1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2005-2013 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/tcp.h> 13 #include <linux/ip.h> 14 #include <linux/in.h> 15 #include <linux/ipv6.h> 16 #include <linux/slab.h> 17 #include <net/ipv6.h> 18 #include <linux/if_ether.h> 19 #include <linux/highmem.h> 20 #include <linux/cache.h> 21 #include "net_driver.h" 22 #include "efx.h" 23 #include "io.h" 24 #include "nic.h" 25 #include "tx.h" 26 #include "workarounds.h" 27 28 static inline u8 *ef4_tx_get_copy_buffer(struct ef4_tx_queue *tx_queue, 29 struct ef4_tx_buffer *buffer) 30 { 31 unsigned int index = ef4_tx_queue_get_insert_index(tx_queue); 32 struct ef4_buffer *page_buf = 33 &tx_queue->cb_page[index >> (PAGE_SHIFT - EF4_TX_CB_ORDER)]; 34 unsigned int offset = 35 ((index << EF4_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1); 36 37 if (unlikely(!page_buf->addr) && 38 ef4_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE, 39 GFP_ATOMIC)) 40 return NULL; 41 buffer->dma_addr = page_buf->dma_addr + offset; 42 buffer->unmap_len = 0; 43 return (u8 *)page_buf->addr + offset; 44 } 45 46 u8 *ef4_tx_get_copy_buffer_limited(struct ef4_tx_queue *tx_queue, 47 struct ef4_tx_buffer *buffer, size_t len) 48 { 49 if (len > EF4_TX_CB_SIZE) 50 return NULL; 51 return ef4_tx_get_copy_buffer(tx_queue, buffer); 52 } 53 54 static void ef4_dequeue_buffer(struct ef4_tx_queue *tx_queue, 55 struct ef4_tx_buffer *buffer, 56 unsigned int *pkts_compl, 57 unsigned int *bytes_compl) 58 { 59 if (buffer->unmap_len) { 60 struct device *dma_dev = &tx_queue->efx->pci_dev->dev; 61 dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset; 62 if (buffer->flags & EF4_TX_BUF_MAP_SINGLE) 63 dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len, 64 DMA_TO_DEVICE); 65 else 66 dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len, 67 DMA_TO_DEVICE); 68 buffer->unmap_len = 0; 69 } 70 71 if (buffer->flags & EF4_TX_BUF_SKB) { 72 (*pkts_compl)++; 73 (*bytes_compl) += buffer->skb->len; 74 dev_consume_skb_any((struct sk_buff *)buffer->skb); 75 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev, 76 "TX queue %d transmission id %x complete\n", 77 tx_queue->queue, tx_queue->read_count); 78 } 79 80 buffer->len = 0; 81 buffer->flags = 0; 82 } 83 84 unsigned int ef4_tx_max_skb_descs(struct ef4_nic *efx) 85 { 86 /* This is probably too much since we don't have any TSO support; 87 * it's a left-over from when we had Software TSO. But it's safer 88 * to leave it as-is than try to determine a new bound. 89 */ 90 /* Header and payload descriptor for each output segment, plus 91 * one for every input fragment boundary within a segment 92 */ 93 unsigned int max_descs = EF4_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS; 94 95 /* Possibly one more per segment for the alignment workaround, 96 * or for option descriptors 97 */ 98 if (EF4_WORKAROUND_5391(efx)) 99 max_descs += EF4_TSO_MAX_SEGS; 100 101 /* Possibly more for PCIe page boundaries within input fragments */ 102 if (PAGE_SIZE > EF4_PAGE_SIZE) 103 max_descs += max_t(unsigned int, MAX_SKB_FRAGS, 104 DIV_ROUND_UP(GSO_MAX_SIZE, EF4_PAGE_SIZE)); 105 106 return max_descs; 107 } 108 109 static void ef4_tx_maybe_stop_queue(struct ef4_tx_queue *txq1) 110 { 111 /* We need to consider both queues that the net core