1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2005-2013 Solarflare Communications Inc. 6 */ 7 8 #include <linux/pci.h> 9 #include <linux/tcp.h> 10 #include <linux/ip.h> 11 #include <linux/in.h> 12 #include <linux/ipv6.h> 13 #include <linux/slab.h> 14 #include <net/ipv6.h> 15 #include <linux/if_ether.h> 16 #include <linux/highmem.h> 17 #include <linux/cache.h> 18 #include "net_driver.h" 19 #include "efx.h" 20 #include "io.h" 21 #include "nic.h" 22 #include "tx.h" 23 #include "workarounds.h" 24 25 static inline u8 *ef4_tx_get_copy_buffer(struct ef4_tx_queue *tx_queue, 26 struct ef4_tx_buffer *buffer) 27 { 28 unsigned int index = ef4_tx_queue_get_insert_index(tx_queue); 29 struct ef4_buffer *page_buf = 30 &tx_queue->cb_page[index >> (PAGE_SHIFT - EF4_TX_CB_ORDER)]; 31 unsigned int offset = 32 ((index << EF4_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1); 33 34 if (unlikely(!page_buf->addr) && 35 ef4_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE, 36 GFP_ATOMIC)) 37 return NULL; 38 buffer->dma_addr = page_buf->dma_addr + offset; 39 buffer->unmap_len = 0; 40 return (u8 *)page_buf->addr + offset; 41 } 42 43 static void ef4_dequeue_buffer(struct ef4_tx_queue *tx_queue, 44 struct ef4_tx_buffer *buffer, 45 unsigned int *pkts_compl, 46 unsigned int *bytes_compl) 47 { 48 if (buffer->unmap_len) { 49 struct device *dma_dev = &tx_queue->efx->pci_dev->dev; 50 dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset; 51 if (buffer->flags & EF4_TX_BUF_MAP_SINGLE) 52 dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len, 53 DMA_TO_DEVICE); 54 else 55 dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len, 56 DMA_TO_DEVICE); 57 buffer->unmap_len = 0; 58 } 59 60 if (buffer->flags & EF4_TX_BUF_SKB) { 61 (*pkts_compl)++; 62 (*bytes_compl) += buffer->skb->len; 63 dev_consume_skb_any((struct sk_buff *)buffer->skb); 64 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev, 65 "TX queue %d transmission id %x complete\n", 66 tx_queue->queue, tx_queue->read_count); 67 } 68 69 buffer->len = 0; 70 buffer->flags = 0; 71 } 72 73 unsigned int ef4_tx_max_skb_descs(struct ef4_nic *efx) 74 { 75 /* This is probably too much since we don't have any TSO support; 76 * it's a left-over from when we had Software TSO. But it's safer 77 * to leave it as-is than try to determine a new bound. 78 */ 79 /* Header and payload descriptor for each output segment, plus 80 * one for every input fragment boundary within a segment 81 */ 82 unsigned int max_descs = EF4_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS; 83 84 /* Possibly one more per segment for the alignment workaround, 85 * or for option descriptors 86 */ 87 if (EF4_WORKAROUND_5391(efx)) 88 max_descs += EF4_TSO_MAX_SEGS; 89 90 /* Possibly more for PCIe page boundaries within input fragments */ 91 if (PAGE_SIZE > EF4_PAGE_SIZE) 92 max_descs += max_t(unsigned int, MAX_SKB_FRAGS, 93 DIV_ROUND_UP(GSO_LEGACY_MAX_SIZE, 94 EF4_PAGE_SIZE)); 95 96 return max_descs; 97 } 98 99 static void ef4_tx_maybe_stop_queue(struct ef4_tx_queue *txq1) 100 { 101 /* We need to consider both queues that the net core sees as one */ 102 struct ef4_tx_queue *txq2 = ef4_tx_queue_partner(txq1); 103 struct ef4_nic *efx = txq1->efx; 104 unsigned int fill_level; 105 106 fill_level = max(txq1->insert_count - txq1->old_read_count, 107 txq2->insert_count - txq2->old_read_count); 108 if (likely(fill_level < efx->txq_stop_thresh)) 109 return; 110 111 /* We used the stale old_read_count above, which gives us a 112 * pessimistic estimate of the fill level (which may even 113 * validly be >= efx->txq_entries). Now try again using 114 * read_count (more likely to be a cache miss). 