xref: /linux/drivers/net/ethernet/sfc/falcon/rx.c (revision 4fd18fc38757217c746aa063ba9e4729814dc737)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7 
8 #include <linux/socket.h>
9 #include <linux/in.h>
10 #include <linux/slab.h>
11 #include <linux/ip.h>
12 #include <linux/ipv6.h>
13 #include <linux/tcp.h>
14 #include <linux/udp.h>
15 #include <linux/prefetch.h>
16 #include <linux/moduleparam.h>
17 #include <linux/iommu.h>
18 #include <net/ip.h>
19 #include <net/checksum.h>
20 #include "net_driver.h"
21 #include "efx.h"
22 #include "filter.h"
23 #include "nic.h"
24 #include "selftest.h"
25 #include "workarounds.h"
26 
27 /* Preferred number of descriptors to fill at once */
28 #define EF4_RX_PREFERRED_BATCH 8U
29 
30 /* Number of RX buffers to recycle pages for.  When creating the RX page recycle
31  * ring, this number is divided by the number of buffers per page to calculate
32  * the number of pages to store in the RX page recycle ring.
33  */
34 #define EF4_RECYCLE_RING_SIZE_IOMMU 4096
35 #define EF4_RECYCLE_RING_SIZE_NOIOMMU (2 * EF4_RX_PREFERRED_BATCH)
36 
37 /* Size of buffer allocated for skb header area. */
38 #define EF4_SKB_HEADERS  128u
39 
40 /* This is the percentage fill level below which new RX descriptors
41  * will be added to the RX descriptor ring.
42  */
43 static unsigned int rx_refill_threshold;
44 
45 /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
46 #define EF4_RX_MAX_FRAGS DIV_ROUND_UP(EF4_MAX_FRAME_LEN(EF4_MAX_MTU), \
47 				      EF4_RX_USR_BUF_SIZE)
48 
49 /*
50  * RX maximum head room required.
51  *
52  * This must be at least 1 to prevent overflow, plus one packet-worth
53  * to allow pipelined receives.
54  */
55 #define EF4_RXD_HEAD_ROOM (1 + EF4_RX_MAX_FRAGS)
56 
57 static inline u8 *ef4_rx_buf_va(struct ef4_rx_buffer *buf)
58 {
59 	return page_address(buf->page) + buf->page_offset;
60 }
61 
62 static inline u32 ef4_rx_buf_hash(struct ef4_nic *efx, const u8 *eh)
63 {
64 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
65 	return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset));
66 #else
67 	const u8 *data = eh + efx->rx_packet_hash_offset;
68 	return (u32)data[0]	  |
69 	       (u32)data[1] << 8  |
70 	       (u32)data[2] << 16 |
71 	       (u32)data[3] << 24;
72 #endif
73 }
74 
75 static inline struct ef4_rx_buffer *
76 ef4_rx_buf_next(struct ef4_rx_queue *rx_queue, struct ef4_rx_buffer *rx_buf)
77 {
78 	if (unlikely(rx_buf == ef4_rx_buffer(rx_queue, rx_queue->ptr_mask)))
79 		return ef4_rx_buffer(rx_queue, 0);
80 	else
81 		return rx_buf + 1;
82 }
83 
84 static inline void ef4_sync_rx_buffer(struct ef4_nic *efx,
85 				      struct ef4_rx_buffer *rx_buf,
86 				      unsigned int len)
87 {
88 	dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
89 				DMA_FROM_DEVICE);
90 }
91 
92 void ef4_rx_config_page_split(struct ef4_nic *efx)
93 {
94 	efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align,
95 				      EF4_RX_BUF_ALIGNMENT);
96 	efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
97 		((PAGE_SIZE - sizeof(struct ef4_rx_page_state)) /
98 		 efx->rx_page_buf_step);
99 	efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
100 		efx->rx_bufs_per_page;
101 	efx->rx_pages_per_batch = DIV_ROUND_UP(EF4_RX_PREFERRED_BATCH,
102 					       efx->rx_bufs_per_page);
103 }
104 
105 /* Check the RX page recycle ring for a page that can be reused. */
106 static struct page *ef4_reuse_page(struct ef4_rx_queue *rx_queue)
107 {
108 	struct ef4_nic *efx = rx_queue->efx;
109 	struct page *page;
110 	struct ef4_rx_page_state *state;
111 	unsigned index;
112 
113 	index = rx_queue->page_remove & rx_queue->page_ptr_mask;
114 	page = rx_queue->page_ring[index];
115 	if (page == NULL)
116 		return NULL;
117 
118 	rx_queue->page_ring[index] = NULL;
119 	/* page_remove cannot exceed page_add. */
120 	if (rx_queue->page_remove != rx_queue->page_add)
121 		++rx_queue->page_remove;
122 
123 	/* If page_count is 1 then we hold the only reference to this page. */
124 	if (page_count(page) == 1) {
125 		++rx_queue->page_recycle_count;
126 		return page;
127 	} else {
128 		state = page_address(page);
129 		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
130 			       PAGE_SIZE << efx->rx_buffer_order,
131 			       DMA_FROM_DEVICE);
132 		put_page(page);
133 		++rx_queue->page_recycle_failed;
134 	}
135 
136 	return NULL;
137 }
138 
139 /**
140  * ef4_init_rx_buffers - create EF4_RX_BATCH page-based RX buffers
141  *
142  * @rx_queue:		Efx RX queue
143  * @atomic:		control memory allocation flags
144  *
145  * This allocates a batch of pages, maps them for DMA, and populates
146  * struct ef4_rx_buffers for each one. Return a negative error code or
147  * 0 on success. If a single page can be used for multiple buffers,
148  * then the page will either be inserted fully, or not at all.
