xref: /linux/drivers/net/ethernet/sfc/falcon/falcon.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include <linux/sched/signal.h>
20 
21 #include "net_driver.h"
22 #include "bitfield.h"
23 #include "efx.h"
24 #include "nic.h"
25 #include "farch_regs.h"
26 #include "io.h"
27 #include "phy.h"
28 #include "workarounds.h"
29 #include "selftest.h"
30 #include "mdio_10g.h"
31 
32 /* Hardware control for SFC4000 (aka Falcon). */
33 
34 /**************************************************************************
35  *
36  * NIC stats
37  *
38  **************************************************************************
39  */
40 
41 #define FALCON_MAC_STATS_SIZE 0x100
42 
43 #define XgRxOctets_offset 0x0
44 #define XgRxOctets_WIDTH 48
45 #define XgRxOctetsOK_offset 0x8
46 #define XgRxOctetsOK_WIDTH 48
47 #define XgRxPkts_offset 0x10
48 #define XgRxPkts_WIDTH 32
49 #define XgRxPktsOK_offset 0x14
50 #define XgRxPktsOK_WIDTH 32
51 #define XgRxBroadcastPkts_offset 0x18
52 #define XgRxBroadcastPkts_WIDTH 32
53 #define XgRxMulticastPkts_offset 0x1C
54 #define XgRxMulticastPkts_WIDTH 32
55 #define XgRxUnicastPkts_offset 0x20
56 #define XgRxUnicastPkts_WIDTH 32
57 #define XgRxUndersizePkts_offset 0x24
58 #define XgRxUndersizePkts_WIDTH 32
59 #define XgRxOversizePkts_offset 0x28
60 #define XgRxOversizePkts_WIDTH 32
61 #define XgRxJabberPkts_offset 0x2C
62 #define XgRxJabberPkts_WIDTH 32
63 #define XgRxUndersizeFCSerrorPkts_offset 0x30
64 #define XgRxUndersizeFCSerrorPkts_WIDTH 32
65 #define XgRxDropEvents_offset 0x34
66 #define XgRxDropEvents_WIDTH 32
67 #define XgRxFCSerrorPkts_offset 0x38
68 #define XgRxFCSerrorPkts_WIDTH 32
69 #define XgRxAlignError_offset 0x3C
70 #define XgRxAlignError_WIDTH 32
71 #define XgRxSymbolError_offset 0x40
72 #define XgRxSymbolError_WIDTH 32
73 #define XgRxInternalMACError_offset 0x44
74 #define XgRxInternalMACError_WIDTH 32
75 #define XgRxControlPkts_offset 0x48
76 #define XgRxControlPkts_WIDTH 32
77 #define XgRxPausePkts_offset 0x4C
78 #define XgRxPausePkts_WIDTH 32
79 #define XgRxPkts64Octets_offset 0x50
80 #define XgRxPkts64Octets_WIDTH 32
81 #define XgRxPkts65to127Octets_offset 0x54
82 #define XgRxPkts65to127Octets_WIDTH 32
83 #define XgRxPkts128to255Octets_offset 0x58
84 #define XgRxPkts128to255Octets_WIDTH 32
85 #define XgRxPkts256to511Octets_offset 0x5C
86 #define XgRxPkts256to511Octets_WIDTH 32
87 #define XgRxPkts512to1023Octets_offset 0x60
88 #define XgRxPkts512to1023Octets_WIDTH 32
89 #define XgRxPkts1024to15xxOctets_offset 0x64
90 #define XgRxPkts1024to15xxOctets_WIDTH 32
91 #define XgRxPkts15xxtoMaxOctets_offset 0x68
92 #define XgRxPkts15xxtoMaxOctets_WIDTH 32
93 #define XgRxLengthError_offset 0x6C
94 #define XgRxLengthError_WIDTH 32
95 #define XgTxPkts_offset 0x80
96 #define XgTxPkts_WIDTH 32
97 #define XgTxOctets_offset 0x88
98 #define XgTxOctets_WIDTH 48
99 #define XgTxMulticastPkts_offset 0x90
100 #define XgTxMulticastPkts_WIDTH 32
101 #define XgTxBroadcastPkts_offset 0x94
102 #define XgTxBroadcastPkts_WIDTH 32
103 #define XgTxUnicastPkts_offset 0x98
104 #define XgTxUnicastPkts_WIDTH 32
105 #define XgTxControlPkts_offset 0x9C
106 #define XgTxControlPkts_WIDTH 32
107 #define XgTxPausePkts_offset 0xA0
108 #define XgTxPausePkts_WIDTH 32
109 #define XgTxPkts64Octets_offset 0xA4
110 #define XgTxPkts64Octets_WIDTH 32
111 #define XgTxPkts65to127Octets_offset 0xA8
112 #define XgTxPkts65to127Octets_WIDTH 32
113 #define XgTxPkts128to255Octets_offset 0xAC
114 #define XgTxPkts128to255Octets_WIDTH 32
115 #define XgTxPkts256to511Octets_offset 0xB0
116 #define XgTxPkts256to511Octets_WIDTH 32
117 #define XgTxPkts512to1023Octets_offset 0xB4
118 #define XgTxPkts512to1023Octets_WIDTH 32
119 #define XgTxPkts1024to15xxOctets_offset 0xB8
120 #define XgTxPkts1024to15xxOctets_WIDTH 32
121 #define XgTxPkts1519toMaxOctets_offset 0xBC
122 #define XgTxPkts1519toMaxOctets_WIDTH 32
123 #define XgTxUndersizePkts_offset 0xC0
124 #define XgTxUndersizePkts_WIDTH 32
125 #define XgTxOversizePkts_offset 0xC4
126 #define XgTxOversizePkts_WIDTH 32
127 #define XgTxNonTcpUdpPkt_offset 0xC8
128 #define XgTxNonTcpUdpPkt_WIDTH 16
129 #define XgTxMacSrcErrPkt_offset 0xCC
130 #define XgTxMacSrcErrPkt_WIDTH 16
131 #define XgTxIpSrcErrPkt_offset 0xD0
132 #define XgTxIpSrcErrPkt_WIDTH 16
133 #define XgDmaDone_offset 0xD4
134 #define XgDmaDone_WIDTH 32
135 
136 #define FALCON_XMAC_STATS_DMA_FLAG(efx)				\
137 	(*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
138 
139 #define FALCON_DMA_STAT(ext_name, hw_name)				\
140 	[FALCON_STAT_ ## ext_name] =					\
141 	{ #ext_name,							\
142 	  /* 48-bit stats are zero-padded to 64 on DMA */		\
143 	  hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH,	\
144 	  hw_name ## _ ## offset }
145 #define FALCON_OTHER_STAT(ext_name)					\
146 	[FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
147 #define GENERIC_SW_STAT(ext_name)				\
148 	[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
149 
150 static const struct ef4_hw_stat_desc falcon_stat_desc[FALCON_STAT_COUNT] = {
151 	FALCON_DMA_STAT(tx_bytes, XgTxOctets),
152 	FALCON_DMA_STAT(tx_packets, XgTxPkts),
153 	FALCON_DMA_STAT(tx_pause, XgTxPausePkts),
154 	FALCON_DMA_STAT(tx_control, XgTxControlPkts),
155 	FALCON_DMA_STAT(tx_unicast, XgTxUnicastPkts),
156 	FALCON_DMA_STAT(tx_multicast, XgTxMulticastPkts),
157 	FALCON_DMA_STAT(tx_broadcast, XgTxBroadcastPkts),
158 	FALCON_DMA_STAT(tx_lt64, XgTxUndersizePkts),
159 	FALCON_DMA_STAT(tx_64, XgTxPkts64Octets),
160 	FALCON_DMA_STAT(tx_65_to_127, XgTxPkts65to127Octets),
161 	FALCON_DMA_STAT(tx_128_to_255, XgTxPkts128to255Octets),
162 	FALCON_DMA_STAT(tx_256_to_511, XgTxPkts256to511Octets),
163 	FALCON_DMA_STAT(tx_512_to_1023, XgTxPkts512to1023Octets),
164 	FALCON_DMA_STAT(tx_1024_to_15xx, XgTxPkts1024to15xxOctets),
165 	FALCON_DMA_STAT(tx_15xx_to_jumbo, XgTxPkts1519toMaxOctets),
166 	FALCON_DMA_STAT(tx_gtjumbo, XgTxOversizePkts),
167 	FALCON_DMA_STAT(tx_non_tcpudp, XgTxNonTcpUdpPkt),
168 	FALCON_DMA_STAT(tx_mac_src_error, XgTxMacSrcErrPkt),
169 	FALCON_DMA_STAT(tx_ip_src_error, XgTxIpSrcErrPkt),
170 	FALCON_DMA_STAT(rx_bytes, XgRxOctets),
171 	FALCON_DMA_STAT(rx_good_bytes, XgRxOctetsOK),
172 	FALCON_OTHER_STAT(rx_bad_bytes),
173 	FALCON_DMA_STAT(rx_packets, XgRxPkts),
174 	FALCON_DMA_STAT(rx_good, XgRxPktsOK),
175 	FALCON_DMA_STAT(rx_bad, XgRxFCSerrorPkts),
176 	FALCON_DMA_STAT(rx_pause, XgRxPausePkts),
177 	FALCON_DMA_STAT(rx_control, XgRxControlPkts),
178 	FALCON_DMA_STAT(rx_unicast, XgRxUnicastPkts),
179 	FALCON_DMA_STAT(rx_multicast, XgRxMulticastPkts),
180 	FALCON_DMA_STAT(rx_broadcast, XgRxBroadcastPkts),
181 	FALCON_DMA_STAT(rx_lt64, XgRxUndersizePkts),
182 	FALCON_DMA_STAT(rx_64, XgRxPkts64Octets),
183 	FALCON_DMA_STAT(rx_65_to_127, XgRxPkts65to127Octets),
184 	FALCON_DMA_STAT(rx_128_to_255, XgRxPkts128to255Octets),
185 	FALCON_DMA_STAT(rx_256_to_511, XgRxPkts256to511Octets),
186 	FALCON_DMA_STAT(rx_512_to_1023, XgRxPkts512to1023Octets),
187 	FALCON_DMA_STAT(rx_1024_to_15xx, XgRxPkts1024to15xxOctets),
188 	FALCON_DMA_STAT(rx_15xx_to_jumbo, XgRxPkts15xxtoMaxOctets),
189 	FALCON_DMA_STAT(rx_gtjumbo, XgRxOversizePkts),
190 	FALCON_DMA_STAT(rx_bad_lt64, XgRxUndersizeFCSerrorPkts),
191 	FALCON_DMA_STAT(rx_bad_gtjumbo, XgRxJabberPkts),
192 	FALCON_DMA_STAT(rx_overflow, XgRxDropEvents),
193 	FALCON_DMA_STAT(rx_symbol_error, XgRxSymbolError),
194 	FALCON_DMA_STAT(rx_align_error, XgRxAlignError),
195 	FALCON_DMA_STAT(rx_length_error, XgRxLengthError),
196 	FALCON_DMA_STAT(rx_internal_error, XgRxInternalMACError),
197 	FALCON_OTHER_STAT(rx_nodesc_drop_cnt),
198 	GENERIC_SW_STAT(rx_nodesc_trunc),
199 	GENERIC_SW_STAT(rx_noskb_drops),
200 };
201 static const unsigned long falcon_stat_mask[] = {
202 	[0 ... BITS_TO_LONGS(FALCON_STAT_COUNT) - 1] = ~0UL,
203 };
204 
205 /**************************************************************************
206  *
207  * Basic SPI command set and bit definitions
208  *
209  *************************************************************************/
210 
211 #define SPI_WRSR 0x01		/* Write status register */
212 #define SPI_WRITE 0x02		/* Write data to memory array */
213 #define SPI_READ 0x03		/* Read data from memory array */
214 #define SPI_WRDI 0x04		/* Reset write enable latch */
215 #define SPI_RDSR 0x05		/* Read status register */
216 #define SPI_WREN 0x06		/* Set write enable latch */
217 #define SPI_SST_EWSR 0x50	/* SST: Enable write to status register */
218 
219 #define SPI_STATUS_WPEN 0x80	/* Write-protect pin enabled */
220 #define SPI_STATUS_BP2 0x10	/* Block protection bit 2 */
221 #define SPI_STATUS_BP1 0x08	/* Block protection bit 1 */
222 #define SPI_STATUS_BP0 0x04	/* Block protection bit 0 */
223 #define SPI_STATUS_WEN 0x02	/* State of the write enable latch */
224 #define SPI_STATUS_NRDY 0x01	/* Device busy flag */
225 
226 /**************************************************************************
227  *
228  * Non-volatile memory layout
229  *
230  **************************************************************************
231  */
232 
233 /* SFC4000 flash is partitioned into:
234  *     0-0x400       chip and board config (see struct falcon_nvconfig)
235  *     0x400-0x8000  unused (or may contain VPD if EEPROM not present)
236  *     0x8000-end    boot code (mapped to PCI expansion ROM)
237  * SFC4000 small EEPROM (size < 0x400) is used for VPD only.
238  * SFC4000 large EEPROM (size >= 0x400) is partitioned into:
239  *     0-0x400       chip and board config
240  *     configurable  VPD
241  *     0x800-0x1800  boot config
242  * Aside from the chip and board config, all of these are optional and may
243  * be absent or truncated depending on the devices used.