115 * 116 * If we read read_count and then conditionally stop the 117 * queue, it is possible for the completion path to race with 118 * us and complete all outstanding descriptors in the middle, 119 * after which there will be no more completions to wake it. 120 * Therefore we stop the queue first, then read read_count 121 * (with a memory barrier to ensure the ordering), then 122 * restart the queue if the fill level turns out to be low 123 * enough. 124 */ 125 netif_tx_stop_queue(txq1->core_txq); 126 smp_mb(); 127 txq1->old_read_count = READ_ONCE(txq1->read_count); 128 txq2->old_read_count = READ_ONCE(txq2->read_count); 129 130 fill_level = max(txq1->insert_count - txq1->old_read_count, 131 txq2->insert_count - txq2->old_read_count); 132 EF4_BUG_ON_PARANOID(fill_level >= efx->txq_entries); 133 if (likely(fill_level < efx->txq_stop_thresh)) { 134 smp_mb(); 135 if (likely(!efx->loopback_selftest)) 136 netif_tx_start_queue(txq1->core_txq); 137 } 138 } 139 140 static int ef4_enqueue_skb_copy(struct ef4_tx_queue *tx_queue, 141 struct sk_buff *skb) 142 { 143 unsigned int min_len = tx_queue->tx_min_size; 144 unsigned int copy_len = skb->len; 145 struct ef4_tx_buffer *buffer; 146 u8 *copy_buffer; 147 int rc; 148 149 EF4_BUG_ON_PARANOID(copy_len > EF4_TX_CB_SIZE); 150 151 buffer = ef4_tx_queue_get_insert_buffer(tx_queue); 152 153 copy_buffer = ef4_tx_get_copy_buffer(tx_queue, buffer); 154 if (unlikely(!copy_buffer)) 155 return -ENOMEM; 156 157 rc = skb_copy_bits(skb, 0, copy_buffer, copy_len); 158 EF4_WARN_ON_PARANOID(rc); 159 if (unlikely(copy_len < min_len)) { 160 memset(copy_buffer + copy_len, 0, min_len - copy_len); 161 buffer->len = min_len; 162 } else { 163 buffer->len = copy_len; 164 } 165 166 buffer->skb = skb; 167 buffer->flags = EF4_TX_BUF_SKB; 168 169 ++tx_queue->insert_count; 170 return rc; 171 } 172 173 static struct ef4_tx_buffer *ef4_tx_map_chunk(struct ef4_tx_queue *tx_queue, 174 dma_addr_t dma_addr, 175 size_t len) 176 { 177 const struct ef4_nic_type *nic_type = tx_queue->efx->type; 178 struct ef4_tx_buffer *buffer; 179 unsigned int dma_len; 180 181 /* Map the fragment taking account of NIC-dependent DMA limits. */ 182 do { 183 buffer = ef4_tx_queue_get_insert_buffer(tx_queue); 184 dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len); 185 186 buffer->len = dma_len; 187 buffer->dma_addr = dma_addr; 188 buffer->flags = EF4_TX_BUF_CONT; 189 len -= dma_len; 190 dma_addr += dma_len; 191 ++tx_queue->insert_count; 192 } while (len); 193 194 return buffer; 195 } 196 197 /* Map all data from an SKB for DMA and create descriptors on the queue. 