_UP(GSO_LEGACY_MAX_SIZE,
94 						EF4_PAGE_SIZE));
95 
96 	return max_descs;
97 }
98 
99 static void ef4_tx_maybe_stop_queue(struct ef4_tx_queue *txq1)
100 {
101 	/* We need to consider both queues that the net core sees as one */
102 	struct ef4_tx_queue *txq2 = ef4_tx_queue_partner(txq1);
103 	struct ef4_nic *efx = txq1->efx;
104 	unsigned int fill_level;
105 
106 	fill_level = max(txq1->insert_count - txq1->old_read_count,
107 			 txq2->insert_count - txq2->old_read_count);
108 	if (likely(fill_level < efx->txq_stop_thresh))
109 		return;
110 
111 	/* We used the stale old_read_count above, which gives us a
112 	 * pessimistic estimate of the fill level (which may even
113 	 * validly be >= efx->txq_entries).  Now try again using
114 	 * read_count (more likely to be a cache miss).
115 	 *
116 	 * If we read read_count and then conditionally stop the
117 	 * queue, it is possible for the completion path to race with
118 	 * us and complete all outstanding descriptors in the middle,
119 	 * after which there will be no more completions to wake it.
120 	 * Therefore we stop the queue first, then read read_count
121 	 * (with a memory barrier to ensure the ordering), then
122 	 * restart the queue if the fill level turns out to be low
123 	 * enough.
124 	 */
125 	netif_tx_stop_queue(txq1->core_txq);
126 	smp_mb();
127 	txq1->old_read_count = READ_ONCE(txq1->read_count);
128 	txq2->old_read_count = READ_ONCE(txq2->read_count);
129 
130 	fill_level = max(txq1->insert_count - txq1->old_read_count,
131 			 txq2->insert_count - txq2->old_read_count);
132 	EF4_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
133 	if (likely(fill_level < efx->txq_stop_thresh)) {
134 		smp_mb();
135 		if (likely(!efx->loopback_selftest))
136 			netif_tx_start_queue(txq1->core_txq);
137 	}
138 }
139 
140 static int ef4_enqueue_skb_copy(struct ef4_tx_queue *tx_queue,
141 				struct sk_buff *skb)
142 {
143 	unsigned int min_len = tx_queue->tx_min_size;
144 	unsigned int copy_len = skb->len;
145 	struct ef4_tx_buffer *buffer;
146 	u8 *copy_buffer;
147 	int rc;
148 
149 	EF4_BUG_ON_PARANOID(copy_len > EF4_TX_CB_SIZE);
150 
151 	buffer = ef4_tx_queue_get_insert_buffer(tx_queue);
152 
153 	copy_buffer = ef4_tx_get_copy_buffer(tx_queue, buffer);
154 	if (unlikely(!copy_buffer))
155 		return -ENOMEM;
156 
157 	rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
158 	EF4_WARN_ON_PARANOID(rc);
159 	if (unlikely(copy_len < min_len)) {
160 		memset(copy_buffer + copy_len, 0, min_len - copy_len);
161 		buffer->len = min_len;
162 	} else {
163 		buffer->len = copy_len;
164 	}
165 
166 	buffer->skb = skb;
167 	buffer->flags = EF4_TX_BUF_SKB;
168 
169 	++tx_queue->insert_count;
170 	return rc;
171 }
172 
173 static struct ef4_tx_buffer *ef4_tx_map_chunk(struct ef4_tx_queue *tx_queue,
174 					      dma_addr_t dma_addr,
175 					      size_t len)
176 {
177 	const struct ef4_nic_type *nic_type = tx_queue->efx->type;
178 	struct ef4_tx_buffer *buffer;
179 	unsigned int dma_len;
180 
181 	/* Map the fragment taking account of NIC-dependent DMA limits. */
182 	do {
183 		buffer = ef4_tx_queue_get_insert_buffer(tx_queue);
184 		dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
185 
186 		buffer->len = dma_len;
187 		buffer->dma_addr = dma_addr;
188 		buffer->flags = EF4_TX_BUF_CONT;
189 		len -= dma_len;
190 		dma_addr += dma_len;
191 		++tx_queue->insert_count;
192 	} while (len);
193 
194 	return buffer;
195 }
196 
197 /* Map all data from an SKB for DMA and create descriptors on the queue.
