1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2006-2013 Solarflare Communications Inc. 6 */ 7 8 #include <linux/bitops.h> 9 #include <linux/delay.h> 10 #include <linux/interrupt.h> 11 #include <linux/pci.h> 12 #include <linux/module.h> 13 #include <linux/seq_file.h> 14 #include <linux/crc32.h> 15 #include "net_driver.h" 16 #include "bitfield.h" 17 #include "efx.h" 18 #include "nic.h" 19 #include "farch_regs.h" 20 #include "io.h" 21 #include "workarounds.h" 22 23 /* Falcon-architecture (SFC4000) support */ 24 25 /************************************************************************** 26 * 27 * Configurable values 28 * 29 ************************************************************************** 30 */ 31 32 /* This is set to 16 for a good reason. In summary, if larger than 33 * 16, the descriptor cache holds more than a default socket 34 * buffer's worth of packets (for UDP we can only have at most one 35 * socket buffer's worth outstanding). This combined with the fact 36 * that we only get 1 TX event per descriptor cache means the NIC 37 * goes idle. 38 */ 39 #define TX_DC_ENTRIES 16 40 #define TX_DC_ENTRIES_ORDER 1 41 42 #define RX_DC_ENTRIES 64 43 #define RX_DC_ENTRIES_ORDER 3 44 45 /* If EF4_MAX_INT_ERRORS internal errors occur within 46 * EF4_INT_ERROR_EXPIRE seconds, we consider the NIC broken and 47 * disable it. 48 */ 49 #define EF4_INT_ERROR_EXPIRE 3600 50 #define EF4_MAX_INT_ERRORS 5 51 52 /* Depth of RX flush request fifo */ 53 #define EF4_RX_FLUSH_COUNT 4 54 55 /* Driver generated events */ 56 #define _EF4_CHANNEL_MAGIC_TEST 0x000101 57 #define _EF4_CHANNEL_MAGIC_FILL 0x000102 58 #define _EF4_CHANNEL_MAGIC_RX_DRAIN 0x000103 59 #define _EF4_CHANNEL_MAGIC_TX_DRAIN 0x000104 60 61 #define _EF4_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data)) 62 #define _EF4_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8) 63 64 #define EF4_CHANNEL_MAGIC_TEST(_channel) \ 65 _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_TEST, (_channel)->channel) 66 #define EF4_CHANNEL_MAGIC_FILL(_rx_queue) \ 67 _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_FILL, \ 68 ef4_rx_queue_index(_rx_queue)) 69 #define EF4_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \ 70 _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_RX_DRAIN, \ 71 ef4_rx_queue_index(_rx_queue)) 72 #define EF4_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \ 73 _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_TX_DRAIN, \ 74 (_tx_queue)->queue) 75 76 static void ef4_farch_magic_event(struct ef4_channel *channel, u32 magic); 77 78 /************************************************************************** 79 * 80 * Hardware access 81 * 82 **************************************************************************/ 83 84 static inline void ef4_write_buf_tbl(struct ef4_nic *efx, ef4_qword_t *value, 85 unsigned int index) 86 { 87 ef4_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base, 88 value, index); 89 } 90 91 static bool ef4_masked_compare_oword(const ef4_oword_t *a, const ef4_oword_t *b, 92 const ef4_oword_t *mask) 93 { 94 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) || 95 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]); 96 } 97 98 int ef4_farch_test_registers(struct ef4_nic *efx, 99 const struct ef4_farch_register_test *regs, 100 size_t n_regs) 101 { 102 unsigned address = 0; 103 int i, j; 104 ef4_oword_t mask, imask, original, reg, buf; 105 106 for (i = 0; i < n_regs; ++i) { 107 address = regs[i].address; 108 mask = imask = regs[i].mask; 109 EF4_INVERT_OWORD(imask); 110 111 ef4_reado(efx, &original, address); 112 113 /* bit sweep on and off */ 114 for (j = 0; j < 128; j++) { 115 if (!EF4_EXTRACT_OWORD32(mask, j, j)) 116 continue; 117 118 /* Test this testable bit can be set in isolation */ 119 EF4_AND_OWORD(reg, original, mask); 120 EF4_SET_OWORD32(reg, j, j, 1); 121 122 ef4_writeo(efx, ®, address); 123 ef4_reado(efx, &buf, address); 124 125 if (ef4_masked_compare_oword(®, &buf, &mask)) 126 goto fail; 127 128 /* Test this testable bit can be cleared in isolation */ 129 EF4_OR_OWORD(reg, original, mask); 130 EF4_SET_OWORD32(reg, j, j, 0); 131 132 ef4_writeo(efx, ®, address); 133 ef4_reado(efx, &buf, address); 134 135 if (ef4_masked_compare_oword(®, &buf, &mask)) 136 goto fail; 137 } 138 139 ef4_writeo(efx, &original, address); 140 } 141 142 return 0; 143 144 fail: 145 netif_err(efx, hw, efx->net_dev, 146 "wrote "EF4_OWORD_FMT" read "EF4_OWORD_FMT 147 " at address 0x%x mask "EF4_OWORD_FMT"\n", EF4_OWORD_VAL(reg), 148 EF4_OWORD_VAL(buf), address, EF4_OWORD_VAL(mask)); 149 return -EIO; 150 } 151 152 /************************************************************************** 153 * 154 * Special buffer handling 155 * Special buffers are used for event queues and the TX and RX 156 * descriptor rings. 157 * 158 *************************************************************************/ 159 160 /* 161 * Initialise a special buffer 162 * 163 * This will define a buffer (previously allocated via 164 * ef4_alloc_special_buffer()) in the buffer table, allowing 165 * it to be used for event queues, descriptor rings etc. 166 */ 167 static void 168 ef4_init_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer) 169 { 170 ef4_qword_t buf_desc; 171 unsigned int index; 172 dma_addr_t dma_addr; 173 int i; 174 175 EF4_BUG_ON_PARANOID(!buffer->buf.addr); 176 177 /* Write buffer descriptors to NIC */ 178 for (i = 0; i < buffer->entries; i++) { 179 index = buffer->index + i; 180 dma_addr = buffer->buf.dma_addr + (i * EF4_BUF_SIZE); 181 netif_dbg(efx, probe, efx->net_dev, 182 "mapping special buffer %d at %llx\n", 183 index, (unsigned long long)dma_addr); 184 EF4_POPULATE_QWORD_3(buf_desc, 185 FRF_AZ_BUF_ADR_REGION, 0, 186 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12, 187 FRF_AZ_BUF_OWNER_ID_FBUF, 0); 188 ef4_write_buf_tbl(efx, &buf_desc, index); 189 } 190 } 191 192 /* Unmaps a buffer and clears the buffer table entries */ 193 static void 194 ef4_fini_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer) 195 { 196 ef4_oword_t buf_tbl_upd; 197 unsigned int start = buffer->index; 198 unsigned int end = (buffer->index + buffer->entries - 1); 199 200 if (!buffer->entries) 201 return; 202 203 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n", 204 buffer->index, buffer->index + buffer->entries - 1); 205 206 EF4_POPULATE_OWORD_4(buf_tbl_upd, 207 FRF_AZ_BUF_UPD_CMD, 0, 208 FRF_AZ_BUF_CLR_CMD, 1, 209 FRF_AZ_BUF_CLR_END_ID, end, 210 FRF_AZ_BUF_CLR_START_ID, start); 211 ef4_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD); 212 } 213 214 /* 215 * Allocate a new special buffer 216 * 217 * This allocates memory for a new buffer, clears it and allocates a 218 * new buffer ID range. It does not write into the buffer table. 219 * 220 * This call will allocate 4KB buffers, since 8KB buffers can't be 221 * used for event queues and descriptor rings. 222 */ 223 static int ef4_alloc_special_buffer(struct ef4_nic *efx, 224 struct ef4_special_buffer *buffer, 225 unsigned int len) 226 { 227 len = ALIGN(len, EF4_BUF_SIZE); 228 229 if (ef4_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL)) 230 return -ENOMEM; 231 buffer->entries = len / EF4_BUF_SIZE; 232 BUG_ON(buffer->buf.dma_addr & (EF4_BUF_SIZE - 1)); 233 234 /* Select new buffer ID */ 235 buffer->index = efx->next_buffer_table; 236 efx->next_buffer_table += buffer->entries; 237 238 netif_dbg(efx, probe, efx->net_dev, 239 "allocating special buffers %d-%d at %llx+%x " 240 "(virt %p phys %llx)\n", buffer->index, 241 buffer->index + buffer->entries - 1, 242 (u64)buffer->buf.dma_addr, len, 243 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr)); 244 245 return 0; 246 } 247 248 static void 249 ef4_free_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer) 250 { 251 if (!buffer->buf.addr) 252 return; 253 254 netif_dbg(efx, hw, efx->net_dev, 255 "deallocating special buffers %d-%d at %llx+%x " 256 "(virt %p phys %llx)\n", buffer->index, 257 buffer->index + buffer->entries - 1, 258 (u64)buffer->buf.dma_addr, buffer->buf.len, 259 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr)); 260 261 ef4_nic_free_buffer(efx, &buffer->buf); 262 buffer->entries = 0; 263 } 264 265 /************************************************************************** 266 * 267 * TX path 268 * 269 **************************************************************************/ 270 271 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */ 272 static inline void ef4_farch_notify_tx_desc(struct ef4_tx_queue *tx_queue) 273 { 274 unsigned write_ptr; 275 ef4_dword_t reg; 276 277 write_ptr = tx_queue->write_count & tx_queue->ptr_mask; 278 EF4_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr); 279 ef4_writed_page(tx_queue->efx, ®, 280 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue); 281 } 282 283 /* Write pointer and first descriptor for TX descriptor ring */ 284 static inline void ef4_farch_push_tx_desc(struct ef4_tx_queue *tx_queue, 285 const ef4_qword_t *txd) 286 { 287 unsigned write_ptr; 288 ef4_oword_t reg; 289 290 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0); 291 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0); 292 293 write_ptr = tx_queue->write_count & tx_queue->ptr_mask; 294 EF4_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true, 295 FRF_AZ_TX_DESC_WPTR, write_ptr); 296 reg.qword[0] = *txd; 297 ef4_writeo_page(tx_queue->efx, ®, 298 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue); 299 } 300 301 302 /* For each entry inserted into the software descriptor ring, create a 303 * descriptor in the hardware TX descriptor ring (in host memory), and 304 * write a doorbell. 305 */ 306 void ef4_farch_tx_write(struct ef4_tx_queue *tx_queue) 307 { 308 struct ef4_tx_buffer *buffer; 309 ef4_qword_t *txd; 310 unsigned write_ptr; 311 unsigned old_write_count = tx_queue->write_count; 312 313 tx_queue->xmit_more_available = false; 314 if (unlikely(tx_queue->write_count == tx_queue->insert_count)) 315 return; 316 317 do { 318 write_ptr = tx_queue->write_count & tx_queue->ptr_mask; 319 buffer = &tx_queue->buffer[write_ptr]; 320 txd = ef4_tx_desc(tx_queue, write_ptr); 321 ++tx_queue->write_count; 322 323 EF4_BUG_ON_PARANOID(buffer->flags & EF4_TX_BUF_OPTION); 324 325 /* Create TX descriptor ring entry */ 326 BUILD_BUG_ON(EF4_TX_BUF_CONT != 1); 327 EF4_POPULATE_QWORD_4(*txd, 328 FSF_AZ_TX_KER_CONT, 329 buffer->flags & EF4_TX_BUF_CONT, 330 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len, 331 FSF_AZ_TX_KER_BUF_REGION, 0, 332 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr); 333 } while (tx_queue->write_count != tx_queue->insert_count); 334 335 wmb(); /* Ensure descriptors are written before they are fetched */ 336 337 if (ef4_nic_may_push_tx_desc(tx_queue, old_write_count)) { 338 txd = ef4_tx_desc(tx_queue, 339 old_write_count & tx_queue->ptr_mask); 340 ef4_farch_push_tx_desc(tx_queue, txd); 341 ++tx_queue->pushes; 342 } else { 343 ef4_farch_notify_tx_desc(tx_queue); 344 } 345 } 346 347 unsigned int ef4_farch_tx_limit_len(struct ef4_tx_queue *tx_queue, 348 dma_addr_t dma_addr, unsigned int len) 349 { 350 /* Don't cross 4K boundaries with descriptors. */ 351 unsigned int limit = (~dma_addr & (EF4_PAGE_SIZE - 1)) + 1; 352 353 len = min(limit, len); 354 355 if (EF4_WORKAROUND_5391(tx_queue->efx) && (dma_addr & 0xf)) 356 len = min_t(unsigned int, len, 512 - (dma_addr & 0xf)); 357 358 return len; 359 } 360 361 362 /* Allocate hardware resources for a TX queue */ 363 int ef4_farch_tx_probe(struct ef4_tx_queue *tx_queue) 364 { 365 struct ef4_nic *efx = tx_queue->efx; 366 unsigned entries; 367 368 entries = tx_queue->ptr_mask + 1; 369 return ef4_alloc_special_buffer(efx, &tx_queue->txd, 370 entries * sizeof(ef4_qword_t)); 371 } 372 373 void ef4_farch_tx_init(struct ef4_tx_queue *tx_queue) 374 { 375 struct ef4_nic *efx = tx_queue->efx; 376 ef4_oword_t reg; 377 378 /* Pin TX descriptor ring */ 379 ef4_init_special_buffer(efx, &tx_queue->txd); 380 381 /* Push TX descriptor ring to card */ 382 EF4_POPULATE_OWORD_10(reg, 383 FRF_AZ_TX_DESCQ_EN, 1, 384 FRF_AZ_TX_ISCSI_DDIG_EN, 0, 385 FRF_AZ_TX_ISCSI_HDIG_EN, 0, 386 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index, 387 FRF_AZ_TX_DESCQ_EVQ_ID, 388 tx_queue->channel->channel, 389 FRF_AZ_TX_DESCQ_OWNER_ID, 0, 390 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue, 391 FRF_AZ_TX_DESCQ_SIZE, 392 __ffs(tx_queue->txd.entries), 393 FRF_AZ_TX_DESCQ_TYPE, 0, 394 FRF_BZ_TX_NON_IP_DROP_DIS, 1); 395 396 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) { 397 int csum = tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD; 398 EF4_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum); 399 EF4_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, 400 !csum); 401 } 402 403 ef4_writeo_table(efx, ®, efx->type->txd_ptr_tbl_base, 404 tx_queue->queue); 405 406 if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0) { 407 /* Only 128 bits in this register */ 408 BUILD_BUG_ON(EF4_MAX_TX_QUEUES > 128); 409 410 ef4_reado(efx, ®, FR_AA_TX_CHKSM_CFG); 411 if (tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD) 412 __clear_bit_le(tx_queue->queue, ®); 413 else 414 __set_bit_le(tx_queue->queue, ®); 415 ef4_writeo(efx, ®, FR_AA_TX_CHKSM_CFG); 416 } 417 418 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) { 419 EF4_POPULATE_OWORD_1(reg, 420 FRF_BZ_TX_PACE, 421 (tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI) ? 