198 */ 199 static int ef4_tx_map_data(struct ef4_tx_queue *tx_queue, struct sk_buff *skb) 200 { 201 struct ef4_nic *efx = tx_queue->efx; 202 struct device *dma_dev = &efx->pci_dev->dev; 203 unsigned int frag_index, nr_frags; 204 dma_addr_t dma_addr, unmap_addr; 205 unsigned short dma_flags; 206 size_t len, unmap_len; 207 208 nr_frags = skb_shinfo(skb)->nr_frags; 209 frag_index = 0; 210 211 /* Map header data. */ 212 len = skb_headlen(skb); 213 dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE); 214 dma_flags = EF4_TX_BUF_MAP_SINGLE; 215 unmap_len = len; 216 unmap_addr = dma_addr; 217 218 if (unlikely(dma_mapping_error(dma_dev, dma_addr))) 219 return -EIO; 220 221 /* Add descriptors for each fragment. */ 222 do { 223 struct ef4_tx_buffer *buffer; 224 skb_frag_t *fragment; 225 226 buffer = ef4_tx_map_chunk(tx_queue, dma_addr, len); 227 228 /* The final descriptor for a fragment is responsible for 229 * unmapping the whole fragment. 230 */ 231 buffer->flags = EF4_TX_BUF_CONT | dma_flags; 232 buffer->unmap_len = unmap_len; 233 buffer->dma_offset = buffer->dma_addr - unmap_addr; 234 235 if (frag_index >= nr_frags) { 236 /* Store SKB details with the final buffer for 237 * the completion. 238 */ 239 buffer->skb = skb; 240 buffer->flags = EF4_TX_BUF_SKB | dma_flags; 241 return 0; 242 } 243 244 /* Move on to the next fragment. */ 245 fragment = &skb_shinfo(skb)->frags[frag_index++]; 246 len = skb_frag_size(fragment); 247 dma_addr = skb_frag_dma_map(dma_dev, fragment, 248 0, len, DMA_TO_DEVICE); 249 dma_flags = 0; 250 unmap_len = len; 251 unmap_addr = dma_addr; 252 253 if (unlikely(dma_mapping_error(dma_dev, dma_addr))) 254 return -EIO; 255 } while (1); 256 } 257 258 /* Remove buffers put into a tx_queue. None of the buffers must have 259 * an skb attached. 260 */ 261 static void ef4_enqueue_unwind(struct ef4_tx_queue *tx_queue) 262 { 263 struct ef4_tx_buffer *buffer; 264 265 /* Work backwards until we hit the original insert pointer value */ 266 while (tx_queue->insert_count != tx_queue->write_count) { 267 --tx_queue->insert_count; 268 buffer = __ef4_tx_queue_get_insert_buffer(tx_queue); 269 ef4_dequeue_buffer(tx_queue, buffer, NULL, NULL); 270 } 271 } 272 273 /* 274 * Add a socket buffer to a TX queue 275 * 276 * This maps all fragments of a socket buffer for DMA and adds them to 277 * the TX queue. The queue's insert pointer will be incremented by 278 * the number of fragments in the socket buffer. 279 * 280 * If any DMA mapping fails, any mapped fragments will be unmapped, 281 * the queue's insert pointer will be restored to its original value. 282 * 283 * This function is split out from ef4_hard_start_xmit to allow the 284 * loopback test to direct packets via specific TX queues. 285 * 286 * Returns NETDEV_TX_OK. 287 * You must hold netif_tx_lock() to call this function. 288 */ 289 netdev_tx_t ef4_enqueue_skb(struct ef4_tx_queue *tx_queue, struct sk_buff *skb) 290 { 291 bool data_mapped = false; 292 unsigned int skb_len; 293 294 skb_len = skb->len; 295 EF4_WARN_ON_PARANOID(skb_is_gso(skb)); 296 297 if (skb_len < tx_queue->tx_min_size || 298 (skb->data_len && skb_len <= EF4_TX_CB_SIZE)) { 299 /* Pad short packets or coalesce short fragmented packets. */ 300 if (ef4_enqueue_skb_copy(tx_queue, skb)) 301 goto err; 302 tx_queue->cb_packets++; 303 data_mapped = true; 304 } 305 306 /* Map for DMA and create descriptors if we haven't done so already. */ 307 if (!data_mapped && (ef4_tx_map_data(tx_queue, skb))) 308 goto err; 309 310 /* Update BQL */ 311 netdev_tx_sent_queue(tx_queue->core_txq, skb_len); 312 313 /* Pass off to hardware */ 314 if (!netdev_xmit_more() || netif_xmit_stopped(tx_queue->core_txq)) { 315 struct ef4_tx_queue *txq2 = ef4_tx_queue_partner(tx_queue); 316 317 /* There could be packets left on the partner queue if those 318 * SKBs had skb->xmit_more set. If we do not push those they 319 * could be left for a long time and cause a netdev watchdog. 