244  */
245 #define FALCON_NVCONFIG_END 0x400U
246 #define FALCON_FLASH_BOOTCODE_START 0x8000U
247 #define FALCON_EEPROM_BOOTCONFIG_START 0x800U
248 #define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
249 
250 /* Board configuration v2 (v1 is obsolete; later versions are compatible) */
251 struct falcon_nvconfig_board_v2 {
252 	__le16 nports;
253 	u8 port0_phy_addr;
254 	u8 port0_phy_type;
255 	u8 port1_phy_addr;
256 	u8 port1_phy_type;
257 	__le16 asic_sub_revision;
258 	__le16 board_revision;
259 } __packed;
260 
261 /* Board configuration v3 extra information */
262 struct falcon_nvconfig_board_v3 {
263 	__le32 spi_device_type[2];
264 } __packed;
265 
266 /* Bit numbers for spi_device_type */
267 #define SPI_DEV_TYPE_SIZE_LBN 0
268 #define SPI_DEV_TYPE_SIZE_WIDTH 5
269 #define SPI_DEV_TYPE_ADDR_LEN_LBN 6
270 #define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
271 #define SPI_DEV_TYPE_ERASE_CMD_LBN 8
272 #define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
273 #define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
274 #define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
275 #define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
276 #define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
277 #define SPI_DEV_TYPE_FIELD(type, field)					\
278 	(((type) >> EF4_LOW_BIT(field)) & EF4_MASK32(EF4_WIDTH(field)))
279 
280 #define FALCON_NVCONFIG_OFFSET 0x300
281 
282 #define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
283 struct falcon_nvconfig {
284 	ef4_oword_t ee_vpd_cfg_reg;			/* 0x300 */
285 	u8 mac_address[2][8];			/* 0x310 */
286 	ef4_oword_t pcie_sd_ctl0123_reg;		/* 0x320 */
287 	ef4_oword_t pcie_sd_ctl45_reg;			/* 0x330 */
288 	ef4_oword_t pcie_pcs_ctl_stat_reg;		/* 0x340 */
289 	ef4_oword_t hw_init_reg;			/* 0x350 */
290 	ef4_oword_t nic_stat_reg;			/* 0x360 */
291 	ef4_oword_t glb_ctl_reg;			/* 0x370 */
292 	ef4_oword_t srm_cfg_reg;			/* 0x380 */
293 	ef4_oword_t spare_reg;				/* 0x390 */
294 	__le16 board_magic_num;			/* 0x3A0 */
295 	__le16 board_struct_ver;
296 	__le16 board_checksum;
297 	struct falcon_nvconfig_board_v2 board_v2;
298 	ef4_oword_t ee_base_page_reg;			/* 0x3B0 */
299 	struct falcon_nvconfig_board_v3 board_v3;	/* 0x3C0 */
300 } __packed;
301 
302 /*************************************************************************/
303 
304 static int falcon_reset_hw(struct ef4_nic *efx, enum reset_type method);
305 static void falcon_reconfigure_mac_wrapper(struct ef4_nic *efx);
306 
307 static const unsigned int
308 /* "Large" EEPROM device: Atmel AT25640 or similar
309  * 8 KB, 16-bit address, 32 B write block */
310 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
311 		     | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
312 		     | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
313 /* Default flash device: Atmel AT25F1024
314  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
315 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
316 		      | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
317 		      | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
318 		      | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
319 		      | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
320 
321 /**************************************************************************
322  *
323  * I2C bus - this is a bit-bashing interface using GPIO pins
324  * Note that it uses the output enables to tristate the outputs
325  * SDA is the data pin and SCL is the clock
326  *
327  **************************************************************************
328  */
329 static void falcon_setsda(void *data, int state)
330 {
331 	struct ef4_nic *efx = (struct ef4_nic *)data;
332 	ef4_oword_t reg;
333 
334 	ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
335 	EF4_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
336 	ef4_writeo(efx, &reg, FR_AB_GPIO_CTL);
337 }
338 
339 static void falcon_setscl(void *data, int state)
340 {
341 	struct ef4_nic *efx = (struct ef4_nic *)data;
342 	ef4_oword_t reg;
343 
344 	ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
345 	EF4_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
346 	ef4_writeo(efx, &reg, FR_AB_GPIO_CTL);
347 }
348 
349 static int falcon_getsda(void *data)
350 {
351 	struct ef4_nic *efx = (struct ef4_nic *)data;
352 	ef4_oword_t reg;
353 
354 	ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
355 	return EF4_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
356 }
357 
358 static int falcon_getscl(void *data)
359 {
360 	struct ef4_nic *efx = (struct ef4_nic *)data;
361 	ef4_oword_t reg;
362 
363 	ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
364 	return EF4_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
365 }
366 
367 static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
368 	.setsda		= falcon_setsda,
369 	.setscl		= falcon_setscl,
370 	.getsda		= falcon_getsda,
371 	.getscl		= falcon_getscl,
372 	.udelay		= 5,
373 	/* Wait up to 50 ms for slave to let us pull SCL high */
374 	.timeout	= DIV_ROUND_UP(HZ, 20),
375 };
376 
377 static void falcon_push_irq_moderation(struct ef4_channel *channel)
378 {
379 	ef4_dword_t timer_cmd;
380 	struct ef4_nic *efx = channel->efx;
381 
382 	/* Set timer register */
383 	if (channel->irq_moderation_us) {
384 		unsigned int ticks;
385 
386 		ticks = ef4_usecs_to_ticks(efx, channel->irq_moderation_us);
387 		EF4_POPULATE_DWORD_2(timer_cmd,
388 				     FRF_AB_TC_TIMER_MODE,
389 				     FFE_BB_TIMER_MODE_INT_HLDOFF,
390 				     FRF_AB_TC_TIMER_VAL,
391 				     ticks - 1);
392 	} else {
393 		EF4_POPULATE_DWORD_2(timer_cmd,
394 				     FRF_AB_TC_TIMER_MODE,
395 				     FFE_BB_TIMER_MODE_DIS,
396 				     FRF_AB_TC_TIMER_VAL, 0);
397 	}
398 	BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
399 	ef4_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
400 			       channel->channel);
401 }
402 
403 static void falcon_deconfigure_mac_wrapper(struct ef4_nic *efx);
404 
405 static void falcon_prepare_flush(struct ef4_nic *efx)
406 {
407 	falcon_deconfigure_mac_wrapper(efx);
408 
409 	/* Wait for the tx and rx fifo's to get to the next packet boundary
410 	 * (~1ms without back-pressure), then to drain the remainder of the
411 	 * fifo's at data path speeds (negligible), with a healthy margin. */
412 	msleep(10);
413 }
414 
415 /* Acknowledge a legacy interrupt from Falcon
416  *
417  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
418  *
419  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
420  * BIU. Interrupt acknowledge is read sensitive so must write instead
421  * (then read to ensure the BIU collector is flushed)
422  *
423  * NB most hardware supports MSI interrupts
424  */
425 static inline void falcon_irq_ack_a1(struct ef4_nic *efx)
426 {
427 	ef4_dword_t reg;
428 
429 	EF4_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
430 	ef4_writed(efx, &reg, FR_AA_INT_ACK_KER);
431 	ef4_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
432 }
433 
434 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
435 {
436 	struct ef4_nic *efx = dev_id;
437 	ef4_oword_t *int_ker = efx->irq_status.addr;
438 	int syserr;
439 	int queues;
440 
441 	/* Check to see if this is our interrupt.  If it isn't, we
442 	 * exit without having touched the hardware.
443 	 */
444 	if (unlikely(EF4_OWORD_IS_ZERO(*int_ker))) {
445 		netif_vdbg(efx, intr, efx->net_dev,
446 			   "IRQ %d on CPU %d not for me\n", irq,
447 			   raw_smp_processor_id());
448 		return IRQ_NONE;
449 	}
450 	efx->last_irq_cpu = raw_smp_processor_id();
451 	netif_vdbg(efx, intr, efx->net_dev,
452 		   "IRQ %d on CPU %d status " EF4_OWORD_FMT "\n",
453 		   irq, raw_smp_processor_id(), EF4_OWORD_VAL(*int_ker));
454 
455 	if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
456 		return IRQ_HANDLED;
457 
458 	/* Check to see if we have a serious error condition */
459 	syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
460 	if (unlikely(syserr))
461 		return ef4_farch_fatal_interrupt(efx);
462 
463 	/* Determine interrupting queues, clear interrupt status
464 	 * register and acknowledge the device interrupt.
465 	 */
466 	BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EF4_MAX_CHANNELS);
467 	queues = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
468 	EF4_ZERO_OWORD(*int_ker);
469 	wmb(); /* Ensure the vector is cleared before interrupt ack */
470 	falcon_irq_ack_a1(efx);
471 
472 	if (queues & 1)
473 		ef4_schedule_channel_irq(ef4_get_channel(efx, 0));
474 	if (queues & 2)
475 		ef4_schedule_channel_irq(ef4_get_channel(efx, 1));
476 	return IRQ_HANDLED;
477 }
478 
479 /**************************************************************************
480  *
481  * RSS
482  *
483  **************************************************************************
484  */
485 static int dummy_rx_push_rss_config(struct ef4_nic *efx, bool user,
486 				    const u32 *rx_indir_table)
487 {
488 	(void) efx;
489 	(void) user;
490 	(void) rx_indir_table;
491 	return -ENOSYS;
492 }
493 
494 static int falcon_b0_rx_push_rss_config(struct ef4_nic *efx, bool user,
495 					const u32 *rx_indir_table)
496 {
497 	ef4_oword_t temp;
498 
499 	(void) user;
500 	/* Set hash key for IPv4 */
501 	memcpy(&temp, efx->rx_hash_key, sizeof(temp));
502 	ef4_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
503 
504 	memcpy(efx->rx_indir_table, rx_indir_table,
505 	       sizeof(efx->rx_indir_table));
506 	ef4_farch_rx_push_indir_table(efx);
507 	return 0;
508 }
509 
510 /**************************************************************************
511  *
512  * EEPROM/flash
513  *
514  **************************************************************************
515  */
516 
517 #define FALCON_SPI_MAX_LEN sizeof(ef4_oword_t)
518 
519 static int falcon_spi_poll(struct ef4_nic *efx)
520 {
521 	ef4_oword_t reg;
522 	ef4_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
523 	return EF4_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
524 }
525 
526 /* Wait for SPI command completion */
527 static int falcon_spi_wait(struct ef4_nic *efx)
528 {
529 	/* Most commands will finish quickly, so we start polling at
530 	 * very short intervals.  Sometimes the command may have to
531 	 * wait for VPD or expansion ROM access outside of our
532 	 * control, so we allow up to 100 ms. */
533 	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
534 	int i;
535 
536 	for (i = 0; i < 10; i++) {
537 		if (!falcon_spi_poll(efx))
538 			return 0;
539 		udelay(10);
540 	}
541 
542 	for (;;) {
543 		if (!falcon_spi_poll(efx))
544 			return 0;
545 		if (time_after_eq(jiffies, timeout)) {
546 			netif_err(efx, hw, efx->net_dev,
547 				  "timed out waiting for SPI\n");
548 			return -ETIMEDOUT;
549 		}
550 		schedule_timeout_uninterruptible(1);
551 	}
552 }
553 
554 static int
555 falcon_spi_cmd(struct ef4_nic *efx, const struct falcon_spi_device *spi,
556 	       unsigned int command, int address,
557 	       const void *in, void *out, size_t len)
558 {
559 	bool addressed = (address >= 0);
560 	bool reading = (out != NULL);
561 	ef4_oword_t reg;
562 	int rc;
563 
564 	/* Input validation */
565 	if (len > FALCON_SPI_MAX_LEN)
566 		return -EINVAL;
567 
568 	/* Check that previous command is not still running */
569 	rc = falcon_spi_poll(efx);
570 	if (rc)
571 		return rc;
572 
573 	/* Program address register, if we have an address */
574 	if (addressed) {
575 		EF4_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
576 		ef4_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
577 	}
578 
579 	/* Program data register, if we have data */
580 	if (in != NULL) {
581 		memcpy(&reg, in, len);
582 		ef4_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
583 	}
584 
585 	/* Issue read/write command */
586 	EF4_POPULATE_OWORD_7(reg,
587 			     FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
588 			     FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
589 			     FRF_AB_EE_SPI_HCMD_DABCNT, len,
590 			     FRF_AB_EE_SPI_HCMD_READ, reading,
591 			     FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
592 			     FRF_AB_EE_SPI_HCMD_ADBCNT,
593 			     (addressed ? spi->addr_len : 0),
594 			     FRF_AB_EE_SPI_HCMD_ENC, command);
595 	ef4_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
596 
597 	/* Wait for read/write to complete */
598 	rc = falcon_spi_wait(efx);
599 	if (rc)
600 		return rc;
601 
602 	/* Read data */
603 	if (out != NULL) {
604 		ef4_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
605 		memcpy(out, &reg, len);
606 	}
607 
608 	return 0;
609 }
610 
611 static inline u8
612 falcon_spi_munge_command(const struct falcon_spi_device *spi,
613 			 const u8 command, const unsigned int address)
614 {
615 	return command | (((address >> 8) & spi->munge_address) << 3);
616 }
617 
618 static int
619 falcon_spi_read(struct ef4_nic *efx, const struct falcon_spi_device *spi,
620 		loff_t start, size_t len, size_t *retlen, u8 *buffer)
621 {
622 	size_t block_len, pos = 0;
623 	unsigned int command;
624 	int rc = 0;
625 
626 	while (pos < len) {
627 		block_len = min(len - pos, FALCON_SPI_MAX_LEN);
628 
629 		command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
630 		rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
631 				    buffer + pos, block_len);
632 		if (rc)
633 			break;
634 		pos += block_len;
635 
636 		/* Avoid locking up the system */
637 		cond_resched();
638 		if (signal_pending(current)) {
639 			rc = -EINTR;
640 			break;
641 		}
642 	}
643 
644 	if (retlen)
645 		*retlen = pos;
646 	return rc;
647 }
648 
649 #ifdef CONFIG_SFC_FALCON_MTD
650 
651 struct falcon_mtd_partition {
652 	struct ef4_mtd_partition common;
653 	const struct falcon_spi_device *spi;
654 	size_t offset;
655 };
656 
657 #define to_falcon_mtd_partition(mtd)				\
658 	container_of(mtd, struct falcon_mtd_partition, common.mtd)
659 
660 static size_t
661 falcon_spi_write_limit(const struct falcon_spi_device *spi, size_t start)
662 {
663 	return min(FALCON_SPI_MAX_LEN,
664 		   (spi->block_size - (start & (spi->block_size - 1))));
665 }
666 
667 /* Wait up to 10 ms for buffered write completion */
668 static int
669 falcon_spi_wait_write(struct ef4_nic *efx, const struct falcon_spi_device *spi)
670 {
671 	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
672 	u8 status;
673 	int rc;
674 
675 	for (;;) {
676 		rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
677 				    &status, sizeof(status));
678 		if (rc)
679 			return rc;
680 		if (!(status & SPI_STATUS_NRDY))
681 			return 0;
682 		if (time_after_eq(jiffies, timeout)) {
683 			netif_err(efx, hw, efx->net_dev,
684 				  "SPI write timeout on device %d"
685 				  " last status=0x%02x\n",
686 				  spi->device_id, status);
687 			return -ETIMEDOUT;
688 		}
689 		schedule_timeout_uninterruptible(1);
690 	}
691 }
692 
693 static int
694 falcon_spi_write(struct ef4_nic *efx, const struct falcon_spi_device *spi,
695 		 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
696 {
697 	u8 verify_buffer[FALCON_SPI_MAX_LEN];
698 	size_t block_len, pos = 0;
699 	unsigned int command;
700 	int rc = 0;
701 
702 	while (pos < len) {
703 		rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
704 		if (rc)
705 			break;
706 
707 		block_len = min(len - pos,
708 				falcon_spi_write_limit(spi, start + pos));
709 		command = falcon_spi_munge_command(spi, SPI_WRITE, start + pos);
710 		rc = falcon_spi_cmd(efx, spi, command, start + pos,
711 				    buffer + pos, NULL, block_len);
712 		if (rc)
713 			break;
714 
715 		rc = falcon_spi_wait_write(efx, spi);
716 		if (rc)
717 			break;
718 
719 		command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
720 		rc = falcon_spi_cmd(efx, spi, command, start + pos,
721 				    NULL, verify_buffer, block_len);
722 		if (memcmp(verify_buffer, buffer + pos, block_len)) {
723 			rc = -EIO;
724 			break;
725 		}
726 
727 		pos += block_len;
728 
729 		/* Avoid locking up the system */
730 		cond_resched();
731 		if (signal_pending(current)) {
732 			rc = -EINTR;
733 			break;
734 		}
735 	}
736 
737 	if (retlen)
738 		*retlen = pos;
739 	return rc;
740 }
741 
742 static int
743 falcon_spi_slow_wait(struct falcon_mtd_partition *part, bool uninterruptible)
744 {
745 	const struct falcon_spi_device *spi = part->spi;
746 	struct ef4_nic *efx = part->common.mtd.priv;
747 	u8 status;
748 	int rc, i;
749 
750 	/* Wait up to 4s for flash/EEPROM to finish a slow operation. */
751 	for (i = 0; i < 40; i++) {
752 		__set_current_state(uninterruptible ?