422 FFE_BZ_TX_PACE_OFF : 423 FFE_BZ_TX_PACE_RESERVED); 424 ef4_writeo_table(efx, ®, FR_BZ_TX_PACE_TBL, 425 tx_queue->queue); 426 } 427 } 428 429 static void ef4_farch_flush_tx_queue(struct ef4_tx_queue *tx_queue) 430 { 431 struct ef4_nic *efx = tx_queue->efx; 432 ef4_oword_t tx_flush_descq; 433 434 WARN_ON(atomic_read(&tx_queue->flush_outstanding)); 435 atomic_set(&tx_queue->flush_outstanding, 1); 436 437 EF4_POPULATE_OWORD_2(tx_flush_descq, 438 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1, 439 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue); 440 ef4_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ); 441 } 442 443 void ef4_farch_tx_fini(struct ef4_tx_queue *tx_queue) 444 { 445 struct ef4_nic *efx = tx_queue->efx; 446 ef4_oword_t tx_desc_ptr; 447 448 /* Remove TX descriptor ring from card */ 449 EF4_ZERO_OWORD(tx_desc_ptr); 450 ef4_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base, 451 tx_queue->queue); 452 453 /* Unpin TX descriptor ring */ 454 ef4_fini_special_buffer(efx, &tx_queue->txd); 455 } 456 457 /* Free buffers backing TX queue */ 458 void ef4_farch_tx_remove(struct ef4_tx_queue *tx_queue) 459 { 460 ef4_free_special_buffer(tx_queue->efx, &tx_queue->txd); 461 } 462 463 /************************************************************************** 464 * 465 * RX path 466 * 467 **************************************************************************/ 468 469 /* This creates an entry in the RX descriptor queue */ 470 static inline void 471 ef4_farch_build_rx_desc(struct ef4_rx_queue *rx_queue, unsigned index) 472 { 473 struct ef4_rx_buffer *rx_buf; 474 ef4_qword_t *rxd; 475 476 rxd = ef4_rx_desc(rx_queue, index); 477 rx_buf = ef4_rx_buffer(rx_queue, index); 478 EF4_POPULATE_QWORD_3(*rxd, 479 FSF_AZ_RX_KER_BUF_SIZE, 480 rx_buf->len - 481 rx_queue->efx->type->rx_buffer_padding, 482 FSF_AZ_RX_KER_BUF_REGION, 0, 483 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr); 484 } 485 486 /* This writes to the RX_DESC_WPTR register for the specified receive 487 * descriptor ring. 488 */ 489 void ef4_farch_rx_write(struct ef4_rx_queue *rx_queue) 490 { 491 struct ef4_nic *efx = rx_queue->efx; 492 ef4_dword_t reg; 493 unsigned write_ptr; 494 495 while (rx_queue->notified_count != rx_queue->added_count) { 496 ef4_farch_build_rx_desc( 497 rx_queue, 498 rx_queue->notified_count & rx_queue->ptr_mask); 499 ++rx_queue->notified_count; 500 } 501 502 wmb(); 503 write_ptr = rx_queue->added_count & rx_queue->ptr_mask; 504 EF4_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr); 505 ef4_writed_page(efx, ®, FR_AZ_RX_DESC_UPD_DWORD_P0, 506 ef4_rx_queue_index(rx_queue)); 507 } 508 509 int ef4_farch_rx_probe(struct ef4_rx_queue *rx_queue) 510 { 511 struct ef4_nic *efx = rx_queue->efx; 512 unsigned entries; 513 514 entries = rx_queue->ptr_mask + 1; 515 return ef4_alloc_special_buffer(efx, &rx_queue->rxd, 516 entries * sizeof(ef4_qword_t)); 517 } 518 519 void ef4_farch_rx_init(struct ef4_rx_queue *rx_queue) 520 { 521 ef4_oword_t rx_desc_ptr; 522 struct ef4_nic *efx = rx_queue->efx; 523 bool is_b0 = ef4_nic_rev(efx) >= EF4_REV_FALCON_B0; 524 bool iscsi_digest_en = is_b0; 525 bool jumbo_en; 526 527 /* For kernel-mode queues in Falcon A1, the JUMBO flag enables 528 * DMA to continue after a PCIe page boundary (and scattering 529 * is not possible). In Falcon B0 and Siena, it enables 530 * scatter. 531 */ 532 jumbo_en = !is_b0 || efx->rx_scatter; 533 534 netif_dbg(efx, hw, efx->net_dev, 535 "RX queue %d ring in special buffers %d-%d\n", 536 ef4_rx_queue_index(rx_queue), rx_queue->rxd.index, 537 rx_queue->rxd.index + rx_queue->rxd.entries - 1); 538 539 rx_queue->scatter_n = 0; 540 541 /* Pin RX descriptor ring */ 542 ef4_init_special_buffer(efx, &rx_queue->rxd); 543 544 /* Push RX descriptor ring to card */ 545 EF4_POPULATE_OWORD_10(rx_desc_ptr, 546 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en, 547 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en, 548 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index, 549 FRF_AZ_RX_DESCQ_EVQ_ID, 550 ef4_rx_queue_channel(rx_queue)->channel, 551 FRF_AZ_RX_DESCQ_OWNER_ID, 0, 552 FRF_AZ_RX_DESCQ_LABEL, 553 ef4_rx_queue_index(rx_queue), 554 FRF_AZ_RX_DESCQ_SIZE, 555 __ffs(rx_queue->rxd.entries), 556 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ , 557 FRF_AZ_RX_DESCQ_JUMBO, jumbo_en, 558 FRF_AZ_RX_DESCQ_EN, 1); 559 ef4_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, 560 ef4_rx_queue_index(rx_queue)); 561 } 562 563 static void ef4_farch_flush_rx_queue(struct ef4_rx_queue *rx_queue) 564 { 565 struct ef4_nic *efx = rx_queue->efx; 566 ef4_oword_t rx_flush_descq; 567 568 EF4_POPULATE_OWORD_2(rx_flush_descq, 569 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1, 570 FRF_AZ_RX_FLUSH_DESCQ, 571 ef4_rx_queue_index(rx_queue)); 572 ef4_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ); 573 } 574 575 void ef4_farch_rx_fini(struct ef4_rx_queue *rx_queue) 576 { 577 ef4_oword_t rx_desc_ptr; 578 struct ef4_nic *efx = rx_queue->efx; 579 580 /* Remove RX descriptor ring from card */ 581 EF4_ZERO_OWORD(rx_desc_ptr); 582 ef4_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, 583 ef4_rx_queue_index(rx_queue)); 584 585 /* Unpin RX descriptor ring */ 586 ef4_fini_special_buffer(efx, &rx_queue->rxd); 587 } 588 589 /* Free buffers backing RX queue */ 590 void ef4_farch_rx_remove(struct ef4_rx_queue *rx_queue) 591 { 592 ef4_free_special_buffer(rx_queue->efx, &rx_queue->rxd); 593 } 594 595 /************************************************************************** 596 * 597 * Flush handling 598 * 599 **************************************************************************/ 600 601 /* ef4_farch_flush_queues() must be woken up when all flushes are completed, 602 * or more RX flushes can be kicked off. 603 */ 604 static bool ef4_farch_flush_wake(struct ef4_nic *efx) 605 { 606 /* Ensure that all updates are visible to ef4_farch_flush_queues() */ 607 smp_mb(); 608 609 return (atomic_read(&efx->active_queues) == 0 || 610 (atomic_read(&efx->rxq_flush_outstanding) < EF4_RX_FLUSH_COUNT 611 && atomic_read(&efx->rxq_flush_pending) > 0)); 612 } 613 614 static bool ef4_check_tx_flush_complete(struct ef4_nic *efx) 615 { 616 bool i = true; 617 ef4_oword_t txd_ptr_tbl; 618 struct ef4_channel *channel; 619 struct ef4_tx_queue *tx_queue; 620 621 ef4_for_each_channel(channel, efx) { 622 ef4_for_each_channel_tx_queue(tx_queue, channel) { 623 ef4_reado_table(efx, &txd_ptr_tbl, 624 FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue); 625 if (EF4_OWORD_FIELD(txd_ptr_tbl, 626 FRF_AZ_TX_DESCQ_FLUSH) || 627 EF4_OWORD_FIELD(txd_ptr_tbl, 628 FRF_AZ_TX_DESCQ_EN)) { 629 netif_dbg(efx, hw, efx->net_dev, 630 "flush did not complete on TXQ %d\n", 631 tx_queue->queue); 632 i = false; 633 } else if (atomic_cmpxchg(&tx_queue->flush_outstanding, 634 1, 0)) { 635 /* The flush is complete, but we didn't 636 * receive a flush completion event 637 */ 638 netif_dbg(efx, hw, efx->net_dev, 639 "flush complete on TXQ %d, so drain " 640 "the queue\n", tx_queue->queue); 641 /* Don't need to increment active_queues as it 642 * has already been incremented for the queues 643 * which did not drain 644 */ 645 ef4_farch_magic_event(channel, 646 EF4_CHANNEL_MAGIC_TX_DRAIN( 647 tx_queue)); 648 } 649 } 650 } 651 652 return i; 653 } 654 655 /* Flush all the transmit queues, and continue flushing receive queues until 656 * they're all flushed. Wait for the DRAIN events to be received so that there 657 * are no more RX and TX events left on any channel. */ 658 static int ef4_farch_do_flush(struct ef4_nic *efx) 659 { 660 unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */ 661 struct ef4_channel *channel; 662 struct ef4_rx_queue *rx_queue; 663 struct ef4_tx_queue *tx_queue; 664 int rc = 0; 665 666 ef4_for_each_channel(channel, efx) { 667 ef4_for_each_channel_tx_queue(tx_queue, channel) { 668 ef4_farch_flush_tx_queue(tx_queue); 669 } 670 ef4_for_each_channel_rx_queue(rx_queue, channel) { 671 rx_queue->flush_pending = true; 672 atomic_inc(&efx->rxq_flush_pending); 673 } 674 } 675 676 while (timeout && atomic_read(&efx->active_queues) > 0) { 677 /* The hardware supports four concurrent rx flushes, each of 678 * which may need to be retried if there is an outstanding 679 * descriptor fetch 680 */ 681 ef4_for_each_channel(channel, efx) { 682 ef4_for_each_channel_rx_queue(rx_queue, channel) { 683 if (atomic_read(&efx->rxq_flush_outstanding) >= 684 EF4_RX_FLUSH_COUNT) 685 break; 686 687 if (rx_queue->flush_pending) { 688 rx_queue->flush_pending = false; 689 atomic_dec(&efx->rxq_flush_pending); 690 atomic_inc(&efx->rxq_flush_outstanding); 691 ef4_farch_flush_rx_queue(rx_queue); 692 } 693 } 694 } 695 696 timeout = wait_event_timeout(efx->flush_wq, 697 ef4_farch_flush_wake(efx), 698 timeout); 699 } 700 701 if (atomic_read(&efx->active_queues) && 702 !ef4_check_tx_flush_complete(efx)) { 703 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues " 704 "(rx %d+%d)\n", atomic_read(&efx->active_queues), 705 atomic_read(&efx->rxq_flush_outstanding), 706 atomic_read(&efx->rxq_flush_pending)); 707 rc = -ETIMEDOUT; 708 709 atomic_set(&efx->active_queues, 0); 710 atomic_set(&efx->rxq_flush_pending, 0); 711 atomic_set(&efx->rxq_flush_outstanding, 0); 712 } 713 714 return rc; 715 } 716 717 int ef4_farch_fini_dmaq(struct ef4_nic *efx) 718 { 719 struct ef4_channel *channel; 720 struct ef4_tx_queue *tx_queue; 721 struct ef4_rx_queue *rx_queue; 722 int rc = 0; 723 724 /* Do not attempt to write to the NIC during EEH recovery */ 725 if (efx->state != STATE_RECOVERY) { 726 /* Only perform flush if DMA is enabled */ 727 if (efx->pci_dev->is_busmaster) { 728 efx->type->prepare_flush(efx); 729 rc = ef4_farch_do_flush(efx); 730 efx->type->finish_flush(efx); 731 } 732 733 ef4_for_each_channel(channel, efx) { 734 ef4_for_each_channel_rx_queue(rx_queue, channel) 735 ef4_farch_rx_fini(rx_queue); 736 ef4_for_each_channel_tx_queue(tx_queue, channel) 737 ef4_farch_tx_fini(tx_queue); 738 } 739 } 740 741 return rc; 742 } 743 744 /* Reset queue and flush accounting after FLR 745 * 746 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus 747 * mastering was disabled), in which case we don't receive (RXQ) flush 748 * completion events. This means that efx->rxq_flush_outstanding remained at 4 749 * after the FLR; also, efx->active_queues was non-zero (as no flush completion 750 * events were received, and we didn't go through ef4_check_tx_flush_complete()) 751 * If we don't fix this up, on the next call to ef4_realloc_channels() we won't 752 * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4 753 * for batched flush requests; and the efx->active_queues gets messed up because 754 * we keep incrementing for the newly initialised queues, but it never went to 755 * zero previously. Then we get a timeout every time we try to restart the 756 * queues, as it doesn't go back to zero when we should be flushing the queues. 