320 */ 321 if (txq2->xmit_more_available) 322 ef4_nic_push_buffers(txq2); 323 324 ef4_nic_push_buffers(tx_queue); 325 } else { 326 tx_queue->xmit_more_available = netdev_xmit_more(); 327 } 328 329 tx_queue->tx_packets++; 330 331 ef4_tx_maybe_stop_queue(tx_queue); 332 333 return NETDEV_TX_OK; 334 335 336 err: 337 ef4_enqueue_unwind(tx_queue); 338 dev_kfree_skb_any(skb); 339 return NETDEV_TX_OK; 340 } 341 342 /* Remove packets from the TX queue 343 * 344 * This removes packets from the TX queue, up to and including the 345 * specified index. 346 */ 347 static void ef4_dequeue_buffers(struct ef4_tx_queue *tx_queue, 348 unsigned int index, 349 unsigned int *pkts_compl, 350 unsigned int *bytes_compl) 351 { 352 struct ef4_nic *efx = tx_queue->efx; 353 unsigned int stop_index, read_ptr; 354 355 stop_index = (index + 1) & tx_queue->ptr_mask; 356 read_ptr = tx_queue->read_count & tx_queue->ptr_mask; 357 358 while (read_ptr != stop_index) { 359 struct ef4_tx_buffer *buffer = &tx_queue->buffer[read_ptr]; 360 361 if (!(buffer->flags & EF4_TX_BUF_OPTION) && 362 unlikely(buffer->len == 0)) { 363 netif_err(efx, tx_err, efx->net_dev, 364 "TX queue %d spurious TX completion id %x\n", 365 tx_queue->queue, read_ptr); 366 ef4_schedule_reset(efx, RESET_TYPE_TX_SKIP); 367 return; 368 } 369 370 ef4_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl); 371 372 ++tx_queue->read_count; 373 read_ptr = tx_queue->read_count & tx_queue->ptr_mask; 374 } 375 } 376 377 /* Initiate a packet transmission. We use one channel per CPU 378 * (sharing when we have more CPUs than channels). On Falcon, the TX 379 * completion events will be directed back to the CPU that transmitted 380 * the packet, which should be cache-efficient. 381 * 382 * Context: non-blocking. 383 * Note that returning anything other than NETDEV_TX_OK will cause the 384 * OS to free the skb. 385 */ 386 netdev_tx_t ef4_hard_start_xmit(struct sk_buff *skb, 387 struct net_device *net_dev) 388 { 389 struct ef4_nic *efx = netdev_priv(net_dev); 390 struct ef4_tx_queue *tx_queue; 391 unsigned index, type; 392 393 EF4_WARN_ON_PARANOID(!netif_device_present(net_dev)); 394 395 index = skb_get_queue_mapping(skb); 396 type = skb->ip_summed == CHECKSUM_PARTIAL ? EF4_TXQ_TYPE_OFFLOAD : 0; 397 if (index >= efx->n_tx_channels) { 398 index -= efx->n_tx_channels; 399 type |= EF4_TXQ_TYPE_HIGHPRI; 400 } 401 tx_queue = ef4_get_tx_queue(efx, index, type); 402 403 return ef4_enqueue_skb(tx_queue, skb); 404 } 405 406 void ef4_init_tx_queue_core_txq(struct ef4_tx_queue *tx_queue) 407 { 408 struct ef4_nic *efx = tx_queue->efx; 409 410 /* Must be inverse of queue lookup in ef4_hard_start_xmit() */ 411 tx_queue->core_txq = 412 netdev_get_tx_queue(efx->net_dev, 413 tx_queue->queue / EF4_TXQ_TYPES + 414 ((tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI) ? 