sees as one */ 112 struct ef4_tx_queue *txq2 = ef4_tx_queue_partner(txq1); 113 struct ef4_nic *efx = txq1->efx; 114 unsigned int fill_level; 115 116 fill_level = max(txq1->insert_count - txq1->old_read_count, 117 txq2->insert_count - txq2->old_read_count); 118 if (likely(fill_level < efx->txq_stop_thresh)) 119 return; 120 121 /* We used the stale old_read_count above, which gives us a 122 * pessimistic estimate of the fill level (which may even 123 * validly be >= efx->txq_entries). Now try again using 124 * read_count (more likely to be a cache miss). 125 * 126 * If we read read_count and then conditionally stop the 127 * queue, it is possible for the completion path to race with 128 * us and complete all outstanding descriptors in the middle, 129 * after which there will be no more completions to wake it. 130 * Therefore we stop the queue first, then read read_count 131 * (with a memory barrier to ensure the ordering), then 132 * restart the queue if the fill level turns out to be low 133 * enough. 134 */ 135 netif_tx_stop_queue(txq1->core_txq); 136 smp_mb(); 137 txq1->old_read_count = ACCESS_ONCE(txq1->read_count); 138 txq2->old_read_count = ACCESS_ONCE(txq2->read_count); 139 140 fill_level = max(txq1->insert_count - txq1->old_read_count, 141 txq2->insert_count - txq2->old_read_count); 142 EF4_BUG_ON_PARANOID(fill_level >= efx->txq_entries); 143 if (likely(fill_level < efx->txq_stop_thresh)) { 144 smp_mb(); 145 if (likely(!efx->loopback_selftest)) 146 netif_tx_start_queue(txq1->core_txq); 147 } 148 } 149 150 static int ef4_enqueue_skb_copy(struct ef4_tx_queue *tx_queue, 151 struct sk_buff *skb) 152 { 153 unsigned int min_len = tx_queue->tx_min_size; 154 unsigned int copy_len = skb->len; 155 struct ef4_tx_buffer *buffer; 156 u8 *copy_buffer; 157 int rc; 158 159 EF4_BUG_ON_PARANOID(copy_len > EF4_TX_CB_SIZE); 160 161 buffer = ef4_tx_queue_get_insert_buffer(tx_queue); 162 163 copy_buffer = ef4_tx_get_copy_buffer(tx_queue, buffer); 164 if (unlikely(!copy_buffer)) 165 return -ENOMEM; 166 167 rc = skb_copy_bits(skb, 0, copy_buffer, copy_len); 168 EF4_WARN_ON_PARANOID(rc); 169 if (unlikely(copy_len < min_len)) { 170 memset(copy_buffer + copy_len, 0, min_len - copy_len); 171 buffer->len = min_len; 172 } else { 173 buffer->len = copy_len; 174 } 175 176 buffer->skb = skb; 177 buffer->flags = EF4_TX_BUF_SKB; 178 179 ++tx_queue->insert_count; 180 return rc; 181 } 182 183 static struct ef4_tx_buffer *ef4_tx_map_chunk(struct ef4_tx_queue *tx_queue, 184 dma_addr_t dma_addr, 185 size_t len) 186 { 187 const struct ef4_nic_type *nic_type = tx_queue->efx->type; 188 struct ef4_tx_buffer *buffer; 189 unsigned int dma_len; 190 191 /* Map the fragment taking account of NIC-dependent DMA limits. */ 192 do { 193 buffer = ef4_tx_queue_get_insert_buffer(tx_queue); 194 dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len); 195 196 buffer->len = dma_len; 197 buffer->dma_addr = dma_addr; 198 buffer->flags = EF4_TX_BUF_CONT; 199 len -= dma_len; 200 dma_addr += dma_len; 201 ++tx_queue->insert_count; 202 } while (len); 203 204 return buffer; 205 } 206 207 /* Map all data from an SKB for DMA and create descriptors on the queue. 