757 */ 758 void ef4_farch_finish_flr(struct ef4_nic *efx) 759 { 760 atomic_set(&efx->rxq_flush_pending, 0); 761 atomic_set(&efx->rxq_flush_outstanding, 0); 762 atomic_set(&efx->active_queues, 0); 763 } 764 765 766 /************************************************************************** 767 * 768 * Event queue processing 769 * Event queues are processed by per-channel tasklets. 770 * 771 **************************************************************************/ 772 773 /* Update a channel's event queue's read pointer (RPTR) register 774 * 775 * This writes the EVQ_RPTR_REG register for the specified channel's 776 * event queue. 777 */ 778 void ef4_farch_ev_read_ack(struct ef4_channel *channel) 779 { 780 ef4_dword_t reg; 781 struct ef4_nic *efx = channel->efx; 782 783 EF4_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, 784 channel->eventq_read_ptr & channel->eventq_mask); 785 786 /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size 787 * of 4 bytes, but it is really 16 bytes just like later revisions. 788 */ 789 ef4_writed(efx, ®, 790 efx->type->evq_rptr_tbl_base + 791 FR_BZ_EVQ_RPTR_STEP * channel->channel); 792 } 793 794 /* Use HW to insert a SW defined event */ 795 void ef4_farch_generate_event(struct ef4_nic *efx, unsigned int evq, 796 ef4_qword_t *event) 797 { 798 ef4_oword_t drv_ev_reg; 799 800 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 || 801 FRF_AZ_DRV_EV_DATA_WIDTH != 64); 802 drv_ev_reg.u32[0] = event->u32[0]; 803 drv_ev_reg.u32[1] = event->u32[1]; 804 drv_ev_reg.u32[2] = 0; 805 drv_ev_reg.u32[3] = 0; 806 EF4_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq); 807 ef4_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV); 808 } 809 810 static void ef4_farch_magic_event(struct ef4_channel *channel, u32 magic) 811 { 812 ef4_qword_t event; 813 814 EF4_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE, 815 FSE_AZ_EV_CODE_DRV_GEN_EV, 816 FSF_AZ_DRV_GEN_EV_MAGIC, magic); 817 ef4_farch_generate_event(channel->efx, channel->channel, &event); 818 } 819 820 /* Handle a transmit completion event 821 * 822 * The NIC batches TX completion events; the message we receive is of 823 * the form "complete all TX events up to this index". 824 */ 825 static int 826 ef4_farch_handle_tx_event(struct ef4_channel *channel, ef4_qword_t *event) 827 { 828 unsigned int tx_ev_desc_ptr; 829 unsigned int tx_ev_q_label; 830 struct ef4_tx_queue *tx_queue; 831 struct ef4_nic *efx = channel->efx; 832 int tx_packets = 0; 833 834 if (unlikely(READ_ONCE(efx->reset_pending))) 835 return 0; 836 837 if (likely(EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) { 838 /* Transmit completion */ 839 tx_ev_desc_ptr = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR); 840 tx_ev_q_label = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); 841 tx_queue = ef4_channel_get_tx_queue( 842 channel, tx_ev_q_label % EF4_TXQ_TYPES); 843 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) & 844 tx_queue->ptr_mask); 845 ef4_xmit_done(tx_queue, tx_ev_desc_ptr); 846 } else if (EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) { 847 /* Rewrite the FIFO write pointer */ 848 tx_ev_q_label = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); 849 tx_queue = ef4_channel_get_tx_queue( 850 channel, tx_ev_q_label % EF4_TXQ_TYPES); 851 852 netif_tx_lock(efx->net_dev); 853 ef4_farch_notify_tx_desc(tx_queue); 854 netif_tx_unlock(efx->net_dev); 855 } else if (EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) { 856 ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR); 857 } else { 858 netif_err(efx, tx_err, efx->net_dev, 859 "channel %d unexpected TX event " 860 EF4_QWORD_FMT"\n", channel->channel, 861 EF4_QWORD_VAL(*event)); 862 } 863 864 return tx_packets; 865 } 866 867 /* Detect errors included in the rx_evt_pkt_ok bit. */ 868 static u16 ef4_farch_handle_rx_not_ok(struct ef4_rx_queue *rx_queue, 869 const ef4_qword_t *event) 870 { 871 struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue); 872 struct ef4_nic *efx = rx_queue->efx; 873 bool __maybe_unused rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err; 874 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err; 875 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc; 876 bool rx_ev_pause_frm; 877 878 rx_ev_tobe_disc = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC); 879 rx_ev_buf_owner_id_err = EF4_QWORD_FIELD(*event, 880 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR); 881 rx_ev_ip_hdr_chksum_err = EF4_QWORD_FIELD(*event, 882 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR); 883 rx_ev_tcp_udp_chksum_err = EF4_QWORD_FIELD(*event, 884 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR); 885 rx_ev_eth_crc_err = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR); 886 rx_ev_frm_trunc = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC); 887 rx_ev_drib_nib = ((ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) ? 888 0 : EF4_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB)); 889 rx_ev_pause_frm = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR); 890 891 892 /* Count errors that are not in MAC stats. Ignore expected 893 * checksum errors during self-test. */ 894 if (rx_ev_frm_trunc) 895 ++channel->n_rx_frm_trunc; 896 else if (rx_ev_tobe_disc) 897 ++channel->n_rx_tobe_disc; 898 else if (!efx->loopback_selftest) { 899 if (rx_ev_ip_hdr_chksum_err) 900 ++channel->n_rx_ip_hdr_chksum_err; 901 else if (rx_ev_tcp_udp_chksum_err) 902 ++channel->n_rx_tcp_udp_chksum_err; 903 } 904 905 /* TOBE_DISC is expected on unicast mismatches; don't print out an 906 * error message. FRM_TRUNC indicates RXDP dropped the packet due 907 * to a FIFO overflow. 908 */ 909 #ifdef DEBUG 910 { 911 /* Every error apart from tobe_disc and pause_frm */ 912 913 bool rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err | 914 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err | 915 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err); 916 917 if (rx_ev_other_err && net_ratelimit()) { 918 netif_dbg(efx, rx_err, efx->net_dev, 919 " RX queue %d unexpected RX event " 920 EF4_QWORD_FMT "%s%s%s%s%s%s%s%s\n", 921 ef4_rx_queue_index(rx_queue), EF4_QWORD_VAL(*event), 922 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "", 923 rx_ev_ip_hdr_chksum_err ? 924 " [IP_HDR_CHKSUM_ERR]" : "", 925 rx_ev_tcp_udp_chksum_err ? 926 " [TCP_UDP_CHKSUM_ERR]" : "", 927 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "", 928 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "", 929 rx_ev_drib_nib ? " [DRIB_NIB]" : "", 930 rx_ev_tobe_disc ? " [TOBE_DISC]" : "", 931 rx_ev_pause_frm ? " [PAUSE]" : ""); 932 } 933 } 934 #endif 935 936 /* The frame must be discarded if any of these are true. */ 937 return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib | 938 rx_ev_tobe_disc | rx_ev_pause_frm) ? 939 EF4_RX_PKT_DISCARD : 0; 940 } 941 942 /* Handle receive events that are not in-order. Return true if this 943 * can be handled as a partial packet discard, false if it's more 944 * serious. 945 */ 946 static bool 947 ef4_farch_handle_rx_bad_index(struct ef4_rx_queue *rx_queue, unsigned index) 948 { 949 struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue); 950 struct ef4_nic *efx = rx_queue->efx; 951 unsigned expected, dropped; 952 953 if (rx_queue->scatter_n && 954 index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) & 955 rx_queue->ptr_mask)) { 956 ++channel->n_rx_nodesc_trunc; 957 return true; 958 } 959 960 expected = rx_queue->removed_count & rx_queue->ptr_mask; 961 dropped = (index - expected) & rx_queue->ptr_mask; 962 netif_info(efx, rx_err, efx->net_dev, 963 "dropped %d events (index=%d expected=%d)\n", 964 dropped, index, expected); 965 966 ef4_schedule_reset(efx, EF4_WORKAROUND_5676(efx) ? 967 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE); 968 return false; 969 } 970 971 /* Handle a packet received event 972 * 973 * The NIC gives a "discard" flag if it's a unicast packet with the 974 * wrong destination address 975 * Also "is multicast" and "matches multicast filter" flags can be used to 976 * discard non-matching multicast packets. 977 */ 978 static void 979 ef4_farch_handle_rx_event(struct ef4_channel *channel, const ef4_qword_t *event) 980 { 981 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt; 982 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt; 983 unsigned expected_ptr; 984 bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont; 985 u16 flags; 986 struct ef4_rx_queue *rx_queue; 987 struct ef4_nic *efx = channel->efx; 988 989 if (unlikely(READ_ONCE(efx->reset_pending))) 990 return; 991 992 rx_ev_cont = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT); 993 rx_ev_sop = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP); 994 WARN_ON(EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) != 995 channel->channel); 996 997 rx_queue = ef4_channel_get_rx_queue(channel); 998 999 rx_ev_desc_ptr = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR); 1000 expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) & 1001 rx_queue->ptr_mask); 1002 1003 /* Check for partial drops and other errors */ 1004 if (unlikely(rx_ev_desc_ptr != expected_ptr) || 1005 unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) { 1006 if (rx_ev_desc_ptr != expected_ptr && 1007 !ef4_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr)) 1008 return; 1009 1010 /* Discard all pending fragments */ 1011 if (rx_queue->scatter_n) { 1012 ef4_rx_packet( 1013 rx_queue, 1014 rx_queue->removed_count & rx_queue->ptr_mask, 1015 rx_queue->scatter_n, 0, EF4_RX_PKT_DISCARD); 1016 rx_queue->removed_count += rx_queue->scatter_n; 1017 rx_queue->scatter_n = 0; 1018 } 1019 1020 /* Return if there is no new fragment */ 1021 if (rx_ev_desc_ptr != expected_ptr) 1022 return; 1023 1024 /* Discard new fragment if not SOP */ 1025 if (!rx_ev_sop) { 1026 ef4_rx_packet( 1027 rx_queue, 1028 rx_queue->removed_count & rx_queue->ptr_mask, 1029 1, 0, EF4_RX_PKT_DISCARD); 1030 ++rx_queue->removed_count; 1031 return; 1032 } 1033 } 1034 1035 ++rx_queue->scatter_n; 1036 if (rx_ev_cont) 1037 return; 1038 1039 rx_ev_byte_cnt = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT); 1040 rx_ev_pkt_ok = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK); 1041 rx_ev_hdr_type = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE); 1042 1043 if (likely(rx_ev_pkt_ok)) { 1044 /* If packet is marked as OK then we can rely on the 1045 * hardware checksum and classification. 1046 */ 1047 flags = 0; 1048 switch (rx_ev_hdr_type) { 1049 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP: 1050 flags |= EF4_RX_PKT_TCP; 1051 fallthrough; 1052 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP: 1053 flags |= EF4_RX_PKT_CSUMMED; 1054 fallthrough; 1055 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER: 1056 case FSE_AZ_RX_EV_HDR_TYPE_OTHER: 1057 break; 1058 } 1059 } else { 1060 flags = ef4_farch_handle_rx_not_ok(rx_queue, event); 1061 } 1062 1063 /* Detect multicast packets that didn't match the filter */ 1064 rx_ev_mcast_pkt = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT); 1065 if (rx_ev_mcast_pkt) { 1066 unsigned int rx_ev_mcast_hash_match = 1067 EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH); 1068 1069 if (unlikely(!rx_ev_mcast_hash_match)) { 1070 ++channel->n_rx_mcast_mismatch; 1071 flags |= EF4_RX_PKT_DISCARD; 1072 } 1073 } 1074 1075 channel->irq_mod_score += 2; 1076 1077 /* Handle received packet */ 1078 ef4_rx_packet(rx_queue, 1079 rx_queue->removed_count & rx_queue->ptr_mask, 1080 rx_queue->scatter_n, rx_ev_byte_cnt, flags); 1081 rx_queue->removed_count += rx_queue->scatter_n; 1082 rx_queue->scatter_n = 0; 1083 } 1084 1085 /* If this flush done event corresponds to a &struct ef4_tx_queue, then 1086 * send an %EF4_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue 1087 * of all transmit completions. 