149  */
150 static int ef4_init_rx_buffers(struct ef4_rx_queue *rx_queue, bool atomic)
151 {
152 	struct ef4_nic *efx = rx_queue->efx;
153 	struct ef4_rx_buffer *rx_buf;
154 	struct page *page;
155 	unsigned int page_offset;
156 	struct ef4_rx_page_state *state;
157 	dma_addr_t dma_addr;
158 	unsigned index, count;
159 
160 	count = 0;
161 	do {
162 		page = ef4_reuse_page(rx_queue);
163 		if (page == NULL) {
164 			page = alloc_pages(__GFP_COMP |
165 					   (atomic ? GFP_ATOMIC : GFP_KERNEL),
166 					   efx->rx_buffer_order);
167 			if (unlikely(page == NULL))
168 				return -ENOMEM;
169 			dma_addr =
170 				dma_map_page(&efx->pci_dev->dev, page, 0,
171 					     PAGE_SIZE << efx->rx_buffer_order,
172 					     DMA_FROM_DEVICE);
173 			if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
174 						       dma_addr))) {
175 				__free_pages(page, efx->rx_buffer_order);
176 				return -EIO;
177 			}
178 			state = page_address(page);
179 			state->dma_addr = dma_addr;
180 		} else {
181 			state = page_address(page);
182 			dma_addr = state->dma_addr;
183 		}
184 
185 		dma_addr += sizeof(struct ef4_rx_page_state);
186 		page_offset = sizeof(struct ef4_rx_page_state);
187 
188 		do {
189 			index = rx_queue->added_count & rx_queue->ptr_mask;
190 			rx_buf = ef4_rx_buffer(rx_queue, index);
191 			rx_buf->dma_addr = dma_addr + efx->rx_ip_align;
192 			rx_buf->page = page;
193 			rx_buf->page_offset = page_offset + efx->rx_ip_align;
194 			rx_buf->len = efx->rx_dma_len;
195 			rx_buf->flags = 0;
196 			++rx_queue->added_count;
197 			get_page(page);
198 			dma_addr += efx->rx_page_buf_step;
199 			page_offset += efx->rx_page_buf_step;
200 		} while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
201 
202 		rx_buf->flags = EF4_RX_BUF_LAST_IN_PAGE;
203 	} while (++count < efx->rx_pages_per_batch);
204 
205 	return 0;
206 }
207 
208 /* Unmap a DMA-mapped page.  This function is only called for the final RX
209  * buffer in a page.
210  */
211 static void ef4_unmap_rx_buffer(struct ef4_nic *efx,
212 				struct ef4_rx_buffer *rx_buf)
213 {
214 	struct page *page = rx_buf->page;
215 
216 	if (page) {
217 		struct ef4_rx_page_state *state = page_address(page);
218 		dma_unmap_page(&efx->pci_dev->dev,
219 			       state->dma_addr,
220 			       PAGE_SIZE << efx->rx_buffer_order,
221 			       DMA_FROM_DEVICE);
222 	}
223 }
224 
225 static void ef4_free_rx_buffers(struct ef4_rx_queue *rx_queue,
226 				struct ef4_rx_buffer *rx_buf,
227 				unsigned int num_bufs)
228 {
229 	do {
230 		if (rx_buf->page) {
231 			put_page(rx_buf->page);
232 			rx_buf->page = NULL;
233 		}
234 		rx_buf = ef4_rx_buf_next(rx_queue, rx_buf);
235 	} while (--num_bufs);
236 }
237 
238 /* Attempt to recycle the page if there is an RX recycle ring; the page can
239  * only be added if this is the final RX buffer, to prevent pages being used in
240  * the descriptor ring and appearing in the recycle ring simultaneously.
241  */
242 static void ef4_recycle_rx_page(struct ef4_channel *channel,
243 				struct ef4_rx_buffer *rx_buf)
244 {
245 	struct page *page = rx_buf->page;
246 	struct ef4_rx_queue *rx_queue = ef4_channel_get_rx_queue(channel);
247 	struct ef4_nic *efx = rx_queue->efx;
248 	unsigned index;
249 
250 	/* Only recycle the page after processing the final buffer. */
251 	if (!(rx_buf->flags & EF4_RX_BUF_LAST_IN_PAGE))
252 		return;
253 
254 	index = rx_queue->page_add & rx_queue->page_ptr_mask;
255 	if (rx_queue->page_ring[index] == NULL) {
256 		unsigned read_index = rx_queue->page_remove &
257 			rx_queue->page_ptr_mask;
258 
259 		/* The next slot in the recycle ring is available, but
260 		 * increment page_remove if the read pointer currently
261 		 * points here.