198  */
199 static int ef4_tx_map_data(struct ef4_tx_queue *tx_queue, struct sk_buff *skb)
200 {
201 	struct ef4_nic *efx = tx_queue->efx;
202 	struct device *dma_dev = &efx->pci_dev->dev;
203 	unsigned int frag_index, nr_frags;
204 	dma_addr_t dma_addr, unmap_addr;
205 	unsigned short dma_flags;
206 	size_t len, unmap_len;
207 
208 	nr_frags = skb_shinfo(skb)->nr_frags;
209 	frag_index = 0;
210 
211 	/* Map header data. */
212 	len = skb_headlen(skb);
213 	dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
214 	dma_flags = EF4_TX_BUF_MAP_SINGLE;
215 	unmap_len = len;
216 	unmap_addr = dma_addr;
217 
218 	if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
219 		return -EIO;
220 
221 	/* Add descriptors for each fragment. */
222 	do {
223 		struct ef4_tx_buffer *buffer;
224 		skb_frag_t *fragment;
225 
226 		buffer = ef4_tx_map_chunk(tx_queue, dma_addr, len);
227 
228 		/* The final descriptor for a fragment is responsible for
229 		 * unmapping the whole fragment.
230 		 */
231 		buffer->flags = EF4_TX_BUF_CONT | dma_flags;
232 		buffer->unmap_len = unmap_len;
233 		buffer->dma_offset = buffer->dma_addr - unmap_addr;
234 
235 		if (frag_index >= nr_frags) {
236 			/* Store SKB details with the final buffer for
237 			 * the completion.
238 			 */
239 			buffer->skb = skb;
240 			buffer->flags = EF4_TX_BUF_SKB | dma_flags;
241 			return 0;
242 		}
243 
244 		/* Move on to the next fragment. */
245 		fragment = &skb_shinfo(skb)->frags[frag_index++];
246 		len = skb_frag_size(fragment);
247 		dma_addr = skb_frag_dma_map(dma_dev, fragment,
248 				0, len, DMA_TO_DEVICE);
249 		dma_flags = 0;
250 		unmap_len = len;
251 		unmap_addr = dma_addr;
252 
253 		if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
254 			return -EIO;
255 	} while (1);
256 }
257 
258 /* Remove buffers put into a tx_queue.  None of the buffers must have
259  * an skb attached.
260  */
261 static void ef4_enqueue_unwind(struct ef4_tx_queue *tx_queue)
262 {
263 	struct ef4_tx_buffer *buffer;
264 
265 	/* Work backwards until we hit the original insert pointer value */
266 	while (tx_queue->insert_count != tx_queue->write_count) {
267 		--tx_queue->insert_count;
268 		buffer = __ef4_tx_queue_get_insert_buffer(tx_queue);
269 		ef4_dequeue_buffer(tx_queue, buffer, NULL, NULL);
270 	}
271 }
272 
273 /*
274  * Add a socket buffer to a TX queue
275  *
276  * This maps all fragments of a socket buffer for DMA and adds them to
277  * the TX queue.  The queue's insert pointer will be incremented by
278  * the number of fragments in the socket buffer.
279  *
280  * If any DMA mapping fails, any mapped fragments will be unmapped,
281  * the queue's insert pointer will be restored to its original value.
282  *
283  * This function is split out from ef4_hard_start_xmit to allow the
284  * loopback test to direct packets via specific TX queues.
285  *
286  * Returns NETDEV_TX_OK.
287  * You must hold netif_tx_lock() to call this function.
