1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2005-2013 Solarflare Communications Inc. 6 */ 7 8 #include <linux/pci.h> 9 #include <linux/tcp.h> 10 #include <linux/ip.h> 11 #include <linux/in.h> 12 #include <linux/ipv6.h> 13 #include <linux/slab.h> 14 #include <net/ipv6.h> 15 #include <linux/if_ether.h> 16 #include <linux/highmem.h> 17 #include <linux/cache.h> 18 #include "net_driver.h" 19 #include "efx.h" 20 #include "io.h" 21 #include "nic.h" 22 #include "tx.h" 23 #include "workarounds.h" 24 25 static inline u8 *ef4_tx_get_copy_buffer(struct ef4_tx_queue *tx_queue, 26 struct ef4_tx_buffer *buffer) 27 { 28 unsigned int index = ef4_tx_queue_get_insert_index(tx_queue); 29 struct ef4_buffer *page_buf = 30 &tx_queue->cb_page[index >> (PAGE_SHIFT - EF4_TX_CB_ORDER)]; 31 unsigned int offset = 32 ((index << EF4_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1); 33 34 if (unlikely(!page_buf->addr) && 35 ef4_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE, 36 GFP_ATOMIC)) 37 return NULL; 38 buffer->dma_addr = page_buf->dma_addr + offset; 39 buffer->unmap_len = 0; 40 return (u8 *)page_buf->addr + offset; 41 } 42 43 u8 *ef4_tx_get_copy_buffer_limited(struct ef4_tx_queue *tx_queue, 44 struct ef4_tx_buffer *buffer, size_t len) 45 { 46 if (len > EF4_TX_CB_SIZE) 47 return NULL; 48 return ef4_tx_get_copy_buffer(tx_queue, buffer); 49 } 50 51 static void ef4_dequeue_buffer(struct ef4_tx_queue *tx_queue, 52 struct ef4_tx_buffer *buffer, 53 unsigned int *pkts_compl, 54 unsigned int *bytes_compl) 55 { 56 if (buffer->unmap_len) { 57 struct device *dma_dev = &tx_queue->efx->pci_dev->dev; 58 dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset; 59 if (buffer->flags & EF4_TX_BUF_MAP_SINGLE) 60 dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len, 61 DMA_TO_DEVICE); 62 else 63 dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len, 64 DMA_TO_DEVICE); 65 buffer->unmap_len = 0; 66 } 67 68 if (buffer->flags & EF4_TX_BUF_SKB) { 69 (*pkts_compl)++; 70 (*bytes_compl) += buffer->skb->len; 71 dev_consume_skb_any((struct sk_buff *)buffer->skb); 72 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev, 73 "TX queue %d transmission id %x complete\n", 74 tx_queue->queue, tx_queue->read_count); 75 } 76 77 buffer->len = 0; 78 buffer->flags = 0; 79 } 80 81 unsigned int ef4_tx_max_skb_descs(struct ef4_nic *efx) 82 { 83 /* This is probably too much since we don't have any TSO support; 84 * it's a left-over from when we had Software TSO. But it's safer 85 * to leave it as-is than try to determine a new bound. 86 */ 87 /* Header and payload descriptor for each output segment, plus 88 * one for every input fragment boundary within a segment 89 */ 90 unsigned int max_descs = EF4_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS; 91 92 /* Possibly one more per segment for the alignment workaround, 93 * or for option descriptors 94 */ 95 if (EF4_WORKAROUND_5391(efx)) 96 max_descs += EF4_TSO_MAX_SEGS; 97 98 /* Possibly more for PCIe page boundaries within input fragments */ 99 if (PAGE_SIZE > EF4_PAGE_SIZE) 100 max_descs += max_t(unsigned int, MAX_SKB_FRAGS, 101 DIV_ROUND_UP(GSO_LEGACY_MAX_SIZE, 102 EF4_PAGE_SIZE)); 103 104 return max_descs; 105 } 106 107 static void ef4_tx_maybe_stop_queue(struct ef4_tx_queue *txq1) 108 { 109 /* We need to consider both queues