262 		 */
263 		if (read_index == index)
264 			++rx_queue->page_remove;
265 		rx_queue->page_ring[index] = page;
266 		++rx_queue->page_add;
267 		return;
268 	}
269 	++rx_queue->page_recycle_full;
270 	ef4_unmap_rx_buffer(efx, rx_buf);
271 	put_page(rx_buf->page);
272 }
273 
274 static void ef4_fini_rx_buffer(struct ef4_rx_queue *rx_queue,
275 			       struct ef4_rx_buffer *rx_buf)
276 {
277 	/* Release the page reference we hold for the buffer. */
278 	if (rx_buf->page)
279 		put_page(rx_buf->page);
280 
281 	/* If this is the last buffer in a page, unmap and free it. */
282 	if (rx_buf->flags & EF4_RX_BUF_LAST_IN_PAGE) {
283 		ef4_unmap_rx_buffer(rx_queue->efx, rx_buf);
284 		ef4_free_rx_buffers(rx_queue, rx_buf, 1);
285 	}
286 	rx_buf->page = NULL;
287 }
288 
289 /* Recycle the pages that are used by buffers that have just been received. */
290 static void ef4_recycle_rx_pages(struct ef4_channel *channel,
291 				 struct ef4_rx_buffer *rx_buf,
292 				 unsigned int n_frags)
293 {
294 	struct ef4_rx_queue *rx_queue = ef4_channel_get_rx_queue(channel);
295 
296 	do {
297 		ef4_recycle_rx_page(channel, rx_buf);
298 		rx_buf = ef4_rx_buf_next(rx_queue, rx_buf);
299 	} while (--n_frags);
300 }
301 
302 static void ef4_discard_rx_packet(struct ef4_channel *channel,
303 				  struct ef4_rx_buffer *rx_buf,
304 				  unsigned int n_frags)
305 {
306 	struct ef4_rx_queue *rx_queue = ef4_channel_get_rx_queue(channel);
307 
308 	ef4_recycle_rx_pages(channel, rx_buf, n_frags);
309 
310 	ef4_free_rx_buffers(rx_queue, rx_buf, n_frags);
311 }
312 
313 /**
314  * ef4_fast_push_rx_descriptors - push new RX descriptors quickly
315  * @rx_queue:		RX descriptor queue
316  *
317  * This will aim to fill the RX descriptor queue up to
318  * @rx_queue->@max_fill. If there is insufficient atomic
319  * memory to do so, a slow fill will be scheduled.
320  * @atomic: control memory allocation flags
321  *
322  * The caller must provide serialisation (none is used here). In practise,
323  * this means this function must run from the NAPI handler, or be called
324  * when NAPI is disabled.
325  */
326 void ef4_fast_push_rx_descriptors(struct ef4_rx_queue *rx_queue, bool atomic)
327 {
328 	struct ef4_nic *efx = rx_queue->efx;
329 	unsigned int fill_level, batch_size;
330 	int space, rc = 0;
331 
332 	if (!rx_queue->refill_enabled)
333 		return;
334 
335 	/* Calculate current fill level, and exit if we don't need to fill */
336 	fill_level = (rx_queue->added_count - rx_queue->removed_count);
337 	EF4_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
338 	if (fill_level >= rx_queue->fast_fill_trigger)
339 		goto out;
340 
341 	/* Record minimum fill level */
342 	if (unlikely(fill_level < rx_queue->min_fill)) {
343 		if (fill_level)
344 			rx_queue->min_fill = fill_level;
345 	}
346 
347 	batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
348 	space = rx_queue->max_fill - fill_level;
349 	EF4_BUG_ON_PARANOID(space < batch_size);
350 
351 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
352 		   "RX queue %d fast-filling descriptor ring from"
353 		   " level %d to level %d\n",
354 		   ef4_rx_queue_index(rx_queue), fill_level,
355 		   rx_queue->max_fill);
356 
357 
358 	do {
359 		rc = ef4_init_rx_buffers(rx_queue, atomic);
360 		if (unlikely(rc)) {
361 			/* Ensure that we don't leave the rx queue empty */
362 			if (rx_queue->added_count == rx_queue->removed_count)
363 				ef4_schedule_slow_fill(rx_queue);
364 			goto out;
365 		}
366 	} while ((space -= batch_size) >= batch_size);
367 
368 	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
369 		   "RX queue %d fast-filled descriptor ring "
370 		   "to level %d\n", ef4_rx_queue_index(rx_queue),
371 		   rx_queue->added_count - rx_queue->removed_count);
372 
373  out:
374 	if (rx_queue->notified_count != rx_queue->added_count)
