xref: /linux/drivers/net/ethernet/sfc/falcon/falcon.c (revision 2fcea44e1ba16c55f4602948d2d43f3a365d6070)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2006-2013 Solarflare Communications Inc.
6  */
7 
8 #include <linux/bitops.h>
9 #include <linux/delay.h>
10 #include <linux/pci.h>
11 #include <linux/module.h>
12 #include <linux/seq_file.h>
13 #include <linux/i2c.h>
14 #include <linux/mii.h>
15 #include <linux/slab.h>
16 #include <linux/sched/signal.h>
17 
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "farch_regs.h"
23 #include "io.h"
24 #include "phy.h"
25 #include "workarounds.h"
26 #include "selftest.h"
27 #include "mdio_10g.h"
28 
29 /* Hardware control for SFC4000 (aka Falcon). */
30 
31 /**************************************************************************
32  *
33  * NIC stats
34  *
35  **************************************************************************
36  */
37 
38 #define FALCON_MAC_STATS_SIZE 0x100
39 
40 #define XgRxOctets_offset 0x0
41 #define XgRxOctets_WIDTH 48
42 #define XgRxOctetsOK_offset 0x8
43 #define XgRxOctetsOK_WIDTH 48
44 #define XgRxPkts_offset 0x10
45 #define XgRxPkts_WIDTH 32
46 #define XgRxPktsOK_offset 0x14
47 #define XgRxPktsOK_WIDTH 32
48 #define XgRxBroadcastPkts_offset 0x18
49 #define XgRxBroadcastPkts_WIDTH 32
50 #define XgRxMulticastPkts_offset 0x1C
51 #define XgRxMulticastPkts_WIDTH 32
52 #define XgRxUnicastPkts_offset 0x20
53 #define XgRxUnicastPkts_WIDTH 32
54 #define XgRxUndersizePkts_offset 0x24
55 #define XgRxUndersizePkts_WIDTH 32
56 #define XgRxOversizePkts_offset 0x28
57 #define XgRxOversizePkts_WIDTH 32
58 #define XgRxJabberPkts_offset 0x2C
59 #define XgRxJabberPkts_WIDTH 32
60 #define XgRxUndersizeFCSerrorPkts_offset 0x30
61 #define XgRxUndersizeFCSerrorPkts_WIDTH 32
62 #define XgRxDropEvents_offset 0x34
63 #define XgRxDropEvents_WIDTH 32
64 #define XgRxFCSerrorPkts_offset 0x38
65 #define XgRxFCSerrorPkts_WIDTH 32
66 #define XgRxAlignError_offset 0x3C
67 #define XgRxAlignError_WIDTH 32
68 #define XgRxSymbolError_offset 0x40
69 #define XgRxSymbolError_WIDTH 32
70 #define XgRxInternalMACError_offset 0x44
71 #define XgRxInternalMACError_WIDTH 32
72 #define XgRxControlPkts_offset 0x48
73 #define XgRxControlPkts_WIDTH 32
74 #define XgRxPausePkts_offset 0x4C
75 #define XgRxPausePkts_WIDTH 32
76 #define XgRxPkts64Octets_offset 0x50
77 #define XgRxPkts64Octets_WIDTH 32
78 #define XgRxPkts65to127Octets_offset 0x54
79 #define XgRxPkts65to127Octets_WIDTH 32
80 #define XgRxPkts128to255Octets_offset 0x58
81 #define XgRxPkts128to255Octets_WIDTH 32
82 #define XgRxPkts256to511Octets_offset 0x5C
83 #define XgRxPkts256to511Octets_WIDTH 32
84 #define XgRxPkts512to1023Octets_offset 0x60
85 #define XgRxPkts512to1023Octets_WIDTH 32
86 #define XgRxPkts1024to15xxOctets_offset 0x64
87 #define XgRxPkts1024to15xxOctets_WIDTH 32
88 #define XgRxPkts15xxtoMaxOctets_offset 0x68
89 #define XgRxPkts15xxtoMaxOctets_WIDTH 32
90 #define XgRxLengthError_offset 0x6C
91 #define XgRxLengthError_WIDTH 32
92 #define XgTxPkts_offset 0x80
93 #define XgTxPkts_WIDTH 32
94 #define XgTxOctets_offset 0x88
95 #define XgTxOctets_WIDTH 48
96 #define XgTxMulticastPkts_offset 0x90
97 #define XgTxMulticastPkts_WIDTH 32
98 #define XgTxBroadcastPkts_offset 0x94
99 #define XgTxBroadcastPkts_WIDTH 32
100 #define XgTxUnicastPkts_offset 0x98
101 #define XgTxUnicastPkts_WIDTH 32
102 #define XgTxControlPkts_offset 0x9C
103 #define XgTxControlPkts_WIDTH 32
104 #define XgTxPausePkts_offset 0xA0
105 #define XgTxPausePkts_WIDTH 32
106 #define XgTxPkts64Octets_offset 0xA4
107 #define XgTxPkts64Octets_WIDTH 32
108 #define XgTxPkts65to127Octets_offset 0xA8
109 #define XgTxPkts65to127Octets_WIDTH 32
110 #define XgTxPkts128to255Octets_offset 0xAC
111 #define XgTxPkts128to255Octets_WIDTH 32
112 #define XgTxPkts256to511Octets_offset 0xB0
113 #define XgTxPkts256to511Octets_WIDTH 32
114 #define XgTxPkts512to1023Octets_offset 0xB4
115 #define XgTxPkts512to1023Octets_WIDTH 32
116 #define XgTxPkts1024to15xxOctets_offset 0xB8
117 #define XgTxPkts1024to15xxOctets_WIDTH 32
118 #define XgTxPkts1519toMaxOctets_offset 0xBC
119 #define XgTxPkts1519toMaxOctets_WIDTH 32
120 #define XgTxUndersizePkts_offset 0xC0
121 #define XgTxUndersizePkts_WIDTH 32
122 #define XgTxOversizePkts_offset 0xC4
123 #define XgTxOversizePkts_WIDTH 32
124 #define XgTxNonTcpUdpPkt_offset 0xC8
125 #define XgTxNonTcpUdpPkt_WIDTH 16
126 #define XgTxMacSrcErrPkt_offset 0xCC
127 #define XgTxMacSrcErrPkt_WIDTH 16
128 #define XgTxIpSrcErrPkt_offset 0xD0
129 #define XgTxIpSrcErrPkt_WIDTH 16
130 #define XgDmaDone_offset 0xD4
131 #define XgDmaDone_WIDTH 32
132 
133 #define FALCON_XMAC_STATS_DMA_FLAG(efx)				\
134 	(*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
135 
136 #define FALCON_DMA_STAT(ext_name, hw_name)				\
137 	[FALCON_STAT_ ## ext_name] =					\
138 	{ #ext_name,							\
139 	  /* 48-bit stats are zero-padded to 64 on DMA */		\
140 	  hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH,	\