753 				    TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE);
754 		schedule_timeout(HZ / 10);
755 		rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
756 				    &status, sizeof(status));
757 		if (rc)
758 			return rc;
759 		if (!(status & SPI_STATUS_NRDY))
760 			return 0;
761 		if (signal_pending(current))
762 			return -EINTR;
763 	}
764 	pr_err("%s: timed out waiting for %s\n",
765 	       part->common.name, part->common.dev_type_name);
766 	return -ETIMEDOUT;
767 }
768 
769 static int
770 falcon_spi_unlock(struct ef4_nic *efx, const struct falcon_spi_device *spi)
771 {
772 	const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 |
773 				SPI_STATUS_BP0);
774 	u8 status;
775 	int rc;
776 
777 	rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
778 			    &status, sizeof(status));
779 	if (rc)
780 		return rc;
781 
782 	if (!(status & unlock_mask))
783 		return 0; /* already unlocked */
784 
785 	rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
786 	if (rc)
787 		return rc;
788 	rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0);
789 	if (rc)
790 		return rc;
791 
792 	status &= ~unlock_mask;
793 	rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status,
794 			    NULL, sizeof(status));
795 	if (rc)
796 		return rc;
797 	rc = falcon_spi_wait_write(efx, spi);
798 	if (rc)
799 		return rc;
800 
801 	return 0;
802 }
803 
804 #define FALCON_SPI_VERIFY_BUF_LEN 16
805 
806 static int
807 falcon_spi_erase(struct falcon_mtd_partition *part, loff_t start, size_t len)
808 {
809 	const struct falcon_spi_device *spi = part->spi;
810 	struct ef4_nic *efx = part->common.mtd.priv;
811 	unsigned pos, block_len;
812 	u8 empty[FALCON_SPI_VERIFY_BUF_LEN];
813 	u8 buffer[FALCON_SPI_VERIFY_BUF_LEN];
814 	int rc;
815 
816 	if (len != spi->erase_size)
817 		return -EINVAL;
818 
819 	if (spi->erase_command == 0)
820 		return -EOPNOTSUPP;
821 
822 	rc = falcon_spi_unlock(efx, spi);
823 	if (rc)
824 		return rc;
825 	rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
826 	if (rc)
827 		return rc;
828 	rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL,
829 			    NULL, 0);
830 	if (rc)
831 		return rc;
832 	rc = falcon_spi_slow_wait(part, false);
833 
834 	/* Verify the entire region has been wiped */
835 	memset(empty, 0xff, sizeof(empty));
836 	for (pos = 0; pos < len; pos += block_len) {
837 		block_len = min(len - pos, sizeof(buffer));
838 		rc = falcon_spi_read(efx, spi, start + pos, block_len,
839 				     NULL, buffer);
840 		if (rc)
841 			return rc;
842 		if (memcmp(empty, buffer, block_len))
843 			return -EIO;
844 
845 		/* Avoid locking up the system */
846 		cond_resched();
847 		if (signal_pending(current))
848 			return -EINTR;
849 	}
850 
851 	return rc;
852 }
853 
854 static void falcon_mtd_rename(struct ef4_mtd_partition *part)
855 {
856 	struct ef4_nic *efx = part->mtd.priv;
857 
858 	snprintf(part->name, sizeof(part->name), "%s %s",
859 		 efx->name, part->type_name);
860 }
861 
862 static int falcon_mtd_read(struct mtd_info *mtd, loff_t start,
863 			   size_t len, size_t *retlen, u8 *buffer)
864 {
865 	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
866 	struct ef4_nic *efx = mtd->priv;
867 	struct falcon_nic_data *nic_data = efx->nic_data;
868 	int rc;
869 
870 	rc = mutex_lock_interruptible(&nic_data->spi_lock);
871 	if (rc)
872 		return rc;
873 	rc = falcon_spi_read(efx, part->spi, part->offset + start,
874 			     len, retlen, buffer);
875 	mutex_unlock(&nic_data->spi_lock);
876 	return rc;
877 }
878 
879 static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
880 {
881 	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
882 	struct ef4_nic *efx = mtd->priv;
883 	struct falcon_nic_data *nic_data = efx->nic_data;
884 	int rc;
885 
886 	rc = mutex_lock_interruptible(&nic_data->spi_lock);
887 	if (rc)
888 		return rc;
889 	rc = falcon_spi_erase(part, part->offset + start, len);
890 	mutex_unlock(&nic_data->spi_lock);
891 	return rc;
892 }
893 
894 static int falcon_mtd_write(struct mtd_info *mtd, loff_t start,
895 			    size_t len, size_t *retlen, const u8 *buffer)
896 {
897 	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
898 	struct ef4_nic *efx = mtd->priv;
899 	struct falcon_nic_data *nic_data = efx->nic_data;
900 	int rc;
901 
902 	rc = mutex_lock_interruptible(&nic_data->spi_lock);
903 	if (rc)
904 		return rc;
905 	rc = falcon_spi_write(efx, part->spi, part->offset + start,
906 			      len, retlen, buffer);
907 	mutex_unlock(&nic_data->spi_lock);
908 	return rc;
909 }
910 
911 static int falcon_mtd_sync(struct mtd_info *mtd)
912 {
913 	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
914 	struct ef4_nic *efx = mtd->priv;
915 	struct falcon_nic_data *nic_data = efx->nic_data;
916 	int rc;
917 
918 	mutex_lock(&nic_data->spi_lock);
919 	rc = falcon_spi_slow_wait(part, true);
920 	mutex_unlock(&nic_data->spi_lock);
921 	return rc;
922 }
923 
924 static int falcon_mtd_probe(struct ef4_nic *efx)
925 {
926 	struct falcon_nic_data *nic_data = efx->nic_data;
927 	struct falcon_mtd_partition *parts;
928 	struct falcon_spi_device *spi;
929 	size_t n_parts;
930 	int rc = -ENODEV;
931 
932 	ASSERT_RTNL();
933 
934 	/* Allocate space for maximum number of partitions */
935 	parts = kcalloc(2, sizeof(*parts), GFP_KERNEL);
936 	if (!parts)
937 		return -ENOMEM;
938 	n_parts = 0;
939 
940 	spi = &nic_data->spi_flash;
941 	if (falcon_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) {
942 		parts[n_parts].spi = spi;
943 		parts[n_parts].offset = FALCON_FLASH_BOOTCODE_START;
944 		parts[n_parts].common.dev_type_name = "flash";
945 		parts[n_parts].common.type_name = "sfc_flash_bootrom";
946 		parts[n_parts].common.mtd.type = MTD_NORFLASH;
947 		parts[n_parts].common.mtd.flags = MTD_CAP_NORFLASH;
948 		parts[n_parts].common.mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START;
949 		parts[n_parts].common.mtd.erasesize = spi->erase_size;
950 		n_parts++;
951 	}
952 
953 	spi = &nic_data->spi_eeprom;
954 	if (falcon_spi_present(spi) && spi->size > FALCON_EEPROM_BOOTCONFIG_START) {
955 		parts[n_parts].spi = spi;
956 		parts[n_parts].offset = FALCON_EEPROM_BOOTCONFIG_START;
957 		parts[n_parts].common.dev_type_name = "EEPROM";
958 		parts[n_parts].common.type_name = "sfc_bootconfig";
959 		parts[n_parts].common.mtd.type = MTD_RAM;
960 		parts[n_parts].common.mtd.flags = MTD_CAP_RAM;
961 		parts[n_parts].common.mtd.size =
962 			min(spi->size, FALCON_EEPROM_BOOTCONFIG_END) -
963 			FALCON_EEPROM_BOOTCONFIG_START;
964 		parts[n_parts].common.mtd.erasesize = spi->erase_size;
965 		n_parts++;
966 	}
967 
968 	rc = ef4_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
969 	if (rc)
970 		kfree(parts);
971 	return rc;
972 }
973 
974 #endif /* CONFIG_SFC_FALCON_MTD */
975 
976 /**************************************************************************
977  *
978  * XMAC operations
979  *
980  **************************************************************************
981  */
982 
983 /* Configure the XAUI driver that is an output from Falcon */
984 static void falcon_setup_xaui(struct ef4_nic *efx)
985 {
986 	ef4_oword_t sdctl, txdrv;
987 
988 	/* Move the XAUI into low power, unless there is no PHY, in
989 	 * which case the XAUI will have to drive a cable. */
990 	if (efx->phy_type == PHY_TYPE_NONE)
991 		return;
992 
993 	ef4_reado(efx, &sdctl, FR_AB_XX_SD_CTL);
994 	EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
995 	EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
996 	EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
997 	EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
998 	EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
999 	EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
1000 	EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
1001 	EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
1002 	ef4_writeo(efx, &sdctl, FR_AB_XX_SD_CTL);
1003 
1004 	EF4_POPULATE_OWORD_8(txdrv,
1005 			     FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF,
1006 			     FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF,
1007 			     FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF,
1008 			     FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF,
1009 			     FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF,
1010 			     FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF,
1011 			     FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF,
1012 			     FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF);
1013 	ef4_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL);
1014 }
1015 
1016 int falcon_reset_xaui(struct ef4_nic *efx)
1017 {
1018 	struct falcon_nic_data *nic_data = efx->nic_data;
1019 	ef4_oword_t reg;
1020 	int count;
1021 
1022 	/* Don't fetch MAC statistics over an XMAC reset */
1023 	WARN_ON(nic_data->stats_disable_count == 0);
1024 
1025 	/* Start reset sequence */
1026 	EF4_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1);
1027 	ef4_writeo(efx, &reg, FR_AB_XX_PWR_RST);
1028 
1029 	/* Wait up to 10 ms for completion, then reinitialise */
1030 	for (count = 0; count < 1000; count++) {
1031 		ef4_reado(efx, &reg, FR_AB_XX_PWR_RST);
1032 		if (EF4_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 &&
1033 		    EF4_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) {
1034 			falcon_setup_xaui(efx);
1035 			return 0;
1036 		}
1037 		udelay(10);
1038 	}
1039 	netif_err(efx, hw, efx->net_dev,
1040 		  "timed out waiting for XAUI/XGXS reset\n");
1041 	return -ETIMEDOUT;
1042 }
1043 
1044 static void falcon_ack_status_intr(struct ef4_nic *efx)
1045 {
1046 	struct falcon_nic_data *nic_data = efx->nic_data;
1047 	ef4_oword_t reg;
1048 
1049 	if ((ef4_nic_rev(efx) != EF4_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx))
1050 		return;
1051 
1052 	/* We expect xgmii faults if the wireside link is down */
1053 	if (!efx->link_state.up)
1054 		return;
1055 
1056 	/* We can only use this interrupt to signal the negative edge of
1057 	 * xaui_align [we have to poll the positive edge]. */
1058 	if (nic_data->xmac_poll_required)
1059 		return;
1060 
1061 	ef4_reado(efx, &reg, FR_AB_XM_MGT_INT_MSK);
1062 }
1063 
1064 static bool falcon_xgxs_link_ok(struct ef4_nic *efx)
1065 {
1066 	ef4_oword_t reg;
1067 	bool align_done, link_ok = false;
1068 	int sync_status;
1069 
1070 	/* Read link status */
1071 	ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1072 
1073 	align_done = EF4_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE);
1074 	sync_status = EF4_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT);
1075 	if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES))
1076 		link_ok = true;
1077 
1078 	/* Clear link status ready for next read */
1079 	EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES);
1080 	EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES);
1081 	EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES);
1082 	ef4_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1083 
1084 	return link_ok;
1085 }
1086 
1087 static bool falcon_xmac_link_ok(struct ef4_nic *efx)
1088 {
1089 	/*
1090 	 * Check MAC's XGXS link status except when using XGMII loopback
1091 	 * which bypasses the XGXS block.
1092 	 * If possible, check PHY's XGXS link status except when using
1093 	 * MAC loopback.