1088 */ 1089 static void 1090 ef4_farch_handle_tx_flush_done(struct ef4_nic *efx, ef4_qword_t *event) 1091 { 1092 struct ef4_tx_queue *tx_queue; 1093 int qid; 1094 1095 qid = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA); 1096 if (qid < EF4_TXQ_TYPES * efx->n_tx_channels) { 1097 tx_queue = ef4_get_tx_queue(efx, qid / EF4_TXQ_TYPES, 1098 qid % EF4_TXQ_TYPES); 1099 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) { 1100 ef4_farch_magic_event(tx_queue->channel, 1101 EF4_CHANNEL_MAGIC_TX_DRAIN(tx_queue)); 1102 } 1103 } 1104 } 1105 1106 /* If this flush done event corresponds to a &struct ef4_rx_queue: If the flush 1107 * was successful then send an %EF4_CHANNEL_MAGIC_RX_DRAIN, otherwise add 1108 * the RX queue back to the mask of RX queues in need of flushing. 1109 */ 1110 static void 1111 ef4_farch_handle_rx_flush_done(struct ef4_nic *efx, ef4_qword_t *event) 1112 { 1113 struct ef4_channel *channel; 1114 struct ef4_rx_queue *rx_queue; 1115 int qid; 1116 bool failed; 1117 1118 qid = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID); 1119 failed = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL); 1120 if (qid >= efx->n_channels) 1121 return; 1122 channel = ef4_get_channel(efx, qid); 1123 if (!ef4_channel_has_rx_queue(channel)) 1124 return; 1125 rx_queue = ef4_channel_get_rx_queue(channel); 1126 1127 if (failed) { 1128 netif_info(efx, hw, efx->net_dev, 1129 "RXQ %d flush retry\n", qid); 1130 rx_queue->flush_pending = true; 1131 atomic_inc(&efx->rxq_flush_pending); 1132 } else { 1133 ef4_farch_magic_event(ef4_rx_queue_channel(rx_queue), 1134 EF4_CHANNEL_MAGIC_RX_DRAIN(rx_queue)); 1135 } 1136 atomic_dec(&efx->rxq_flush_outstanding); 1137 if (ef4_farch_flush_wake(efx)) 1138 wake_up(&efx->flush_wq); 1139 } 1140 1141 static void 1142 ef4_farch_handle_drain_event(struct ef4_channel *channel) 1143 { 1144 struct ef4_nic *efx = channel->efx; 1145 1146 WARN_ON(atomic_read(&efx->active_queues) == 0); 1147 atomic_dec(&efx->active_queues); 1148 if (ef4_farch_flush_wake(efx)) 1149 wake_up(&efx->flush_wq); 1150 } 1151 1152 static void ef4_farch_handle_generated_event(struct ef4_channel *channel, 1153 ef4_qword_t *event) 1154 { 1155 struct ef4_nic *efx = channel->efx; 1156 struct ef4_rx_queue *rx_queue = 1157 ef4_channel_has_rx_queue(channel) ? 1158 ef4_channel_get_rx_queue(channel) : NULL; 1159 unsigned magic, code; 1160 1161 magic = EF4_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC); 1162 code = _EF4_CHANNEL_MAGIC_CODE(magic); 1163 1164 if (magic == EF4_CHANNEL_MAGIC_TEST(channel)) { 1165 channel->event_test_cpu = raw_smp_processor_id(); 1166 } else if (rx_queue && magic == EF4_CHANNEL_MAGIC_FILL(rx_queue)) { 1167 /* The queue must be empty, so we won't receive any rx 1168 * events, so ef4_process_channel() won't refill the 1169 * queue. Refill it here */ 1170 ef4_fast_push_rx_descriptors(rx_queue, true); 1171 } else if (rx_queue && magic == EF4_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) { 1172 ef4_farch_handle_drain_event(channel); 1173 } else if (code == _EF4_CHANNEL_MAGIC_TX_DRAIN) { 1174 ef4_farch_handle_drain_event(channel); 1175 } else { 1176 netif_dbg(efx, hw, efx->net_dev, "channel %d received " 1177 "generated event "EF4_QWORD_FMT"\n", 1178 channel->channel, EF4_QWORD_VAL(*event)); 1179 } 1180 } 1181 1182 static void 1183 ef4_farch_handle_driver_event(struct ef4_channel *channel, ef4_qword_t *event) 1184 { 1185 struct ef4_nic *efx = channel->efx; 1186 unsigned int ev_sub_code; 1187 unsigned int ev_sub_data; 1188 1189 ev_sub_code = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE); 1190 ev_sub_data = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA); 1191 1192 switch (ev_sub_code) { 1193 case FSE_AZ_TX_DESCQ_FLS_DONE_EV: 1194 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n", 1195 channel->channel, ev_sub_data); 1196 ef4_farch_handle_tx_flush_done(efx, event); 1197 break; 1198 case FSE_AZ_RX_DESCQ_FLS_DONE_EV: 1199 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n", 1200 channel->channel, ev_sub_data); 1201 ef4_farch_handle_rx_flush_done(efx, event); 1202 break; 1203 case FSE_AZ_EVQ_INIT_DONE_EV: 1204 netif_dbg(efx, hw, efx->net_dev, 1205 "channel %d EVQ %d initialised\n", 1206 channel->channel, ev_sub_data); 1207 break; 1208 case FSE_AZ_SRM_UPD_DONE_EV: 1209 netif_vdbg(efx, hw, efx->net_dev, 1210 "channel %d SRAM update done\n", channel->channel); 1211 break; 1212 case FSE_AZ_WAKE_UP_EV: 1213 netif_vdbg(efx, hw, efx->net_dev, 1214 "channel %d RXQ %d wakeup event\n", 1215 channel->channel, ev_sub_data); 1216 break; 1217 case FSE_AZ_TIMER_EV: 1218 netif_vdbg(efx, hw, efx->net_dev, 1219 "channel %d RX queue %d timer expired\n", 1220 channel->channel, ev_sub_data); 1221 break; 1222 case FSE_AA_RX_RECOVER_EV: 1223 netif_err(efx, rx_err, efx->net_dev, 1224 "channel %d seen DRIVER RX_RESET event. " 1225 "Resetting.\n", channel->channel); 1226 atomic_inc(&efx->rx_reset); 1227 ef4_schedule_reset(efx, 1228 EF4_WORKAROUND_6555(efx) ? 1229 RESET_TYPE_RX_RECOVERY : 1230 RESET_TYPE_DISABLE); 1231 break; 1232 case FSE_BZ_RX_DSC_ERROR_EV: 1233 netif_err(efx, rx_err, efx->net_dev, 1234 "RX DMA Q %d reports descriptor fetch error." 1235 " RX Q %d is disabled.\n", ev_sub_data, 1236 ev_sub_data); 1237 ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR); 1238 break; 1239 case FSE_BZ_TX_DSC_ERROR_EV: 1240 netif_err(efx, tx_err, efx->net_dev, 1241 "TX DMA Q %d reports descriptor fetch error." 1242 " TX Q %d is disabled.\n", ev_sub_data, 1243 ev_sub_data); 1244 ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR); 1245 break; 1246 default: 1247 netif_vdbg(efx, hw, efx->net_dev, 1248 "channel %d unknown driver event code %d " 1249 "data %04x\n", channel->channel, ev_sub_code, 1250 ev_sub_data); 1251 break; 1252 } 1253 } 1254 1255 int ef4_farch_ev_process(struct ef4_channel *channel, int budget) 1256 { 1257 struct ef4_nic *efx = channel->efx; 1258 unsigned int read_ptr; 1259 ef4_qword_t event, *p_event; 1260 int ev_code; 1261 int tx_packets = 0; 1262 int spent = 0; 1263 1264 if (budget <= 0) 1265 return spent; 1266 1267 read_ptr = channel->eventq_read_ptr; 1268 1269 for (;;) { 1270 p_event = ef4_event(channel, read_ptr); 1271 event = *p_event; 1272 1273 if (!ef4_event_present(&event)) 1274 /* End of events */ 1275 break; 1276 1277 netif_vdbg(channel->efx, intr, channel->efx->net_dev, 1278 "channel %d event is "EF4_QWORD_FMT"\n", 1279 channel->channel, EF4_QWORD_VAL(event)); 1280 1281 /* Clear this event by marking it all ones */ 1282 EF4_SET_QWORD(*p_event); 1283 1284 ++read_ptr; 1285 1286 ev_code = EF4_QWORD_FIELD(event, FSF_AZ_EV_CODE); 1287 1288 switch (ev_code) { 1289 case FSE_AZ_EV_CODE_RX_EV: 1290 ef4_farch_handle_rx_event(channel, &event); 1291 if (++spent == budget) 1292 goto out; 1293 break; 1294 case FSE_AZ_EV_CODE_TX_EV: 1295 tx_packets += ef4_farch_handle_tx_event(channel, 1296 &event); 1297 if (tx_packets > efx->txq_entries) { 1298 spent = budget; 1299 goto out; 1300 } 1301 break; 1302 case FSE_AZ_EV_CODE_DRV_GEN_EV: 1303 ef4_farch_handle_generated_event(channel, &event); 1304 break; 1305 case FSE_AZ_EV_CODE_DRIVER_EV: 1306 ef4_farch_handle_driver_event(channel, &event); 1307 break; 1308 case FSE_AZ_EV_CODE_GLOBAL_EV: 1309 if (efx->type->handle_global_event && 1310 efx->type->handle_global_event(channel, &event)) 1311 break; 1312 fallthrough; 1313 default: 1314 netif_err(channel->efx, hw, channel->efx->net_dev, 1315 "channel %d unknown event type %d (data " 1316 EF4_QWORD_FMT ")\n", channel->channel, 1317 ev_code, EF4_QWORD_VAL(event)); 1318 } 1319 } 1320 1321 out: 1322 channel->eventq_read_ptr = read_ptr; 1323 return spent; 1324 } 1325 1326 /* Allocate buffer table entries for event queue */ 1327 int ef4_farch_ev_probe(struct ef4_channel *channel) 1328 { 1329 struct ef4_nic *efx = channel->efx; 1330 unsigned entries; 1331 1332 entries = channel->eventq_mask + 1; 1333 return ef4_alloc_special_buffer(efx, &channel->eventq, 1334 entries * sizeof(ef4_qword_t)); 1335 } 1336 1337 int ef4_farch_ev_init(struct ef4_channel *channel) 1338 { 1339 ef4_oword_t reg; 1340 struct ef4_nic *efx = channel->efx; 1341 1342 netif_dbg(efx, hw, efx->net_dev, 1343 "channel %d event queue in special buffers %d-%d\n", 1344 channel->channel, channel->eventq.index, 1345 channel->eventq.index + channel->eventq.entries - 1); 1346 1347 /* Pin event queue buffer */ 1348 ef4_init_special_buffer(efx, &channel->eventq); 1349 1350 /* Fill event queue with all ones (i.e. empty events) */ 1351 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len); 1352 1353 /* Push event queue to card */ 1354 EF4_POPULATE_OWORD_3(reg, 1355 FRF_AZ_EVQ_EN, 1, 1356 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries), 1357 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index); 1358 ef4_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base, 1359 channel->channel); 1360 1361 return 0; 1362 } 1363 1364 void ef4_farch_ev_fini(struct ef4_channel *channel) 1365 { 1366 ef4_oword_t reg; 1367 struct ef4_nic *efx = channel->efx; 1368 1369 /* Remove event queue from card */ 1370 EF4_ZERO_OWORD(reg); 1371 ef4_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base, 1372 channel->channel); 1373 1374 /* Unpin event queue */ 1375 ef4_fini_special_buffer(efx, &channel->eventq); 1376 } 1377 1378 /* Free buffers backing event queue */ 1379 void ef4_farch_ev_remove(struct ef4_channel *channel) 1380 { 1381 ef4_free_special_buffer(channel->efx, &channel->eventq); 1382 } 1383 1384 1385 void ef4_farch_ev_test_generate(struct ef4_channel *channel) 1386 { 1387 ef4_farch_magic_event(channel, EF4_CHANNEL_MAGIC_TEST(channel)); 1388 } 1389 1390 void ef4_farch_rx_defer_refill(struct ef4_rx_queue *rx_queue) 1391 { 1392 ef4_farch_magic_event(ef4_rx_queue_channel(rx_queue), 1393 EF4_CHANNEL_MAGIC_FILL(rx_queue)); 1394 } 1395 1396 /************************************************************************** 1397 * 1398 * Hardware interrupts 1399 * The hardware interrupt handler does very little work; all the event 1400 * queue processing is carried out by per-channel tasklets. 1401 * 1402 **************************************************************************/ 1403 1404 /* Enable/disable/generate interrupts */ 1405 static inline void ef4_farch_interrupts(struct ef4_nic *efx, 1406 bool enabled, bool force) 1407 { 1408 ef4_oword_t int_en_reg_ker; 1409 1410 EF4_POPULATE_OWORD_3(int_en_reg_ker, 1411 FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level, 1412 FRF_AZ_KER_INT_KER, force, 1413 FRF_AZ_DRV_INT_EN_KER, enabled); 1414 ef4_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER); 1415 } 1416 1417 void ef4_farch_irq_enable_master(struct ef4_nic *efx) 1418 { 1419 EF4_ZERO_OWORD(*((ef4_oword_t *) efx->irq_status.addr)); 1420 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */ 1421 1422 ef4_farch_interrupts(efx, true, false); 1423 } 1424 1425 void ef4_farch_irq_disable_master(struct ef4_nic *efx) 1426 { 1427 /* Disable interrupts */ 1428 ef4_farch_interrupts(efx, false, false); 1429 } 1430 1431 /* Generate a test interrupt 1432 * Interrupt must already have been enabled, otherwise nasty things 1433 * may happen. 