375 		ef4_nic_notify_rx_desc(rx_queue);
376 }
377 
378 void ef4_rx_slow_fill(struct timer_list *t)
379 {
380 	struct ef4_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill);
381 
382 	/* Post an event to cause NAPI to run and refill the queue */
383 	ef4_nic_generate_fill_event(rx_queue);
384 	++rx_queue->slow_fill_count;
385 }
386 
387 static void ef4_rx_packet__check_len(struct ef4_rx_queue *rx_queue,
388 				     struct ef4_rx_buffer *rx_buf,
389 				     int len)
390 {
391 	struct ef4_nic *efx = rx_queue->efx;
392 	unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
393 
394 	if (likely(len <= max_len))
395 		return;
396 
397 	/* The packet must be discarded, but this is only a fatal error
398 	 * if the caller indicated it was
399 	 */
400 	rx_buf->flags |= EF4_RX_PKT_DISCARD;
401 
402 	if ((len > rx_buf->len) && EF4_WORKAROUND_8071(efx)) {
403 		if (net_ratelimit())
404 			netif_err(efx, rx_err, efx->net_dev,
405 				  " RX queue %d seriously overlength "
406 				  "RX event (0x%x > 0x%x+0x%x). Leaking\n",
407 				  ef4_rx_queue_index(rx_queue), len, max_len,
408 				  efx->type->rx_buffer_padding);
409 		ef4_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
410 	} else {
411 		if (net_ratelimit())
412 			netif_err(efx, rx_err, efx->net_dev,
413 				  " RX queue %d overlength RX event "
414 				  "(0x%x > 0x%x)\n",
415 				  ef4_rx_queue_index(rx_queue), len, max_len);
416 	}
417 
418 	ef4_rx_queue_channel(rx_queue)->n_rx_overlength++;
419 }
420 
421 /* Pass a received packet up through GRO.  GRO can handle pages
422  * regardless of checksum state and skbs with a good checksum.
423  */
424 static void
425 ef4_rx_packet_gro(struct ef4_channel *channel, struct ef4_rx_buffer *rx_buf,
426 		  unsigned int n_frags, u8 *eh)
427 {
428 	struct napi_struct *napi = &channel->napi_str;
429 	struct ef4_nic *efx = channel->efx;
430 	struct sk_buff *skb;
431 
432 	skb = napi_get_frags(napi);
433 	if (unlikely(!skb)) {
434 		struct ef4_rx_queue *rx_queue;
435 
436 		rx_queue = ef4_channel_get_rx_queue(channel);
437 		ef4_free_rx_buffers(rx_queue, rx_buf, n_frags);
438 		return;
439 	}
440 
441 	if (efx->net_dev->features & NETIF_F_RXHASH)
442 		skb_set_hash(skb, ef4_rx_buf_hash(efx, eh),
443 			     PKT_HASH_TYPE_L3);
444 	skb->ip_summed = ((rx_buf->flags & EF4_RX_PKT_CSUMMED) ?
445 			  CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
446 
447 	for (;;) {
448 		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
449 				   rx_buf->page, rx_buf->page_offset,
450 				   rx_buf->len);
451 		rx_buf->page = NULL;
452 		skb->len += rx_buf->len;
453 		if (skb_shinfo(skb)->nr_frags == n_frags)
454 			break;
455 
456 		rx_buf = ef4_rx_buf_next(&channel->rx_queue, rx_buf);
457 	}
458 
459 	skb->data_len = skb->len;
460 	skb->truesize += n_frags * efx->rx_buffer_truesize;
461 
462 	skb_record_rx_queue(skb, channel->rx_queue.core_index);
463 
464 	napi_gro_frags(napi);
465 }
466 
467 /* Allocate and construct an SKB around page fragments */
468 static struct sk_buff *ef4_rx_mk_skb(struct ef4_channel *channel,
469 				     struct ef4_rx_buffer *rx_buf,
470 				     unsigned int n_frags,
471 				     u8 *eh, int hdr_len)
472 {
473 	struct ef4_nic *efx = channel->efx;
474 	struct sk_buff *skb;
475 
476 	/* Allocate an SKB to store the headers */
477 	skb = netdev_alloc_skb(efx->net_dev,
478 			       efx->rx_ip_align + efx->rx_prefix_size +
479 			       hdr_len);
480 	if (unlikely(skb == NULL)) {
481 		atomic_inc(&efx->n_rx_noskb_drops);
482 		return NULL;
483 	}
484 
485 	EF4_BUG_ON_PARANOID(rx_buf->len < hdr_len);
486 
487 	memcpy(skb->data + efx->rx_ip_align, eh - efx->rx_prefix_size,
488 	       efx->rx_prefix_size + hdr_len);
489 	skb_reserve(skb, efx->rx_ip_align + efx->rx_prefix_size);
490 	__skb_put(skb, hdr_len);
491 
492 	/* Append the remaining page(s) onto the frag list */