141 	  hw_name ## _ ## offset }
142 #define FALCON_OTHER_STAT(ext_name)					\
143 	[FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
144 #define GENERIC_SW_STAT(ext_name)				\
145 	[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
146 
147 static const struct ef4_hw_stat_desc falcon_stat_desc[FALCON_STAT_COUNT] = {
148 	FALCON_DMA_STAT(tx_bytes, XgTxOctets),
149 	FALCON_DMA_STAT(tx_packets, XgTxPkts),
150 	FALCON_DMA_STAT(tx_pause, XgTxPausePkts),
151 	FALCON_DMA_STAT(tx_control, XgTxControlPkts),
152 	FALCON_DMA_STAT(tx_unicast, XgTxUnicastPkts),
153 	FALCON_DMA_STAT(tx_multicast, XgTxMulticastPkts),
154 	FALCON_DMA_STAT(tx_broadcast, XgTxBroadcastPkts),
155 	FALCON_DMA_STAT(tx_lt64, XgTxUndersizePkts),
156 	FALCON_DMA_STAT(tx_64, XgTxPkts64Octets),
157 	FALCON_DMA_STAT(tx_65_to_127, XgTxPkts65to127Octets),
158 	FALCON_DMA_STAT(tx_128_to_255, XgTxPkts128to255Octets),
159 	FALCON_DMA_STAT(tx_256_to_511, XgTxPkts256to511Octets),
160 	FALCON_DMA_STAT(tx_512_to_1023, XgTxPkts512to1023Octets),
161 	FALCON_DMA_STAT(tx_1024_to_15xx, XgTxPkts1024to15xxOctets),
162 	FALCON_DMA_STAT(tx_15xx_to_jumbo, XgTxPkts1519toMaxOctets),
163 	FALCON_DMA_STAT(tx_gtjumbo, XgTxOversizePkts),
164 	FALCON_DMA_STAT(tx_non_tcpudp, XgTxNonTcpUdpPkt),
165 	FALCON_DMA_STAT(tx_mac_src_error, XgTxMacSrcErrPkt),
166 	FALCON_DMA_STAT(tx_ip_src_error, XgTxIpSrcErrPkt),
167 	FALCON_DMA_STAT(rx_bytes, XgRxOctets),
168 	FALCON_DMA_STAT(rx_good_bytes, XgRxOctetsOK),
169 	FALCON_OTHER_STAT(rx_bad_bytes),
170 	FALCON_DMA_STAT(rx_packets, XgRxPkts),
171 	FALCON_DMA_STAT(rx_good, XgRxPktsOK),
172 	FALCON_DMA_STAT(rx_bad, XgRxFCSerrorPkts),
173 	FALCON_DMA_STAT(rx_pause, XgRxPausePkts),
174 	FALCON_DMA_STAT(rx_control, XgRxControlPkts),
175 	FALCON_DMA_STAT(rx_unicast, XgRxUnicastPkts),
176 	FALCON_DMA_STAT(rx_multicast, XgRxMulticastPkts),
177 	FALCON_DMA_STAT(rx_broadcast, XgRxBroadcastPkts),
178 	FALCON_DMA_STAT(rx_lt64, XgRxUndersizePkts),
179 	FALCON_DMA_STAT(rx_64, XgRxPkts64Octets),
180 	FALCON_DMA_STAT(rx_65_to_127, XgRxPkts65to127Octets),
181 	FALCON_DMA_STAT(rx_128_to_255, XgRxPkts128to255Octets),
182 	FALCON_DMA_STAT(rx_256_to_511, XgRxPkts256to511Octets),
183 	FALCON_DMA_STAT(rx_512_to_1023, XgRxPkts512to1023Octets),
184 	FALCON_DMA_STAT(rx_1024_to_15xx, XgRxPkts1024to15xxOctets),
185 	FALCON_DMA_STAT(rx_15xx_to_jumbo, XgRxPkts15xxtoMaxOctets),
186 	FALCON_DMA_STAT(rx_gtjumbo, XgRxOversizePkts),
187 	FALCON_DMA_STAT(rx_bad_lt64, XgRxUndersizeFCSerrorPkts),
188 	FALCON_DMA_STAT(rx_bad_gtjumbo, XgRxJabberPkts),
189 	FALCON_DMA_STAT(rx_overflow, XgRxDropEvents),
190 	FALCON_DMA_STAT(rx_symbol_error, XgRxSymbolError),
191 	FALCON_DMA_STAT(rx_align_error, XgRxAlignError),
192 	FALCON_DMA_STAT(rx_length_error, XgRxLengthError),
193 	FALCON_DMA_STAT(rx_internal_error, XgRxInternalMACError),
194 	FALCON_OTHER_STAT(rx_nodesc_drop_cnt),
195 	GENERIC_SW_STAT(rx_nodesc_trunc),
196 	GENERIC_SW_STAT(rx_noskb_drops),
197 };
198 static const unsigned long falcon_stat_mask[] = {
199 	[0 ... BITS_TO_LONGS(FALCON_STAT_COUNT) - 1] = ~0UL,
200 };
201 
202 /**************************************************************************
203  *
204  * Basic SPI command set and bit definitions
205  *
206  *************************************************************************/
207 
208 #define SPI_WRSR 0x01		/* Write status register */
209 #define SPI_WRITE 0x02		/* Write data to memory array */
210 #define SPI_READ 0x03		/* Read data from memory array */
211 #define SPI_WRDI 0x04		/* Reset write enable latch */
212 #define SPI_RDSR 0x05		/* Read status register */
213 #define SPI_WREN 0x06		/* Set write enable latch */
214 #define SPI_SST_EWSR 0x50	/* SST: Enable write to status register */
215 
216 #define SPI_STATUS_WPEN 0x80	/* Write-protect pin enabled */
217 #define SPI_STATUS_BP2 0x10	/* Block protection bit 2 */
218 #define SPI_STATUS_BP1 0x08	/* Block protection bit 1 */
219 #define SPI_STATUS_BP0 0x04	/* Block protection bit 0 */
220 #define SPI_STATUS_WEN 0x02	/* State of the write enable latch */
221 #define SPI_STATUS_NRDY 0x01	/* Device busy flag */
222 
223 /**************************************************************************
224  *
225  * Non-volatile memory layout
226  *
227  **************************************************************************
228  */
229 
230 /* SFC4000 flash is partitioned into:
231  *     0-0x400       chip and board config (see struct falcon_nvconfig)
232  *     0x400-0x8000  unused (or may contain VPD if EEPROM not present)
233  *     0x8000-end    boot code (mapped to PCI expansion ROM)
234  * SFC4000 small EEPROM (size < 0x400) is used for VPD only.
235  * SFC4000 large EEPROM (size >= 0x400) is partitioned into:
236  *     0-0x400       chip and board config
237  *     configurable  VPD
238  *     0x800-0x1800  boot config
239  * Aside from the chip and board config, all of these are optional and may
240  * be absent or truncated depending on the devices used.