208 */ 209 static int ef4_tx_map_data(struct ef4_tx_queue *tx_queue, struct sk_buff *skb) 210 { 211 struct ef4_nic *efx = tx_queue->efx; 212 struct device *dma_dev = &efx->pci_dev->dev; 213 unsigned int frag_index, nr_frags; 214 dma_addr_t dma_addr, unmap_addr; 215 unsigned short dma_flags; 216 size_t len, unmap_len; 217 218 nr_frags = skb_shinfo(skb)->nr_frags; 219 frag_index = 0; 220 221 /* Map header data. */ 222 len = skb_headlen(skb); 223 dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE); 224 dma_flags = EF4_TX_BUF_MAP_SINGLE; 225 unmap_len = len; 226 unmap_addr = dma_addr; 227 228 if (unlikely(dma_mapping_error(dma_dev, dma_addr))) 229 return -EIO; 230 231 /* Add descriptors for each fragment. */ 232 do { 233 struct ef4_tx_buffer *buffer; 234 skb_frag_t *fragment; 235 236 buffer = ef4_tx_map_chunk(tx_queue, dma_addr, len); 237 238 /* The final descriptor for a fragment is responsible for 239 * unmapping the whole fragment. 240 */ 241 buffer->flags = EF4_TX_BUF_CONT | dma_flags; 242 buffer->unmap_len = unmap_len; 243 buffer->dma_offset = buffer->dma_addr - unmap_addr; 244 245 if (frag_index >= nr_frags) { 246 /* Store SKB details with the final buffer for 247 * the completion. 248 */ 249 buffer->skb = skb; 250 buffer->flags = EF4_TX_BUF_SKB | dma_flags; 251 return 0; 252 } 253 254 /* Move on to the next fragment. */ 255 fragment = &skb_shinfo(skb)->frags[frag_index++]; 256 len = skb_frag_size(fragment); 257 dma_addr = skb_frag_dma_map(dma_dev, fragment, 258 0, len, DMA_TO_DEVICE); 259 dma_flags = 0; 260 unmap_len = len; 261 unmap_addr = dma_addr; 262 263 if (unlikely(dma_mapping_error(dma_dev, dma_addr))) 264 return -EIO; 265 } while (1); 266 } 267 268 /* Remove buffers put into a tx_queue. None of the buffers must have 269 * an skb attached. 270 */ 271 static void ef4_enqueue_unwind(struct ef4_tx_queue *tx_queue) 272 { 273 struct ef4_tx_buffer *buffer; 274 275 /* Work backwards until we hit the original insert pointer value */ 276 while (tx_queue->insert_count != tx_queue->write_count) { 277 --tx_queue->insert_count; 278 buffer = __ef4_tx_queue_get_insert_buffer(tx_queue); 279 ef4_dequeue_buffer(tx_queue, buffer, NULL, NULL); 280 } 281 } 282 283 /* 284 * Add a socket buffer to a TX queue 285 * 286 * This maps all fragments of a socket buffer for DMA and adds them to 287 * the TX queue. The queue's insert pointer will be incremented by 288 * the number of fragments in the socket buffer. 289 * 290 * If any DMA mapping fails, any mapped fragments will be unmapped, 291 * the queue's insert pointer will be restored to its original value. 292 * 293 * This function is split out from ef4_hard_start_xmit to allow the 294 * loopback test to direct packets via specific TX queues. 295 * 296 * Returns NETDEV_TX_OK. 297 * You must hold netif_tx_lock() to call this function. 298 */ 299 netdev_tx_t ef4_enqueue_skb(struct ef4_tx_queue *tx_queue, struct sk_buff *skb) 300 { 301 bool data_mapped = false; 302 unsigned int skb_len; 303 304 skb_len = skb->len; 305 EF4_WARN_ON_PARANOID(skb_is_gso(skb)); 306 307 if (skb_len < tx_queue->tx_min_size || 308 (skb->data_len && skb_len <= EF4_TX_CB_SIZE)) { 309 /* Pad short packets or coalesce short fragmented packets. */ 310 if (ef4_enqueue_skb_copy(tx_queue, skb)) 311 goto err; 312 tx_queue->cb_packets++; 313 data_mapped = true; 314 } 315 316 /* Map for DMA and create descriptors if we haven't done so already. */ 317 if (!data_mapped && (ef4_tx_map_data(tx_queue, skb))) 318 goto err; 319 320 /* Update BQL */ 321 netdev_tx_sent_queue(tx_queue->core_txq, skb_len); 322 323 /* Pass off to hardware */ 324 if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq)) { 325 struct ef4_tx_queue *txq2 = ef4_tx_queue_partner(tx_queue); 326 327 /* There could be packets left on the partner queue if those 328 * SKBs had skb->xmit_more set. If we do not push those they 329 * could be left for a long time and cause a netdev watchdog. 