1434 */ 1435 int ef4_farch_irq_test_generate(struct ef4_nic *efx) 1436 { 1437 ef4_farch_interrupts(efx, true, true); 1438 return 0; 1439 } 1440 1441 /* Process a fatal interrupt 1442 * Disable bus mastering ASAP and schedule a reset 1443 */ 1444 irqreturn_t ef4_farch_fatal_interrupt(struct ef4_nic *efx) 1445 { 1446 struct falcon_nic_data *nic_data = efx->nic_data; 1447 ef4_oword_t *int_ker = efx->irq_status.addr; 1448 ef4_oword_t fatal_intr; 1449 int error, mem_perr; 1450 1451 ef4_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER); 1452 error = EF4_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR); 1453 1454 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EF4_OWORD_FMT" status " 1455 EF4_OWORD_FMT ": %s\n", EF4_OWORD_VAL(*int_ker), 1456 EF4_OWORD_VAL(fatal_intr), 1457 error ? "disabling bus mastering" : "no recognised error"); 1458 1459 /* If this is a memory parity error dump which blocks are offending */ 1460 mem_perr = (EF4_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) || 1461 EF4_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER)); 1462 if (mem_perr) { 1463 ef4_oword_t reg; 1464 ef4_reado(efx, ®, FR_AZ_MEM_STAT); 1465 netif_err(efx, hw, efx->net_dev, 1466 "SYSTEM ERROR: memory parity error "EF4_OWORD_FMT"\n", 1467 EF4_OWORD_VAL(reg)); 1468 } 1469 1470 /* Disable both devices */ 1471 pci_clear_master(efx->pci_dev); 1472 if (ef4_nic_is_dual_func(efx)) 1473 pci_clear_master(nic_data->pci_dev2); 1474 ef4_farch_irq_disable_master(efx); 1475 1476 /* Count errors and reset or disable the NIC accordingly */ 1477 if (efx->int_error_count == 0 || 1478 time_after(jiffies, efx->int_error_expire)) { 1479 efx->int_error_count = 0; 1480 efx->int_error_expire = 1481 jiffies + EF4_INT_ERROR_EXPIRE * HZ; 1482 } 1483 if (++efx->int_error_count < EF4_MAX_INT_ERRORS) { 1484 netif_err(efx, hw, efx->net_dev, 1485 "SYSTEM ERROR - reset scheduled\n"); 1486 ef4_schedule_reset(efx, RESET_TYPE_INT_ERROR); 1487 } else { 1488 netif_err(efx, hw, efx->net_dev, 1489 "SYSTEM ERROR - max number of errors seen." 1490 "NIC will be disabled\n"); 1491 ef4_schedule_reset(efx, RESET_TYPE_DISABLE); 1492 } 1493 1494 return IRQ_HANDLED; 1495 } 1496 1497 /* Handle a legacy interrupt 1498 * Acknowledges the interrupt and schedule event queue processing. 1499 */ 1500 irqreturn_t ef4_farch_legacy_interrupt(int irq, void *dev_id) 1501 { 1502 struct ef4_nic *efx = dev_id; 1503 bool soft_enabled = READ_ONCE(efx->irq_soft_enabled); 1504 ef4_oword_t *int_ker = efx->irq_status.addr; 1505 irqreturn_t result = IRQ_NONE; 1506 struct ef4_channel *channel; 1507 ef4_dword_t reg; 1508 u32 queues; 1509 int syserr; 1510 1511 /* Read the ISR which also ACKs the interrupts */ 1512 ef4_readd(efx, ®, FR_BZ_INT_ISR0); 1513 queues = EF4_EXTRACT_DWORD(reg, 0, 31); 1514 1515 /* Legacy interrupts are disabled too late by the EEH kernel 1516 * code. Disable them earlier. 1517 * If an EEH error occurred, the read will have returned all ones. 1518 */ 1519 if (EF4_DWORD_IS_ALL_ONES(reg) && ef4_try_recovery(efx) && 1520 !efx->eeh_disabled_legacy_irq) { 1521 disable_irq_nosync(efx->legacy_irq); 1522 efx->eeh_disabled_legacy_irq = true; 1523 } 1524 1525 /* Handle non-event-queue sources */ 1526 if (queues & (1U << efx->irq_level) && soft_enabled) { 1527 syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); 1528 if (unlikely(syserr)) 1529 return ef4_farch_fatal_interrupt(efx); 1530 efx->last_irq_cpu = raw_smp_processor_id(); 1531 } 1532 1533 if (queues != 0) { 1534 efx->irq_zero_count = 0; 1535 1536 /* Schedule processing of any interrupting queues */ 1537 if (likely(soft_enabled)) { 1538 ef4_for_each_channel(channel, efx) { 1539 if (queues & 1) 1540 ef4_schedule_channel_irq(channel); 1541 queues >>= 1; 1542 } 1543 } 1544 result = IRQ_HANDLED; 1545 1546 } else { 1547 ef4_qword_t *event; 1548 1549 /* Legacy ISR read can return zero once (SF bug 15783) */ 1550 1551 /* We can't return IRQ_HANDLED more than once on seeing ISR=0 1552 * because this might be a shared interrupt. */ 1553 if (efx->irq_zero_count++ == 0) 1554 result = IRQ_HANDLED; 1555 1556 /* Ensure we schedule or rearm all event queues */ 1557 if (likely(soft_enabled)) { 1558 ef4_for_each_channel(channel, efx) { 1559 event = ef4_event(channel, 1560 channel->eventq_read_ptr); 1561 if (ef4_event_present(event)) 1562 ef4_schedule_channel_irq(channel); 1563 else 1564 ef4_farch_ev_read_ack(channel); 1565 } 1566 } 1567 } 1568 1569 if (result == IRQ_HANDLED) 1570 netif_vdbg(efx, intr, efx->net_dev, 1571 "IRQ %d on CPU %d status " EF4_DWORD_FMT "\n", 1572 irq, raw_smp_processor_id(), EF4_DWORD_VAL(reg)); 1573 1574 return result; 1575 } 1576 1577 /* Handle an MSI interrupt 1578 * 1579 * Handle an MSI hardware interrupt. This routine schedules event 1580 * queue processing. No interrupt acknowledgement cycle is necessary. 1581 * Also, we never need to check that the interrupt is for us, since 1582 * MSI interrupts cannot be shared. 1583 */ 1584 irqreturn_t ef4_farch_msi_interrupt(int irq, void *dev_id) 1585 { 1586 struct ef4_msi_context *context = dev_id; 1587 struct ef4_nic *efx = context->efx; 1588 ef4_oword_t *int_ker = efx->irq_status.addr; 1589 int syserr; 1590 1591 netif_vdbg(efx, intr, efx->net_dev, 1592 "IRQ %d on CPU %d status " EF4_OWORD_FMT "\n", 1593 irq, raw_smp_processor_id(), EF4_OWORD_VAL(*int_ker)); 1594 1595 if (!likely(READ_ONCE(efx->irq_soft_enabled))) 1596 return IRQ_HANDLED; 1597 1598 /* Handle non-event-queue sources */ 1599 if (context->index == efx->irq_level) { 1600 syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); 1601 if (unlikely(syserr)) 1602 return ef4_farch_fatal_interrupt(efx); 1603 efx->last_irq_cpu = raw_smp_processor_id(); 1604 } 1605 1606 /* Schedule processing of the channel */ 1607 ef4_schedule_channel_irq(efx->channel[context->index]); 1608 1609 return IRQ_HANDLED; 1610 } 1611 1612 /* Setup RSS indirection table. 1613 * This maps from the hash value of the packet to RXQ 1614 */ 1615 void ef4_farch_rx_push_indir_table(struct ef4_nic *efx) 1616 { 1617 size_t i = 0; 1618 ef4_dword_t dword; 1619 1620 BUG_ON(ef4_nic_rev(efx) < EF4_REV_FALCON_B0); 1621 1622 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) != 1623 FR_BZ_RX_INDIRECTION_TBL_ROWS); 1624 1625 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) { 1626 EF4_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE, 1627 efx->rx_indir_table[i]); 1628 ef4_writed(efx, &dword, 1629 FR_BZ_RX_INDIRECTION_TBL + 1630 FR_BZ_RX_INDIRECTION_TBL_STEP * i); 1631 } 1632 } 1633 1634 u32 ef4_farch_fpga_ver(struct ef4_nic *efx) 1635 { 1636 ef4_oword_t altera_build; 1637 ef4_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD); 1638 return EF4_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER); 1639 } 1640 1641 void ef4_farch_init_common(struct ef4_nic *efx) 1642 { 1643 ef4_oword_t temp; 1644 1645 /* Set positions of descriptor caches in SRAM. */ 1646 EF4_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base); 1647 ef4_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG); 1648 EF4_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base); 1649 ef4_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG); 1650 1651 /* Set TX descriptor cache size. */ 1652 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER)); 1653 EF4_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER); 1654 ef4_writeo(efx, &temp, FR_AZ_TX_DC_CFG); 1655 1656 /* Set RX descriptor cache size. Set low watermark to size-8, as 1657 * this allows most efficient prefetching. 1658 */ 1659 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER)); 1660 EF4_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER); 1661 ef4_writeo(efx, &temp, FR_AZ_RX_DC_CFG); 1662 EF4_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8); 1663 ef4_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM); 1664 1665 /* Program INT_KER address */ 1666 EF4_POPULATE_OWORD_2(temp, 1667 FRF_AZ_NORM_INT_VEC_DIS_KER, 1668 EF4_INT_MODE_USE_MSI(efx), 1669 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr); 1670 ef4_writeo(efx, &temp, FR_AZ_INT_ADR_KER); 1671 1672 /* Use a valid MSI-X vector */ 1673 efx->irq_level = 0; 1674 1675 /* Enable all the genuinely fatal interrupts. (They are still 1676 * masked by the overall interrupt mask, controlled by 1677 * falcon_interrupts()). 1678 * 1679 * Note: All other fatal interrupts are enabled 1680 */ 1681 EF4_POPULATE_OWORD_3(temp, 1682 FRF_AZ_ILL_ADR_INT_KER_EN, 1, 1683 FRF_AZ_RBUF_OWN_INT_KER_EN, 1, 1684 FRF_AZ_TBUF_OWN_INT_KER_EN, 1); 1685 EF4_INVERT_OWORD(temp); 1686 ef4_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER); 1687 1688 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be 1689 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q. 1690 */ 1691 ef4_reado(efx, &temp, FR_AZ_TX_RESERVED); 1692 EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe); 1693 EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1); 1694 EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1); 1695 EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1); 1696 EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1); 1697 /* Enable SW_EV to inherit in char driver - assume harmless here */ 1698 EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1); 1699 /* Prefetch threshold 2 => fetch when descriptor cache half empty */ 1700 EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2); 1701 /* Disable hardware watchdog which can misfire */ 1702 EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff); 1703 /* Squash TX of packets of 16 bytes or less */ 1704 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) 1705 EF4_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1); 1706 ef4_writeo(efx, &temp, FR_AZ_TX_RESERVED); 1707 1708 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) { 1709 EF4_POPULATE_OWORD_4(temp, 1710 /* Default values */ 1711 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15, 1712 FRF_BZ_TX_PACE_SB_AF, 0xb, 1713 FRF_BZ_TX_PACE_FB_BASE, 0, 1714 /* Allow large pace values in the 1715 * fast bin. */ 1716 FRF_BZ_TX_PACE_BIN_TH, 1717 FFE_BZ_TX_PACE_RESERVED); 1718 ef4_writeo(efx, &temp, FR_BZ_TX_PACE); 1719 } 1720 } 1721 1722 /************************************************************************** 1723 * 1724 * Filter tables 1725 * 1726 ************************************************************************** 1727 */ 1728 1729 /* "Fudge factors" - difference between programmed value and actual depth. 1730 * Due to pipelined implementation we need to program H/W with a value that 1731 * is larger than the hop limit we want. 1732 */ 1733 #define EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3 1734 #define EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1 1735 1736 /* Hard maximum search limit. Hardware will time-out beyond 200-something. 