415 efx->n_tx_channels : 0)); 416 } 417 418 int ef4_setup_tc(struct net_device *net_dev, enum tc_setup_type type, 419 void *type_data) 420 { 421 struct ef4_nic *efx = netdev_priv(net_dev); 422 struct tc_mqprio_qopt *mqprio = type_data; 423 struct ef4_channel *channel; 424 struct ef4_tx_queue *tx_queue; 425 unsigned tc, num_tc; 426 int rc; 427 428 if (type != TC_SETUP_QDISC_MQPRIO) 429 return -EOPNOTSUPP; 430 431 num_tc = mqprio->num_tc; 432 433 if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0 || num_tc > EF4_MAX_TX_TC) 434 return -EINVAL; 435 436 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 437 438 if (num_tc == net_dev->num_tc) 439 return 0; 440 441 for (tc = 0; tc < num_tc; tc++) { 442 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels; 443 net_dev->tc_to_txq[tc].count = efx->n_tx_channels; 444 } 445 446 if (num_tc > net_dev->num_tc) { 447 /* Initialise high-priority queues as necessary */ 448 ef4_for_each_channel(channel, efx) { 449 ef4_for_each_possible_channel_tx_queue(tx_queue, 450 channel) { 451 if (!(tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI)) 452 continue; 453 if (!tx_queue->buffer) { 454 rc = ef4_probe_tx_queue(tx_queue); 455 if (rc) 456 return rc; 457 } 458 if (!tx_queue->initialised) 459 ef4_init_tx_queue(tx_queue); 460 ef4_init_tx_queue_core_txq(tx_queue); 461 } 462 } 463 } else { 464 /* Reduce number of classes before number of queues */ 465 net_dev->num_tc = num_tc; 466 } 467 468 rc = netif_set_real_num_tx_queues(net_dev, 469 max_t(int, num_tc, 1) * 470 efx->n_tx_channels); 471 if (rc) 472 return rc; 473 474 /* Do not destroy high-priority queues when they become 475 * unused. We would have to flush them first, and it is 476 * fairly difficult to flush a subset of TX queues. Leave 477 * it to ef4_fini_channels(). 478 */ 479 480 net_dev->num_tc = num_tc; 481 return 0; 482 } 483 484 void ef4_xmit_done(struct ef4_tx_queue *tx_queue, unsigned int index) 485 { 486 unsigned fill_level; 487 struct ef4_nic *efx = tx_queue->efx; 488 struct ef4_tx_queue *txq2; 489 unsigned int pkts_compl = 0, bytes_compl = 0; 490 491 EF4_BUG_ON_PARANOID(index > tx_queue->ptr_mask); 492 493 ef4_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl); 494 tx_queue->pkts_compl += pkts_compl; 495 tx_queue->bytes_compl += bytes_compl; 496 497 if (pkts_compl > 1) 498 ++tx_queue->merge_events; 499 500 /* See if we need to restart the netif queue. This memory 501 * barrier ensures that we write read_count (inside 502 * ef4_dequeue_buffers()) before reading the queue status. 503 */ 504 smp_mb(); 505 if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) && 506 likely(efx->port_enabled) && 507 likely(netif_device_present(efx->net_dev))) { 508 txq2 = ef4_tx_queue_partner(tx_queue); 509 fill_level = max(tx_queue->insert_count - tx_queue->read_count, 510 txq2->insert_count - txq2->read_count); 511 if (fill_level <= efx->txq_wake_thresh) 512 netif_tx_wake_queue(tx_queue->core_txq); 513 } 514 515 /* Check whether the hardware queue is now empty */ 516 if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) { 517 tx_queue->old_write_count = READ_ONCE(tx_queue->write_count); 518 if (tx_queue->read_count == tx_queue->old_write_count) { 519 smp_mb(); 520 tx_queue->empty_read_count = 521 tx_queue->read_count | EF4_EMPTY_COUNT_VALID; 522 } 523 } 524 } 525 526 static unsigned int