330 */ 331 if (txq2->xmit_more_available) 332 ef4_nic_push_buffers(txq2); 333 334 ef4_nic_push_buffers(tx_queue); 335 } else { 336 tx_queue->xmit_more_available = skb->xmit_more; 337 } 338 339 tx_queue->tx_packets++; 340 341 ef4_tx_maybe_stop_queue(tx_queue); 342 343 return NETDEV_TX_OK; 344 345 346 err: 347 ef4_enqueue_unwind(tx_queue); 348 dev_kfree_skb_any(skb); 349 return NETDEV_TX_OK; 350 } 351 352 /* Remove packets from the TX queue 353 * 354 * This removes packets from the TX queue, up to and including the 355 * specified index. 356 */ 357 static void ef4_dequeue_buffers(struct ef4_tx_queue *tx_queue, 358 unsigned int index, 359 unsigned int *pkts_compl, 360 unsigned int *bytes_compl) 361 { 362 struct ef4_nic *efx = tx_queue->efx; 363 unsigned int stop_index, read_ptr; 364 365 stop_index = (index + 1) & tx_queue->ptr_mask; 366 read_ptr = tx_queue->read_count & tx_queue->ptr_mask; 367 368 while (read_ptr != stop_index) { 369 struct ef4_tx_buffer *buffer = &tx_queue->buffer[read_ptr]; 370 371 if (!(buffer->flags & EF4_TX_BUF_OPTION) && 372 unlikely(buffer->len == 0)) { 373 netif_err(efx, tx_err, efx->net_dev, 374 "TX queue %d spurious TX completion id %x\n", 375 tx_queue->queue, read_ptr); 376 ef4_schedule_reset(efx, RESET_TYPE_TX_SKIP); 377 return; 378 } 379 380 ef4_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl); 381 382 ++tx_queue->read_count; 383 read_ptr = tx_queue->read_count & tx_queue->ptr_mask; 384 } 385 } 386 387 /* Initiate a packet transmission. We use one channel per CPU 388 * (sharing when we have more CPUs than channels). On Falcon, the TX 389 * completion events will be directed back to the CPU that transmitted 390 * the packet, which should be cache-efficient. 391 * 392 * Context: non-blocking. 393 * Note that returning anything other than NETDEV_TX_OK will cause the 394 * OS to free the skb. 395 */ 396 netdev_tx_t ef4_hard_start_xmit(struct sk_buff *skb, 397 struct net_device *net_dev) 398 { 399 struct ef4_nic *efx = netdev_priv(net_dev); 400 struct ef4_tx_queue *tx_queue; 401 unsigned index, type; 402 403 EF4_WARN_ON_PARANOID(!netif_device_present(net_dev)); 404 405 index = skb_get_queue_mapping(skb); 406 type = skb->ip_summed == CHECKSUM_PARTIAL ? EF4_TXQ_TYPE_OFFLOAD : 0; 407 if (index >= efx->n_tx_channels) { 408 index -= efx->n_tx_channels; 409 type |= EF4_TXQ_TYPE_HIGHPRI; 410 } 411 tx_queue = ef4_get_tx_queue(efx, index, type); 412 413 return ef4_enqueue_skb(tx_queue, skb); 414 } 415 416 void ef4_init_tx_queue_core_txq(struct ef4_tx_queue *tx_queue) 417 { 418 struct ef4_nic *efx = tx_queue->efx; 419 420 /* Must be inverse of queue lookup in ef4_hard_start_xmit() */ 421 tx_queue->core_txq = 422 netdev_get_tx_queue(efx->net_dev, 423 tx_queue->queue / EF4_TXQ_TYPES + 424 ((tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI) ? 