that the net core sees as one */ 110 struct ef4_tx_queue *txq2 = ef4_tx_queue_partner(txq1); 111 struct ef4_nic *efx = txq1->efx; 112 unsigned int fill_level; 113 114 fill_level = max(txq1->insert_count - txq1->old_read_count, 115 txq2->insert_count - txq2->old_read_count); 116 if (likely(fill_level < efx->txq_stop_thresh)) 117 return; 118 119 /* We used the stale old_read_count above, which gives us a 120 * pessimistic estimate of the fill level (which may even 121 * validly be >= efx->txq_entries). Now try again using 122 * read_count (more likely to be a cache miss). 123 * 124 * If we read read_count and then conditionally stop the 125 * queue, it is possible for the completion path to race with 126 * us and complete all outstanding descriptors in the middle, 127 * after which there will be no more completions to wake it. 128 * Therefore we stop the queue first, then read read_count 129 * (with a memory barrier to ensure the ordering), then 130 * restart the queue if the fill level turns out to be low 131 * enough. 132 */ 133 netif_tx_stop_queue(txq1->core_txq); 134 smp_mb(); 135 txq1->old_read_count = READ_ONCE(txq1->read_count); 136 txq2->old_read_count = READ_ONCE(txq2->read_count); 137 138 fill_level = max(txq1->insert_count - txq1->old_read_count, 139 txq2->insert_count - txq2->old_read_count); 140 EF4_BUG_ON_PARANOID(fill_level >= efx->txq_entries); 141 if (likely(fill_level < efx->txq_stop_thresh)) { 142 smp_mb(); 143 if (likely(!efx->loopback_selftest)) 144 netif_tx_start_queue(txq1->core_txq); 145 } 146 } 147 148 static int ef4_enqueue_skb_copy(struct ef4_tx_queue *tx_queue, 149 struct sk_buff *skb) 150 { 151 unsigned int min_len = tx_queue->tx_min_size; 152 unsigned int copy_len = skb->len; 153 struct ef4_tx_buffer *buffer; 154 u8 *copy_buffer; 155 int rc; 156 157 EF4_BUG_ON_PARANOID(copy_len > EF4_TX_CB_SIZE); 158 159 buffer = ef4_tx_queue_get_insert_buffer(tx_queue); 160 161 copy_buffer = ef4_tx_get_copy_buffer(tx_queue, buffer); 162 if (unlikely(!copy_buffer)) 163 return -ENOMEM; 164 165 rc = skb_copy_bits(skb, 0, copy_buffer, copy_len); 166 EF4_WARN_ON_PARANOID(rc); 167 if (unlikely(copy_len < min_len)) { 168 memset(copy_buffer + copy_len, 0, min_len - copy_len); 169 buffer->len = min_len; 170 } else { 171 buffer->len = copy_len; 172 } 173 174 buffer->skb = skb; 175 buffer->flags = EF4_TX_BUF_SKB; 176 177 ++tx_queue->insert_count; 178 return rc; 179 } 180 181 static struct ef4_tx_buffer *ef4_tx_map_chunk(struct ef4_tx_queue *tx_queue, 182 dma_addr_t dma_addr, 183 size_t len) 184 { 185 const struct ef4_nic_type *nic_type = tx_queue->efx->type; 186 struct ef4_tx_buffer *buffer; 187 unsigned int dma_len; 188 189 /* Map the fragment taking account of NIC-dependent DMA limits. */ 190 do { 191 buffer = ef4_tx_queue_get_insert_buffer(tx_queue); 192 dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len); 193 194 buffer->len = dma_len; 195 buffer->dma_addr = dma_addr; 196 buffer->flags = EF4_TX_BUF_CONT; 197 len -= dma_len; 198 dma_addr += dma_len; 199 ++tx_queue->insert_count; 200 } while (len); 201 202 return buffer; 203 } 204 205 /* Map all data from an SKB for DMA and create descriptors on the queue. 