1094 	 */
1095 	return (efx->loopback_mode == LOOPBACK_XGMII ||
1096 		falcon_xgxs_link_ok(efx)) &&
1097 		(!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) ||
1098 		 LOOPBACK_INTERNAL(efx) ||
1099 		 ef4_mdio_phyxgxs_lane_sync(efx));
1100 }
1101 
1102 static void falcon_reconfigure_xmac_core(struct ef4_nic *efx)
1103 {
1104 	unsigned int max_frame_len;
1105 	ef4_oword_t reg;
1106 	bool rx_fc = !!(efx->link_state.fc & EF4_FC_RX);
1107 	bool tx_fc = !!(efx->link_state.fc & EF4_FC_TX);
1108 
1109 	/* Configure MAC  - cut-thru mode is hard wired on */
1110 	EF4_POPULATE_OWORD_3(reg,
1111 			     FRF_AB_XM_RX_JUMBO_MODE, 1,
1112 			     FRF_AB_XM_TX_STAT_EN, 1,
1113 			     FRF_AB_XM_RX_STAT_EN, 1);
1114 	ef4_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1115 
1116 	/* Configure TX */
1117 	EF4_POPULATE_OWORD_6(reg,
1118 			     FRF_AB_XM_TXEN, 1,
1119 			     FRF_AB_XM_TX_PRMBL, 1,
1120 			     FRF_AB_XM_AUTO_PAD, 1,
1121 			     FRF_AB_XM_TXCRC, 1,
1122 			     FRF_AB_XM_FCNTL, tx_fc,
1123 			     FRF_AB_XM_IPG, 0x3);
1124 	ef4_writeo(efx, &reg, FR_AB_XM_TX_CFG);
1125 
1126 	/* Configure RX */
1127 	EF4_POPULATE_OWORD_5(reg,
1128 			     FRF_AB_XM_RXEN, 1,
1129 			     FRF_AB_XM_AUTO_DEPAD, 0,
1130 			     FRF_AB_XM_ACPT_ALL_MCAST, 1,
1131 			     FRF_AB_XM_ACPT_ALL_UCAST, !efx->unicast_filter,
1132 			     FRF_AB_XM_PASS_CRC_ERR, 1);
1133 	ef4_writeo(efx, &reg, FR_AB_XM_RX_CFG);
1134 
1135 	/* Set frame length */
1136 	max_frame_len = EF4_MAX_FRAME_LEN(efx->net_dev->mtu);
1137 	EF4_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len);
1138 	ef4_writeo(efx, &reg, FR_AB_XM_RX_PARAM);
1139 	EF4_POPULATE_OWORD_2(reg,
1140 			     FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len,
1141 			     FRF_AB_XM_TX_JUMBO_MODE, 1);
1142 	ef4_writeo(efx, &reg, FR_AB_XM_TX_PARAM);
1143 
1144 	EF4_POPULATE_OWORD_2(reg,
1145 			     FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */
1146 			     FRF_AB_XM_DIS_FCNTL, !rx_fc);
1147 	ef4_writeo(efx, &reg, FR_AB_XM_FC);
1148 
1149 	/* Set MAC address */
1150 	memcpy(&reg, &efx->net_dev->dev_addr[0], 4);
1151 	ef4_writeo(efx, &reg, FR_AB_XM_ADR_LO);
1152 	memcpy(&reg, &efx->net_dev->dev_addr[4], 2);
1153 	ef4_writeo(efx, &reg, FR_AB_XM_ADR_HI);
1154 }
1155 
1156 static void falcon_reconfigure_xgxs_core(struct ef4_nic *efx)
1157 {
1158 	ef4_oword_t reg;
1159 	bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS);
1160 	bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI);
1161 	bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII);
1162 	bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback;
1163 
1164 	/* XGXS block is flaky and will need to be reset if moving
1165 	 * into our out of XGMII, XGXS or XAUI loopbacks. */
1166 	ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1167 	old_xgxs_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN);
1168 	old_xgmii_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN);
1169 
1170 	ef4_reado(efx, &reg, FR_AB_XX_SD_CTL);
1171 	old_xaui_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_LPBKA);
1172 
1173 	/* The PHY driver may have turned XAUI off */
1174 	if ((xgxs_loopback != old_xgxs_loopback) ||
1175 	    (xaui_loopback != old_xaui_loopback) ||
1176 	    (xgmii_loopback != old_xgmii_loopback))
1177 		falcon_reset_xaui(efx);
1178 
1179 	ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1180 	EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG,
1181 			    (xgxs_loopback || xaui_loopback) ?
1182 			    FFE_AB_XX_FORCE_SIG_ALL_LANES : 0);
1183 	EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback);
1184 	EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback);
1185 	ef4_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1186 
1187 	ef4_reado(efx, &reg, FR_AB_XX_SD_CTL);
1188 	EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback);
1189 	EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback);
1190 	EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback);
1191 	EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback);
1192 	ef4_writeo(efx, &reg, FR_AB_XX_SD_CTL);
1193 }
1194 
1195 
1196 /* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
1197 static bool falcon_xmac_link_ok_retry(struct ef4_nic *efx, int tries)
1198 {
1199 	bool mac_up = falcon_xmac_link_ok(efx);
1200 
1201 	if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS ||
1202 	    ef4_phy_mode_disabled(efx->phy_mode))
1203 		/* XAUI link is expected to be down */
1204 		return mac_up;
1205 
1206 	falcon_stop_nic_stats(efx);
1207 
1208 	while (!mac_up && tries) {
1209 		netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n");
1210 		falcon_reset_xaui(efx);
1211 		udelay(200);
1212 
1213 		mac_up = falcon_xmac_link_ok(efx);
1214 		--tries;
1215 	}
1216 
1217 	falcon_start_nic_stats(efx);
1218 
1219 	return mac_up;
1220 }
1221 
1222 static bool falcon_xmac_check_fault(struct ef4_nic *efx)
1223 {
1224 	return !falcon_xmac_link_ok_retry(efx, 5);
1225 }
1226 
1227 static int falcon_reconfigure_xmac(struct ef4_nic *efx)
1228 {
1229 	struct falcon_nic_data *nic_data = efx->nic_data;
1230 
1231 	ef4_farch_filter_sync_rx_mode(efx);
1232 
1233 	falcon_reconfigure_xgxs_core(efx);
1234 	falcon_reconfigure_xmac_core(efx);
1235 
1236 	falcon_reconfigure_mac_wrapper(efx);
1237 
1238 	nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5);
1239 	falcon_ack_status_intr(efx);
1240 
1241 	return 0;
1242 }
1243 
1244 static void falcon_poll_xmac(struct ef4_nic *efx)
1245 {
1246 	struct falcon_nic_data *nic_data = efx->nic_data;
1247 
1248 	/* We expect xgmii faults if the wireside link is down */
1249 	if (!efx->link_state.up || !nic_data->xmac_poll_required)
1250 		return;
1251 
1252 	nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1);
1253 	falcon_ack_status_intr(efx);
1254 }
1255 
1256 /**************************************************************************
1257  *
1258  * MAC wrapper
1259  *
1260  **************************************************************************
1261  */
1262 
1263 static void falcon_push_multicast_hash(struct ef4_nic *efx)
1264 {
1265 	union ef4_multicast_hash *mc_hash = &efx->multicast_hash;
1266 
1267 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
1268 
1269 	ef4_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
1270 	ef4_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
1271 }
1272 
1273 static void falcon_reset_macs(struct ef4_nic *efx)
1274 {
1275 	struct falcon_nic_data *nic_data = efx->nic_data;
1276 	ef4_oword_t reg, mac_ctrl;
1277 	int count;
1278 
1279 	if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0) {
1280 		/* It's not safe to use GLB_CTL_REG to reset the
1281 		 * macs, so instead use the internal MAC resets
1282 		 */
1283 		EF4_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1284 		ef4_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1285 
1286 		for (count = 0; count < 10000; count++) {
1287 			ef4_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1288 			if (EF4_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1289 			    0)
1290 				return;
1291 			udelay(10);
1292 		}
1293 
1294 		netif_err(efx, hw, efx->net_dev,
1295 			  "timed out waiting for XMAC core reset\n");
1296 	}
1297 
1298 	/* Mac stats will fail whist the TX fifo is draining */
1299 	WARN_ON(nic_data->stats_disable_count == 0);
1300 
1301 	ef4_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1302 	EF4_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
1303 	ef4_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1304 
1305 	ef4_reado(efx, &reg, FR_AB_GLB_CTL);
1306 	EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1307 	EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1308 	EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1309 	ef4_writeo(efx, &reg, FR_AB_GLB_CTL);
1310 
1311 	count = 0;
1312 	while (1) {
1313 		ef4_reado(efx, &reg, FR_AB_GLB_CTL);
1314 		if (!EF4_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1315 		    !EF4_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1316 		    !EF4_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1317 			netif_dbg(efx, hw, efx->net_dev,
1318 				  "Completed MAC reset after %d loops\n",
1319 				  count);
1320 			break;
1321 		}
1322 		if (count > 20) {
1323 			netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
1324 			break;
1325 		}
1326 		count++;
1327 		udelay(10);
1328 	}
1329 
1330 	/* Ensure the correct MAC is selected before statistics
1331 	 * are re-enabled by the caller */
1332 	ef4_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1333 
1334 	falcon_setup_xaui(efx);
1335 }
1336 
1337 static void falcon_drain_tx_fifo(struct ef4_nic *efx)
1338 {
1339 	ef4_oword_t reg;
1340 
1341 	if ((ef4_nic_rev(efx) < EF4_REV_FALCON_B0) ||
1342 	    (efx->loopback_mode != LOOPBACK_NONE))
1343 		return;
1344 
1345 	ef4_reado(efx, &reg, FR_AB_MAC_CTRL);
1346 	/* There is no point in draining more than once */
1347 	if (EF4_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1348 		return;
1349 
1350 	falcon_reset_macs(efx);
1351 }
1352 
1353 static void falcon_deconfigure_mac_wrapper(struct ef4_nic *efx)
1354 {
1355 	ef4_oword_t reg;
1356 
1357 	if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0)
1358 		return;
1359 
1360 	/* Isolate the MAC -> RX */
1361 	ef4_reado(efx, &reg, FR_AZ_RX_CFG);
1362 	EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1363 	ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
1364 
1365 	/* Isolate TX -> MAC */
1366 	falcon_drain_tx_fifo(efx);
1367 }
1368 
1369 static void falcon_reconfigure_mac_wrapper(struct ef4_nic *efx)
1370 {
1371 	struct ef4_link_state *link_state = &efx->link_state;
1372 	ef4_oword_t reg;
1373 	int link_speed, isolate;
1374 
1375 	isolate = !!ACCESS_ONCE(efx->reset_pending);
1376 
1377 	switch (link_state->speed) {
1378 	case 10000: link_speed = 3; break;
1379 	case 1000:  link_speed = 2; break;
1380 	case 100:   link_speed = 1; break;
1381 	default:    link_speed = 0; break;
1382 	}
1383 
1384 	/* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1385 	 * as advertised.  Disable to ensure packets are not
1386 	 * indefinitely held and TX queue can be flushed at any point
1387 	 * while the link is down. */
1388 	EF4_POPULATE_OWORD_5(reg,
1389 			     FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1390 			     FRF_AB_MAC_BCAD_ACPT, 1,
1391 			     FRF_AB_MAC_UC_PROM, !efx->unicast_filter,
1392 			     FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1393 			     FRF_AB_MAC_SPEED, link_speed);
1394 	/* On B0, MAC backpressure can be disabled and packets get
1395 	 * discarded. */
1396 	if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
1397 		EF4_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1398 				    !link_state->up || isolate);
1399 	}
1400 
1401 	ef4_writeo(efx, &reg, FR_AB_MAC_CTRL);
1402 
1403 	/* Restore the multicast hash registers. */
1404 	falcon_push_multicast_hash(efx);
1405 
1406 	ef4_reado(efx, &reg, FR_AZ_RX_CFG);
1407 	/* Enable XOFF signal from RX FIFO (we enabled it during NIC
1408 	 * initialisation but it may read back as 0) */
1409 	EF4_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1410 	/* Unisolate the MAC -> RX */
1411 	if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
1412 		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
1413 	ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
1414 }
1415 
1416 static void falcon_stats_request(struct ef4_nic *efx)
1417 {
1418 	struct falcon_nic_data *nic_data = efx->nic_data;
1419 	ef4_oword_t reg;
1420 
1421 	WARN_ON(nic_data->stats_pending);
1422 	WARN_ON(nic_data->stats_disable_count);
1423 
1424 	FALCON_XMAC_STATS_DMA_FLAG(efx) = 0;
1425 	nic_data->stats_pending = true;
1426 	wmb(); /* ensure done flag is clear */
1427 
1428 	/* Initiate DMA transfer of stats */
1429 	EF4_POPULATE_OWORD_2(reg,
1430 			     FRF_AB_MAC_STAT_DMA_CMD, 1,
1431 			     FRF_AB_MAC_STAT_DMA_ADR,
1432 			     efx->stats_buffer.dma_addr);
1433 	ef4_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
1434 
1435 	mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
1436 }
1437 
1438 static void falcon_stats_complete(struct ef4_nic *efx)
1439 {
1440 	struct falcon_nic_data *nic_data = efx->nic_data;
1441 
1442 	if (!nic_data->stats_pending)
1443 		return;
1444 
1445 	nic_data->stats_pending = false;
1446 	if (FALCON_XMAC_STATS_DMA_FLAG(efx)) {
1447 		rmb(); /* read the done flag before the stats */
1448 		ef4_nic_update_stats(falcon_stat_desc, FALCON_STAT_COUNT,
1449 				     falcon_stat_mask, nic_data->stats,
1450 				     efx->stats_buffer.addr, true);
1451 	} else {
1452 		netif_err(efx, hw, efx->net_dev,
1453 			  "timed out waiting for statistics\n");
1454 	}
1455 }
1456 
1457 static void falcon_stats_timer_func(unsigned long context)
1458 {
1459 	struct ef4_nic *efx = (struct ef4_nic *)context;
1460 	struct falcon_nic_data *nic_data = efx->nic_data;
1461 
1462 	spin_lock(&efx->stats_lock);
1463 
1464 	falcon_stats_complete(efx);
1465 	if (nic_data->stats_disable_count == 0)
1466 		falcon_stats_request(efx);
1467 
1468 	spin_unlock(&efx->stats_lock);
1469 }
1470 
1471 static bool falcon_loopback_link_poll(struct ef4_nic *efx)
1472 {
1473 	struct ef4_link_state old_state = efx->link_state;
1474 
1475 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
1476 	WARN_ON(!LOOPBACK_INTERNAL(efx));
1477 
1478 	efx->link_state.fd = true;
1479 	efx->link_state.fc = efx->wanted_fc;
1480 	efx->link_state.up = true;
1481 	efx->link_state.speed = 10000;
1482 
1483 	return !ef4_link_state_equal(&efx->link_state, &old_state);
1484 }
1485 
1486 static int falcon_reconfigure_port(struct ef4_nic *efx)
1487 {
1488 	int rc;
1489 
1490 	WARN_ON(ef4_nic_rev(efx) > EF4_REV_FALCON_B0);
1491 
1492 	/* Poll the PHY link state *before* reconfiguring it. This means we
1493 	 * will pick up the correct speed (in loopback) to select the correct
1494 	 * MAC.