288  */
289 netdev_tx_t ef4_enqueue_skb(struct ef4_tx_queue *tx_queue, struct sk_buff *skb)
290 {
291 	bool data_mapped = false;
292 	unsigned int skb_len;
293 
294 	skb_len = skb->len;
295 	EF4_WARN_ON_PARANOID(skb_is_gso(skb));
296 
297 	if (skb_len < tx_queue->tx_min_size ||
298 			(skb->data_len && skb_len <= EF4_TX_CB_SIZE)) {
299 		/* Pad short packets or coalesce short fragmented packets. */
300 		if (ef4_enqueue_skb_copy(tx_queue, skb))
301 			goto err;
302 		tx_queue->cb_packets++;
303 		data_mapped = true;
304 	}
305 
306 	/* Map for DMA and create descriptors if we haven't done so already. */
307 	if (!data_mapped && (ef4_tx_map_data(tx_queue, skb)))
308 		goto err;
309 
310 	/* Update BQL */
311 	netdev_tx_sent_queue(tx_queue->core_txq, skb_len);
312 
313 	/* Pass off to hardware */
314 	if (!netdev_xmit_more() || netif_xmit_stopped(tx_queue->core_txq)) {
315 		struct ef4_tx_queue *txq2 = ef4_tx_queue_partner(tx_queue);
316 
317 		/* There could be packets left on the partner queue if those
318 		 * SKBs had skb->xmit_more set. If we do not push those they
319 		 * could be left for a long time and cause a netdev watchdog.
320 		 */
321 		if (txq2->xmit_more_available)
322 			ef4_nic_push_buffers(txq2);
323 
324 		ef4_nic_push_buffers(tx_queue);
325 	} else {
326 		tx_queue->xmit_more_available = netdev_xmit_more();
327 	}
328 
329 	tx_queue->tx_packets++;
330 
331 	ef4_tx_maybe_stop_queue(tx_queue);
332 
333 	return NETDEV_TX_OK;
334 
335 
336 err:
337 	ef4_enqueue_unwind(tx_queue);
338 	dev_kfree_skb_any(skb);
339 	return NETDEV_TX_OK;
340 }
341 
342 /* Remove packets from the TX queue
343  *
344  * This removes packets from the TX queue, up to and including the
345  * specified index.
346  */
347 static void ef4_dequeue_buffers(struct ef4_tx_queue *tx_queue,
348 				unsigned int index,
349 				unsigned int *pkts_compl,
350 				unsigned int *bytes_compl)
351 {
352 	struct ef4_nic *efx = tx_queue->efx;
353 	unsigned int stop_index, read_ptr;
354 
355 	stop_index = (index + 1) & tx_queue->ptr_mask;
356 	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
357 
358 	while (read_ptr != stop_index) {
359 		struct ef4_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
360 
361 		if (!(buffer->flags & EF4_TX_BUF_OPTION) &&
362 		    unlikely(buffer->len == 0)) {
363 			netif_err(efx, tx_err, efx->net_dev,
364 				  "TX queue %d spurious TX completion id %x\n",
365 				  tx_queue->queue, read_ptr);
366 			ef4_schedule_reset(efx, RESET_TYPE_TX_SKIP);
367 			return;
368 		}
369 
370 		ef4_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
371 
372 		++tx_queue->read_count;
373 		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
374 	}
375 }
376 
377 /* Initiate a packet transmission.  We use one channel per CPU
378  * (sharing when we have more CPUs than channels).  On Falcon, the TX
379  * completion events will be directed back to the CPU that transmitted
380  * the packet, which should be cache-efficient.
381  *
382  * Context: non-blocking.
383  * Note that returning anything other than NETDEV_TX_OK will cause the
384  * OS to free the skb.
385  */
386 netdev_tx_t ef4_hard_start_xmit(struct sk_buff *skb,
387 				struct net_device *net_dev)
388 {
389 	struct ef4_nic *efx = netdev_priv(net_dev);
390 	struct ef4_tx_queue *tx_queue;
391 	unsigned index, type;
392 
393 	EF4_WARN_ON_PARANOID(!netif_device_present(net_dev));
394 
395 	index = skb_get_queue_mapping(skb);
396 	type = skb->ip_summed == CHECKSUM_PARTIAL ? EF4_TXQ_TYPE_OFFLOAD : 0;
397 	if (index >= efx->n_tx_channels) {
398 		index -= efx->n_tx_channels;
399 		type |= EF4_TXQ_TYPE_HIGHPRI;
400 	}
401 	tx_queue = ef4_get_tx_queue(efx, index, type);
402 
403 	return ef4_enqueue_skb(tx_queue, skb);
404 }
405 
406 void ef4_init_tx_queue_core_txq(struct ef4_tx_queue *tx_queue)
407 {
408 	struct ef4_nic *efx = tx_queue->efx;
409 
410 	/* Must be inverse of queue lookup in ef4_hard_start_xmit() */
411 	tx_queue->core_txq =
412 		netdev_get_tx_queue(efx->net_dev,
413 				    tx_queue->queue / EF4_TXQ_TYPES +
414 				    ((tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI) ?