1737 * We also need to avoid infinite loops in ef4_farch_filter_search() when the 1738 * table is full. 1739 */ 1740 #define EF4_FARCH_FILTER_CTL_SRCH_MAX 200 1741 1742 /* Don't try very hard to find space for performance hints, as this is 1743 * counter-productive. */ 1744 #define EF4_FARCH_FILTER_CTL_SRCH_HINT_MAX 5 1745 1746 enum ef4_farch_filter_type { 1747 EF4_FARCH_FILTER_TCP_FULL = 0, 1748 EF4_FARCH_FILTER_TCP_WILD, 1749 EF4_FARCH_FILTER_UDP_FULL, 1750 EF4_FARCH_FILTER_UDP_WILD, 1751 EF4_FARCH_FILTER_MAC_FULL = 4, 1752 EF4_FARCH_FILTER_MAC_WILD, 1753 EF4_FARCH_FILTER_UC_DEF = 8, 1754 EF4_FARCH_FILTER_MC_DEF, 1755 EF4_FARCH_FILTER_TYPE_COUNT, /* number of specific types */ 1756 }; 1757 1758 enum ef4_farch_filter_table_id { 1759 EF4_FARCH_FILTER_TABLE_RX_IP = 0, 1760 EF4_FARCH_FILTER_TABLE_RX_MAC, 1761 EF4_FARCH_FILTER_TABLE_RX_DEF, 1762 EF4_FARCH_FILTER_TABLE_TX_MAC, 1763 EF4_FARCH_FILTER_TABLE_COUNT, 1764 }; 1765 1766 enum ef4_farch_filter_index { 1767 EF4_FARCH_FILTER_INDEX_UC_DEF, 1768 EF4_FARCH_FILTER_INDEX_MC_DEF, 1769 EF4_FARCH_FILTER_SIZE_RX_DEF, 1770 }; 1771 1772 struct ef4_farch_filter_spec { 1773 u8 type:4; 1774 u8 priority:4; 1775 u8 flags; 1776 u16 dmaq_id; 1777 u32 data[3]; 1778 }; 1779 1780 struct ef4_farch_filter_table { 1781 enum ef4_farch_filter_table_id id; 1782 u32 offset; /* address of table relative to BAR */ 1783 unsigned size; /* number of entries */ 1784 unsigned step; /* step between entries */ 1785 unsigned used; /* number currently used */ 1786 unsigned long *used_bitmap; 1787 struct ef4_farch_filter_spec *spec; 1788 unsigned search_limit[EF4_FARCH_FILTER_TYPE_COUNT]; 1789 }; 1790 1791 struct ef4_farch_filter_state { 1792 struct ef4_farch_filter_table table[EF4_FARCH_FILTER_TABLE_COUNT]; 1793 }; 1794 1795 static void 1796 ef4_farch_filter_table_clear_entry(struct ef4_nic *efx, 1797 struct ef4_farch_filter_table *table, 1798 unsigned int filter_idx); 1799 1800 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit 1801 * key derived from the n-tuple. The initial LFSR state is 0xffff. */ 1802 static u16 ef4_farch_filter_hash(u32 key) 1803 { 1804 u16 tmp; 1805 1806 /* First 16 rounds */ 1807 tmp = 0x1fff ^ key >> 16; 1808 tmp = tmp ^ tmp >> 3 ^ tmp >> 6; 1809 tmp = tmp ^ tmp >> 9; 1810 /* Last 16 rounds */ 1811 tmp = tmp ^ tmp << 13 ^ key; 1812 tmp = tmp ^ tmp >> 3 ^ tmp >> 6; 1813 return tmp ^ tmp >> 9; 1814 } 1815 1816 /* To allow for hash collisions, filter search continues at these 1817 * increments from the first possible entry selected by the hash. */ 1818 static u16 ef4_farch_filter_increment(u32 key) 1819 { 1820 return key * 2 - 1; 1821 } 1822 1823 static enum ef4_farch_filter_table_id 1824 ef4_farch_filter_spec_table_id(const struct ef4_farch_filter_spec *spec) 1825 { 1826 BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP != 1827 (EF4_FARCH_FILTER_TCP_FULL >> 2)); 1828 BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP != 1829 (EF4_FARCH_FILTER_TCP_WILD >> 2)); 1830 BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP != 1831 (EF4_FARCH_FILTER_UDP_FULL >> 2)); 1832 BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP != 1833 (EF4_FARCH_FILTER_UDP_WILD >> 2)); 1834 BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_MAC != 1835 (EF4_FARCH_FILTER_MAC_FULL >> 2)); 1836 BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_MAC != 1837 (EF4_FARCH_FILTER_MAC_WILD >> 2)); 1838 BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_TX_MAC != 1839 EF4_FARCH_FILTER_TABLE_RX_MAC + 2); 1840 return (spec->type >> 2) + ((spec->flags & EF4_FILTER_FLAG_TX) ? 2 : 0); 1841 } 1842 1843 static void ef4_farch_filter_push_rx_config(struct ef4_nic *efx) 1844 { 1845 struct ef4_farch_filter_state *state = efx->filter_state; 1846 struct ef4_farch_filter_table *table; 1847 ef4_oword_t filter_ctl; 1848 1849 ef4_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL); 1850 1851 table = &state->table[EF4_FARCH_FILTER_TABLE_RX_IP]; 1852 EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT, 1853 table->search_limit[EF4_FARCH_FILTER_TCP_FULL] + 1854 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL); 1855 EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT, 1856 table->search_limit[EF4_FARCH_FILTER_TCP_WILD] + 1857 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD); 1858 EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT, 1859 table->search_limit[EF4_FARCH_FILTER_UDP_FULL] + 1860 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL); 1861 EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT, 1862 table->search_limit[EF4_FARCH_FILTER_UDP_WILD] + 1863 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD); 1864 1865 table = &state->table[EF4_FARCH_FILTER_TABLE_RX_MAC]; 1866 if (table->size) { 1867 EF4_SET_OWORD_FIELD( 1868 filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT, 1869 table->search_limit[EF4_FARCH_FILTER_MAC_FULL] + 1870 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL); 1871 EF4_SET_OWORD_FIELD( 1872 filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT, 1873 table->search_limit[EF4_FARCH_FILTER_MAC_WILD] + 1874 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD); 1875 } 1876 1877 table = &state->table[EF4_FARCH_FILTER_TABLE_RX_DEF]; 1878 if (table->size) { 1879 EF4_SET_OWORD_FIELD( 1880 filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID, 1881 table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].dmaq_id); 1882 EF4_SET_OWORD_FIELD( 1883 filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED, 1884 !!(table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].flags & 1885 EF4_FILTER_FLAG_RX_RSS)); 1886 EF4_SET_OWORD_FIELD( 1887 filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID, 1888 table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].dmaq_id); 1889 EF4_SET_OWORD_FIELD( 1890 filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED, 1891 !!(table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].flags & 1892 EF4_FILTER_FLAG_RX_RSS)); 1893 1894 /* There is a single bit to enable RX scatter for all 1895 * unmatched packets. Only set it if scatter is 1896 * enabled in both filter specs. 1897 */ 1898 EF4_SET_OWORD_FIELD( 1899 filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q, 1900 !!(table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].flags & 1901 table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].flags & 1902 EF4_FILTER_FLAG_RX_SCATTER)); 1903 } else if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) { 1904 /* We don't expose 'default' filters because unmatched 1905 * packets always go to the queue number found in the 1906 * RSS table. But we still need to set the RX scatter 1907 * bit here. 1908 */ 1909 EF4_SET_OWORD_FIELD( 1910 filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q, 1911 efx->rx_scatter); 1912 } 1913 1914 ef4_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL); 1915 } 1916 1917 static void ef4_farch_filter_push_tx_limits(struct ef4_nic *efx) 1918 { 1919 struct ef4_farch_filter_state *state = efx->filter_state; 1920 struct ef4_farch_filter_table *table; 1921 ef4_oword_t tx_cfg; 1922 1923 ef4_reado(efx, &tx_cfg, FR_AZ_TX_CFG); 1924 1925 table = &state->table[EF4_FARCH_FILTER_TABLE_TX_MAC]; 1926 if (table->size) { 1927 EF4_SET_OWORD_FIELD( 1928 tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE, 1929 table->search_limit[EF4_FARCH_FILTER_MAC_FULL] + 1930 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL); 1931 EF4_SET_OWORD_FIELD( 1932 tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE, 1933 table->search_limit[EF4_FARCH_FILTER_MAC_WILD] + 1934 EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD); 1935 } 1936 1937 ef4_writeo(efx, &tx_cfg, FR_AZ_TX_CFG); 1938 } 1939 1940 static int 1941 ef4_farch_filter_from_gen_spec(struct ef4_farch_filter_spec *spec, 1942 const struct ef4_filter_spec *gen_spec) 1943 { 1944 bool is_full = false; 1945 1946 if ((gen_spec->flags & EF4_FILTER_FLAG_RX_RSS) && 1947 gen_spec->rss_context != EF4_FILTER_RSS_CONTEXT_DEFAULT) 1948 return -EINVAL; 1949 1950 spec->priority = gen_spec->priority; 1951 spec->flags = gen_spec->flags; 1952 spec->dmaq_id = gen_spec->dmaq_id; 1953 1954 switch (gen_spec->match_flags) { 1955 case (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO | 1956 EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT | 1957 EF4_FILTER_MATCH_REM_HOST | EF4_FILTER_MATCH_REM_PORT): 1958 is_full = true; 1959 fallthrough; 1960 case (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO | 1961 EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT): { 1962 __be32 rhost, host1, host2; 1963 __be16 rport, port1, port2; 1964 1965 EF4_BUG_ON_PARANOID(!(gen_spec->flags & EF4_FILTER_FLAG_RX)); 1966 1967 if (gen_spec->ether_type != htons(ETH_P_IP)) 1968 return -EPROTONOSUPPORT; 1969 if (gen_spec->loc_port == 0 || 1970 (is_full && gen_spec->rem_port == 0)) 1971 return -EADDRNOTAVAIL; 1972 switch (gen_spec->ip_proto) { 1973 case IPPROTO_TCP: 1974 spec->type = (is_full ? EF4_FARCH_FILTER_TCP_FULL : 1975 EF4_FARCH_FILTER_TCP_WILD); 1976 break; 1977 case IPPROTO_UDP: 1978 spec->type = (is_full ? EF4_FARCH_FILTER_UDP_FULL : 1979 EF4_FARCH_FILTER_UDP_WILD); 1980 break; 1981 default: 1982 return -EPROTONOSUPPORT; 1983 } 1984 1985 /* Filter is constructed in terms of source and destination, 1986 * with the odd wrinkle that the ports are swapped in a UDP 1987 * wildcard filter. We need to convert from local and remote 1988 * (= zero for wildcard) addresses. 1989 */ 1990 rhost = is_full ? gen_spec->rem_host[0] : 0; 1991 rport = is_full ? gen_spec->rem_port : 0; 1992 host1 = rhost; 1993 host2 = gen_spec->loc_host[0]; 1994 if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) { 1995 port1 = gen_spec->loc_port; 1996 port2 = rport; 1997 } else { 1998 port1 = rport; 1999 port2 = gen_spec->loc_port; 2000 } 2001 spec->data[0] = ntohl(host1) << 16 | ntohs(port1); 2002 spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16; 2003 spec->data[2] = ntohl(host2); 2004 2005 break; 2006 } 2007 2008 case EF4_FILTER_MATCH_LOC_MAC | EF4_FILTER_MATCH_OUTER_VID: 2009 is_full = true; 2010 fallthrough; 2011 case EF4_FILTER_MATCH_LOC_MAC: 2012 spec->type = (is_full ? EF4_FARCH_FILTER_MAC_FULL : 2013 EF4_FARCH_FILTER_MAC_WILD); 2014 spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0; 2015 spec->data[1] = (gen_spec->loc_mac[2] << 24 | 2016 gen_spec->loc_mac[3] << 16 | 2017 gen_spec->loc_mac[4] << 8 | 2018 gen_spec->loc_mac[5]); 2019 spec->data[2] = (gen_spec->loc_mac[0] << 8 | 2020 gen_spec->loc_mac[1]); 2021 break; 2022 2023 case EF4_FILTER_MATCH_LOC_MAC_IG: 2024 spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ? 2025 EF4_FARCH_FILTER_MC_DEF : 2026 EF4_FARCH_FILTER_UC_DEF); 2027 memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */ 2028 break; 2029 2030 default: 2031 return -EPROTONOSUPPORT; 2032 } 2033 2034 return 0; 2035 } 2036 2037 static void 2038 ef4_farch_filter_to_gen_spec(struct ef4_filter_spec *gen_spec, 2039 const struct ef4_farch_filter_spec *spec) 2040 { 2041 bool is_full = false; 2042 2043 /* *gen_spec should be completely initialised, to be consistent 2044 * with ef4_filter_init_{rx,tx}() and in case we want to copy 2045 * it back to userland. 2046 */ 2047 memset(gen_spec, 0, sizeof(*gen_spec)); 2048 2049 gen_spec->priority = spec->priority; 2050 gen_spec->flags = spec->flags; 2051 gen_spec->dmaq_id = spec->dmaq_id; 2052 2053 switch (spec->type) { 2054 case EF4_FARCH_FILTER_TCP_FULL: 2055 case EF4_FARCH_FILTER_UDP_FULL: 2056 is_full = true; 2057 fallthrough; 2058 case EF4_FARCH_FILTER_TCP_WILD: 2059 case EF4_FARCH_FILTER_UDP_WILD: { 2060 __be32 host1, host2; 2061 __be16 port1, port2; 2062 2063 gen_spec->match_flags = 2064 EF4_FILTER_MATCH_ETHER_TYPE | 2065 EF4_FILTER_MATCH_IP_PROTO | 2066 EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT; 2067 if (is_full) 2068 gen_spec->match_flags |= (EF4_FILTER_MATCH_REM_HOST | 2069 EF4_FILTER_MATCH_REM_PORT); 2070 gen_spec->ether_type = htons(ETH_P_IP); 2071 gen_spec->ip_proto = 2072 (spec->type == EF4_FARCH_FILTER_TCP_FULL || 2073 spec->type == EF4_FARCH_FILTER_TCP_WILD) ? 2074 IPPROTO_TCP : IPPROTO_UDP; 2075 2076 host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16); 2077 port1 = htons(spec->data[0]); 2078 host2 = htonl(spec->data[2]); 2079 port2 = htons(spec->data[1] >> 16); 2080 if (spec->flags & EF4_FILTER_FLAG_TX) { 2081 gen_spec->loc_host[0] = host1; 2082 gen_spec->rem_host[0] = host2; 2083 } else { 2084 gen_spec->loc_host[0] = host2; 2085 gen_spec->rem_host[0] = host1; 2086 } 2087 if (!!