241  */
242 #define FALCON_NVCONFIG_END 0x400U
243 #define FALCON_FLASH_BOOTCODE_START 0x8000U
244 #define FALCON_EEPROM_BOOTCONFIG_START 0x800U
245 #define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
246 
247 /* Board configuration v2 (v1 is obsolete; later versions are compatible) */
248 struct falcon_nvconfig_board_v2 {
249 	__le16 nports;
250 	u8 port0_phy_addr;
251 	u8 port0_phy_type;
252 	u8 port1_phy_addr;
253 	u8 port1_phy_type;
254 	__le16 asic_sub_revision;
255 	__le16 board_revision;
256 } __packed;
257 
258 /* Board configuration v3 extra information */
259 struct falcon_nvconfig_board_v3 {
260 	__le32 spi_device_type[2];
261 } __packed;
262 
263 /* Bit numbers for spi_device_type */
264 #define SPI_DEV_TYPE_SIZE_LBN 0
265 #define SPI_DEV_TYPE_SIZE_WIDTH 5
266 #define SPI_DEV_TYPE_ADDR_LEN_LBN 6
267 #define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
268 #define SPI_DEV_TYPE_ERASE_CMD_LBN 8
269 #define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
270 #define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
271 #define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
272 #define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
273 #define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
274 #define SPI_DEV_TYPE_FIELD(type, field)					\
275 	(((type) >> EF4_LOW_BIT(field)) & EF4_MASK32(EF4_WIDTH(field)))
276 
277 #define FALCON_NVCONFIG_OFFSET 0x300
278 
279 #define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
280 struct falcon_nvconfig {
281 	ef4_oword_t ee_vpd_cfg_reg;			/* 0x300 */
282 	u8 mac_address[2][8];			/* 0x310 */
283 	ef4_oword_t pcie_sd_ctl0123_reg;		/* 0x320 */
284 	ef4_oword_t pcie_sd_ctl45_reg;			/* 0x330 */
285 	ef4_oword_t pcie_pcs_ctl_stat_reg;		/* 0x340 */
286 	ef4_oword_t hw_init_reg;			/* 0x350 */
287 	ef4_oword_t nic_stat_reg;			/* 0x360 */
288 	ef4_oword_t glb_ctl_reg;			/* 0x370 */
289 	ef4_oword_t srm_cfg_reg;			/* 0x380 */
290 	ef4_oword_t spare_reg;				/* 0x390 */
291 	__le16 board_magic_num;			/* 0x3A0 */
292 	__le16 board_struct_ver;
293 	__le16 board_checksum;
294 	struct falcon_nvconfig_board_v2 board_v2;
295 	ef4_oword_t ee_base_page_reg;			/* 0x3B0 */
296 	struct falcon_nvconfig_board_v3 board_v3;	/* 0x3C0 */
297 } __packed;
298 
299 /*************************************************************************/
300 
301 static int falcon_reset_hw(struct ef4_nic *efx, enum reset_type method);
302 static void falcon_reconfigure_mac_wrapper(struct ef4_nic *efx);
303 
304 static const unsigned int
305 /* "Large" EEPROM device: Atmel AT25640 or similar
306  * 8 KB, 16-bit address, 32 B write block */
307 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
308 		     | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
309 		     | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
310 /* Default flash device: Atmel AT25F1024
311  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
312 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
313 		      | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
314 		      | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
315 		      | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
316 		      | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
317 
318 /**************************************************************************
319  *
320  * I2C bus - this is a bit-bashing interface using GPIO pins
321  * Note that it uses the output enables to tristate the outputs
322  * SDA is the data pin and SCL is the clock
323  *
324  **************************************************************************
325  */
326 static void falcon_setsda(void *data, int state)
327 {
328 	struct ef4_nic *efx = (struct ef4_nic *)data;
329 	ef4_oword_t reg;
330 
331 	ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
332 	EF4_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
333 	ef4_writeo(efx, &reg, FR_AB_GPIO_CTL);
334 }
335 
336 static void falcon_setscl(void *data, int state)
337 {
338 	struct ef4_nic *efx = (struct ef4_nic *)data;
339 	ef4_oword_t reg;
340 
341 	ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
342 	EF4_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
343 	ef4_writeo(efx, &reg, FR_AB_GPIO_CTL);
344 }
345 
346 static int falcon_getsda(void *data)
347 {
348 	struct ef4_nic *efx = (struct ef4_nic *)data;
349 	ef4_oword_t reg;
350 
351 	ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
352 	return EF4_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
353 }
354 
355 static int falcon_getscl(void *data)
356 {
357 	struct ef4_nic *efx = (struct ef4_nic *)data;
358 	ef4_oword_t reg;
359 
360 	ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
361 	return EF4_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
362 }
363 
364 static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
365 	.setsda		= falcon_setsda,
366 	.setscl		= falcon_setscl,
367 	.getsda		= falcon_getsda,
368 	.getscl		= falcon_getscl,
369 	.udelay		= 5,
370 	/* Wait up to 50 ms for target to let us pull SCL high */
371 	.timeout	= DIV_ROUND_UP(HZ, 20),
372 };
373 
374 static void falcon_push_irq_moderation(struct ef4_channel *channel)
375 {
376 	ef4_dword_t timer_cmd;
377 	struct ef4_nic *efx = channel->efx;
378 
379 	/* Set timer register */
380 	if (channel->irq_moderation_us) {
381 		unsigned int ticks;
382 
383 		ticks = ef4_usecs_to_ticks(efx, channel->irq_moderation_us);
384 		EF4_POPULATE_DWORD_2(timer_cmd,
385 				     FRF_AB_TC_TIMER_MODE,
386 				     FFE_BB_TIMER_MODE_INT_HLDOFF,
387 				     FRF_AB_TC_TIMER_VAL,
388 				     ticks - 1);
389 	} else {
390 		EF4_POPULATE_DWORD_2(timer_cmd,
391 				     FRF_AB_TC_TIMER_MODE,
392 				     FFE_BB_TIMER_MODE_DIS,
393 				     FRF_AB_TC_TIMER_VAL, 0);
394 	}
395 	BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
396 	ef4_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
397 			       channel->channel);
398 }
399 
400 static void falcon_deconfigure_mac_wrapper(struct ef4_nic *efx);
401 
402 static void falcon_prepare_flush(struct ef4_nic *efx)
403 {
404 	falcon_deconfigure_mac_wrapper(efx);
405 
406 	/* Wait for the tx and rx fifo's to get to the next packet boundary
407 	 * (~1ms without back-pressure), then to drain the remainder of the
408 	 * fifo's at data path speeds (negligible), with a healthy margin. */
409 	msleep(10);
410 }
411 
412 /* Acknowledge a legacy interrupt from Falcon
413  *
414  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
415  *
416  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
417  * BIU. Interrupt acknowledge is read sensitive so must write instead
418  * (then read to ensure the BIU collector is flushed)
419  *
420  * NB most hardware supports MSI interrupts
421  */
422 static inline void falcon_irq_ack_a1(struct ef4_nic *efx)
423 {
424 	ef4_dword_t reg;
425 
426 	EF4_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
427 	ef4_writed(efx, &reg, FR_AA_INT_ACK_KER);
428 	ef4_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
429 }
430 
431 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
432 {
433 	struct ef4_nic *efx = dev_id;
434 	ef4_oword_t *int_ker = efx->irq_status.addr;
435 	int syserr;
436 	int queues;
437 
438 	/* Check to see if this is our interrupt.  If it isn't, we
439 	 * exit without having touched the hardware.