415 				     efx->n_tx_channels : 0));
416 }
417 
418 int ef4_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
419 		 void *type_data)
420 {
421 	struct ef4_nic *efx = netdev_priv(net_dev);
422 	struct tc_mqprio_qopt *mqprio = type_data;
423 	struct ef4_channel *channel;
424 	struct ef4_tx_queue *tx_queue;
425 	unsigned tc, num_tc;
426 	int rc;
427 
428 	if (type != TC_SETUP_QDISC_MQPRIO)
429 		return -EOPNOTSUPP;
430 
431 	num_tc = mqprio->num_tc;
432 
433 	if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0 || num_tc > EF4_MAX_TX_TC)
434 		return -EINVAL;
435 
436 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
437 
438 	if (num_tc == net_dev->num_tc)
439 		return 0;
440 
441 	for (tc = 0; tc < num_tc; tc++) {
442 		net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
443 		net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
444 	}
445 
446 	if (num_tc > net_dev->num_tc) {
447 		/* Initialise high-priority queues as necessary */
448 		ef4_for_each_channel(channel, efx) {
449 			ef4_for_each_possible_channel_tx_queue(tx_queue,
450 							       channel) {
451 				if (!(tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI))
452 					continue;
453 				if (!tx_queue->buffer) {
454 					rc = ef4_probe_tx_queue(tx_queue);
455 					if (rc)
456 						return rc;
457 				}
458 				if (!tx_queue->initialised)
459 					ef4_init_tx_queue(tx_queue);
460 				ef4_init_tx_queue_core_txq(tx_queue);
461 			}
462 		}
463 	} else {
464 		/* Reduce number of classes before number of queues */
465 		net_dev->num_tc = num_tc;
466 	}
467 
468 	rc = netif_set_real_num_tx_queues(net_dev,
469 					  max_t(int, num_tc, 1) *
470 					  efx->n_tx_channels);
471 	if (rc)
472 		return rc;
473 
474 	/* Do not destroy high-priority queues when they become
475 	 * unused.  We would have to flush them first, and it is
476 	 * fairly difficult to flush a subset of TX queues.  Leave
477 	 * it to ef4_fini_channels().
478 	 */
479 
480 	net_dev->num_tc = num_tc;
481 	return 0;
482 }
483 
484 void ef4_xmit_done(struct ef4_tx_queue *tx_queue, unsigned int index)
485 {
486 	unsigned fill_level;
487 	struct ef4_nic *efx = tx_queue->efx;
488 	struct ef4_tx_queue *txq2;
489 	unsigned int pkts_compl = 0, bytes_compl = 0;
490 
491 	EF4_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
492 
493 	ef4_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
494 	tx_queue->pkts_compl += pkts_compl;
495 	tx_queue->bytes_compl += bytes_compl;
496 
497 	if (pkts_compl > 1)
498 		++tx_queue->merge_events;
499 
500 	/* See if we need to restart the netif queue.  This memory
501 	 * barrier ensures that we write read_count (inside
502 	 * ef4_dequeue_buffers()) before reading the queue status.