(gen_spec->flags & EF4_FILTER_FLAG_TX) ^ 2088 (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) { 2089 gen_spec->loc_port = port1; 2090 gen_spec->rem_port = port2; 2091 } else { 2092 gen_spec->loc_port = port2; 2093 gen_spec->rem_port = port1; 2094 } 2095 2096 break; 2097 } 2098 2099 case EF4_FARCH_FILTER_MAC_FULL: 2100 is_full = true; 2101 fallthrough; 2102 case EF4_FARCH_FILTER_MAC_WILD: 2103 gen_spec->match_flags = EF4_FILTER_MATCH_LOC_MAC; 2104 if (is_full) 2105 gen_spec->match_flags |= EF4_FILTER_MATCH_OUTER_VID; 2106 gen_spec->loc_mac[0] = spec->data[2] >> 8; 2107 gen_spec->loc_mac[1] = spec->data[2]; 2108 gen_spec->loc_mac[2] = spec->data[1] >> 24; 2109 gen_spec->loc_mac[3] = spec->data[1] >> 16; 2110 gen_spec->loc_mac[4] = spec->data[1] >> 8; 2111 gen_spec->loc_mac[5] = spec->data[1]; 2112 gen_spec->outer_vid = htons(spec->data[0]); 2113 break; 2114 2115 case EF4_FARCH_FILTER_UC_DEF: 2116 case EF4_FARCH_FILTER_MC_DEF: 2117 gen_spec->match_flags = EF4_FILTER_MATCH_LOC_MAC_IG; 2118 gen_spec->loc_mac[0] = spec->type == EF4_FARCH_FILTER_MC_DEF; 2119 break; 2120 2121 default: 2122 WARN_ON(1); 2123 break; 2124 } 2125 } 2126 2127 static void 2128 ef4_farch_filter_init_rx_auto(struct ef4_nic *efx, 2129 struct ef4_farch_filter_spec *spec) 2130 { 2131 /* If there's only one channel then disable RSS for non VF 2132 * traffic, thereby allowing VFs to use RSS when the PF can't. 2133 */ 2134 spec->priority = EF4_FILTER_PRI_AUTO; 2135 spec->flags = (EF4_FILTER_FLAG_RX | 2136 (ef4_rss_enabled(efx) ? EF4_FILTER_FLAG_RX_RSS : 0) | 2137 (efx->rx_scatter ? EF4_FILTER_FLAG_RX_SCATTER : 0)); 2138 spec->dmaq_id = 0; 2139 } 2140 2141 /* Build a filter entry and return its n-tuple key. */ 2142 static u32 ef4_farch_filter_build(ef4_oword_t *filter, 2143 struct ef4_farch_filter_spec *spec) 2144 { 2145 u32 data3; 2146 2147 switch (ef4_farch_filter_spec_table_id(spec)) { 2148 case EF4_FARCH_FILTER_TABLE_RX_IP: { 2149 bool is_udp = (spec->type == EF4_FARCH_FILTER_UDP_FULL || 2150 spec->type == EF4_FARCH_FILTER_UDP_WILD); 2151 EF4_POPULATE_OWORD_7( 2152 *filter, 2153 FRF_BZ_RSS_EN, 2154 !!(spec->flags & EF4_FILTER_FLAG_RX_RSS), 2155 FRF_BZ_SCATTER_EN, 2156 !!(spec->flags & EF4_FILTER_FLAG_RX_SCATTER), 2157 FRF_BZ_TCP_UDP, is_udp, 2158 FRF_BZ_RXQ_ID, spec->dmaq_id, 2159 EF4_DWORD_2, spec->data[2], 2160 EF4_DWORD_1, spec->data[1], 2161 EF4_DWORD_0, spec->data[0]); 2162 data3 = is_udp; 2163 break; 2164 } 2165 2166 case EF4_FARCH_FILTER_TABLE_RX_MAC: { 2167 bool is_wild = spec->type == EF4_FARCH_FILTER_MAC_WILD; 2168 EF4_POPULATE_OWORD_7( 2169 *filter, 2170 FRF_CZ_RMFT_RSS_EN, 2171 !!(spec->flags & EF4_FILTER_FLAG_RX_RSS), 2172 FRF_CZ_RMFT_SCATTER_EN, 2173 !!(spec->flags & EF4_FILTER_FLAG_RX_SCATTER), 2174 FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id, 2175 FRF_CZ_RMFT_WILDCARD_MATCH, is_wild, 2176 FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2], 2177 FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1], 2178 FRF_CZ_RMFT_VLAN_ID, spec->data[0]); 2179 data3 = is_wild; 2180 break; 2181 } 2182 2183 case EF4_FARCH_FILTER_TABLE_TX_MAC: { 2184 bool is_wild = spec->type == EF4_FARCH_FILTER_MAC_WILD; 2185 EF4_POPULATE_OWORD_5(*filter, 2186 FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id, 2187 FRF_CZ_TMFT_WILDCARD_MATCH, is_wild, 2188 FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2], 2189 FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1], 2190 FRF_CZ_TMFT_VLAN_ID, spec->data[0]); 2191 data3 = is_wild | spec->dmaq_id << 1; 2192 break; 2193 } 2194 2195 default: 2196 BUG(); 2197 } 2198 2199 return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3; 2200 } 2201 2202 static bool ef4_farch_filter_equal(const struct ef4_farch_filter_spec *left, 2203 const struct ef4_farch_filter_spec *right) 2204 { 2205 if (left->type != right->type || 2206 memcmp(left->data, right->data, sizeof(left->data))) 2207 return false; 2208 2209 if (left->flags & EF4_FILTER_FLAG_TX && 2210 left->dmaq_id != right->dmaq_id) 2211 return false; 2212 2213 return true; 2214 } 2215 2216 /* 2217 * Construct/deconstruct external filter IDs. At least the RX filter 2218 * IDs must be ordered by matching priority, for RX NFC semantics. 2219 * 2220 * Deconstruction needs to be robust against invalid IDs so that 2221 * ef4_filter_remove_id_safe() and ef4_filter_get_filter_safe() can 2222 * accept user-provided IDs. 2223 */ 2224 2225 #define EF4_FARCH_FILTER_MATCH_PRI_COUNT 5 2226 2227 static const u8 ef4_farch_filter_type_match_pri[EF4_FARCH_FILTER_TYPE_COUNT] = { 2228 [EF4_FARCH_FILTER_TCP_FULL] = 0, 2229 [EF4_FARCH_FILTER_UDP_FULL] = 0, 2230 [EF4_FARCH_FILTER_TCP_WILD] = 1, 2231 [EF4_FARCH_FILTER_UDP_WILD] = 1, 2232 [EF4_FARCH_FILTER_MAC_FULL] = 2, 2233 [EF4_FARCH_FILTER_MAC_WILD] = 3, 2234 [EF4_FARCH_FILTER_UC_DEF] = 4, 2235 [EF4_FARCH_FILTER_MC_DEF] = 4, 2236 }; 2237 2238 static const enum ef4_farch_filter_table_id ef4_farch_filter_range_table[] = { 2239 EF4_FARCH_FILTER_TABLE_RX_IP, /* RX match pri 0 */ 2240 EF4_FARCH_FILTER_TABLE_RX_IP, 2241 EF4_FARCH_FILTER_TABLE_RX_MAC, 2242 EF4_FARCH_FILTER_TABLE_RX_MAC, 2243 EF4_FARCH_FILTER_TABLE_RX_DEF, /* RX match pri 4 */ 2244 EF4_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 0 */ 2245 EF4_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 1 */ 2246 }; 2247 2248 #define EF4_FARCH_FILTER_INDEX_WIDTH 13 2249 #define EF4_FARCH_FILTER_INDEX_MASK ((1 << EF4_FARCH_FILTER_INDEX_WIDTH) - 1) 2250 2251 static inline u32 2252 ef4_farch_filter_make_id(const struct ef4_farch_filter_spec *spec, 2253 unsigned int index) 2254 { 2255 unsigned int range; 2256 2257 range = ef4_farch_filter_type_match_pri[spec->type]; 2258 if (!(spec->flags & EF4_FILTER_FLAG_RX)) 2259 range += EF4_FARCH_FILTER_MATCH_PRI_COUNT; 2260 2261 return range << EF4_FARCH_FILTER_INDEX_WIDTH | index; 2262 } 2263 2264 static inline enum ef4_farch_filter_table_id 2265 ef4_farch_filter_id_table_id(u32 id) 2266 { 2267 unsigned int range = id >> EF4_FARCH_FILTER_INDEX_WIDTH; 2268 2269 if (range < ARRAY_SIZE(ef4_farch_filter_range_table)) 2270 return ef4_farch_filter_range_table[range]; 2271 else 2272 return EF4_FARCH_FILTER_TABLE_COUNT; /* invalid */ 2273 } 2274 2275 static inline unsigned int ef4_farch_filter_id_index(u32 id) 2276 { 2277 return id & EF4_FARCH_FILTER_INDEX_MASK; 2278 } 2279 2280 u32 ef4_farch_filter_get_rx_id_limit(struct ef4_nic *efx) 2281 { 2282 struct ef4_farch_filter_state *state = efx->filter_state; 2283 unsigned int range = EF4_FARCH_FILTER_MATCH_PRI_COUNT - 1; 2284 enum ef4_farch_filter_table_id table_id; 2285 2286 do { 2287 table_id = ef4_farch_filter_range_table[range]; 2288 if (state->table[table_id].size != 0) 2289 return range << EF4_FARCH_FILTER_INDEX_WIDTH | 2290 state->table[table_id].size; 2291 } while (range--); 2292 2293 return 0; 2294 } 2295 2296 s32 ef4_farch_filter_insert(struct ef4_nic *efx, 2297 struct ef4_filter_spec *gen_spec, 2298 bool replace_equal) 2299 { 2300 struct ef4_farch_filter_state *state = efx->filter_state; 2301 struct ef4_farch_filter_table *table; 2302 struct ef4_farch_filter_spec spec; 2303 ef4_oword_t filter; 2304 int rep_index, ins_index; 2305 unsigned int depth = 0; 2306 int rc; 2307 2308 rc = ef4_farch_filter_from_gen_spec(&spec, gen_spec); 2309 if (rc) 2310 return rc; 2311 2312 table = &state->table[ef4_farch_filter_spec_table_id(&spec)]; 2313 if (table->size == 0) 2314 return -EINVAL; 2315 2316 netif_vdbg(efx, hw, efx->net_dev, 2317 "%s: type %d search_limit=%d", __func__, spec.type, 2318 table->search_limit[spec.type]); 2319 2320 if (table->id == EF4_FARCH_FILTER_TABLE_RX_DEF) { 2321 /* One filter spec per type */ 2322 BUILD_BUG_ON(EF4_FARCH_FILTER_INDEX_UC_DEF != 0); 2323 BUILD_BUG_ON(EF4_FARCH_FILTER_INDEX_MC_DEF != 2324 EF4_FARCH_FILTER_MC_DEF - EF4_FARCH_FILTER_UC_DEF); 2325 rep_index = spec.type - EF4_FARCH_FILTER_UC_DEF; 2326 ins_index = rep_index; 2327 2328 spin_lock_bh(&efx->filter_lock); 2329 } else { 2330 /* Search concurrently for 2331 * (1) a filter to be replaced (rep_index): any filter 2332 * with the same match values, up to the current 2333 * search depth for this type, and 2334 * (2) the insertion point (ins_index): (1) or any 2335 * free slot before it or up to the maximum search 2336 * depth for this priority 2337 * We fail if we cannot find (2). 2338 * 2339 * We can stop once either 2340 * (a) we find (1), in which case we have definitely 2341 * found (2) as well; or 2342 * (b) we have searched exhaustively for (1), and have 2343 * either found (2) or searched exhaustively for it 2344 */ 2345 u32 key = ef4_farch_filter_build(&filter, &spec); 2346 unsigned int hash = ef4_farch_filter_hash(key); 2347 unsigned int incr = ef4_farch_filter_increment(key); 2348 unsigned int max_rep_depth = table->search_limit[spec.type]; 2349 unsigned int max_ins_depth = 2350 spec.priority <= EF4_FILTER_PRI_HINT ? 2351 EF4_FARCH_FILTER_CTL_SRCH_HINT_MAX : 2352 EF4_FARCH_FILTER_CTL_SRCH_MAX; 2353 unsigned int i = hash & (table->size - 1); 2354 2355 ins_index = -1; 2356 depth = 1; 2357 2358 spin_lock_bh(&efx->filter_lock); 2359 2360 for (;;) { 2361 if (!test_bit(i, table->used_bitmap)) { 2362 if (ins_index < 0) 2363 ins_index = i; 2364 } else if (ef4_farch_filter_equal(&spec, 2365 &table->spec[i])) { 2366 /* Case (a) */ 2367 if (ins_index < 0) 2368 ins_index = i; 2369 rep_index = i; 2370 break; 2371 } 2372 2373 if (depth >= max_rep_depth && 2374 (ins_index >= 0 || depth >= max_ins_depth)) { 2375 /* Case (b) */ 2376 if (ins_index < 0) { 2377 rc = -EBUSY; 2378 goto out; 2379 } 2380 rep_index = -1; 2381 break; 2382 } 2383 2384 i = (i + incr) & (table->size - 1); 2385 ++depth; 2386 } 2387 } 2388 2389 /* If we found a filter to be replaced, check whether we 2390 * should do so 2391 */ 2392 if (rep_index >= 0) { 2393 struct ef4_farch_filter_spec *saved_spec = 2394 &table->spec[rep_index]; 2395 2396 if (spec.priority == saved_spec->priority && !replace_equal) { 2397 rc = -EEXIST; 2398 goto out; 2399 } 2400 if (spec.priority < saved_spec->priority) { 2401 rc = -EPERM; 2402 goto out; 2403 } 2404 if (saved_spec->priority == EF4_FILTER_PRI_AUTO || 2405 saved_spec->flags & EF4_FILTER_FLAG_RX_OVER_AUTO) 2406 spec.flags |= EF4_FILTER_FLAG_RX_OVER_AUTO; 2407 } 2408 2409 /* Insert the filter */ 2410 if (ins_index != rep_index) { 2411 __set_bit(ins_index, table->used_bitmap); 2412 ++table->used; 2413 } 2414 table->spec[ins_index] = spec; 2415 2416 if (table->id == EF4_FARCH_FILTER_TABLE_RX_DEF) { 2417 ef4_farch_filter_push_rx_config(efx); 2418 } else { 2419 if (table->search_limit[spec.type] < depth) { 2420 table->search_limit[spec.type] = depth; 2421 if (spec.flags & EF4_FILTER_FLAG_TX) 2422 ef4_farch_filter_push_tx_limits(efx); 2423 else 2424 ef4_farch_filter_push_rx_config(efx); 2425 } 2426 2427 ef4_writeo(efx, &filter, 2428 table->offset + table->step * ins_index); 2429 2430 /* If we were able to replace a filter by inserting 2431 * at a lower depth, clear the replaced filter 2432 */ 2433 if (ins_index != rep_index && rep_index >= 0) 2434 ef4_farch_filter_table_clear_entry(efx, table, 2435 rep_index); 2436 } 2437 2438 netif_vdbg(efx, hw, efx->net_dev, 2439 "%s: filter type %d index %d rxq %u set", 2440 __func__, spec.type, ins_index, spec.dmaq_id); 2441 rc = ef4_farch_filter_make_id(&spec, ins_index); 2442 2443 out: 2444 spin_unlock_bh(&efx->filter_lock); 2445 return rc; 2446 } 2447 2448 static void 2449 ef4_farch_filter_table_clear_entry(struct ef4_nic *efx, 2450 struct ef4_farch_filter_table *table, 2451 unsigned int filter_idx) 2452 { 2453 static ef4_oword_t filter; 2454 2455 EF4_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap)); 2456 BUG_ON(table->offset == 0); /* can't clear MAC default filters */ 2457 2458 __clear_bit(filter_idx, table->used_bitmap); 2459 --table->used; 2460 memset(&table->spec[filter_idx], 0, sizeof(table->spec[0])); 2461 2462 ef4_writeo(efx, &filter, table->offset + table->step * filter_idx); 2463 2464 /* If this filter required a greater search depth than 2465 * any other, the search limit for its type can now be 2466 * decreased. However, it is hard to determine that 2467 * unless the table has become completely empty - in 2468 * which case, all its search limits can be set to 0. 