493 	if (rx_buf->len > hdr_len) {
494 		rx_buf->page_offset += hdr_len;
495 		rx_buf->len -= hdr_len;
496 
497 		for (;;) {
498 			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
499 					   rx_buf->page, rx_buf->page_offset,
500 					   rx_buf->len);
501 			rx_buf->page = NULL;
502 			skb->len += rx_buf->len;
503 			skb->data_len += rx_buf->len;
504 			if (skb_shinfo(skb)->nr_frags == n_frags)
505 				break;
506 
507 			rx_buf = ef4_rx_buf_next(&channel->rx_queue, rx_buf);
508 		}
509 	} else {
510 		__free_pages(rx_buf->page, efx->rx_buffer_order);
511 		rx_buf->page = NULL;
512 		n_frags = 0;
513 	}
514 
515 	skb->truesize += n_frags * efx->rx_buffer_truesize;
516 
517 	/* Move past the ethernet header */
518 	skb->protocol = eth_type_trans(skb, efx->net_dev);
519 
520 	skb_mark_napi_id(skb, &channel->napi_str);
521 
522 	return skb;
523 }
524 
525 void ef4_rx_packet(struct ef4_rx_queue *rx_queue, unsigned int index,
526 		   unsigned int n_frags, unsigned int len, u16 flags)
527 {
528 	struct ef4_nic *efx = rx_queue->efx;
529 	struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue);
530 	struct ef4_rx_buffer *rx_buf;
531 
532 	rx_queue->rx_packets++;
533 
534 	rx_buf = ef4_rx_buffer(rx_queue, index);
535 	rx_buf->flags |= flags;
536 
537 	/* Validate the number of fragments and completed length */
538 	if (n_frags == 1) {
539 		if (!(flags & EF4_RX_PKT_PREFIX_LEN))
540 			ef4_rx_packet__check_len(rx_queue, rx_buf, len);
541 	} else if (unlikely(n_frags > EF4_RX_MAX_FRAGS) ||
542 		   unlikely(len <= (n_frags - 1) * efx->rx_dma_len) ||
543 		   unlikely(len > n_frags * efx->rx_dma_len) ||
544 		   unlikely(!efx->rx_scatter)) {
545 		/* If this isn't an explicit discard request, either
546 		 * the hardware or the driver is broken.
547 		 */
548 		WARN_ON(!(len == 0 && rx_buf->flags & EF4_RX_PKT_DISCARD));
549 		rx_buf->flags |= EF4_RX_PKT_DISCARD;
550 	}
551 
552 	netif_vdbg(efx, rx_status, efx->net_dev,
553 		   "RX queue %d received ids %x-%x len %d %s%s\n",
554 		   ef4_rx_queue_index(rx_queue), index,
555 		   (index + n_frags - 1) & rx_queue->ptr_mask, len,
556 		   (rx_buf->flags & EF4_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
557 		   (rx_buf->flags & EF4_RX_PKT_DISCARD) ? " [DISCARD]" : "");
558 
559 	/* Discard packet, if instructed to do so.  Process the
560 	 * previous receive first.
561 	 */
562 	if (unlikely(rx_buf->flags & EF4_RX_PKT_DISCARD)) {
563 		ef4_rx_flush_packet(channel);
564 		ef4_discard_rx_packet(channel, rx_buf, n_frags);
565 		return;
566 	}
567 
568 	if (n_frags == 1 && !(flags & EF4_RX_PKT_PREFIX_LEN))
569 		rx_buf->len = len;
570 
571 	/* Release and/or sync the DMA mapping - assumes all RX buffers
572 	 * consumed in-order per RX queue.
573 	 */
574 	ef4_sync_rx_buffer(efx, rx_buf, rx_buf->len);
575 
576 	/* Prefetch nice and early so data will (hopefully) be in cache by
577 	 * the time we look at it.
578 	 */
579 	prefetch(ef4_rx_buf_va(rx_buf));
580 
581 	rx_buf->page_offset += efx->rx_prefix_size;
582 	rx_buf->len -= efx->rx_prefix_size;
583 
584 	if (n_frags > 1) {
585 		/* Release/sync DMA mapping for additional fragments.
586 		 * Fix length for last fragment.
587 		 */
588 		unsigned int tail_frags = n_frags - 1;
589 
590 		for (;;) {
591 			rx_buf = ef4_rx_buf_next(rx_queue, rx_buf);
592 			if (--tail_frags == 0)
593 				break;
594 			ef4_sync_rx_buffer(efx, rx_buf, efx->rx_dma_len);
595 		}
596 		rx_buf->len = len - (n_frags - 1) * efx->rx_dma_len;
597 		ef4_sync_rx_buffer(efx, rx_buf, rx_buf->len);
598 	}
599 
600 	/* All fragments have been DMA-synced, so recycle pages. */
601 	rx_buf = ef4_rx_buffer(rx_queue, index);
602 	ef4_recycle_rx_pages(channel, rx_buf, n_frags);
603 
604 	/* Pipeline receives so that we give time for packet headers to be
605 	 * prefetched into cache.