440 	 */
441 	if (unlikely(EF4_OWORD_IS_ZERO(*int_ker))) {
442 		netif_vdbg(efx, intr, efx->net_dev,
443 			   "IRQ %d on CPU %d not for me\n", irq,
444 			   raw_smp_processor_id());
445 		return IRQ_NONE;
446 	}
447 	efx->last_irq_cpu = raw_smp_processor_id();
448 	netif_vdbg(efx, intr, efx->net_dev,
449 		   "IRQ %d on CPU %d status " EF4_OWORD_FMT "\n",
450 		   irq, raw_smp_processor_id(), EF4_OWORD_VAL(*int_ker));
451 
452 	if (!likely(READ_ONCE(efx->irq_soft_enabled)))
453 		return IRQ_HANDLED;
454 
455 	/* Check to see if we have a serious error condition */
456 	syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
457 	if (unlikely(syserr))
458 		return ef4_farch_fatal_interrupt(efx);
459 
460 	/* Determine interrupting queues, clear interrupt status
461 	 * register and acknowledge the device interrupt.
462 	 */
463 	BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EF4_MAX_CHANNELS);
464 	queues = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
465 	EF4_ZERO_OWORD(*int_ker);
466 	wmb(); /* Ensure the vector is cleared before interrupt ack */
467 	falcon_irq_ack_a1(efx);
468 
469 	if (queues & 1)
470 		ef4_schedule_channel_irq(ef4_get_channel(efx, 0));
471 	if (queues & 2)
472 		ef4_schedule_channel_irq(ef4_get_channel(efx, 1));
473 	return IRQ_HANDLED;
474 }
475 
476 /**************************************************************************
477  *
478  * RSS
479  *
480  **************************************************************************
481  */
482 static int dummy_rx_push_rss_config(struct ef4_nic *efx, bool user,
483 				    const u32 *rx_indir_table)
484 {
485 	(void) efx;
486 	(void) user;
487 	(void) rx_indir_table;
488 	return -ENOSYS;
489 }
490 
491 static int falcon_b0_rx_push_rss_config(struct ef4_nic *efx, bool user,
492 					const u32 *rx_indir_table)
493 {
494 	ef4_oword_t temp;
495 
496 	(void) user;
497 	/* Set hash key for IPv4 */
498 	memcpy(&temp, efx->rx_hash_key, sizeof(temp));
499 	ef4_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
500 
501 	memcpy(efx->rx_indir_table, rx_indir_table,
502 	       sizeof(efx->rx_indir_table));
503 	ef4_farch_rx_push_indir_table(efx);
504 	return 0;
505 }
506 
507 /**************************************************************************
508  *
509  * EEPROM/flash
510  *
511  **************************************************************************
512  */
513 
514 #define FALCON_SPI_MAX_LEN sizeof(ef4_oword_t)
515 
516 static int falcon_spi_poll(struct ef4_nic *efx)
517 {
518 	ef4_oword_t reg;
519 	ef4_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
520 	return EF4_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
521 }
522 
523 /* Wait for SPI command completion */
524 static int falcon_spi_wait(struct ef4_nic *efx)
525 {
526 	/* Most commands will finish quickly, so we start polling at
527 	 * very short intervals.  Sometimes the command may have to
528 	 * wait for VPD or expansion ROM access outside of our
529 	 * control, so we allow up to 100 ms. */
530 	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
531 	int i;
532 
533 	for (i = 0; i < 10; i++) {
534 		if (!falcon_spi_poll(efx))
535 			return 0;
536 		udelay(10);
537 	}
538 
539 	for (;;) {
540 		if (!falcon_spi_poll(efx))
541 			return 0;
542 		if (time_after_eq(jiffies, timeout)) {
543 			netif_err(efx, hw, efx->net_dev,
544 				  "timed out waiting for SPI\n");
545 			return -ETIMEDOUT;
546 		}
547 		schedule_timeout_uninterruptible(1);
548 	}
549 }
550 
551 static int
552 falcon_spi_cmd(struct ef4_nic *efx, const struct falcon_spi_device *spi,
553 	       unsigned int command, int address,
554 	       const void *in, void *out, size_t len)
555 {
556 	bool addressed = (address >= 0);
557 	bool reading = (out != NULL);
558 	ef4_oword_t reg;
559 	int rc;
560 
561 	/* Input validation */
562 	if (len > FALCON_SPI_MAX_LEN)
563 		return -EINVAL;
564 
565 	/* Check that previous command is not still running */
566 	rc = falcon_spi_poll(efx);
567 	if (rc)
568 		return rc;
569 
570 	/* Program address register, if we have an address */
571 	if (addressed) {
572 		EF4_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
573 		ef4_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
574 	}
575 
576 	/* Program data register, if we have data */
577 	if (in != NULL) {
578 		memcpy(&reg, in, len);
579 		ef4_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
580 	}
581 
582 	/* Issue read/write command */
583 	EF4_POPULATE_OWORD_7(reg,
584 			     FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
585 			     FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
586 			     FRF_AB_EE_SPI_HCMD_DABCNT, len,
587 			     FRF_AB_EE_SPI_HCMD_READ, reading,
588 			     FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
589 			     FRF_AB_EE_SPI_HCMD_ADBCNT,
590 			     (addressed ? spi->addr_len : 0),
591 			     FRF_AB_EE_SPI_HCMD_ENC, command);
592 	ef4_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
593 
594 	/* Wait for read/write to complete */
595 	rc = falcon_spi_wait(efx);
596 	if (rc)
597 		return rc;
598 
599 	/* Read data */
600 	if (out != NULL) {
601 		ef4_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
602 		memcpy(out, &reg, len);
603 	}
604 
605 	return 0;
606 }
607 
608 static inline u8
609 falcon_spi_munge_command(const struct falcon_spi_device *spi,
610 			 const u8 command, const unsigned int address)
611 {
612 	return command | (((address >> 8) & spi->munge_address) << 3);
613 }
614 
615 static int
616 falcon_spi_read(struct ef4_nic *efx, const struct falcon_spi_device *spi,
617 		loff_t start, size_t len, size_t *retlen, u8 *buffer)
618 {
619 	size_t block_len, pos = 0;
620 	unsigned int command;
621 	int rc = 0;
622 
623 	while (pos < len) {
624 		block_len = min(len - pos, FALCON_SPI_MAX_LEN);
625 
626 		command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
627 		rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
628 				    buffer + pos, block_len);
629 		if (rc)
630 			break;
631 		pos += block_len;
632 
633 		/* Avoid locking up the system */
634 		cond_resched();
635 		if (signal_pending(current)) {
636 			rc = -EINTR;
637 			break;
638 		}
639 	}
640 
641 	if (retlen)
642 		*retlen = pos;
643 	return rc;
644 }
645 
646 #ifdef CONFIG_SFC_FALCON_MTD
647 
648 struct falcon_mtd_partition {
649 	struct ef4_mtd_partition common;
650 	const struct falcon_spi_device *spi;
651 	size_t offset;
652 };
653 
654 #define to_falcon_mtd_partition(mtd)				\
655 	container_of(mtd, struct falcon_mtd_partition, common.mtd)
656 
657 static size_t
658 falcon_spi_write_limit(const struct falcon_spi_device *spi, size_t start)
659 {
660 	return min(FALCON_SPI_MAX_LEN,
661 		   (spi->block_size - (start & (spi->block_size - 1))));
662 }
663 
664 /* Wait up to 10 ms for buffered write completion */
665 static int