425 efx->n_tx_channels : 0)); 426 } 427 428 int ef4_setup_tc(struct net_device *net_dev, enum tc_setup_type type, 429 struct tc_to_netdev *ntc) 430 { 431 struct ef4_nic *efx = netdev_priv(net_dev); 432 struct ef4_channel *channel; 433 struct ef4_tx_queue *tx_queue; 434 unsigned tc, num_tc; 435 int rc; 436 437 if (type != TC_SETUP_MQPRIO) 438 return -EOPNOTSUPP; 439 440 num_tc = ntc->mqprio->num_tc; 441 442 if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0 || num_tc > EF4_MAX_TX_TC) 443 return -EINVAL; 444 445 ntc->mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 446 447 if (num_tc == net_dev->num_tc) 448 return 0; 449 450 for (tc = 0; tc < num_tc; tc++) { 451 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels; 452 net_dev->tc_to_txq[tc].count = efx->n_tx_channels; 453 } 454 455 if (num_tc > net_dev->num_tc) { 456 /* Initialise high-priority queues as necessary */ 457 ef4_for_each_channel(channel, efx) { 458 ef4_for_each_possible_channel_tx_queue(tx_queue, 459 channel) { 460 if (!(tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI)) 461 continue; 462 if (!tx_queue->buffer) { 463 rc = ef4_probe_tx_queue(tx_queue); 464 if (rc) 465 return rc; 466 } 467 if (!tx_queue->initialised) 468 ef4_init_tx_queue(tx_queue); 469 ef4_init_tx_queue_core_txq(tx_queue); 470 } 471 } 472 } else { 473 /* Reduce number of classes before number of queues */ 474 net_dev->num_tc = num_tc; 475 } 476 477 rc = netif_set_real_num_tx_queues(net_dev, 478 max_t(int, num_tc, 1) * 479 efx->n_tx_channels); 480 if (rc) 481 return rc; 482 483 /* Do not destroy high-priority queues when they become 484 * unused. We would have to flush them first, and it is 485 * fairly difficult to flush a subset of TX queues. Leave 486 * it to ef4_fini_channels(). 487 */ 488 489 net_dev->num_tc = num_tc; 490 return 0; 491 } 492 493 void ef4_xmit_done(struct ef4_tx_queue *tx_queue, unsigned int index) 494 { 495 unsigned fill_level; 496 struct ef4_nic *efx = tx_queue->efx; 497 struct ef4_tx_queue *txq2; 498 unsigned int pkts_compl = 0, bytes_compl = 0; 499 500 EF4_BUG_ON_PARANOID(index > tx_queue->ptr_mask); 501 502 ef4_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl); 503 tx_queue->pkts_compl += pkts_compl; 504 tx_queue->bytes_compl += bytes_compl; 505 506 if (pkts_compl > 1) 507 ++tx_queue->merge_events; 508 509 /* See if we need to restart the netif queue. This memory 510 * barrier ensures that we write read_count (inside 511 * ef4_dequeue_buffers()) before reading the queue status. 512 */ 513 smp_mb(); 514 if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) && 515 likely(efx->port_enabled) && 516 likely(netif_device_present(efx->net_dev))) { 517 txq2 = ef4_tx_queue_partner(tx_queue); 518 fill_level = max(tx_queue->insert_count - tx_queue->read_count, 519 txq2->insert_count - txq2->read_count); 520 if (fill_level <= efx->txq_wake_thresh) 521 netif_tx_wake_queue(tx_queue->core_txq); 522 } 523 524 /* Check whether the hardware queue is now empty */ 525 if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) { 526 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count); 527 if (tx_queue->read_count == tx_queue->old_write_count) { 528 smp_mb(); 529 tx_queue->empty_read_count = 530 tx_queue->read_count | EF4_EMPTY_COUNT_VALID; 531 } 532 } 533 } 534 535 