1495 	 */
1496 	if (LOOPBACK_INTERNAL(efx))
1497 		falcon_loopback_link_poll(efx);
1498 	else
1499 		efx->phy_op->poll(efx);
1500 
1501 	falcon_stop_nic_stats(efx);
1502 	falcon_deconfigure_mac_wrapper(efx);
1503 
1504 	falcon_reset_macs(efx);
1505 
1506 	efx->phy_op->reconfigure(efx);
1507 	rc = falcon_reconfigure_xmac(efx);
1508 	BUG_ON(rc);
1509 
1510 	falcon_start_nic_stats(efx);
1511 
1512 	/* Synchronise efx->link_state with the kernel */
1513 	ef4_link_status_changed(efx);
1514 
1515 	return 0;
1516 }
1517 
1518 /* TX flow control may automatically turn itself off if the link
1519  * partner (intermittently) stops responding to pause frames. There
1520  * isn't any indication that this has happened, so the best we do is
1521  * leave it up to the user to spot this and fix it by cycling transmit
1522  * flow control on this end.
1523  */
1524 
1525 static void falcon_a1_prepare_enable_fc_tx(struct ef4_nic *efx)
1526 {
1527 	/* Schedule a reset to recover */
1528 	ef4_schedule_reset(efx, RESET_TYPE_INVISIBLE);
1529 }
1530 
1531 static void falcon_b0_prepare_enable_fc_tx(struct ef4_nic *efx)
1532 {
1533 	/* Recover by resetting the EM block */
1534 	falcon_stop_nic_stats(efx);
1535 	falcon_drain_tx_fifo(efx);
1536 	falcon_reconfigure_xmac(efx);
1537 	falcon_start_nic_stats(efx);
1538 }
1539 
1540 /**************************************************************************
1541  *
1542  * PHY access via GMII
1543  *
1544  **************************************************************************
1545  */
1546 
1547 /* Wait for GMII access to complete */
1548 static int falcon_gmii_wait(struct ef4_nic *efx)
1549 {
1550 	ef4_oword_t md_stat;
1551 	int count;
1552 
1553 	/* wait up to 50ms - taken max from datasheet */
1554 	for (count = 0; count < 5000; count++) {
1555 		ef4_reado(efx, &md_stat, FR_AB_MD_STAT);
1556 		if (EF4_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
1557 			if (EF4_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
1558 			    EF4_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
1559 				netif_err(efx, hw, efx->net_dev,
1560 					  "error from GMII access "
1561 					  EF4_OWORD_FMT"\n",
1562 					  EF4_OWORD_VAL(md_stat));
1563 				return -EIO;
1564 			}
1565 			return 0;
1566 		}
1567 		udelay(10);
1568 	}
1569 	netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
1570 	return -ETIMEDOUT;
1571 }
1572 
1573 /* Write an MDIO register of a PHY connected to Falcon. */
1574 static int falcon_mdio_write(struct net_device *net_dev,
1575 			     int prtad, int devad, u16 addr, u16 value)
1576 {
1577 	struct ef4_nic *efx = netdev_priv(net_dev);
1578 	struct falcon_nic_data *nic_data = efx->nic_data;
1579 	ef4_oword_t reg;
1580 	int rc;
1581 
1582 	netif_vdbg(efx, hw, efx->net_dev,
1583 		   "writing MDIO %d register %d.%d with 0x%04x\n",
1584 		    prtad, devad, addr, value);
1585 
1586 	mutex_lock(&nic_data->mdio_lock);
1587 
1588 	/* Check MDIO not currently being accessed */
1589 	rc = falcon_gmii_wait(efx);
1590 	if (rc)
1591 		goto out;
1592 
1593 	/* Write the address/ID register */
1594 	EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1595 	ef4_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1596 
1597 	EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1598 			     FRF_AB_MD_DEV_ADR, devad);
1599 	ef4_writeo(efx, &reg, FR_AB_MD_ID);
1600 
1601 	/* Write data */
1602 	EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
1603 	ef4_writeo(efx, &reg, FR_AB_MD_TXD);
1604 
1605 	EF4_POPULATE_OWORD_2(reg,
1606 			     FRF_AB_MD_WRC, 1,
1607 			     FRF_AB_MD_GC, 0);
1608 	ef4_writeo(efx, &reg, FR_AB_MD_CS);
1609 
1610 	/* Wait for data to be written */
1611 	rc = falcon_gmii_wait(efx);
1612 	if (rc) {
1613 		/* Abort the write operation */
1614 		EF4_POPULATE_OWORD_2(reg,
1615 				     FRF_AB_MD_WRC, 0,
1616 				     FRF_AB_MD_GC, 1);
1617 		ef4_writeo(efx, &reg, FR_AB_MD_CS);
1618 		udelay(10);
1619 	}
1620 
1621 out:
1622 	mutex_unlock(&nic_data->mdio_lock);
1623 	return rc;
1624 }
1625 
1626 /* Read an MDIO register of a PHY connected to Falcon. */
1627 static int falcon_mdio_read(struct net_device *net_dev,
1628 			    int prtad, int devad, u16 addr)
1629 {
1630 	struct ef4_nic *efx = netdev_priv(net_dev);
1631 	struct falcon_nic_data *nic_data = efx->nic_data;
1632 	ef4_oword_t reg;
1633 	int rc;
1634 
1635 	mutex_lock(&nic_data->mdio_lock);
1636 
1637 	/* Check MDIO not currently being accessed */
1638 	rc = falcon_gmii_wait(efx);
1639 	if (rc)
1640 		goto out;
1641 
1642 	EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1643 	ef4_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1644 
1645 	EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1646 			     FRF_AB_MD_DEV_ADR, devad);
1647 	ef4_writeo(efx, &reg, FR_AB_MD_ID);
1648 
1649 	/* Request data to be read */
1650 	EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
1651 	ef4_writeo(efx, &reg, FR_AB_MD_CS);
1652 
1653 	/* Wait for data to become available */
1654 	rc = falcon_gmii_wait(efx);
1655 	if (rc == 0) {
1656 		ef4_reado(efx, &reg, FR_AB_MD_RXD);
1657 		rc = EF4_OWORD_FIELD(reg, FRF_AB_MD_RXD);
1658 		netif_vdbg(efx, hw, efx->net_dev,
1659 			   "read from MDIO %d register %d.%d, got %04x\n",
1660 			   prtad, devad, addr, rc);
1661 	} else {
1662 		/* Abort the read operation */
1663 		EF4_POPULATE_OWORD_2(reg,
1664 				     FRF_AB_MD_RIC, 0,
1665 				     FRF_AB_MD_GC, 1);
1666 		ef4_writeo(efx, &reg, FR_AB_MD_CS);
1667 
1668 		netif_dbg(efx, hw, efx->net_dev,
1669 			  "read from MDIO %d register %d.%d, got error %d\n",
1670 			  prtad, devad, addr, rc);
1671 	}
1672 
1673 out:
1674 	mutex_unlock(&nic_data->mdio_lock);
1675 	return rc;
1676 }
1677 
1678 /* This call is responsible for hooking in the MAC and PHY operations */
1679 static int falcon_probe_port(struct ef4_nic *efx)
1680 {
1681 	struct falcon_nic_data *nic_data = efx->nic_data;
1682 	int rc;
1683 
1684 	switch (efx->phy_type) {
1685 	case PHY_TYPE_SFX7101:
1686 		efx->phy_op = &falcon_sfx7101_phy_ops;
1687 		break;
1688 	case PHY_TYPE_QT2022C2:
1689 	case PHY_TYPE_QT2025C:
1690 		efx->phy_op = &falcon_qt202x_phy_ops;
1691 		break;
1692 	case PHY_TYPE_TXC43128:
1693 		efx->phy_op = &falcon_txc_phy_ops;
1694 		break;
1695 	default:
1696 		netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
1697 			  efx->phy_type);
1698 		return -ENODEV;
1699 	}
1700 
1701 	/* Fill out MDIO structure and loopback modes */
1702 	mutex_init(&nic_data->mdio_lock);
1703 	efx->mdio.mdio_read = falcon_mdio_read;
1704 	efx->mdio.mdio_write = falcon_mdio_write;
1705 	rc = efx->phy_op->probe(efx);
1706 	if (rc != 0)
1707 		return rc;
1708 
1709 	/* Initial assumption */
1710 	efx->link_state.speed = 10000;
1711 	efx->link_state.fd = true;
1712 
1713 	/* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
1714 	if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
1715 		efx->wanted_fc = EF4_FC_RX | EF4_FC_TX;
1716 	else
1717 		efx->wanted_fc = EF4_FC_RX;
1718 	if (efx->mdio.mmds & MDIO_DEVS_AN)
1719 		efx->wanted_fc |= EF4_FC_AUTO;
1720 
1721 	/* Allocate buffer for stats */
1722 	rc = ef4_nic_alloc_buffer(efx, &efx->stats_buffer,
1723 				  FALCON_MAC_STATS_SIZE, GFP_KERNEL);
1724 	if (rc)
1725 		return rc;
1726 	netif_dbg(efx, probe, efx->net_dev,
1727 		  "stats buffer at %llx (virt %p phys %llx)\n",
1728 		  (u64)efx->stats_buffer.dma_addr,
1729 		  efx->stats_buffer.addr,
1730 		  (u64)virt_to_phys(efx->stats_buffer.addr));
1731 
1732 	return 0;
1733 }
1734 
1735 static void falcon_remove_port(struct ef4_nic *efx)
1736 {
1737 	efx->phy_op->remove(efx);
1738 	ef4_nic_free_buffer(efx, &efx->stats_buffer);
1739 }
1740 
1741 /* Global events are basically PHY events */
1742 static bool
1743 falcon_handle_global_event(struct ef4_channel *channel, ef4_qword_t *event)
1744 {
1745 	struct ef4_nic *efx = channel->efx;
1746 	struct falcon_nic_data *nic_data = efx->nic_data;
1747 
1748 	if (EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
1749 	    EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
1750 	    EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
1751 		/* Ignored */
1752 		return true;
1753 
1754 	if ((ef4_nic_rev(efx) == EF4_REV_FALCON_B0) &&
1755 	    EF4_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
1756 		nic_data->xmac_poll_required = true;
1757 		return true;
1758 	}
1759 
1760 	if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1 ?
1761 	    EF4_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
1762 	    EF4_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
1763 		netif_err(efx, rx_err, efx->net_dev,
1764 			  "channel %d seen global RX_RESET event. Resetting.\n",
1765 			  channel->channel);
1766 
1767 		atomic_inc(&efx->rx_reset);
1768 		ef4_schedule_reset(efx, EF4_WORKAROUND_6555(efx) ?
1769 				   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1770 		return true;
1771 	}
1772 
1773 	return false;
1774 }
1775 
1776 /**************************************************************************
1777  *
1778  * Falcon test code
1779  *
1780  **************************************************************************/
1781 
1782 static int
1783 falcon_read_nvram(struct ef4_nic *efx, struct falcon_nvconfig *nvconfig_out)
1784 {
1785 	struct falcon_nic_data *nic_data = efx->nic_data;
1786 	struct falcon_nvconfig *nvconfig;
1787 	struct falcon_spi_device *spi;
1788 	void *region;
1789 	int rc, magic_num, struct_ver;
1790 	__le16 *word, *limit;
1791 	u32 csum;
1792 
1793 	if (falcon_spi_present(&nic_data->spi_flash))
1794 		spi = &nic_data->spi_flash;
1795 	else if (falcon_spi_present(&nic_data->spi_eeprom))
1796 		spi = &nic_data->spi_eeprom;
1797 	else
1798 		return -EINVAL;
1799 
1800 	region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
1801 	if (!region)
1802 		return -ENOMEM;
1803 	nvconfig = region + FALCON_NVCONFIG_OFFSET;
1804 
1805 	mutex_lock(&nic_data->spi_lock);
1806 	rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
1807 	mutex_unlock(&nic_data->spi_lock);
1808 	if (rc) {
1809 		netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
1810 			  falcon_spi_present(&nic_data->spi_flash) ?