503 	 */
504 	smp_mb();
505 	if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
506 	    likely(efx->port_enabled) &&
507 	    likely(netif_device_present(efx->net_dev))) {
508 		txq2 = ef4_tx_queue_partner(tx_queue);
509 		fill_level = max(tx_queue->insert_count - tx_queue->read_count,
510 				 txq2->insert_count - txq2->read_count);
511 		if (fill_level <= efx->txq_wake_thresh)
512 			netif_tx_wake_queue(tx_queue->core_txq);
513 	}
514 
515 	/* Check whether the hardware queue is now empty */
516 	if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
517 		tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
518 		if (tx_queue->read_count == tx_queue->old_write_count) {
519 			smp_mb();
520 			tx_queue->empty_read_count =
521 				tx_queue->read_count | EF4_EMPTY_COUNT_VALID;
522 		}
523 	}
524 }
525 
526 static unsigned int ef4_tx_cb_page_count(struct ef4_tx_queue *tx_queue)
527 {
528 	return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EF4_TX_CB_ORDER);
529 }
530 
531 int ef4_probe_tx_queue(struct ef4_tx_queue *tx_queue)
532 {
533 	struct ef4_nic *efx = tx_queue->efx;
534 	unsigned int entries;
535 	int rc;
536 
537 	/* Create the smallest power-of-two aligned ring */
538 	entries = max(roundup_pow_of_two(efx->txq_entries), EF4_MIN_DMAQ_SIZE);
539 	EF4_BUG_ON_PARANOID(entries > EF4_MAX_DMAQ_SIZE);
540 	tx_queue->ptr_mask = entries - 1;
541 
542 	netif_dbg(efx, probe, efx->net_dev,
543 		  "creating TX queue %d size %#x mask %#x\n",
544 		  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
545 
546 	/* Allocate software ring */
547 	tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
548 				   GFP_KERNEL);
549 	if (!tx_queue->buffer)
550 		return -ENOMEM;
551 
552 	tx_queue->cb_page = kcalloc(ef4_tx_cb_page_count(tx_queue),
553 				    sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
554 	if (!tx_queue->cb_page) {
555 		rc = -ENOMEM;
556 		goto fail1;
557 	}
558 
559 	/* Allocate hardware ring */
560 	rc = ef4_nic_probe_tx(tx_queue);
561 	if (rc)
562 		goto fail2;
563 
564 	return 0;
565 
566 fail2:
567 	kfree(tx_queue->cb_page);
568 	tx_queue->cb_page = NULL;
569 fail1:
570 	kfree(tx_queue->buffer);
571 	tx_queue->buffer = NULL;
572 	return rc;
573 }
574 
575 void ef4_init_tx_queue(struct ef4_tx_queue *tx_queue)
576 {
577 	struct ef4_nic *efx = tx_queue->efx;
578 
579 	netif_dbg(efx, drv, efx->net_dev,
580 		  "initialising TX queue %d\n", tx_queue->queue);
581 
582 	tx_queue->insert_count = 0;
583 	tx_queue->write_count = 0;
584 	tx_queue->old_write_count = 0;
585 	tx_queue->read_count = 0;
586 	tx_queue->old_read_count = 0;
587 	tx_queue->empty_read_count = 0 | EF4_EMPTY_COUNT_VALID;
588 	tx_queue->xmit_more_available = false;
589 
590 	/* Some older hardware requires Tx writes larger than 32. */
591 	tx_queue->tx_min_size = EF4_WORKAROUND_15592(efx) ? 33 : 0;
592 
593 	/* Set up TX descriptor ring */
594 	ef4_nic_init_tx(tx_queue);
595 
596 	tx_queue->initialised = true;
597 }
598 
599 void ef4_fini_tx_queue(struct ef4_tx_queue *tx_queue)
600 {
601 	struct ef4_tx_buffer *buffer;
602 
603 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
604 		  "shutting down TX queue %d\n", tx_queue->queue);
605 
606 	if (!tx_queue->buffer)
607 		return;
608 
609 	/* Free any buffers left in the ring */
610 	while (tx_queue->read_count != tx_queue->write_count) {
611 		unsigned int pkts_compl = 0, bytes_compl = 0;
612 		buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
613 		ef4_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
614 
615 		++tx_queue->read_count;
616 	}
617 	tx_queue->xmit_more_available = false;
618 	netdev_tx_reset_queue(tx_queue->core_txq);
619 }
620 
621 void ef4_remove_tx_queue(struct ef4_tx_queue *tx_queue)
622 {
623 	int i;
624 
625 	if (!tx_queue->buffer)
626 		return;
627 
628 	netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
629 		  "destroying TX queue %d\n", tx_queue->queue);
630 	ef4_nic_remove_tx(tx_queue);
631 
632 	if (tx_queue->cb_page) {
633 		for (i = 0; i < ef4_tx_cb_page_count(tx_queue); i++)
634 			ef4_nic_free_buffer(tx_queue->efx,
635 					    &tx_queue->cb_page[i]);
636 		kfree(tx_queue->cb_page);
637 		tx_queue->cb_page = NULL;
638 	}
639 
640 	kfree(tx_queue->buffer);
641 	tx_queue->buffer = NULL;
642 }
643