206 */ 207 static int ef4_tx_map_data(struct ef4_tx_queue *tx_queue, struct sk_buff *skb) 208 { 209 struct ef4_nic *efx = tx_queue->efx; 210 struct device *dma_dev = &efx->pci_dev->dev; 211 unsigned int frag_index, nr_frags; 212 dma_addr_t dma_addr, unmap_addr; 213 unsigned short dma_flags; 214 size_t len, unmap_len; 215 216 nr_frags = skb_shinfo(skb)->nr_frags; 217 frag_index = 0; 218 219 /* Map header data. */ 220 len = skb_headlen(skb); 221 dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE); 222 dma_flags = EF4_TX_BUF_MAP_SINGLE; 223 unmap_len = len; 224 unmap_addr = dma_addr; 225 226 if (unlikely(dma_mapping_error(dma_dev, dma_addr))) 227 return -EIO; 228 229 /* Add descriptors for each fragment. */ 230 do { 231 struct ef4_tx_buffer *buffer; 232 skb_frag_t *fragment; 233 234 buffer = ef4_tx_map_chunk(tx_queue, dma_addr, len); 235 236 /* The final descriptor for a fragment is responsible for 237 * unmapping the whole fragment. 238 */ 239 buffer->flags = EF4_TX_BUF_CONT | dma_flags; 240 buffer->unmap_len = unmap_len; 241 buffer->dma_offset = buffer->dma_addr - unmap_addr; 242 243 if (frag_index >= nr_frags) { 244 /* Store SKB details with the final buffer for 245 * the completion. 246 */ 247 buffer->skb = skb; 248 buffer->flags = EF4_TX_BUF_SKB | dma_flags; 249 return 0; 250 } 251 252 /* Move on to the next fragment. */ 253 fragment = &skb_shinfo(skb)->frags[frag_index++]; 254 len = skb_frag_size(fragment); 255 dma_addr = skb_frag_dma_map(dma_dev, fragment, 256 0, len, DMA_TO_DEVICE); 257 dma_flags = 0; 258 unmap_len = len; 259 unmap_addr = dma_addr; 260 261 if (unlikely(dma_mapping_error(dma_dev, dma_addr))) 262 return -EIO; 263 } while (1); 264 } 265 266 /* Remove buffers put into a tx_queue. None of the buffers must have 267 * an skb attached. 268 */ 269 static void ef4_enqueue_unwind(struct ef4_tx_queue *tx_queue) 270 { 271 struct ef4_tx_buffer *buffer; 272 273 /* Work backwards until we hit the original insert pointer value */ 274 while (tx_queue->insert_count != tx_queue->write_count) { 275 --tx_queue->insert_count; 276 buffer = __ef4_tx_queue_get_insert_buffer(tx_queue); 277 ef4_dequeue_buffer(tx_queue, buffer, NULL, NULL); 278 } 279 } 280 281 /* 282 * Add a socket buffer to a TX queue 283 * 284 * This maps all fragments of a socket buffer for DMA and adds them to 285 * the TX queue. The queue's insert pointer will be incremented by 286 * the number of fragments in the socket buffer. 287 * 288 * If any DMA mapping fails, any mapped fragments will be unmapped, 289 * the queue's insert pointer will be restored to its original value. 290 * 291 * This function is split out from ef4_hard_start_xmit to allow the 292 * loopback test to direct packets via specific TX queues. 293 * 294 * Returns NETDEV_TX_OK. 295 * You must hold netif_tx_lock() to call this function. 296 */ 297 netdev_tx_t ef4_enqueue_skb(struct ef4_tx_queue *tx_queue, struct sk_buff *skb) 298 { 299 bool data_mapped = false; 300 unsigned int skb_len; 301 302 skb_len = skb->len; 303 EF4_WARN_ON_PARANOID(skb_is_gso(skb)); 304 305 if (skb_len < tx_queue->tx_min_size || 306 (skb->data_len && skb_len <= EF4_TX_CB_SIZE)) { 307 /* Pad short packets or coalesce short fragmented packets. */ 308 if (ef4_enqueue_skb_copy(tx_queue, skb)) 309 goto err; 310 tx_queue->cb_packets++; 311 data_mapped = true; 312 } 313 314 /* Map for DMA and create descriptors if we haven't done so already. */ 315 if (!data_mapped && (ef4_tx_map_data(tx_queue, skb))) 316 goto err; 317 318 /* Update BQL */ 319 netdev_tx_sent_queue(tx_queue->core_txq, skb_len); 320 321 /* Pass off to hardware */ 322 if (!netdev_xmit_more() || netif_xmit_stopped(tx_queue->core_txq)) { 323 struct ef4_tx_queue *txq2 = ef4_tx_queue_partner(tx_queue); 324 325 /* There could be packets left on the partner queue if those 326 * SKBs had skb->xmit_more set. If we do not push those they 327 * could be left for a long time and cause a netdev watchdog. 