606 	 */
607 	ef4_rx_flush_packet(channel);
608 	channel->rx_pkt_n_frags = n_frags;
609 	channel->rx_pkt_index = index;
610 }
611 
612 static void ef4_rx_deliver(struct ef4_channel *channel, u8 *eh,
613 			   struct ef4_rx_buffer *rx_buf,
614 			   unsigned int n_frags)
615 {
616 	struct sk_buff *skb;
617 	u16 hdr_len = min_t(u16, rx_buf->len, EF4_SKB_HEADERS);
618 
619 	skb = ef4_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
620 	if (unlikely(skb == NULL)) {
621 		struct ef4_rx_queue *rx_queue;
622 
623 		rx_queue = ef4_channel_get_rx_queue(channel);
624 		ef4_free_rx_buffers(rx_queue, rx_buf, n_frags);
625 		return;
626 	}
627 	skb_record_rx_queue(skb, channel->rx_queue.core_index);
628 
629 	/* Set the SKB flags */
630 	skb_checksum_none_assert(skb);
631 	if (likely(rx_buf->flags & EF4_RX_PKT_CSUMMED))
632 		skb->ip_summed = CHECKSUM_UNNECESSARY;
633 
634 	if (channel->type->receive_skb)
635 		if (channel->type->receive_skb(channel, skb))
636 			return;
637 
638 	/* Pass the packet up */
639 	netif_receive_skb(skb);
640 }
641 
642 /* Handle a received packet.  Second half: Touches packet payload. */
643 void __ef4_rx_packet(struct ef4_channel *channel)
644 {
645 	struct ef4_nic *efx = channel->efx;
646 	struct ef4_rx_buffer *rx_buf =
647 		ef4_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
648 	u8 *eh = ef4_rx_buf_va(rx_buf);
649 
650 	/* Read length from the prefix if necessary.  This already
651 	 * excludes the length of the prefix itself.
652 	 */
653 	if (rx_buf->flags & EF4_RX_PKT_PREFIX_LEN)
654 		rx_buf->len = le16_to_cpup((__le16 *)
655 					   (eh + efx->rx_packet_len_offset));
656 
657 	/* If we're in loopback test, then pass the packet directly to the
658 	 * loopback layer, and free the rx_buf here
659 	 */
660 	if (unlikely(efx->loopback_selftest)) {
661 		struct ef4_rx_queue *rx_queue;
662 
663 		ef4_loopback_rx_packet(efx, eh, rx_buf->len);
664 		rx_queue = ef4_channel_get_rx_queue(channel);
665 		ef4_free_rx_buffers(rx_queue, rx_buf,
666 				    channel->rx_pkt_n_frags);
667 		goto out;
668 	}
669 
670 	if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
671 		rx_buf->flags &= ~EF4_RX_PKT_CSUMMED;
672 
673 	if ((rx_buf->flags & EF4_RX_PKT_TCP) && !channel->type->receive_skb)
674 		ef4_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
675 	else
676 		ef4_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
677 out:
678 	channel->rx_pkt_n_frags = 0;
679 }
680 
681 int ef4_probe_rx_queue(struct ef4_rx_queue *rx_queue)
682 {
683 	struct ef4_nic *efx = rx_queue->efx;
684 	unsigned int entries;
685 	int rc;
686 
687 	/* Create the smallest power-of-two aligned ring */
688 	entries = max(roundup_pow_of_two(efx->rxq_entries), EF4_MIN_DMAQ_SIZE);
689 	EF4_BUG_ON_PARANOID(entries > EF4_MAX_DMAQ_SIZE);
690 	rx_queue->ptr_mask = entries - 1;
691 
692 	netif_dbg(efx, probe, efx->net_dev,
693 		  "creating RX queue %d size %#x mask %#x\n",
694 		  ef4_rx_queue_index(rx_queue), efx->rxq_entries,
695 		  rx_queue->ptr_mask);
696 
697 	/* Allocate RX buffers */
698 	rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
699 				   GFP_KERNEL);
700 	if (!rx_queue->buffer)
701 		return -ENOMEM;
702 
703 	rc = ef4_nic_probe_rx(rx_queue);
704 	if (rc) {
705 		kfree(rx_queue->buffer);
706 		rx_queue->buffer = NULL;
707 	}
708 
709 	return rc;
710 }
711 
712 static void ef4_init_rx_recycle_ring(struct ef4_nic *efx,
713 				     struct ef4_rx_queue *rx_queue)
714 {
715 	unsigned int bufs_in_recycle_ring, page_ring_size;
716 
717 	/* Set the RX recycle ring size */
718 #ifdef CONFIG_PPC64
719 	bufs_in_recycle_ring = EF4_RECYCLE_RING_SIZE_IOMMU;
720 #else
721 	if (iommu_present(&pci_bus_type))
722 		bufs_in_recycle_ring = EF4_RECYCLE_RING_SIZE_IOMMU;
723 	else
724 		bufs_in_recycle_ring = EF4_RECYCLE_RING_SIZE_NOIOMMU;
725 #endif /* CONFIG_PPC64 */
726 
727 	page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
728 					    efx->rx_bufs_per_page);
729 	rx_queue->page_ring = kcalloc(page_ring_size,