static unsigned int ef4_tx_cb_page_count(struct ef4_tx_queue *tx_queue) 536 { 537 return DIV_ROUND_UP(tx_queue->ptr_mask + 1, PAGE_SIZE >> EF4_TX_CB_ORDER); 538 } 539 540 int ef4_probe_tx_queue(struct ef4_tx_queue *tx_queue) 541 { 542 struct ef4_nic *efx = tx_queue->efx; 543 unsigned int entries; 544 int rc; 545 546 /* Create the smallest power-of-two aligned ring */ 547 entries = max(roundup_pow_of_two(efx->txq_entries), EF4_MIN_DMAQ_SIZE); 548 EF4_BUG_ON_PARANOID(entries > EF4_MAX_DMAQ_SIZE); 549 tx_queue->ptr_mask = entries - 1; 550 551 netif_dbg(efx, probe, efx->net_dev, 552 "creating TX queue %d size %#x mask %#x\n", 553 tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask); 554 555 /* Allocate software ring */ 556 tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer), 557 GFP_KERNEL); 558 if (!tx_queue->buffer) 559 return -ENOMEM; 560 561 tx_queue->cb_page = kcalloc(ef4_tx_cb_page_count(tx_queue), 562 sizeof(tx_queue->cb_page[0]), GFP_KERNEL); 563 if (!tx_queue->cb_page) { 564 rc = -ENOMEM; 565 goto fail1; 566 } 567 568 /* Allocate hardware ring */ 569 rc = ef4_nic_probe_tx(tx_queue); 570 if (rc) 571 goto fail2; 572 573 return 0; 574 575 fail2: 576 kfree(tx_queue->cb_page); 577 tx_queue->cb_page = NULL; 578 fail1: 579 kfree(tx_queue->buffer); 580 tx_queue->buffer = NULL; 581 return rc; 582 } 583 584 void ef4_init_tx_queue(struct ef4_tx_queue *tx_queue) 585 { 586 struct ef4_nic *efx = tx_queue->efx; 587 588 netif_dbg(efx, drv, efx->net_dev, 589 "initialising TX queue %d\n", tx_queue->queue); 590 591 tx_queue->insert_count = 0; 592 tx_queue->write_count = 0; 593 tx_queue->old_write_count = 0; 594 tx_queue->read_count = 0; 595 tx_queue->old_read_count = 0; 596 tx_queue->empty_read_count = 0 | EF4_EMPTY_COUNT_VALID; 597 tx_queue->xmit_more_available = false; 598 599 /* Some older hardware requires Tx writes larger than 32. */ 600 tx_queue->tx_min_size = EF4_WORKAROUND_15592(efx) ? 33 : 0; 601 602 /* Set up TX descriptor ring */ 603 ef4_nic_init_tx(tx_queue); 604 605 tx_queue->initialised = true; 606 } 607 608 void ef4_fini_tx_queue(struct ef4_tx_queue *tx_queue) 609 { 610 struct ef4_tx_buffer *buffer; 611 612 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, 613 "shutting down TX queue %d\n", tx_queue->queue); 614 615 if (!tx_queue->buffer) 616 return; 617 618 /* Free any buffers left in the ring */ 619 while (tx_queue->read_count != tx_queue->write_count) { 620 unsigned int pkts_compl = 0, bytes_compl = 0; 621 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask]; 622 ef4_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl); 623 624 ++tx_queue->read_count; 625 } 626 tx_queue->xmit_more_available = false; 627 netdev_tx_reset_queue(tx_queue->core_txq); 628 } 629 630 void ef4_remove_tx_queue(struct ef4_tx_queue *tx_queue) 631 { 632 int i; 633 634 if (!tx_queue->buffer) 635 return; 636 637 netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, 638 "destroying TX queue %d\n", tx_queue->queue); 639 ef4_nic_remove_tx(tx_queue); 640 641 if (tx_queue->cb_page) { 642 for (i = 0; i < ef4_tx_cb_page_count(tx_queue); i++) 643 ef4_nic_free_buffer(tx_queue->efx, 644 &tx_queue->cb_page[i]); 645 kfree(tx_queue->cb_page); 646 tx_queue->cb_page = NULL; 647 } 648 649 kfree(tx_queue->buffer); 650 tx_queue->buffer = NULL; 651 } 652