328 */ 329 if (txq2->xmit_more_available) 330 ef4_nic_push_buffers(txq2); 331 332 ef4_nic_push_buffers(tx_queue); 333 } else { 334 tx_queue->xmit_more_available = netdev_xmit_more(); 335 } 336 337 tx_queue->tx_packets++; 338 339 ef4_tx_maybe_stop_queue(tx_queue); 340 341 return NETDEV_TX_OK; 342 343 344 err: 345 ef4_enqueue_unwind(tx_queue); 346 dev_kfree_skb_any(skb); 347 return NETDEV_TX_OK; 348 } 349 350 /* Remove packets from the TX queue 351 * 352 * This removes packets from the TX queue, up to and including the 353 * specified index. 354 */ 355 static void ef4_dequeue_buffers(struct ef4_tx_queue *tx_queue, 356 unsigned int index, 357 unsigned int *pkts_compl, 358 unsigned int *bytes_compl) 359 { 360 struct ef4_nic *efx = tx_queue->efx; 361 unsigned int stop_index, read_ptr; 362 363 stop_index = (index + 1) & tx_queue->ptr_mask; 364 read_ptr = tx_queue->read_count & tx_queue->ptr_mask; 365 366 while (read_ptr != stop_index) { 367 struct ef4_tx_buffer *buffer = &tx_queue->buffer[read_ptr]; 368 369 if (!(buffer->flags & EF4_TX_BUF_OPTION) && 370 unlikely(buffer->len == 0)) { 371 netif_err(efx, tx_err, efx->net_dev, 372 "TX queue %d spurious TX completion id %x\n", 373 tx_queue->queue, read_ptr); 374 ef4_schedule_reset(efx, RESET_TYPE_TX_SKIP); 375 return; 376 } 377 378 ef4_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl); 379 380 ++tx_queue->read_count; 381 read_ptr = tx_queue->read_count & tx_queue->ptr_mask; 382 } 383 } 384 385 /* Initiate a packet transmission. We use one channel per CPU 386 * (sharing when we have more CPUs than channels). On Falcon, the TX 387 * completion events will be directed back to the CPU that transmitted 388 * the packet, which should be cache-efficient. 389 * 390 * Context: non-blocking. 391 * Note that returning anything other than NETDEV_TX_OK will cause the 392 * OS to free the skb. 393 */ 394 netdev_tx_t ef4_hard_start_xmit(struct sk_buff *skb, 395 struct net_device *net_dev) 396 { 397 struct ef4_nic *efx = netdev_priv(net_dev); 398 struct ef4_tx_queue *tx_queue; 399 unsigned index, type; 400 401 EF4_WARN_ON_PARANOID(!netif_device_present(net_dev)); 402 403 index = skb_get_queue_mapping(skb); 404 type = skb->ip_summed == CHECKSUM_PARTIAL ? EF4_TXQ_TYPE_OFFLOAD : 0; 405 if (index >= efx->n_tx_channels) { 406 index -= efx->n_tx_channels; 407 type |= EF4_TXQ_TYPE_HIGHPRI; 408 } 409 tx_queue = ef4_get_tx_queue(efx, index, type); 410 411 return ef4_enqueue_skb(tx_queue, skb); 412 } 413 414 void ef4_init_tx_queue_core_txq(struct ef4_tx_queue *tx_queue) 415 { 416 struct ef4_nic *efx = tx_queue->efx; 417 418 /* Must be inverse of queue lookup in ef4_hard_start_xmit() */ 419 tx_queue->core_txq = 420 netdev_get_tx_queue(efx->net_dev, 421 tx_queue->queue / EF4_TXQ_TYPES + 422 ((tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI) ? 