1811 			  "flash" : "EEPROM");
1812 		rc = -EIO;
1813 		goto out;
1814 	}
1815 
1816 	magic_num = le16_to_cpu(nvconfig->board_magic_num);
1817 	struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
1818 
1819 	rc = -EINVAL;
1820 	if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
1821 		netif_err(efx, hw, efx->net_dev,
1822 			  "NVRAM bad magic 0x%x\n", magic_num);
1823 		goto out;
1824 	}
1825 	if (struct_ver < 2) {
1826 		netif_err(efx, hw, efx->net_dev,
1827 			  "NVRAM has ancient version 0x%x\n", struct_ver);
1828 		goto out;
1829 	} else if (struct_ver < 4) {
1830 		word = &nvconfig->board_magic_num;
1831 		limit = (__le16 *) (nvconfig + 1);
1832 	} else {
1833 		word = region;
1834 		limit = region + FALCON_NVCONFIG_END;
1835 	}
1836 	for (csum = 0; word < limit; ++word)
1837 		csum += le16_to_cpu(*word);
1838 
1839 	if (~csum & 0xffff) {
1840 		netif_err(efx, hw, efx->net_dev,
1841 			  "NVRAM has incorrect checksum\n");
1842 		goto out;
1843 	}
1844 
1845 	rc = 0;
1846 	if (nvconfig_out)
1847 		memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
1848 
1849  out:
1850 	kfree(region);
1851 	return rc;
1852 }
1853 
1854 static int falcon_test_nvram(struct ef4_nic *efx)
1855 {
1856 	return falcon_read_nvram(efx, NULL);
1857 }
1858 
1859 static const struct ef4_farch_register_test falcon_b0_register_tests[] = {
1860 	{ FR_AZ_ADR_REGION,
1861 	  EF4_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1862 	{ FR_AZ_RX_CFG,
1863 	  EF4_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1864 	{ FR_AZ_TX_CFG,
1865 	  EF4_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1866 	{ FR_AZ_TX_RESERVED,
1867 	  EF4_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1868 	{ FR_AB_MAC_CTRL,
1869 	  EF4_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1870 	{ FR_AZ_SRM_TX_DC_CFG,
1871 	  EF4_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1872 	{ FR_AZ_RX_DC_CFG,
1873 	  EF4_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1874 	{ FR_AZ_RX_DC_PF_WM,
1875 	  EF4_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1876 	{ FR_BZ_DP_CTRL,
1877 	  EF4_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1878 	{ FR_AB_GM_CFG2,
1879 	  EF4_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1880 	{ FR_AB_GMF_CFG0,
1881 	  EF4_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1882 	{ FR_AB_XM_GLB_CFG,
1883 	  EF4_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1884 	{ FR_AB_XM_TX_CFG,
1885 	  EF4_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1886 	{ FR_AB_XM_RX_CFG,
1887 	  EF4_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1888 	{ FR_AB_XM_RX_PARAM,
1889 	  EF4_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1890 	{ FR_AB_XM_FC,
1891 	  EF4_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1892 	{ FR_AB_XM_ADR_LO,
1893 	  EF4_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1894 	{ FR_AB_XX_SD_CTL,
1895 	  EF4_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1896 };
1897 
1898 static int
1899 falcon_b0_test_chip(struct ef4_nic *efx, struct ef4_self_tests *tests)
1900 {
1901 	enum reset_type reset_method = RESET_TYPE_INVISIBLE;
1902 	int rc, rc2;
1903 
1904 	mutex_lock(&efx->mac_lock);
1905 	if (efx->loopback_modes) {
1906 		/* We need the 312 clock from the PHY to test the XMAC
1907 		 * registers, so move into XGMII loopback if available */
1908 		if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
1909 			efx->loopback_mode = LOOPBACK_XGMII;
1910 		else
1911 			efx->loopback_mode = __ffs(efx->loopback_modes);
1912 	}
1913 	__ef4_reconfigure_port(efx);
1914 	mutex_unlock(&efx->mac_lock);
1915 
1916 	ef4_reset_down(efx, reset_method);
1917 
1918 	tests->registers =
1919 		ef4_farch_test_registers(efx, falcon_b0_register_tests,
1920 					 ARRAY_SIZE(falcon_b0_register_tests))
1921 		? -1 : 1;
1922 
1923 	rc = falcon_reset_hw(efx, reset_method);
1924 	rc2 = ef4_reset_up(efx, reset_method, rc == 0);
1925 	return rc ? rc : rc2;
1926 }
1927 
1928 /**************************************************************************
1929  *
1930  * Device reset
1931  *
1932  **************************************************************************
1933  */
1934 
1935 static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1936 {
1937 	switch (reason) {
1938 	case RESET_TYPE_RX_RECOVERY:
1939 	case RESET_TYPE_DMA_ERROR:
1940 	case RESET_TYPE_TX_SKIP:
1941 		/* These can occasionally occur due to hardware bugs.
1942 		 * We try to reset without disrupting the link.
1943 		 */
1944 		return RESET_TYPE_INVISIBLE;
1945 	default:
1946 		return RESET_TYPE_ALL;
1947 	}
1948 }
1949 
1950 static int falcon_map_reset_flags(u32 *flags)
1951 {
1952 	enum {
1953 		FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1954 					  ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1955 		FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1956 		FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1957 	};
1958 
1959 	if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1960 		*flags &= ~FALCON_RESET_WORLD;
1961 		return RESET_TYPE_WORLD;
1962 	}
1963 
1964 	if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1965 		*flags &= ~FALCON_RESET_ALL;
1966 		return RESET_TYPE_ALL;
1967 	}
1968 
1969 	if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1970 		*flags &= ~FALCON_RESET_INVISIBLE;
1971 		return RESET_TYPE_INVISIBLE;
1972 	}
1973 
1974 	return -EINVAL;
1975 }
1976 
1977 /* Resets NIC to known state.  This routine must be called in process
1978  * context and is allowed to sleep. */
1979 static int __falcon_reset_hw(struct ef4_nic *efx, enum reset_type method)
1980 {
1981 	struct falcon_nic_data *nic_data = efx->nic_data;
1982 	ef4_oword_t glb_ctl_reg_ker;
1983 	int rc;
1984 
1985 	netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1986 		  RESET_TYPE(method));
1987 
1988 	/* Initiate device reset */
1989 	if (method == RESET_TYPE_WORLD) {
1990 		rc = pci_save_state(efx->pci_dev);
1991 		if (rc) {
1992 			netif_err(efx, drv, efx->net_dev,
1993 				  "failed to backup PCI state of primary "
1994 				  "function prior to hardware reset\n");
1995 			goto fail1;
1996 		}
1997 		if (ef4_nic_is_dual_func(efx)) {
1998 			rc = pci_save_state(nic_data->pci_dev2);
1999 			if (rc) {
2000 				netif_err(efx, drv, efx->net_dev,
2001 					  "failed to backup PCI state of "
2002 					  "secondary function prior to "
2003 					  "hardware reset\n");
2004 				goto fail2;
2005 			}
2006 		}
2007 
2008 		EF4_POPULATE_OWORD_2(glb_ctl_reg_ker,
2009 				     FRF_AB_EXT_PHY_RST_DUR,
2010 				     FFE_AB_EXT_PHY_RST_DUR_10240US,
2011 				     FRF_AB_SWRST, 1);
2012 	} else {
2013 		EF4_POPULATE_OWORD_7(glb_ctl_reg_ker,
2014 				     /* exclude PHY from "invisible" reset */
2015 				     FRF_AB_EXT_PHY_RST_CTL,
2016 				     method == RESET_TYPE_INVISIBLE,
2017 				     /* exclude EEPROM/flash and PCIe */
2018 				     FRF_AB_PCIE_CORE_RST_CTL, 1,
2019 				     FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2020 				     FRF_AB_PCIE_SD_RST_CTL, 1,
2021 				     FRF_AB_EE_RST_CTL, 1,
2022 				     FRF_AB_EXT_PHY_RST_DUR,
2023 				     FFE_AB_EXT_PHY_RST_DUR_10240US,
2024 				     FRF_AB_SWRST, 1);
2025 	}
2026 	ef4_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2027 
2028 	netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
2029 	schedule_timeout_uninterruptible(HZ / 20);
2030 
2031 	/* Restore PCI configuration if needed */
2032 	if (method == RESET_TYPE_WORLD) {
2033 		if (ef4_nic_is_dual_func(efx))
2034 			pci_restore_state(nic_data->pci_dev2);
2035 		pci_restore_state(efx->pci_dev);
2036 		netif_dbg(efx, drv, efx->net_dev,
2037 			  "successfully restored PCI config\n");
2038 	}
2039 
2040 	/* Assert that reset complete */
2041 	ef4_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2042 	if (EF4_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2043 		rc = -ETIMEDOUT;
2044 		netif_err(efx, hw, efx->net_dev,
2045 			  "timed out waiting for hardware reset\n");
2046 		goto fail3;
2047 	}
2048 	netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
2049 
2050 	return 0;
2051 
2052 	/* pci_save_state() and pci_restore_state() MUST be called in pairs */
2053 fail2:
2054 	pci_restore_state(efx->pci_dev);
2055 fail1:
2056 fail3:
2057 	return rc;
2058 }
2059 
2060 static int falcon_reset_hw(struct ef4_nic *efx, enum reset_type method)
2061 {
2062 	struct falcon_nic_data *nic_data = efx->nic_data;
2063 	int rc;
2064 
2065 	mutex_lock(&nic_data->spi_lock);
2066 	rc = __falcon_reset_hw(efx, method);
2067 	mutex_unlock(&nic_data->spi_lock);
2068 
2069 	return rc;
2070 }
2071 
2072 static void falcon_monitor(struct ef4_nic *efx)
2073 {
2074 	bool link_changed;
2075 	int rc;
2076 
2077 	BUG_ON(!mutex_is_locked(&efx->mac_lock));
2078 
2079 	rc = falcon_board(efx)->type->monitor(efx);
2080 	if (rc) {
2081 		netif_err(efx, hw, efx->net_dev,
2082 			  "Board sensor %s; shutting down PHY\n",
2083 			  (rc == -ERANGE) ? "reported fault" : "failed");
2084 		efx->phy_mode |= PHY_MODE_LOW_POWER;
2085 		rc = __ef4_reconfigure_port(efx);
2086 		WARN_ON(rc);
2087 	}
2088 
2089 	if (LOOPBACK_INTERNAL(efx))
2090 		link_changed = falcon_loopback_link_poll(efx);
2091 	else
2092 		link_changed = efx->phy_op->poll(efx);
2093 
2094 	if (link_changed) {
2095 		falcon_stop_nic_stats(efx);
2096 		falcon_deconfigure_mac_wrapper(efx);
2097 
2098 		falcon_reset_macs(efx);
2099 		rc = falcon_reconfigure_xmac(efx);
2100 		BUG_ON(rc);
2101 
2102 		falcon_start_nic_stats(efx);
2103 
2104 		ef4_link_status_changed(efx);
2105 	}
2106 
2107 	falcon_poll_xmac(efx);
2108 }
2109 
2110 /* Zeroes out the SRAM contents.  This routine must be called in
2111  * process context and is allowed to sleep.
2112  */
2113 static int falcon_reset_sram(struct ef4_nic *efx)
2114 {
2115 	ef4_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2116 	int count;
2117 
2118 	/* Set the SRAM wake/sleep GPIO appropriately. */
2119 	ef4_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2120 	EF4_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2121 	EF4_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2122 	ef4_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2123 
2124 	/* Initiate SRAM reset */
2125 	EF4_POPULATE_OWORD_2(srm_cfg_reg_ker,
2126 			     FRF_AZ_SRM_INIT_EN, 1,
2127 			     FRF_AZ_SRM_NB_SZ, 0);
2128 	ef4_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2129 
2130 	/* Wait for SRAM reset to complete */
2131 	count = 0;
2132 	do {
2133 		netif_dbg(efx, hw, efx->net_dev,
2134 			  "waiting for SRAM reset (attempt %d)...\n", count);
2135 
2136 		/* SRAM reset is slow; expect around 16ms */
2137 		schedule_timeout_uninterruptible(HZ / 50);
2138 
2139 		/* Check for reset complete */
2140 		ef4_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2141 		if (!EF4_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2142 			netif_dbg(efx, hw, efx->net_dev,
2143 				  "SRAM reset complete\n");
2144 
2145 			return 0;
2146 		}
2147 	} while (++count < 20);	/* wait up to 0.4 sec */
2148 
2149 	netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
2150 	return -ETIMEDOUT;
2151 }
2152 
2153 static void falcon_spi_device_init(struct ef4_nic *efx,
2154 				  struct falcon_spi_device *spi_device,
2155 				  unsigned int device_id, u32 device_type)
2156 {
2157 	if (device_type != 0) {
2158 		spi_device->device_id = device_id;
2159 		spi_device->size =
2160 			1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2161 		spi_device->addr_len =
2162 			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2163 		spi_device->munge_address = (spi_device->size == 1 << 9 &&
2164 					     spi_device->addr_len == 1);
2165 		spi_device->erase_command =
2166 			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2167 		spi_device->erase_size =
2168 			1 << SPI_DEV_TYPE_FIELD(device_type,
2169 						SPI_DEV_TYPE_ERASE_SIZE);
2170 		spi_device->block_size =
2171 			1 << SPI_DEV_TYPE_FIELD(device_type,
2172 						SPI_DEV_TYPE_BLOCK_SIZE);
2173 	} else {
2174 		spi_device->size = 0;
2175 	}
2176 }
2177 
2178 /* Extract non-volatile configuration */
2179 static int falcon_probe_nvconfig(struct ef4_nic *efx)
2180 {
2181 	struct falcon_nic_data *nic_data = efx->nic_data;
2182 	struct falcon_nvconfig *nvconfig;
2183 	int rc;
2184 
2185 	nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2186 	if (!nvconfig)
2187 		return -ENOMEM;
2188 
2189 	rc = falcon_read_nvram(efx, nvconfig);
2190 	if (rc)
2191 		goto out;
2192 
2193 	efx->phy_type = nvconfig->board_v2.port0_phy_type;
2194 	efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
2195 
2196 	if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2197 		falcon_spi_device_init(
2198 			efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2199 			le32_to_cpu(nvconfig->board_v3
2200 				    .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
2201 		falcon_spi_device_init(
2202 			efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2203 			le32_to_cpu(nvconfig->board_v3
2204 				    .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
2205 	}
2206 
2207 	/* Read the MAC addresses */
2208 	ether_addr_copy(efx->net_dev->perm_addr, nvconfig->mac_address[0]);
2209 
2210 	netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
2211 		  efx->phy_type, efx->mdio.prtad);
2212 
2213 	rc = falcon_probe_board(efx,
2214 				le16_to_cpu(nvconfig->board_v2.board_revision));
2215 out:
2216 	kfree(nvconfig);
2217 	return rc;
2218 }
2219 
2220 static int falcon_dimension_resources(struct ef4_nic *efx)
2221 {
2222 	efx->rx_dc_base = 0x20000;
2223 	efx->tx_dc_base = 0x26000;
2224 	return 0;
2225 }
2226 
2227 /* Probe all SPI devices on the NIC */
2228 static void falcon_probe_spi_devices(struct ef4_nic *efx)
2229 {
2230 	struct falcon_nic_data *nic_data = efx->nic_data;
2231 	ef4_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2232 	int boot_dev;
2233 
2234 	ef4_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2235 	ef4_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2236 	ef4_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2237 
2238 	if (EF4_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2239 		boot_dev = (EF4_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2240 			    FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2241 		netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
2242 			  boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
2243 			  "flash" : "EEPROM");
2244 	} else {
2245 		/* Disable VPD and set clock dividers to safe
2246 		 * values for initial programming. */
2247 		boot_dev = -1;
2248 		netif_dbg(efx, probe, efx->net_dev,
2249 			  "Booted from internal ASIC settings;"
2250 			  " setting SPI config\n");
2251 		EF4_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2252 				     /* 125 MHz / 7 ~= 20 MHz */
2253 				     FRF_AB_EE_SF_CLOCK_DIV, 7,
2254 				     /* 125 MHz / 63 ~= 2 MHz */
2255 				     FRF_AB_EE_EE_CLOCK_DIV, 63);
2256 		ef4_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2257 	}
2258 
2259 	mutex_init(&nic_data->spi_lock);
2260 
2261 	if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2262 		falcon_spi_device_init(efx, &nic_data->spi_flash,
2263 				       FFE_AB_SPI_DEVICE_FLASH,
2264 				       default_flash_type);
2265 	if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2266 		falcon_spi_device_init(efx, &nic_data->spi_eeprom,
2267 				       FFE_AB_SPI_DEVICE_EEPROM,
2268 				       large_eeprom_type);
2269 }
2270 
2271 static unsigned int falcon_a1_mem_map_size(struct ef4_nic *efx)
2272 {
2273 	return 0x20000;
2274 }
2275 
2276 static unsigned int falcon_b0_mem_map_size(struct ef4_nic *efx)
2277 {
2278 	/* Map everything up to and including the RSS indirection table.