666 falcon_spi_wait_write(struct ef4_nic *efx, const struct falcon_spi_device *spi)
667 {
668 	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
669 	u8 status;
670 	int rc;
671 
672 	for (;;) {
673 		rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
674 				    &status, sizeof(status));
675 		if (rc)
676 			return rc;
677 		if (!(status & SPI_STATUS_NRDY))
678 			return 0;
679 		if (time_after_eq(jiffies, timeout)) {
680 			netif_err(efx, hw, efx->net_dev,
681 				  "SPI write timeout on device %d"
682 				  " last status=0x%02x\n",
683 				  spi->device_id, status);
684 			return -ETIMEDOUT;
685 		}
686 		schedule_timeout_uninterruptible(1);
687 	}
688 }
689 
690 static int
691 falcon_spi_write(struct ef4_nic *efx, const struct falcon_spi_device *spi,
692 		 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
693 {
694 	u8 verify_buffer[FALCON_SPI_MAX_LEN];
695 	size_t block_len, pos = 0;
696 	unsigned int command;
697 	int rc = 0;
698 
699 	while (pos < len) {
700 		rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
701 		if (rc)
702 			break;
703 
704 		block_len = min(len - pos,
705 				falcon_spi_write_limit(spi, start + pos));
706 		command = falcon_spi_munge_command(spi, SPI_WRITE, start + pos);
707 		rc = falcon_spi_cmd(efx, spi, command, start + pos,
708 				    buffer + pos, NULL, block_len);
709 		if (rc)
710 			break;
711 
712 		rc = falcon_spi_wait_write(efx, spi);
713 		if (rc)
714 			break;
715 
716 		command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
717 		rc = falcon_spi_cmd(efx, spi, command, start + pos,
718 				    NULL, verify_buffer, block_len);
719 		if (memcmp(verify_buffer, buffer + pos, block_len)) {
720 			rc = -EIO;
721 			break;
722 		}
723 
724 		pos += block_len;
725 
726 		/* Avoid locking up the system */
727 		cond_resched();
728 		if (signal_pending(current)) {
729 			rc = -EINTR;
730 			break;
731 		}
732 	}
733 
734 	if (retlen)
735 		*retlen = pos;
736 	return rc;
737 }
738 
739 static int
740 falcon_spi_slow_wait(struct falcon_mtd_partition *part, bool uninterruptible)
741 {
742 	const struct falcon_spi_device *spi = part->spi;
743 	struct ef4_nic *efx = part->common.mtd.priv;
744 	u8 status;
745 	int rc, i;
746 
747 	/* Wait up to 4s for flash/EEPROM to finish a slow operation. */
748 	for (i = 0; i < 40; i++) {
749 		__set_current_state(uninterruptible ?
750 				    TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE);
751 		schedule_timeout(HZ / 10);
752 		rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
753 				    &status, sizeof(status));
754 		if (rc)
755 			return rc;
756 		if (!(status & SPI_STATUS_NRDY))
757 			return 0;
758 		if (signal_pending(current))
759 			return -EINTR;
760 	}
761 	pr_err("%s: timed out waiting for %s\n",
762 	       part->common.name, part->common.dev_type_name);
763 	return -ETIMEDOUT;
764 }
765 
766 static int
767 falcon_spi_unlock(struct ef4_nic *efx, const struct falcon_spi_device *spi)
768 {
769 	const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 |
770 				SPI_STATUS_BP0);
771 	u8 status;
772 	int rc;
773 
774 	rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
775 			    &status, sizeof(status));
776 	if (rc)
777 		return rc;
778 
779 	if (!(status & unlock_mask))
780 		return 0; /* already unlocked */
781 
782 	rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
783 	if (rc)
784 		return rc;
785 	rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0);
786 	if (rc)
787 		return rc;
788 
789 	status &= ~unlock_mask;
790 	rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status,
791 			    NULL, sizeof(status));
792 	if (rc)
793 		return rc;
794 	rc = falcon_spi_wait_write(efx, spi);
795 	if (rc)
796 		return rc;
797 
798 	return 0;
799 }
800 
801 #define FALCON_SPI_VERIFY_BUF_LEN 16
802 
803 static int
804 falcon_spi_erase(struct falcon_mtd_partition *part, loff_t start, size_t len)
805 {
806 	const struct falcon_spi_device *spi = part->spi;
807 	struct ef4_nic *efx = part->common.mtd.priv;
808 	unsigned pos, block_len;
809 	u8 empty[FALCON_SPI_VERIFY_BUF_LEN];
810 	u8 buffer[FALCON_SPI_VERIFY_BUF_LEN];
811 	int rc;
812 
813 	if (len != spi->erase_size)
814 		return -EINVAL;
815 
816 	if (spi->erase_command == 0)
817 		return -EOPNOTSUPP;
818 
819 	rc = falcon_spi_unlock(efx, spi);
820 	if (rc)
821 		return rc;
822 	rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
823 	if (rc)
824 		return rc;
825 	rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL,
826 			    NULL, 0);
827 	if (rc)
828 		return rc;
829 	rc = falcon_spi_slow_wait(part, false);
830 
831 	/* Verify the entire region has been wiped */
832 	memset(empty, 0xff, sizeof(empty));
833 	for (pos = 0; pos < len; pos += block_len) {
834 		block_len = min(len - pos, sizeof(buffer));
835 		rc = falcon_spi_read(efx, spi, start + pos, block_len,
836 				     NULL, buffer);
837 		if (rc)
838 			return rc;
839 		if (memcmp(empty, buffer, block_len))
840 			return -EIO;
841 
842 		/* Avoid locking up the system */
843 		cond_resched();
844 		if (signal_pending(current))
845 			return -EINTR;
846 	}
847 
848 	return rc;
849 }
850 
851 static void falcon_mtd_rename(struct ef4_mtd_partition *part)
852 {
853 	struct ef4_nic *efx = part->mtd.priv;
854 
855 	snprintf(part->name, sizeof(part->name), "%s %s",
856 		 efx->name, part->type_name);
857 }
858 
859 static int falcon_mtd_read(struct mtd_info *mtd, loff_t start,
860 			   size_t len, size_t *retlen, u8 *buffer)
861 {
862 	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
863 	struct ef4_nic *efx = mtd->priv;
864 	struct falcon_nic_data *nic_data = efx->nic_data;
865 	int rc;
866 
867 	rc = mutex_lock_interruptible(&nic_data->spi_lock);
868 	if (rc)
869 		return rc;
870 	rc = falcon_spi_read(efx, part->spi, part->offset + start,
871 			     len, retlen, buffer);
872 	mutex_unlock(&nic_data->spi_lock);
873 	return rc;
874 }
875 
876 static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
877 {
878 	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
879 	struct ef4_nic *efx = mtd->priv;
880 	struct falcon_nic_data *nic_data = efx->nic_data;
881 	int rc;
882 
883 	rc = mutex_lock_interruptible(&nic_data->spi_lock);
884 	if (rc)
885 		return rc;
886 	rc = falcon_spi_erase(part, part->offset + start, len);
887 	mutex_unlock(&nic_data->spi_lock);
888 	return rc;
889 }
890 
891 static int falcon_mtd_write(struct mtd_info *mtd, loff_t start,
892 			    size_t len, size_t *retlen, const u8 *buffer)
893 {
894 	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
895 	struct ef4_nic *efx = mtd->priv;
896 	struct falcon_nic_data *nic_data = efx->nic_data;
897 	int rc;
898 
899 	rc = mutex_lock_interruptible(&nic_data->spi_lock);
900 	if (rc)
901 		return rc;
902 	rc = falcon_spi_write(efx, part->spi, part->offset + start,
903 			      len, retlen, buffer);