423 efx->n_tx_channels : 0)); 424 } 425 426 int ef4_setup_tc(struct net_device *net_dev, enum tc_setup_type type, 427 void *type_data) 428 { 429 struct ef4_nic *efx = netdev_priv(net_dev); 430 struct tc_mqprio_qopt *mqprio = type_data; 431 struct ef4_channel *channel; 432 struct ef4_tx_queue *tx_queue; 433 unsigned tc, num_tc; 434 int rc; 435 436 if (type != TC_SETUP_QDISC_MQPRIO) 437 return -EOPNOTSUPP; 438 439 num_tc = mqprio->num_tc; 440 441 if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0 || num_tc > EF4_MAX_TX_TC) 442 return -EINVAL; 443 444 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 445 446 if (num_tc == net_dev->num_tc) 447 return 0; 448 449 for (tc = 0; tc < num_tc; tc++) { 450 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels; 451 net_dev->tc_to_txq[tc].count = efx->n_tx_channels; 452 } 453 454 if (num_tc > net_dev->num_tc) { 455 /* Initialise high-priority queues as necessary */ 456 ef4_for_each_channel(channel, efx) { 457 ef4_for_each_possible_channel_tx_queue(tx_queue, 458 channel) { 459 if (!(tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI)) 460 continue; 461 if (!tx_queue->buffer) { 462 rc = ef4_probe_tx_queue(tx_queue); 463 if (rc) 464 return rc; 465 } 466 if (!tx_queue->initialised) 467 ef4_init_tx_queue(tx_queue); 468 ef4_init_tx_queue_core_txq(tx_queue); 469 } 470 } 471 } else { 472 /* Reduce number of classes before number of queues */ 473 net_dev->num_tc = num_tc; 474 } 475 476 rc = netif_set_real_num_tx_queues(net_dev, 477 max_t(int, num_tc, 1) * 478 efx->n_tx_channels); 479 if (rc) 480 return rc; 481 482 /* Do not destroy high-priority queues when they become 483 * unused. We would have to flush them first, and it is 484 * fairly difficult to flush a subset of TX queues. Leave 485 * it to ef4_fini_channels(). 486 */ 487 488 net_dev->num_tc = num_tc; 489 return 0; 490 } 491 492 void ef4_xmit_done(struct ef4_tx_queue *tx_queue, unsigned int index) 493 { 494 unsigned fill_level; 495 struct ef4_nic *efx = tx_queue->efx; 496 struct ef4_tx_queue *txq2; 497 unsigned int pkts_compl = 0, bytes_compl = 0; 498 499 EF4_BUG_ON_PARANOID(index > tx_queue->ptr_mask); 500 501 ef4_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl); 502 tx_queue->pkts_compl += pkts_compl; 503 tx_queue->bytes_compl += bytes_compl; 504 505 if (pkts_compl > 1) 506 ++tx_queue->merge_events; 507 508 /* See if we need to restart the netif queue. This memory 509 * barrier ensures that we write read_count (inside 510 * ef4_dequeue_buffers()) before reading the queue status. 511 */ 512 smp_mb(); 513 if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) && 514 likely(efx->port_enabled) && 515 likely(netif_device_present(efx->net_dev))) { 516 txq2 = ef4_tx_queue_partner(tx_queue); 517 fill_level = max(tx_queue->insert_count - tx_queue->read_count, 518 txq2->insert_count - txq2->read_count); 519 if (fill_level <= efx->txq_wake_thresh) 520 netif_tx_wake_queue(tx_queue->core_txq); 521 } 522 523 /* Check whether the hardware queue is now empty */ 524 if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) { 525 tx_queue->old_write_count = READ_ONCE(tx_queue->write_count); 526 if (tx_queue->read_count == tx_queue->old_write_count) { 527 smp_mb(); 528 tx_queue->empty_read_count = 529 tx_queue->read_count | EF4_EMPTY_COUNT_VALID; 530 } 531 } 532 } 533 534 static unsigned int ef4_tx_cb_page_count(struct ef4_tx_queue *tx_queue) 535 { 536 return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EF4_TX_CB_ORDER); 537 } 538 539 int ef4_probe_tx_queue(struct ef4_tx_queue *tx_queue) 540 { 541 struct ef4_nic *efx = tx_queue->efx; 542 unsigned int entries; 543 int rc; 544 545 /* Create the smallest power-of-two aligned ring */ 546 entries = max(roundup_pow_of_two(efx->txq_entries), EF4_MIN_DMAQ_SIZE); 547 EF4_BUG_ON_PARANOID(entries > EF4_MAX_DMAQ_SIZE); 548 tx_queue->ptr_mask = entries - 1; 549 550 netif_dbg(efx, probe, efx->net_dev, 551 "creating TX queue %d size %#x mask %#x\n", 552 tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask); 553 554 /* Allocate software ring */ 555 tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer), 556 GFP_KERNEL); 557 if (!tx_queue->buffer) 558 return -ENOMEM; 559 560 tx_queue->cb_page = kcalloc(ef4_tx_cb_page_count(tx_queue), 561 sizeof(tx_queue->cb_page[0]), GFP_KERNEL); 562 if (!tx_queue->cb_page) { 563 rc = -ENOMEM; 564 goto fail1; 565 } 566 567 /* Allocate hardware ring */ 568 rc = ef4_nic_probe_tx(tx_queue); 569 if (rc) 570 goto fail2; 571 572 return 0; 573 574 fail2: 575 kfree(tx_queue->cb_page); 576 tx_queue->cb_page = NULL; 577 fail1: 578 kfree(tx_queue->buffer); 579 tx_queue->buffer = NULL; 580 return rc; 581 } 582 583 void ef4_init_tx_queue(struct ef4_tx_queue *tx_queue) 584 { 585 struct ef4_nic *efx = tx_queue->efx; 586 587 netif_dbg(efx, drv, efx->net_dev, 588 "initialising TX queue %d\n", tx_queue->queue); 589 590 tx_queue->insert_count = 0; 591 tx_queue->write_count = 0; 592 tx_queue->old_write_count = 0; 593 tx_queue->read_count = 0; 594 tx_queue->old_read_count = 0; 595 tx_queue->empty_read_count = 0 | EF4_EMPTY_COUNT_VALID; 596 tx_queue->xmit_more_available = false; 597 598 /* Some older hardware requires Tx writes larger than 32. */ 599 tx_queue->tx_min_size = EF4_WORKAROUND_15592(efx) ? 33 : 0; 600 601 /* Set up TX descriptor ring */ 602 ef4_nic_init_tx(tx_queue); 603 604 tx_queue->initialised = true; 605 } 606 607 void ef4_fini_tx_queue(struct ef4_tx_queue *tx_queue) 608 { 609 struct ef4_tx_buffer *buffer; 610 611 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, 612 "shutting down TX queue %d\n", tx_queue->queue); 613 614 if (!tx_queue->buffer) 615 return; 616 617 /* Free any buffers left in the ring */ 618 while (tx_queue->read_count != tx_queue->write_count) { 619 unsigned int pkts_compl = 0, bytes_compl = 0; 620 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask]; 621 ef4_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl); 622 623 ++tx_queue->read_count; 624 } 625 tx_queue->xmit_more_available = false; 626 netdev_tx_reset_queue(tx_queue->core_txq); 627 } 628 629 void ef4_remove_tx_queue(struct ef4_tx_queue *tx_queue) 630 { 631 int i; 632 633 if (!tx_queue->buffer) 634 return; 635 636 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, 637 "destroying TX queue %d\n", tx_queue->queue); 638 ef4_nic_remove_tx(tx_queue); 639 640 if (tx_queue->cb_page) { 641 for (i = 0; i < ef4_tx_cb_page_count(tx_queue); i++) 642 ef4_nic_free_buffer(tx_queue->efx, 643 &tx_queue->cb_page[i]); 644 kfree(tx_queue->cb_page); 645 tx_queue->cb_page = NULL; 646 } 647 648 kfree(tx_queue->buffer); 649 tx_queue->buffer = NULL; 650 } 651