730 				      sizeof(*rx_queue->page_ring), GFP_KERNEL);
731 	rx_queue->page_ptr_mask = page_ring_size - 1;
732 }
733 
734 void ef4_init_rx_queue(struct ef4_rx_queue *rx_queue)
735 {
736 	struct ef4_nic *efx = rx_queue->efx;
737 	unsigned int max_fill, trigger, max_trigger;
738 
739 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
740 		  "initialising RX queue %d\n", ef4_rx_queue_index(rx_queue));
741 
742 	/* Initialise ptr fields */
743 	rx_queue->added_count = 0;
744 	rx_queue->notified_count = 0;
745 	rx_queue->removed_count = 0;
746 	rx_queue->min_fill = -1U;
747 	ef4_init_rx_recycle_ring(efx, rx_queue);
748 
749 	rx_queue->page_remove = 0;
750 	rx_queue->page_add = rx_queue->page_ptr_mask + 1;
751 	rx_queue->page_recycle_count = 0;
752 	rx_queue->page_recycle_failed = 0;
753 	rx_queue->page_recycle_full = 0;
754 
755 	/* Initialise limit fields */
756 	max_fill = efx->rxq_entries - EF4_RXD_HEAD_ROOM;
757 	max_trigger =
758 		max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
759 	if (rx_refill_threshold != 0) {
760 		trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
761 		if (trigger > max_trigger)
762 			trigger = max_trigger;
763 	} else {
764 		trigger = max_trigger;
765 	}
766 
767 	rx_queue->max_fill = max_fill;
768 	rx_queue->fast_fill_trigger = trigger;
769 	rx_queue->refill_enabled = true;
770 
771 	/* Set up RX descriptor ring */
772 	ef4_nic_init_rx(rx_queue);
773 }
774 
775 void ef4_fini_rx_queue(struct ef4_rx_queue *rx_queue)
776 {
777 	int i;
778 	struct ef4_nic *efx = rx_queue->efx;
779 	struct ef4_rx_buffer *rx_buf;
780 
781 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
782 		  "shutting down RX queue %d\n", ef4_rx_queue_index(rx_queue));
783 
784 	del_timer_sync(&rx_queue->slow_fill);
785 
786 	/* Release RX buffers from the current read ptr to the write ptr */
787 	if (rx_queue->buffer) {
788 		for (i = rx_queue->removed_count; i < rx_queue->added_count;
789 		     i++) {
790 			unsigned index = i & rx_queue->ptr_mask;
791 			rx_buf = ef4_rx_buffer(rx_queue, index);
792 			ef4_fini_rx_buffer(rx_queue, rx_buf);
793 		}
794 	}
795 
796 	/* Unmap and release the pages in the recycle ring. Remove the ring. */
797 	for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
798 		struct page *page = rx_queue->page_ring[i];
799 		struct ef4_rx_page_state *state;
800 
801 		if (page == NULL)
802 			continue;
803 
804 		state = page_address(page);
805 		dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
806 			       PAGE_SIZE << efx->rx_buffer_order,
807 			       DMA_FROM_DEVICE);
808 		put_page(page);
809 	}
810 	kfree(rx_queue->page_ring);
811 	rx_queue->page_ring = NULL;
812 }
813 
814 void ef4_remove_rx_queue(struct ef4_rx_queue *rx_queue)
815 {
816 	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
817 		  "destroying RX queue %d\n", ef4_rx_queue_index(rx_queue));
818 
819 	ef4_nic_remove_rx(rx_queue);
820 
821 	kfree(rx_queue->buffer);
822 	rx_queue->buffer = NULL;
823 }
824 
825 
826 module_param(rx_refill_threshold, uint, 0444);
827 MODULE_PARM_DESC(rx_refill_threshold,
828 		 "RX descriptor ring refill threshold (%)");
829 
830 #ifdef CONFIG_RFS_ACCEL
831 
832 int ef4_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
833 		   u16 rxq_index, u32 flow_id)
834 {
835 	struct ef4_nic *efx = netdev_priv(net_dev);
836 	struct ef4_channel *channel;
837 	struct ef4_filter_spec spec;
838 	struct flow_keys fk;
839 	int rc;
840 
841 	if (flow_id == RPS_FLOW_ID_INVALID)
842 		return -EINVAL;
843 
844 	if (!skb_flow_dissect_flow_keys(skb, &fk, 0))
845 		return -EPROTONOSUPPORT;
846 
847 	if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6))
848 		return -EPROTONOSUPPORT;
849 	if (fk.control.flags & FLOW_DIS_IS_FRAGMENT)
850 		return -EPROTONOSUPPORT;
851 
852 	ef4_filter_init_rx(&spec, EF4_FILTER_PRI_HINT,
853 			   efx->rx_scatter ? EF4_FILTER_FLAG_RX_SCATTER : 0,
854 			   rxq_index);
855 	spec.match_flags =
856 		EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO |
857 		EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT |
858 		EF4_FILTER_MATCH_REM_HOST | EF4_FILTER_MATCH_REM_PORT;
859 	spec.ether_type = fk.basic.n_proto;
860 	spec.ip_proto = fk.basic.ip_proto;
861 
862 	if (fk.basic.n_proto == htons(ETH_P_IP)) {
863 		spec.rem_host[0] = fk.addrs.v4addrs.src;
864 		spec.loc_host[0] = fk.addrs.v4addrs.dst;
865 	} else {
866 		memcpy(spec.rem_host, &fk.addrs.v6addrs.src, sizeof(struct in6_addr));
867 		memcpy(spec.loc_host, &fk.addrs.v6addrs.dst, sizeof(struct in6_addr));
868 	}
869 
870 	spec.rem_port = fk.ports.src;
871 	spec.loc_port = fk.ports.dst;
872 
873 	rc = efx->type->filter_rfs_insert(efx, &spec);
874 	if (rc < 0)
875 		return rc;
876 
877 	/* Remember this so we can check whether to expire the filter later */
878 	channel = ef4_get_channel(efx, rxq_index);
879 	channel->rps_flow_id[rc] = flow_id;
880 	++channel->rfs_filters_added;
881 
882 	if (spec.ether_type == htons(ETH_P_IP))
883 		netif_info(efx, rx_status, efx->net_dev,
884 			   "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d]\n",
885 			   (spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
886 			   spec.rem_host, ntohs(spec.rem_port), spec.loc_host,
887 			   ntohs(spec.loc_port), rxq_index, flow_id, rc);
888 	else
889 		netif_info(efx, rx_status, efx->net_dev,
890 			   "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d]\n",
891 			   (spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
892 			   spec.rem_host, ntohs(spec.rem_port), spec.loc_host,
893 			   ntohs(spec.loc_port), rxq_index, flow_id, rc);
894 
895 	return rc;
896 }
897 
898 bool __ef4_filter_rfs_expire(struct ef4_nic *efx, unsigned int quota)
899 {
900 	bool (*expire_one)(struct ef4_nic *efx, u32 flow_id, unsigned int index);
901 	unsigned int channel_idx, index, size;
902 	u32 flow_id;
903 
904 	if (!spin_trylock_bh(&efx->filter_lock))
905 		return false;
906 
907 	expire_one = efx->type->filter_rfs_expire_one;
908 	channel_idx = efx->rps_expire_channel;
909 	index = efx->rps_expire_index;
910 	size = efx->type->max_rx_ip_filters;
911 	while (quota--) {
912 		struct ef4_channel *channel = ef4_get_channel(efx, channel_idx);
913 		flow_id = channel->rps_flow_id[index];
914 
915 		if (flow_id != RPS_FLOW_ID_INVALID &&
916 		    expire_one(efx, flow_id, index)) {
917 			netif_info(efx, rx_status, efx->net_dev,
918 				   "expired filter %d [queue %u flow %u]\n",
919 				   index, channel_idx, flow_id);
920 			channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID;
921 		}
922 		if (++index == size) {
923 			if (++channel_idx == efx->n_channels)
924 				channel_idx = 0;
925 			index = 0;
926 		}
927 	}
928 	efx->rps_expire_channel = channel_idx;
929 	efx->rps_expire_index = index;
930 
931 	spin_unlock_bh(&efx->filter_lock);
932 	return true;
933 }
934 
935 #endif /* CONFIG_RFS_ACCEL */
936 
937 /**
938  * ef4_filter_is_mc_recipient - test whether spec is a multicast recipient
939  * @spec: Specification to test
940  *
941  * Return: %true if the specification is a non-drop RX filter that
942  * matches a local MAC address I/G bit value of 1 or matches a local
943  * IPv4 or IPv6 address value in the respective multicast address
944  * range.  Otherwise %false.
945  */
946 bool ef4_filter_is_mc_recipient(const struct ef4_filter_spec *spec)
947 {
948 	if (!(spec->flags & EF4_FILTER_FLAG_RX) ||
949 	    spec->dmaq_id == EF4_FILTER_RX_DMAQ_ID_DROP)
950 		return false;
951 
952 	if (spec->match_flags &
953 	    (EF4_FILTER_MATCH_LOC_MAC | EF4_FILTER_MATCH_LOC_MAC_IG) &&
954 	    is_multicast_ether_addr(spec->loc_mac))
955 		return true;
956 
957 	if ((spec->match_flags &
958 	     (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_LOC_HOST)) ==
959 	    (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_LOC_HOST)) {
960 		if (spec->ether_type == htons(ETH_P_IP) &&
961 		    ipv4_is_multicast(spec->loc_host[0]))
962 			return true;
963 		if (spec->ether_type == htons(ETH_P_IPV6) &&
964 		    ((const u8 *)spec->loc_host)[0] == 0xff)
965 			return true;
966 	}
967 
968 	return false;
969 }
970