904 	mutex_unlock(&nic_data->spi_lock);
905 	return rc;
906 }
907 
908 static int falcon_mtd_sync(struct mtd_info *mtd)
909 {
910 	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
911 	struct ef4_nic *efx = mtd->priv;
912 	struct falcon_nic_data *nic_data = efx->nic_data;
913 	int rc;
914 
915 	mutex_lock(&nic_data->spi_lock);
916 	rc = falcon_spi_slow_wait(part, true);
917 	mutex_unlock(&nic_data->spi_lock);
918 	return rc;
919 }
920 
921 static int falcon_mtd_probe(struct ef4_nic *efx)
922 {
923 	struct falcon_nic_data *nic_data = efx->nic_data;
924 	struct falcon_mtd_partition *parts;
925 	struct falcon_spi_device *spi;
926 	size_t n_parts;
927 	int rc = -ENODEV;
928 
929 	ASSERT_RTNL();
930 
931 	/* Allocate space for maximum number of partitions */
932 	parts = kcalloc(2, sizeof(*parts), GFP_KERNEL);
933 	if (!parts)
934 		return -ENOMEM;
935 	n_parts = 0;
936 
937 	spi = &nic_data->spi_flash;
938 	if (falcon_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) {
939 		parts[n_parts].spi = spi;
940 		parts[n_parts].offset = FALCON_FLASH_BOOTCODE_START;
941 		parts[n_parts].common.dev_type_name = "flash";
942 		parts[n_parts].common.type_name = "sfc_flash_bootrom";
943 		parts[n_parts].common.mtd.type = MTD_NORFLASH;
944 		parts[n_parts].common.mtd.flags = MTD_CAP_NORFLASH;
945 		parts[n_parts].common.mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START;
946 		parts[n_parts].common.mtd.erasesize = spi->erase_size;
947 		n_parts++;
948 	}
949 
950 	spi = &nic_data->spi_eeprom;
951 	if (falcon_spi_present(spi) && spi->size > FALCON_EEPROM_BOOTCONFIG_START) {
952 		parts[n_parts].spi = spi;
953 		parts[n_parts].offset = FALCON_EEPROM_BOOTCONFIG_START;
954 		parts[n_parts].common.dev_type_name = "EEPROM";
955 		parts[n_parts].common.type_name = "sfc_bootconfig";
956 		parts[n_parts].common.mtd.type = MTD_RAM;
957 		parts[n_parts].common.mtd.flags = MTD_CAP_RAM;
958 		parts[n_parts].common.mtd.size =
959 			min(spi->size, FALCON_EEPROM_BOOTCONFIG_END) -
960 			FALCON_EEPROM_BOOTCONFIG_START;
961 		parts[n_parts].common.mtd.erasesize = spi->erase_size;
962 		n_parts++;
963 	}
964 
965 	rc = ef4_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
966 	if (rc)
967 		kfree(parts);
968 	return rc;
969 }
970 
971 #endif /* CONFIG_SFC_FALCON_MTD */
972 
973 /**************************************************************************
974  *
975  * XMAC operations
976  *
977  **************************************************************************
978  */
979 
980 /* Configure the XAUI driver that is an output from Falcon */
981 static void falcon_setup_xaui(struct ef4_nic *efx)
982 {
983 	ef4_oword_t sdctl, txdrv;
984 
985 	/* Move the XAUI into low power, unless there is no PHY, in
986 	 * which case the XAUI will have to drive a cable. */
987 	if (efx->phy_type == PHY_TYPE_NONE)
988 		return;
989 
990 	ef4_reado(efx, &sdctl, FR_AB_XX_SD_CTL);
991 	EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
992 	EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
993 	EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
994 	EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
995 	EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
996 	EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
997 	EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
998 	EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
999 	ef4_writeo(efx, &sdctl, FR_AB_XX_SD_CTL);
1000 
1001 	EF4_POPULATE_OWORD_8(txdrv,
1002 			     FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF,
1003 			     FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF,
1004 			     FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF,
1005 			     FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF,
1006 			     FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF,
1007 			     FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF,
1008 			     FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF,
1009 			     FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF);
1010 	ef4_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL);
1011 }
1012 
1013 int falcon_reset_xaui(struct ef4_nic *efx)
1014 {
1015 	struct falcon_nic_data *nic_data = efx->nic_data;
1016 	ef4_oword_t reg;
1017 	int count;
1018 
1019 	/* Don't fetch MAC statistics over an XMAC reset */
1020 	WARN_ON(nic_data->stats_disable_count == 0);
1021 
1022 	/* Start reset sequence */
1023 	EF4_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1);
1024 	ef4_writeo(efx, &reg, FR_AB_XX_PWR_RST);
1025 
1026 	/* Wait up to 10 ms for completion, then reinitialise */
1027 	for (count = 0; count < 1000; count++) {
1028 		ef4_reado(efx, &reg, FR_AB_XX_PWR_RST);
1029 		if (EF4_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 &&
1030 		    EF4_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) {
1031 			falcon_setup_xaui(efx);
1032 			return 0;
1033 		}
1034 		udelay(10);
1035 	}
1036 	netif_err(efx, hw, efx->net_dev,
1037 		  "timed out waiting for XAUI/XGXS reset\n");
1038 	return -ETIMEDOUT;
1039 }
1040 
1041 static void falcon_ack_status_intr(struct ef4_nic *efx)
1042 {
1043 	struct falcon_nic_data *nic_data = efx->nic_data;
1044 	ef4_oword_t reg;
1045 
1046 	if ((ef4_nic_rev(efx) != EF4_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx))
1047 		return;
1048 
1049 	/* We expect xgmii faults if the wireside link is down */
1050 	if (!efx->link_state.up)
1051 		return;
1052 
1053 	/* We can only use this interrupt to signal the negative edge of
1054 	 * xaui_align [we have to poll the positive edge]. */
1055 	if (nic_data->xmac_poll_required)
1056 		return;
1057 
1058 	ef4_reado(efx, &reg, FR_AB_XM_MGT_INT_MSK);
1059 }
1060 
1061 static bool falcon_xgxs_link_ok(struct ef4_nic *efx)
1062 {
1063 	ef4_oword_t reg;
1064 	bool align_done, link_ok = false;
1065 	int sync_status;
1066 
1067 	/* Read link status */
1068 	ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1069 
1070 	align_done = EF4_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE);
1071 	sync_status = EF4_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT);
1072 	if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES))
1073 		link_ok = true;
1074 
1075 	/* Clear link status ready for next read */
1076 	EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES);
1077 	EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES);
1078 	EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES);
1079 	ef4_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1080 
1081 	return link_ok;
1082 }
1083 
1084 static bool falcon_xmac_link_ok(struct ef4_nic *efx)
1085 {
1086 	/*
1087 	 * Check MAC's XGXS link status except when using XGMII loopback
1088 	 * which bypasses the XGXS block.
1089 	 * If possible, check PHY's XGXS link status except when using
1090 	 * MAC loopback.