ef4_tx_cb_page_count(struct ef4_tx_queue *tx_queue) 527 { 528 return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EF4_TX_CB_ORDER); 529 } 530 531 int ef4_probe_tx_queue(struct ef4_tx_queue *tx_queue) 532 { 533 struct ef4_nic *efx = tx_queue->efx; 534 unsigned int entries; 535 int rc; 536 537 /* Create the smallest power-of-two aligned ring */ 538 entries = max(roundup_pow_of_two(efx->txq_entries), EF4_MIN_DMAQ_SIZE); 539 EF4_BUG_ON_PARANOID(entries > EF4_MAX_DMAQ_SIZE); 540 tx_queue->ptr_mask = entries - 1; 541 542 netif_dbg(efx, probe, efx->net_dev, 543 "creating TX queue %d size %#x mask %#x\n", 544 tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask); 545 546 /* Allocate software ring */ 547 tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer), 548 GFP_KERNEL); 549 if (!tx_queue->buffer) 550 return -ENOMEM; 551 552 tx_queue->cb_page = kcalloc(ef4_tx_cb_page_count(tx_queue), 553 sizeof(tx_queue->cb_page[0]), GFP_KERNEL); 554 if (!tx_queue->cb_page) { 555 rc = -ENOMEM; 556 goto fail1; 557 } 558 559 /* Allocate hardware ring */ 560 rc = ef4_nic_probe_tx(tx_queue); 561 if (rc) 562 goto fail2; 563 564 return 0; 565 566 fail2: 567 kfree(tx_queue->cb_page); 568 tx_queue->cb_page = NULL; 569 fail1: 570 kfree(tx_queue->buffer); 571 tx_queue->buffer = NULL; 572 return rc; 573 } 574 575 void ef4_init_tx_queue(struct ef4_tx_queue *tx_queue) 576 { 577 struct ef4_nic *efx = tx_queue->efx; 578 579 netif_dbg(efx, drv, efx->net_dev, 580 "initialising TX queue %d\n", tx_queue->queue); 581 582 tx_queue->insert_count = 0; 583 tx_queue->write_count = 0; 584 tx_queue->old_write_count = 0; 585 tx_queue->read_count = 0; 586 tx_queue->old_read_count = 0; 587 tx_queue->empty_read_count = 0 | EF4_EMPTY_COUNT_VALID; 588 tx_queue->xmit_more_available = false; 589 590 /* Some older hardware requires Tx writes larger than 32. */ 591 tx_queue->tx_min_size = EF4_WORKAROUND_15592(efx) ? 33 : 0; 592 593 /* Set up TX descriptor ring */ 594 ef4_nic_init_tx(tx_queue); 595 596 tx_queue->initialised = true; 597 } 598 599 void ef4_fini_tx_queue(struct ef4_tx_queue *tx_queue) 600 { 601 struct ef4_tx_buffer *buffer; 602 603 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, 604 "shutting down TX queue %d\n", tx_queue->queue); 605 606 if (!tx_queue->buffer) 607 return; 608 609 /* Free any buffers left in the ring */ 610 while (tx_queue->read_count != tx_queue->write_count) { 611 unsigned int pkts_compl = 0, bytes_compl = 0; 612 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask]; 613 ef4_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl); 614 615 ++tx_queue->read_count; 616 } 617 tx_queue->xmit_more_available = false; 618 netdev_tx_reset_queue(tx_queue->core_txq); 619 } 620 621 void ef4_remove_tx_queue(struct ef4_tx_queue *tx_queue) 622 { 623 int i; 624 625 if (!tx_queue->buffer) 626 return; 627 628 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, 629 "destroying TX queue %d\n", tx_queue->queue); 630 ef4_nic_remove_tx(tx_queue); 631 632 if (tx_queue->cb_page) { 633 for (i = 0; i < ef4_tx_cb_page_count(tx_queue); i++) 634 ef4_nic_free_buffer(tx_queue->efx, 635 &tx_queue->cb_page[i]); 636 kfree(tx_queue->cb_page); 637 tx_queue->cb_page = NULL; 638 } 639 640 kfree(tx_queue->buffer); 641 tx_queue->buffer = NULL; 642 } 643