2469 */ 2470 if (unlikely(table->used == 0)) { 2471 memset(table->search_limit, 0, sizeof(table->search_limit)); 2472 if (table->id == EF4_FARCH_FILTER_TABLE_TX_MAC) 2473 ef4_farch_filter_push_tx_limits(efx); 2474 else 2475 ef4_farch_filter_push_rx_config(efx); 2476 } 2477 } 2478 2479 static int ef4_farch_filter_remove(struct ef4_nic *efx, 2480 struct ef4_farch_filter_table *table, 2481 unsigned int filter_idx, 2482 enum ef4_filter_priority priority) 2483 { 2484 struct ef4_farch_filter_spec *spec = &table->spec[filter_idx]; 2485 2486 if (!test_bit(filter_idx, table->used_bitmap) || 2487 spec->priority != priority) 2488 return -ENOENT; 2489 2490 if (spec->flags & EF4_FILTER_FLAG_RX_OVER_AUTO) { 2491 ef4_farch_filter_init_rx_auto(efx, spec); 2492 ef4_farch_filter_push_rx_config(efx); 2493 } else { 2494 ef4_farch_filter_table_clear_entry(efx, table, filter_idx); 2495 } 2496 2497 return 0; 2498 } 2499 2500 int ef4_farch_filter_remove_safe(struct ef4_nic *efx, 2501 enum ef4_filter_priority priority, 2502 u32 filter_id) 2503 { 2504 struct ef4_farch_filter_state *state = efx->filter_state; 2505 enum ef4_farch_filter_table_id table_id; 2506 struct ef4_farch_filter_table *table; 2507 unsigned int filter_idx; 2508 int rc; 2509 2510 table_id = ef4_farch_filter_id_table_id(filter_id); 2511 if ((unsigned int)table_id >= EF4_FARCH_FILTER_TABLE_COUNT) 2512 return -ENOENT; 2513 table = &state->table[table_id]; 2514 2515 filter_idx = ef4_farch_filter_id_index(filter_id); 2516 if (filter_idx >= table->size) 2517 return -ENOENT; 2518 2519 spin_lock_bh(&efx->filter_lock); 2520 rc = ef4_farch_filter_remove(efx, table, filter_idx, priority); 2521 spin_unlock_bh(&efx->filter_lock); 2522 2523 return rc; 2524 } 2525 2526 int ef4_farch_filter_get_safe(struct ef4_nic *efx, 2527 enum ef4_filter_priority priority, 2528 u32 filter_id, struct ef4_filter_spec *spec_buf) 2529 { 2530 struct ef4_farch_filter_state *state = efx->filter_state; 2531 enum ef4_farch_filter_table_id table_id; 2532 struct ef4_farch_filter_table *table; 2533 struct ef4_farch_filter_spec *spec; 2534 unsigned int filter_idx; 2535 int rc; 2536 2537 table_id = ef4_farch_filter_id_table_id(filter_id); 2538 if ((unsigned int)table_id >= EF4_FARCH_FILTER_TABLE_COUNT) 2539 return -ENOENT; 2540 table = &state->table[table_id]; 2541 2542 filter_idx = ef4_farch_filter_id_index(filter_id); 2543 if (filter_idx >= table->size) 2544 return -ENOENT; 2545 spec = &table->spec[filter_idx]; 2546 2547 spin_lock_bh(&efx->filter_lock); 2548 2549 if (test_bit(filter_idx, table->used_bitmap) && 2550 spec->priority == priority) { 2551 ef4_farch_filter_to_gen_spec(spec_buf, spec); 2552 rc = 0; 2553 } else { 2554 rc = -ENOENT; 2555 } 2556 2557 spin_unlock_bh(&efx->filter_lock); 2558 2559 return rc; 2560 } 2561 2562 static void 2563 ef4_farch_filter_table_clear(struct ef4_nic *efx, 2564 enum ef4_farch_filter_table_id table_id, 2565 enum ef4_filter_priority priority) 2566 { 2567 struct ef4_farch_filter_state *state = efx->filter_state; 2568 struct ef4_farch_filter_table *table = &state->table[table_id]; 2569 unsigned int filter_idx; 2570 2571 spin_lock_bh(&efx->filter_lock); 2572 for (filter_idx = 0; filter_idx < table->size; ++filter_idx) { 2573 if (table->spec[filter_idx].priority != EF4_FILTER_PRI_AUTO) 2574 ef4_farch_filter_remove(efx, table, 2575 filter_idx, priority); 2576 } 2577 spin_unlock_bh(&efx->filter_lock); 2578 } 2579 2580 int ef4_farch_filter_clear_rx(struct ef4_nic *efx, 2581 enum ef4_filter_priority priority) 2582 { 2583 ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_IP, 2584 priority); 2585 ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_MAC, 2586 priority); 2587 ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_DEF, 2588 priority); 2589 return 0; 2590 } 2591 2592 u32 ef4_farch_filter_count_rx_used(struct ef4_nic *efx, 2593 enum ef4_filter_priority priority) 2594 { 2595 struct ef4_farch_filter_state *state = efx->filter_state; 2596 enum ef4_farch_filter_table_id table_id; 2597 struct ef4_farch_filter_table *table; 2598 unsigned int filter_idx; 2599 u32 count = 0; 2600 2601 spin_lock_bh(&efx->filter_lock); 2602 2603 for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP; 2604 table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF; 2605 table_id++) { 2606 table = &state->table[table_id]; 2607 for (filter_idx = 0; filter_idx < table->size; filter_idx++) { 2608 if (test_bit(filter_idx, table->used_bitmap) && 2609 table->spec[filter_idx].priority == priority) 2610 ++count; 2611 } 2612 } 2613 2614 spin_unlock_bh(&efx->filter_lock); 2615 2616 return count; 2617 } 2618 2619 s32 ef4_farch_filter_get_rx_ids(struct ef4_nic *efx, 2620 enum ef4_filter_priority priority, 2621 u32 *buf, u32 size) 2622 { 2623 struct ef4_farch_filter_state *state = efx->filter_state; 2624 enum ef4_farch_filter_table_id table_id; 2625 struct ef4_farch_filter_table *table; 2626 unsigned int filter_idx; 2627 s32 count = 0; 2628 2629 spin_lock_bh(&efx->filter_lock); 2630 2631 for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP; 2632 table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF; 2633 table_id++) { 2634 table = &state->table[table_id]; 2635 for (filter_idx = 0; filter_idx < table->size; filter_idx++) { 2636 if (test_bit(filter_idx, table->used_bitmap) && 2637 table->spec[filter_idx].priority == priority) { 2638 if (count == size) { 2639 count = -EMSGSIZE; 2640 goto out; 2641 } 2642 buf[count++] = ef4_farch_filter_make_id( 2643 &table->spec[filter_idx], filter_idx); 2644 } 2645 } 2646 } 2647 out: 2648 spin_unlock_bh(&efx->filter_lock); 2649 2650 return count; 2651 } 2652 2653 /* Restore filter stater after reset */ 2654 void ef4_farch_filter_table_restore(struct ef4_nic *efx) 2655 { 2656 struct ef4_farch_filter_state *state = efx->filter_state; 2657 enum ef4_farch_filter_table_id table_id; 2658 struct ef4_farch_filter_table *table; 2659 ef4_oword_t filter; 2660 unsigned int filter_idx; 2661 2662 spin_lock_bh(&efx->filter_lock); 2663 2664 for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) { 2665 table = &state->table[table_id]; 2666 2667 /* Check whether this is a regular register table */ 2668 if (table->step == 0) 2669 continue; 2670 2671 for (filter_idx = 0; filter_idx < table->size; filter_idx++) { 2672 if (!test_bit(filter_idx, table->used_bitmap)) 2673 continue; 2674 ef4_farch_filter_build(&filter, &table->spec[filter_idx]); 2675 ef4_writeo(efx, &filter, 2676 table->offset + table->step * filter_idx); 2677 } 2678 } 2679 2680 ef4_farch_filter_push_rx_config(efx); 2681 ef4_farch_filter_push_tx_limits(efx); 2682 2683 spin_unlock_bh(&efx->filter_lock); 2684 } 2685 2686 void ef4_farch_filter_table_remove(struct ef4_nic *efx) 2687 { 2688 struct ef4_farch_filter_state *state = efx->filter_state; 2689 enum ef4_farch_filter_table_id table_id; 2690 2691 for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) { 2692 bitmap_free(state->table[table_id].used_bitmap); 2693 vfree(state->table[table_id].spec); 2694 } 2695 kfree(state); 2696 } 2697 2698 int ef4_farch_filter_table_probe(struct ef4_nic *efx) 2699 { 2700 struct ef4_farch_filter_state *state; 2701 struct ef4_farch_filter_table *table; 2702 unsigned table_id; 2703 2704 state = kzalloc(sizeof(struct ef4_farch_filter_state), GFP_KERNEL); 2705 if (!state) 2706 return -ENOMEM; 2707 efx->filter_state = state; 2708 2709 if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) { 2710 table = &state->table[EF4_FARCH_FILTER_TABLE_RX_IP]; 2711 table->id = EF4_FARCH_FILTER_TABLE_RX_IP; 2712 table->offset = FR_BZ_RX_FILTER_TBL0; 2713 table->size = FR_BZ_RX_FILTER_TBL0_ROWS; 2714 table->step = FR_BZ_RX_FILTER_TBL0_STEP; 2715 } 2716 2717 for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) { 2718 table = &state->table[table_id]; 2719 if (table->size == 0) 2720 continue; 2721 table->used_bitmap = bitmap_zalloc(table->size, GFP_KERNEL); 2722 if (!table->used_bitmap) 2723 goto fail; 2724 table->spec = vzalloc(array_size(sizeof(*table->spec), 2725 table->size)); 2726 if (!table->spec) 2727 goto fail; 2728 } 2729 2730 table = &state->table[EF4_FARCH_FILTER_TABLE_RX_DEF]; 2731 if (table->size) { 2732 /* RX default filters must always exist */ 2733 struct ef4_farch_filter_spec *spec; 2734 unsigned i; 2735 2736 for (i = 0; i < EF4_FARCH_FILTER_SIZE_RX_DEF; i++) { 2737 spec = &table->spec[i]; 2738 spec->type = EF4_FARCH_FILTER_UC_DEF + i; 2739 ef4_farch_filter_init_rx_auto(efx, spec); 2740 __set_bit(i, table->used_bitmap); 2741 } 2742 } 2743 2744 ef4_farch_filter_push_rx_config(efx); 2745 2746 return 0; 2747 2748 fail: 2749 ef4_farch_filter_table_remove(efx); 2750 return -ENOMEM; 2751 } 2752 2753 /* Update scatter enable flags for filters pointing to our own RX queues */ 2754 void ef4_farch_filter_update_rx_scatter(struct ef4_nic *efx) 2755 { 2756 struct ef4_farch_filter_state *state = efx->filter_state; 2757 enum ef4_farch_filter_table_id table_id; 2758 struct ef4_farch_filter_table *table; 2759 ef4_oword_t filter; 2760 unsigned int filter_idx; 2761 2762 spin_lock_bh(&efx->filter_lock); 2763 2764 for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP; 2765 table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF; 2766 table_id++) { 2767 table = &state->table[table_id]; 2768 2769 for (filter_idx = 0; filter_idx < table->size; filter_idx++) { 2770 if (!test_bit(filter_idx, table->used_bitmap) || 2771 table->spec[filter_idx].dmaq_id >= 2772 efx->n_rx_channels) 2773 continue; 2774 2775 if (efx->rx_scatter) 2776 table->spec[filter_idx].flags |= 2777 EF4_FILTER_FLAG_RX_SCATTER; 2778 else 2779 table->spec[filter_idx].flags &= 2780 ~EF4_FILTER_FLAG_RX_SCATTER; 2781 2782 if (table_id == EF4_FARCH_FILTER_TABLE_RX_DEF) 2783 /* Pushed by ef4_farch_filter_push_rx_config() */ 2784 continue; 2785 2786 ef4_farch_filter_build(&filter, &table->spec[filter_idx]); 2787 ef4_writeo(efx, &filter, 2788 table->offset + table->step * filter_idx); 2789 } 2790 } 2791 2792 ef4_farch_filter_push_rx_config(efx); 2793 2794 spin_unlock_bh(&efx->filter_lock); 2795 } 2796 2797 #ifdef CONFIG_RFS_ACCEL 2798 2799 s32 ef4_farch_filter_rfs_insert(struct ef4_nic *efx, 2800 struct ef4_filter_spec *gen_spec) 2801 { 2802 return ef4_farch_filter_insert(efx, gen_spec, true); 2803 } 2804 2805 bool ef4_farch_filter_rfs_expire_one(struct ef4_nic *efx, u32 flow_id, 2806 unsigned int index) 2807 { 2808 struct ef4_farch_filter_state *state = efx->filter_state; 2809 struct ef4_farch_filter_table *table = 2810 &state->table[EF4_FARCH_FILTER_TABLE_RX_IP]; 2811 2812 if (test_bit(index, table->used_bitmap) && 2813 table->spec[index].priority == EF4_FILTER_PRI_HINT && 2814 rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id, 2815 flow_id, index)) { 2816 ef4_farch_filter_table_clear_entry(efx, table, index); 2817 return true; 2818 } 2819 2820 return false; 2821 } 2822 2823 #endif /* CONFIG_RFS_ACCEL */ 2824 2825 void ef4_farch_filter_sync_rx_mode(struct ef4_nic *efx) 2826 { 2827 struct net_device *net_dev = efx->net_dev; 2828 struct netdev_hw_addr *ha; 2829 union ef4_multicast_hash *mc_hash = &efx->multicast_hash; 2830 u32 crc; 2831 int bit; 2832 2833 if (!ef4_dev_registered(efx)) 2834 return; 2835 2836 netif_addr_lock_bh(net_dev); 2837 2838 efx->unicast_filter = !(net_dev->flags & IFF_PROMISC); 2839 2840 /* Build multicast hash table */ 2841 if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) { 2842 memset(mc_hash, 0xff, sizeof(*mc_hash)); 2843 } else { 2844 memset(mc_hash, 0x00, sizeof(*mc_hash)); 2845 netdev_for_each_mc_addr(ha, net_dev) { 2846 crc = ether_crc_le(ETH_ALEN, ha->addr); 2847 bit = crc & (EF4_MCAST_HASH_ENTRIES - 1); 2848 __set_bit_le(bit, mc_hash); 2849 } 2850 2851 /* Broadcast packets go through the multicast hash filter. 2852 * ether_crc_le() of the broadcast address is 0xbe2612ff 2853 * so we always add bit 0xff to the mask. 2854 */ 2855 __set_bit_le(0xff, mc_hash); 2856 } 2857 2858 netif_addr_unlock_bh(net_dev); 2859 } 2860