1091 	 */
1092 	return (efx->loopback_mode == LOOPBACK_XGMII ||
1093 		falcon_xgxs_link_ok(efx)) &&
1094 		(!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) ||
1095 		 LOOPBACK_INTERNAL(efx) ||
1096 		 ef4_mdio_phyxgxs_lane_sync(efx));
1097 }
1098 
1099 static void falcon_reconfigure_xmac_core(struct ef4_nic *efx)
1100 {
1101 	unsigned int max_frame_len;
1102 	ef4_oword_t reg;
1103 	bool rx_fc = !!(efx->link_state.fc & EF4_FC_RX);
1104 	bool tx_fc = !!(efx->link_state.fc & EF4_FC_TX);
1105 
1106 	/* Configure MAC  - cut-thru mode is hard wired on */
1107 	EF4_POPULATE_OWORD_3(reg,
1108 			     FRF_AB_XM_RX_JUMBO_MODE, 1,
1109 			     FRF_AB_XM_TX_STAT_EN, 1,
1110 			     FRF_AB_XM_RX_STAT_EN, 1);
1111 	ef4_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1112 
1113 	/* Configure TX */
1114 	EF4_POPULATE_OWORD_6(reg,
1115 			     FRF_AB_XM_TXEN, 1,
1116 			     FRF_AB_XM_TX_PRMBL, 1,
1117 			     FRF_AB_XM_AUTO_PAD, 1,
1118 			     FRF_AB_XM_TXCRC, 1,
1119 			     FRF_AB_XM_FCNTL, tx_fc,
1120 			     FRF_AB_XM_IPG, 0x3);
1121 	ef4_writeo(efx, &reg, FR_AB_XM_TX_CFG);
1122 
1123 	/* Configure RX */
1124 	EF4_POPULATE_OWORD_5(reg,
1125 			     FRF_AB_XM_RXEN, 1,
1126 			     FRF_AB_XM_AUTO_DEPAD, 0,
1127 			     FRF_AB_XM_ACPT_ALL_MCAST, 1,
1128 			     FRF_AB_XM_ACPT_ALL_UCAST, !efx->unicast_filter,
1129 			     FRF_AB_XM_PASS_CRC_ERR, 1);
1130 	ef4_writeo(efx, &reg, FR_AB_XM_RX_CFG);
1131 
1132 	/* Set frame length */
1133 	max_frame_len = EF4_MAX_FRAME_LEN(efx->net_dev->mtu);
1134 	EF4_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len);
1135 	ef4_writeo(efx, &reg, FR_AB_XM_RX_PARAM);
1136 	EF4_POPULATE_OWORD_2(reg,
1137 			     FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len,
1138 			     FRF_AB_XM_TX_JUMBO_MODE, 1);
1139 	ef4_writeo(efx, &reg, FR_AB_XM_TX_PARAM);
1140 
1141 	EF4_POPULATE_OWORD_2(reg,
1142 			     FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */
1143 			     FRF_AB_XM_DIS_FCNTL, !rx_fc);
1144 	ef4_writeo(efx, &reg, FR_AB_XM_FC);
1145 
1146 	/* Set MAC address */
1147 	memcpy(&reg, &efx->net_dev->dev_addr[0], 4);
1148 	ef4_writeo(efx, &reg, FR_AB_XM_ADR_LO);
1149 	memcpy(&reg, &efx->net_dev->dev_addr[4], 2);
1150 	ef4_writeo(efx, &reg, FR_AB_XM_ADR_HI);
1151 }
1152 
1153 static void falcon_reconfigure_xgxs_core(struct ef4_nic *efx)
1154 {
1155 	ef4_oword_t reg;
1156 	bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS);
1157 	bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI);
1158 	bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII);
1159 	bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback;
1160 
1161 	/* XGXS block is flaky and will need to be reset if moving
1162 	 * into our out of XGMII, XGXS or XAUI loopbacks. */
1163 	ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1164 	old_xgxs_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN);
1165 	old_xgmii_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN);
1166 
1167 	ef4_reado(efx, &reg, FR_AB_XX_SD_CTL);
1168 	old_xaui_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_LPBKA);
1169 
1170 	/* The PHY driver may have turned XAUI off */
1171 	if ((xgxs_loopback != old_xgxs_loopback) ||
1172 	    (xaui_loopback != old_xaui_loopback) ||
1173 	    (xgmii_loopback != old_xgmii_loopback))
1174 		falcon_reset_xaui(efx);
1175 
1176 	ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1177 	EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG,
1178 			    (xgxs_loopback || xaui_loopback) ?
1179 			    FFE_AB_XX_FORCE_SIG_ALL_LANES : 0);
1180 	EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback);
1181 	EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback);
1182 	ef4_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1183 
1184 	ef4_reado(efx, &reg, FR_AB_XX_SD_CTL);
1185 	EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback);
1186 	EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback);
1187 	EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback);
1188 	EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback);
1189 	ef4_writeo(efx, &reg, FR_AB_XX_SD_CTL);
1190 }
1191 
1192 
1193 /* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
1194 static bool falcon_xmac_link_ok_retry(struct ef4_nic *efx, int tries)
1195 {
1196 	bool mac_up = falcon_xmac_link_ok(efx);
1197 
1198 	if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS ||
1199 	    ef4_phy_mode_disabled(efx->phy_mode))
1200 		/* XAUI link is expected to be down */
1201 		return mac_up;
1202 
1203 	falcon_stop_nic_stats(efx);
1204 
1205 	while (!mac_up && tries) {
1206 		netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n");
1207 		falcon_reset_xaui(efx);
1208 		udelay(200);
1209 
1210 		mac_up = falcon_xmac_link_ok(efx);
1211 		--tries;
1212 	}
1213 
1214 	falcon_start_nic_stats(efx);
1215 
1216 	return mac_up;
1217 }
1218 
1219 static bool falcon_xmac_check_fault(struct ef4_nic *efx)
1220 {
1221 	return !falcon_xmac_link_ok_retry(efx, 5);
1222 }
1223 
1224 static int falcon_reconfigure_xmac(struct ef4_nic *efx)
1225 {
1226 	struct falcon_nic_data *nic_data = efx->nic_data;
1227 
1228 	ef4_farch_filter_sync_rx_mode(efx);
1229 
1230 	falcon_reconfigure_xgxs_core(efx);
1231 	falcon_reconfigure_xmac_core(efx);
1232 
1233 	falcon_reconfigure_mac_wrapper(efx);
1234 
1235 	nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5);
1236 	falcon_ack_status_intr(efx);
1237 
1238 	return 0;
1239 }
1240 
1241 static void falcon_poll_xmac(struct ef4_nic *efx)
1242 {
1243 	struct falcon_nic_data *nic_data = efx->nic_data;
1244 
1245 	/* We expect xgmii faults if the wireside link is down */
1246 	if (!efx->link_state.up || !nic_data->xmac_poll_required)
1247 		return;
1248 
1249 	nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1);
1250 	falcon_ack_status_intr(efx);
1251 }
1252 
1253 /**************************************************************************
1254  *
1255  * MAC wrapper
1256  *
1257  **************************************************************************
1258  */
1259 
1260 static void falcon_push_multicast_hash(struct ef4_nic *efx)
1261 {
1262 	union ef4_multicast_hash *mc_hash = &efx->multicast_hash;
1263 
1264 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
1265 
1266 	ef4_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
1267 	ef4_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
1268 }
1269 
1270 static void falcon_reset_macs(struct ef4_nic *efx)
1271 {
1272 	struct falcon_nic_data *nic_data = efx->nic_data;
1273 	ef4_oword_t reg, mac_ctrl;
1274 	int count;
1275 
1276 	if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0) {