2279 	 * The PCI core takes care of mapping the MSI-X tables.
2280 	 */
2281 	return FR_BZ_RX_INDIRECTION_TBL +
2282 		FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS;
2283 }
2284 
2285 static int falcon_probe_nic(struct ef4_nic *efx)
2286 {
2287 	struct falcon_nic_data *nic_data;
2288 	struct falcon_board *board;
2289 	int rc;
2290 
2291 	efx->primary = efx; /* only one usable function per controller */
2292 
2293 	/* Allocate storage for hardware specific data */
2294 	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2295 	if (!nic_data)
2296 		return -ENOMEM;
2297 	efx->nic_data = nic_data;
2298 
2299 	rc = -ENODEV;
2300 
2301 	if (ef4_farch_fpga_ver(efx) != 0) {
2302 		netif_err(efx, probe, efx->net_dev,
2303 			  "Falcon FPGA not supported\n");
2304 		goto fail1;
2305 	}
2306 
2307 	if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1) {
2308 		ef4_oword_t nic_stat;
2309 		struct pci_dev *dev;
2310 		u8 pci_rev = efx->pci_dev->revision;
2311 
2312 		if ((pci_rev == 0xff) || (pci_rev == 0)) {
2313 			netif_err(efx, probe, efx->net_dev,
2314 				  "Falcon rev A0 not supported\n");
2315 			goto fail1;
2316 		}
2317 		ef4_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2318 		if (EF4_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
2319 			netif_err(efx, probe, efx->net_dev,
2320 				  "Falcon rev A1 1G not supported\n");
2321 			goto fail1;
2322 		}
2323 		if (EF4_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2324 			netif_err(efx, probe, efx->net_dev,
2325 				  "Falcon rev A1 PCI-X not supported\n");
2326 			goto fail1;
2327 		}
2328 
2329 		dev = pci_dev_get(efx->pci_dev);
2330 		while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
2331 					     PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
2332 					     dev))) {
2333 			if (dev->bus == efx->pci_dev->bus &&
2334 			    dev->devfn == efx->pci_dev->devfn + 1) {
2335 				nic_data->pci_dev2 = dev;
2336 				break;
2337 			}
2338 		}
2339 		if (!nic_data->pci_dev2) {
2340 			netif_err(efx, probe, efx->net_dev,
2341 				  "failed to find secondary function\n");
2342 			rc = -ENODEV;
2343 			goto fail2;
2344 		}
2345 	}
2346 
2347 	/* Now we can reset the NIC */
2348 	rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
2349 	if (rc) {
2350 		netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
2351 		goto fail3;
2352 	}
2353 
2354 	/* Allocate memory for INT_KER */
2355 	rc = ef4_nic_alloc_buffer(efx, &efx->irq_status, sizeof(ef4_oword_t),
2356 				  GFP_KERNEL);
2357 	if (rc)
2358 		goto fail4;
2359 	BUG_ON(efx->irq_status.dma_addr & 0x0f);
2360 
2361 	netif_dbg(efx, probe, efx->net_dev,
2362 		  "INT_KER at %llx (virt %p phys %llx)\n",
2363 		  (u64)efx->irq_status.dma_addr,
2364 		  efx->irq_status.addr,
2365 		  (u64)virt_to_phys(efx->irq_status.addr));
2366 
2367 	falcon_probe_spi_devices(efx);
2368 
2369 	/* Read in the non-volatile configuration */
2370 	rc = falcon_probe_nvconfig(efx);
2371 	if (rc) {
2372 		if (rc == -EINVAL)
2373 			netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
2374 		goto fail5;
2375 	}
2376 
2377 	efx->max_channels = (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1 ? 4 :
2378 			     EF4_MAX_CHANNELS);
2379 	efx->max_tx_channels = efx->max_channels;
2380 	efx->timer_quantum_ns = 4968; /* 621 cycles */
2381 	efx->timer_max_ns = efx->type->timer_period_max *
2382 			    efx->timer_quantum_ns;
2383 
2384 	/* Initialise I2C adapter */
2385 	board = falcon_board(efx);
2386 	board->i2c_adap.owner = THIS_MODULE;
2387 	board->i2c_data = falcon_i2c_bit_operations;
2388 	board->i2c_data.data = efx;
2389 	board->i2c_adap.algo_data = &board->i2c_data;
2390 	board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2391 	strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2392 		sizeof(board->i2c_adap.name));
2393 	rc = i2c_bit_add_bus(&board->i2c_adap);
2394 	if (rc)
2395 		goto fail5;
2396 
2397 	rc = falcon_board(efx)->type->init(efx);
2398 	if (rc) {
2399 		netif_err(efx, probe, efx->net_dev,
2400 			  "failed to initialise board\n");
2401 		goto fail6;
2402 	}
2403 
2404 	nic_data->stats_disable_count = 1;
2405 	setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
2406 		    (unsigned long)efx);
2407 
2408 	return 0;
2409 
2410  fail6:
2411 	i2c_del_adapter(&board->i2c_adap);
2412 	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2413  fail5:
2414 	ef4_nic_free_buffer(efx, &efx->irq_status);
2415  fail4:
2416  fail3:
2417 	if (nic_data->pci_dev2) {
2418 		pci_dev_put(nic_data->pci_dev2);
2419 		nic_data->pci_dev2 = NULL;
2420 	}
2421  fail2:
2422  fail1:
2423 	kfree(efx->nic_data);
2424 	return rc;
2425 }
2426 
2427 static void falcon_init_rx_cfg(struct ef4_nic *efx)
2428 {
2429 	/* RX control FIFO thresholds (32 entries) */
2430 	const unsigned ctrl_xon_thr = 20;
2431 	const unsigned ctrl_xoff_thr = 25;
2432 	ef4_oword_t reg;
2433 
2434 	ef4_reado(efx, &reg, FR_AZ_RX_CFG);
2435 	if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1) {
2436 		/* Data FIFO size is 5.5K.  The RX DMA engine only
2437 		 * supports scattering for user-mode queues, but will
2438 		 * split DMA writes at intervals of RX_USR_BUF_SIZE
2439 		 * (32-byte units) even for kernel-mode queues.  We
2440 		 * set it to be so large that that never happens.
2441 		 */
2442 		EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2443 		EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2444 				    (3 * 4096) >> 5);
2445 		EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
2446 		EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
2447 		EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2448 		EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2449 	} else {
2450 		/* Data FIFO size is 80K; register fields moved */
2451 		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2452 		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2453 				    EF4_RX_USR_BUF_SIZE >> 5);
2454 		/* Send XON and XOFF at ~3 * max MTU away from empty/full */
2455 		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
2456 		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
2457 		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2458 		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2459 		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2460 
2461 		/* Enable hash insertion. This is broken for the
2462 		 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
2463 		 * IPv4 hashes. */
2464 		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
2465 		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
2466 		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
2467 	}
2468 	/* Always enable XOFF signal from RX FIFO.  We enable
2469 	 * or disable transmission of pause frames at the MAC. */
2470 	EF4_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
2471 	ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
2472 }
2473 
2474 /* This call performs hardware-specific global initialisation, such as
2475  * defining the descriptor cache sizes and number of RSS channels.
2476  * It does not set up any buffers, descriptor rings or event queues.
2477  */
2478 static int falcon_init_nic(struct ef4_nic *efx)
2479 {
2480 	ef4_oword_t temp;
2481 	int rc;
2482 
2483 	/* Use on-chip SRAM */
2484 	ef4_reado(efx, &temp, FR_AB_NIC_STAT);
2485 	EF4_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2486 	ef4_writeo(efx, &temp, FR_AB_NIC_STAT);
2487 
2488 	rc = falcon_reset_sram(efx);
2489 	if (rc)
2490 		return rc;
2491 
2492 	/* Clear the parity enables on the TX data fifos as
2493 	 * they produce false parity errors because of timing issues
2494 	 */
2495 	if (EF4_WORKAROUND_5129(efx)) {
2496 		ef4_reado(efx, &temp, FR_AZ_CSR_SPARE);
2497 		EF4_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
2498 		ef4_writeo(efx, &temp, FR_AZ_CSR_SPARE);
2499 	}
2500 
2501 	if (EF4_WORKAROUND_7244(efx)) {
2502 		ef4_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
2503 		EF4_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
2504 		EF4_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
2505 		EF4_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
2506 		EF4_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
2507 		ef4_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
2508 	}
2509 
2510 	/* XXX This is documented only for Falcon A0/A1 */
2511 	/* Setup RX.  Wait for descriptor is broken and must
2512 	 * be disabled.  RXDP recovery shouldn't be needed, but is.
2513 	 */
2514 	ef4_reado(efx, &temp, FR_AA_RX_SELF_RST);
2515 	EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
2516 	EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
2517 	if (EF4_WORKAROUND_5583(efx))
2518 		EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
2519 	ef4_writeo(efx, &temp, FR_AA_RX_SELF_RST);
2520 
2521 	/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2522 	 * descriptors (which is bad).
2523 	 */
2524 	ef4_reado(efx, &temp, FR_AZ_TX_CFG);
2525 	EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
2526 	ef4_writeo(efx, &temp, FR_AZ_TX_CFG);
2527 
2528 	falcon_init_rx_cfg(efx);
2529 
2530 	if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
2531 		falcon_b0_rx_push_rss_config(efx, false, efx->rx_indir_table);
2532 
2533 		/* Set destination of both TX and RX Flush events */
2534 		EF4_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
2535 		ef4_writeo(efx, &temp, FR_BZ_DP_CTRL);
2536 	}
2537 
2538 	ef4_farch_init_common(efx);
2539 
2540 	return 0;
2541 }
2542 
2543 static void falcon_remove_nic(struct ef4_nic *efx)
2544 {
2545 	struct falcon_nic_data *nic_data = efx->nic_data;
2546 	struct falcon_board *board = falcon_board(efx);
2547 
2548 	board->type->fini(efx);
2549 
2550 	/* Remove I2C adapter and clear it in preparation for a retry */
2551 	i2c_del_adapter(&board->i2c_adap);
2552 	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2553 
2554 	ef4_nic_free_buffer(efx, &efx->irq_status);
2555 
2556 	__falcon_reset_hw(efx, RESET_TYPE_ALL);
2557 
2558 	/* Release the second function after the reset */
2559 	if (nic_data->pci_dev2) {
2560 		pci_dev_put(nic_data->pci_dev2);
2561 		nic_data->pci_dev2 = NULL;
2562 	}
2563 
2564 	/* Tear down the private nic state */
2565 	kfree(efx->nic_data);
2566 	efx->nic_data = NULL;
2567 }
2568 
2569 static size_t falcon_describe_nic_stats(struct ef4_nic *efx, u8 *names)
2570 {
2571 	return ef4_nic_describe_stats(falcon_stat_desc, FALCON_STAT_COUNT,
2572 				      falcon_stat_mask, names);
2573 }
2574 
2575 static size_t falcon_update_nic_stats(struct ef4_nic *efx, u64 *full_stats,
2576 				      struct rtnl_link_stats64 *core_stats)
2577 {
2578 	struct falcon_nic_data *nic_data = efx->nic_data;
2579 	u64 *stats = nic_data->stats;
2580 	ef4_oword_t cnt;
2581 
2582 	if (!nic_data->stats_disable_count) {
2583 		ef4_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
2584 		stats[FALCON_STAT_rx_nodesc_drop_cnt] +=
2585 			EF4_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
2586 
2587 		if (nic_data->stats_pending &&
2588 		    FALCON_XMAC_STATS_DMA_FLAG(efx)) {
2589 			nic_data->stats_pending = false;
2590 			rmb(); /* read the done flag before the stats */
2591 			ef4_nic_update_stats(
2592 				falcon_stat_desc, FALCON_STAT_COUNT,
2593 				falcon_stat_mask,
2594 				stats, efx->stats_buffer.addr, true);
2595 		}
2596 
2597 		/* Update derived statistic */
2598 		ef4_update_diff_stat(&stats[FALCON_STAT_rx_bad_bytes],
2599 				     stats[FALCON_STAT_rx_bytes] -
2600 				     stats[FALCON_STAT_rx_good_bytes] -
2601 				     stats[FALCON_STAT_rx_control] * 64);
2602 		ef4_update_sw_stats(efx, stats);
2603 	}
2604 
2605 	if (full_stats)
2606 		memcpy(full_stats, stats, sizeof(u64) * FALCON_STAT_COUNT);
2607 
2608 	if (core_stats) {
2609 		core_stats->rx_packets = stats[FALCON_STAT_rx_packets];
2610 		core_stats->tx_packets = stats[FALCON_STAT_tx_packets];
2611 		core_stats->rx_bytes = stats[FALCON_STAT_rx_bytes];
2612 		core_stats->tx_bytes = stats[FALCON_STAT_tx_bytes];
2613 		core_stats->rx_dropped = stats[FALCON_STAT_rx_nodesc_drop_cnt] +
2614 					 stats[GENERIC_STAT_rx_nodesc_trunc] +
2615 					 stats[GENERIC_STAT_rx_noskb_drops];
2616 		core_stats->multicast = stats[FALCON_STAT_rx_multicast];
2617 		core_stats->rx_length_errors =
2618 			stats[FALCON_STAT_rx_gtjumbo] +
2619 			stats[FALCON_STAT_rx_length_error];
2620 		core_stats->rx_crc_errors = stats[FALCON_STAT_rx_bad];
2621 		core_stats->rx_frame_errors = stats[FALCON_STAT_rx_align_error];
2622 		core_stats->rx_fifo_errors = stats[FALCON_STAT_rx_overflow];
2623 
2624 		core_stats->rx_errors = (core_stats->rx_length_errors +
2625 					 core_stats->rx_crc_errors +
2626 					 core_stats->rx_frame_errors +
2627 					 stats[FALCON_STAT_rx_symbol_error]);
2628 	}
2629 
2630 	return FALCON_STAT_COUNT;
2631 }
2632 
2633 void falcon_start_nic_stats(struct ef4_nic *efx)
2634 {
2635 	struct falcon_nic_data *nic_data = efx->nic_data;
2636 
2637 	spin_lock_bh(&efx->stats_lock);
2638 	if (--nic_data->stats_disable_count == 0)
2639 		falcon_stats_request(efx);
2640 	spin_unlock_bh(&efx->stats_lock);
2641 }
2642 
2643 /* We don't acutally pull stats on falcon. Wait 10ms so that
2644  * they arrive when we call this just after start_stats
2645  */
2646 static void falcon_pull_nic_stats(struct ef4_nic *efx)
2647 {
2648 	msleep(10);
2649 }
2650 
2651 void falcon_stop_nic_stats(struct ef4_nic *efx)
2652 {
2653 	struct falcon_nic_data *nic_data = efx->nic_data;
2654 	int i;
2655 
2656 	might_sleep();
2657 
2658 	spin_lock_bh(&efx->stats_lock);
2659 	++nic_data->stats_disable_count;
2660 	spin_unlock_bh(&efx->stats_lock);
2661 
2662 	del_timer_sync(&nic_data->stats_timer);
2663 
2664 	/* Wait enough time for the most recent transfer to
2665 	 * complete. */
2666 	for (i = 0; i < 4 && nic_data->stats_pending; i++) {
2667 		if (FALCON_XMAC_STATS_DMA_FLAG(efx))
2668 			break;
2669 		msleep(1);
2670 	}
2671 
2672 	spin_lock_bh(&efx->stats_lock);
2673 	falcon_stats_complete(efx);
2674 	spin_unlock_bh(&efx->stats_lock);
2675 }
2676 
2677 static void falcon_set_id_led(struct ef4_nic *efx, enum ef4_led_mode mode)
2678 {
2679 	falcon_board(efx)->type->set_id_led(efx, mode);
2680 }
2681 
2682 /**************************************************************************
2683  *
2684  * Wake on LAN
2685  *
2686  **************************************************************************
2687  */
2688 
2689 static void falcon_get_wol(struct ef4_nic *efx, struct ethtool_wolinfo *wol)
2690 {
2691 	wol->supported = 0;
2692 	wol->wolopts = 0;
2693 	memset(&wol->sopass, 0, sizeof(wol->sopass));
2694 }
2695 
2696 static int falcon_set_wol(struct ef4_nic *efx, u32 type)
2697 {
2698 	if (type != 0)
2699 		return -EINVAL;
2700 	return 0;
2701 }
2702 
2703 /**************************************************************************
2704  *
2705  * Revision-dependent attributes used by efx.c and nic.c
2706  *
2707  **************************************************************************
2708  */
2709 
2710 const struct ef4_nic_type falcon_a1_nic_type = {
2711 	.mem_bar = EF4_MEM_BAR,
2712 	.mem_map_size = falcon_a1_mem_map_size,
2713 	.probe = falcon_probe_nic,
2714 	.remove = falcon_remove_nic,
2715 	.init = falcon_init_nic,
2716 	.dimension_resources = falcon_dimension_resources,
2717 	.fini = falcon_irq_ack_a1,
2718 	.monitor = falcon_monitor,
2719 	.map_reset_reason = falcon_map_reset_reason,
2720 	.map_reset_flags = falcon_map_reset_flags,
2721 	.reset = falcon_reset_hw,
2722 	.probe_port = falcon_probe_port,
2723 	.remove_port = falcon_remove_port,
2724 	.handle_global_event = falcon_handle_global_event,
2725 	.fini_dmaq = ef4_farch_fini_dmaq,
2726 	.prepare_flush = falcon_prepare_flush,
2727 	.finish_flush = ef4_port_dummy_op_void,
2728 	.prepare_flr = ef4_port_dummy_op_void,
2729 	.finish_flr = ef4_farch_finish_flr,
2730 	.describe_stats = falcon_describe_nic_stats,
2731 	.update_stats = falcon_update_nic_stats,
2732 	.start_stats = falcon_start_nic_stats,
2733 	.pull_stats = falcon_pull_nic_stats,
2734 	.stop_stats = falcon_stop_nic_stats,
2735 	.set_id_led = falcon_set_id_led,
2736 	.push_irq_moderation = falcon_push_irq_moderation,
2737 	.reconfigure_port = falcon_reconfigure_port,
2738 	.prepare_enable_fc_tx = falcon_a1_prepare_enable_fc_tx,
2739 	.reconfigure_mac = falcon_reconfigure_xmac,
2740 	.check_mac_fault = falcon_xmac_check_fault,
2741 	.get_wol = falcon_get_wol,
2742 	.set_wol = falcon_set_wol,
2743 	.resume_wol = ef4_port_dummy_op_void,
2744 	.test_nvram = falcon_test_nvram,
2745 	.irq_enable_master = ef4_farch_irq_enable_master,
2746 	.irq_test_generate = ef4_farch_irq_test_generate,
2747 	.irq_disable_non_ev = ef4_farch_irq_disable_master,
2748 	.irq_handle_msi = ef4_farch_msi_interrupt,
2749 	.irq_handle_legacy = falcon_legacy_interrupt_a1,
2750 	.tx_probe = ef4_farch_tx_probe,
2751 	.tx_init = ef4_farch_tx_init,
2752 	.tx_remove = ef4_farch_tx_remove,
2753 	.tx_write = ef4_farch_tx_write,
2754 	.tx_limit_len = ef4_farch_tx_limit_len,
2755 	.rx_push_rss_config = dummy_rx_push_rss_config,
2756 	.rx_probe = ef4_farch_rx_probe,
2757 	.rx_init = ef4_farch_rx_init,
2758 	.rx_remove = ef4_farch_rx_remove,
2759 	.rx_write = ef4_farch_rx_write,
2760 	.rx_defer_refill = ef4_farch_rx_defer_refill,
2761 	.ev_probe = ef4_farch_ev_probe,
2762 	.ev_init = ef4_farch_ev_init,
2763 	.ev_fini = ef4_farch_ev_fini,
2764 	.ev_remove = ef4_farch_ev_remove,
2765 	.ev_process = ef4_farch_ev_process,
2766 	.ev_read_ack = ef4_farch_ev_read_ack,
2767 	.ev_test_generate = ef4_farch_ev_test_generate,
2768 
2769 	/* We don't expose the filter table on Falcon A1 as it is not
2770 	 * mapped into function 0, but these implementations still
2771 	 * work with a degenerate case of all tables set to size 0.
2772 	 */
2773 	.filter_table_probe = ef4_farch_filter_table_probe,
2774 	.filter_table_restore = ef4_farch_filter_table_restore,
2775 	.filter_table_remove = ef4_farch_filter_table_remove,
2776 	.filter_insert = ef4_farch_filter_insert,
2777 	.filter_remove_safe = ef4_farch_filter_remove_safe,
2778 	.filter_get_safe = ef4_farch_filter_get_safe,
2779 	.filter_clear_rx = ef4_farch_filter_clear_rx,
2780 	.filter_count_rx_used = ef4_farch_filter_count_rx_used,
2781 	.filter_get_rx_id_limit = ef4_farch_filter_get_rx_id_limit,
2782 	.filter_get_rx_ids = ef4_farch_filter_get_rx_ids,
2783 
2784 #ifdef CONFIG_SFC_FALCON_MTD
2785 	.mtd_probe = falcon_mtd_probe,
2786 	.mtd_rename = falcon_mtd_rename,
2787 	.mtd_read = falcon_mtd_read,
2788 	.mtd_erase = falcon_mtd_erase,
2789 	.mtd_write = falcon_mtd_write,
2790 	.mtd_sync = falcon_mtd_sync,
2791 #endif
2792 
2793 	.revision = EF4_REV_FALCON_A1,
2794 	.txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
2795 	.rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
2796 	.buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
2797 	.evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
2798 	.evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
2799 	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2800 	.rx_buffer_padding = 0x24,
2801 	.can_rx_scatter = false,
2802 	.max_interrupt_mode = EF4_INT_MODE_MSI,
2803 	.timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2804 	.offload_features = NETIF_F_IP_CSUM,
2805 };
2806 
2807 const struct ef4_nic_type falcon_b0_nic_type = {
2808 	.mem_bar = EF4_MEM_BAR,
2809 	.mem_map_size = falcon_b0_mem_map_size,
2810 	.probe = falcon_probe_nic,
2811 	.remove = falcon_remove_nic,
2812 	.init = falcon_init_nic,
2813 	.dimension_resources = falcon_dimension_resources,
2814 	.fini = ef4_port_dummy_op_void,
2815 	.monitor = falcon_monitor,
2816 	.map_reset_reason = falcon_map_reset_reason,
2817 	.map_reset_flags = falcon_map_reset_flags,
2818 	.reset = falcon_reset_hw,
2819 	.probe_port = falcon_probe_port,
2820 	.remove_port = falcon_remove_port,
2821 	.handle_global_event = falcon_handle_global_event,
2822 	.fini_dmaq = ef4_farch_fini_dmaq,
2823 	.prepare_flush = falcon_prepare_flush,
2824 	.finish_flush = ef4_port_dummy_op_void,
2825 	.prepare_flr = ef4_port_dummy_op_void,
2826 	.finish_flr = ef4_farch_finish_flr,
2827 	.describe_stats = falcon_describe_nic_stats,
2828 	.update_stats = falcon_update_nic_stats,
2829 	.start_stats = falcon_start_nic_stats,
2830 	.pull_stats = falcon_pull_nic_stats,
2831 	.stop_stats = falcon_stop_nic_stats,
2832 	.set_id_led = falcon_set_id_led,
2833 	.push_irq_moderation = falcon_push_irq_moderation,
2834 	.reconfigure_port = falcon_reconfigure_port,
2835 	.prepare_enable_fc_tx = falcon_b0_prepare_enable_fc_tx,
2836 	.reconfigure_mac = falcon_reconfigure_xmac,
2837 	.check_mac_fault = falcon_xmac_check_fault,
2838 	.get_wol = falcon_get_wol,
2839 	.set_wol = falcon_set_wol,
2840 	.resume_wol = ef4_port_dummy_op_void,
2841 	.test_chip = falcon_b0_test_chip,
2842 	.test_nvram = falcon_test_nvram,
2843 	.irq_enable_master = ef4_farch_irq_enable_master,
2844 	.irq_test_generate = ef4_farch_irq_test_generate,
2845 	.irq_disable_non_ev = ef4_farch_irq_disable_master,
2846 	.irq_handle_msi = ef4_farch_msi_interrupt,
2847 	.irq_handle_legacy = ef4_farch_legacy_interrupt,
2848 	.tx_probe = ef4_farch_tx_probe,
2849 	.tx_init = ef4_farch_tx_init,
2850 	.tx_remove = ef4_farch_tx_remove,
2851 	.tx_write = ef4_farch_tx_write,
2852 	.tx_limit_len = ef4_farch_tx_limit_len,
2853 	.rx_push_rss_config = falcon_b0_rx_push_rss_config,
2854 	.rx_probe = ef4_farch_rx_probe,
2855 	.rx_init = ef4_farch_rx_init,
2856 	.rx_remove = ef4_farch_rx_remove,
2857 	.rx_write = ef4_farch_rx_write,
2858 	.rx_defer_refill = ef4_farch_rx_defer_refill,
2859 	.ev_probe = ef4_farch_ev_probe,
2860 	.ev_init = ef4_farch_ev_init,
2861 	.ev_fini = ef4_farch_ev_fini,
2862 	.ev_remove = ef4_farch_ev_remove,
2863 	.ev_process = ef4_farch_ev_process,
2864 	.ev_read_ack = ef4_farch_ev_read_ack,
2865 	.ev_test_generate = ef4_farch_ev_test_generate,
2866 	.filter_table_probe = ef4_farch_filter_table_probe,
2867 	.filter_table_restore = ef4_farch_filter_table_restore,
2868 	.filter_table_remove = ef4_farch_filter_table_remove,
2869 	.filter_update_rx_scatter = ef4_farch_filter_update_rx_scatter,
2870 	.filter_insert = ef4_farch_filter_insert,
2871 	.filter_remove_safe = ef4_farch_filter_remove_safe,
2872 	.filter_get_safe = ef4_farch_filter_get_safe,
2873 	.filter_clear_rx = ef4_farch_filter_clear_rx,
2874 	.filter_count_rx_used = ef4_farch_filter_count_rx_used,
2875 	.filter_get_rx_id_limit = ef4_farch_filter_get_rx_id_limit,
2876 	.filter_get_rx_ids = ef4_farch_filter_get_rx_ids,
2877 #ifdef CONFIG_RFS_ACCEL
2878 	.filter_rfs_insert = ef4_farch_filter_rfs_insert,
2879 	.filter_rfs_expire_one = ef4_farch_filter_rfs_expire_one,
2880 #endif
2881 #ifdef CONFIG_SFC_FALCON_MTD
2882 	.mtd_probe = falcon_mtd_probe,
2883 	.mtd_rename = falcon_mtd_rename,
2884 	.mtd_read = falcon_mtd_read,
2885 	.mtd_erase = falcon_mtd_erase,
2886 	.mtd_write = falcon_mtd_write,
2887 	.mtd_sync = falcon_mtd_sync,
2888 #endif
2889 
2890 	.revision = EF4_REV_FALCON_B0,
2891 	.txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
2892 	.rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
2893 	.buf_tbl_base = FR_BZ_BUF_FULL_TBL,
2894 	.evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
2895 	.evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
2896 	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2897 	.rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
2898 	.rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
2899 	.rx_buffer_padding = 0,
2900 	.can_rx_scatter = true,
2901 	.max_interrupt_mode = EF4_INT_MODE_MSIX,
2902 	.timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2903 	.offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
2904 	.max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
2905 };
2906