1277 		/* It's not safe to use GLB_CTL_REG to reset the
1278 		 * macs, so instead use the internal MAC resets
1279 		 */
1280 		EF4_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1281 		ef4_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1282 
1283 		for (count = 0; count < 10000; count++) {
1284 			ef4_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1285 			if (EF4_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1286 			    0)
1287 				return;
1288 			udelay(10);
1289 		}
1290 
1291 		netif_err(efx, hw, efx->net_dev,
1292 			  "timed out waiting for XMAC core reset\n");
1293 	}
1294 
1295 	/* Mac stats will fail whist the TX fifo is draining */
1296 	WARN_ON(nic_data->stats_disable_count == 0);
1297 
1298 	ef4_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1299 	EF4_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
1300 	ef4_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1301 
1302 	ef4_reado(efx, &reg, FR_AB_GLB_CTL);
1303 	EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1304 	EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1305 	EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1306 	ef4_writeo(efx, &reg, FR_AB_GLB_CTL);
1307 
1308 	count = 0;
1309 	while (1) {
1310 		ef4_reado(efx, &reg, FR_AB_GLB_CTL);
1311 		if (!EF4_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1312 		    !EF4_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1313 		    !EF4_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1314 			netif_dbg(efx, hw, efx->net_dev,
1315 				  "Completed MAC reset after %d loops\n",
1316 				  count);
1317 			break;
1318 		}
1319 		if (count > 20) {
1320 			netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
1321 			break;
1322 		}
1323 		count++;
1324 		udelay(10);
1325 	}
1326 
1327 	/* Ensure the correct MAC is selected before statistics
1328 	 * are re-enabled by the caller */
1329 	ef4_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1330 
1331 	falcon_setup_xaui(efx);
1332 }
1333 
1334 static void falcon_drain_tx_fifo(struct ef4_nic *efx)
1335 {
1336 	ef4_oword_t reg;
1337 
1338 	if ((ef4_nic_rev(efx) < EF4_REV_FALCON_B0) ||
1339 	    (efx->loopback_mode != LOOPBACK_NONE))
1340 		return;
1341 
1342 	ef4_reado(efx, &reg, FR_AB_MAC_CTRL);
1343 	/* There is no point in draining more than once */
1344 	if (EF4_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1345 		return;
1346 
1347 	falcon_reset_macs(efx);
1348 }
1349 
1350 static void falcon_deconfigure_mac_wrapper(struct ef4_nic *efx)
1351 {
1352 	ef4_oword_t reg;
1353 
1354 	if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0)
1355 		return;
1356 
1357 	/* Isolate the MAC -> RX */
1358 	ef4_reado(efx, &reg, FR_AZ_RX_CFG);
1359 	EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1360 	ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
1361 
1362 	/* Isolate TX -> MAC */
1363 	falcon_drain_tx_fifo(efx);
1364 }
1365 
1366 static void falcon_reconfigure_mac_wrapper(struct ef4_nic *efx)
1367 {
1368 	struct ef4_link_state *link_state = &efx->link_state;
1369 	ef4_oword_t reg;
1370 	int link_speed, isolate;
1371 
1372 	isolate = !!READ_ONCE(efx->reset_pending);
1373 
1374 	switch (link_state->speed) {
1375 	case 10000: link_speed = 3; break;
1376 	case 1000:  link_speed = 2; break;
1377 	case 100:   link_speed = 1; break;
1378 	default:    link_speed = 0; break;
1379 	}
1380 
1381 	/* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1382 	 * as advertised.  Disable to ensure packets are not
1383 	 * indefinitely held and TX queue can be flushed at any point
1384 	 * while the link is down. */
1385 	EF4_POPULATE_OWORD_5(reg,
1386 			     FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1387 			     FRF_AB_MAC_BCAD_ACPT, 1,
1388 			     FRF_AB_MAC_UC_PROM, !efx->unicast_filter,
1389 			     FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1390 			     FRF_AB_MAC_SPEED, link_speed);
1391 	/* On B0, MAC backpressure can be disabled and packets get
1392 	 * discarded. */
1393 	if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
1394 		EF4_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1395 				    !link_state->up || isolate);
1396 	}
1397 
1398 	ef4_writeo(efx, &reg, FR_AB_MAC_CTRL);
1399 
1400 	/* Restore the multicast hash registers. */
1401 	falcon_push_multicast_hash(efx);
1402 
1403 	ef4_reado(efx, &reg, FR_AZ_RX_CFG);
1404 	/* Enable XOFF signal from RX FIFO (we enabled it during NIC
1405 	 * initialisation but it may read back as 0) */
1406 	EF4_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1407 	/* Unisolate the MAC -> RX */
1408 	if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
1409 		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
1410 	ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
1411 }
1412 
1413 static void falcon_stats_request(struct ef4_nic *efx)
1414 {
1415 	struct falcon_nic_data *nic_data = efx->nic_data;
1416 	ef4_oword_t reg;
1417 
1418 	WARN_ON(nic_data->stats_pending);
1419 	WARN_ON(nic_data->stats_disable_count);
1420 
1421 	FALCON_XMAC_STATS_DMA_FLAG(efx) = 0;
1422 	nic_data->stats_pending = true;
1423 	wmb(); /* ensure done flag is clear */
1424 
1425 	/* Initiate DMA transfer of stats */
1426 	EF4_POPULATE_OWORD_2(reg,
1427 			     FRF_AB_MAC_STAT_DMA_CMD, 1,
1428 			     FRF_AB_MAC_STAT_DMA_ADR,
1429 			     efx->stats_buffer.dma_addr);
1430 	ef4_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
1431 
1432 	mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
1433 }
1434 
1435 static void falcon_stats_complete(struct ef4_nic *efx)
1436 {
1437 	struct falcon_nic_data *nic_data = efx->nic_data;
1438 
1439 	if (!nic_data->stats_pending)
1440 		return;
1441 
1442 	nic_data->stats_pending = false;
1443 	if (FALCON_XMAC_STATS_DMA_FLAG(efx)) {
1444 		rmb(); /* read the done flag before the stats */
1445 		ef4_nic_update_stats(falcon_stat_desc, FALCON_STAT_COUNT,
1446 				     falcon_stat_mask, nic_data->stats,
1447 				     efx->stats_buffer.addr, true);
1448 	} else {
1449 		netif_err(efx, hw, efx->net_dev,
1450 			  "timed out waiting for statistics\n");
1451 	}
1452 }
1453 
1454 static void falcon_stats_timer_func(struct timer_list *t)
1455 {
1456 	struct falcon_nic_data *nic_data = from_timer(nic_data, t,
1457 						      stats_timer);
1458 	struct ef4_nic *efx = nic_data->efx;
1459 
1460 	spin_lock(&efx->stats_lock);
1461 
1462 	falcon_stats_complete(efx);
1463 	if (nic_data->stats_disable_count == 0)
1464 		falcon_stats_request(efx);
1465 
1466 	spin_unlock(&efx->stats_lock);
1467 }
1468 
1469 static bool falcon_loopback_link_poll(struct ef4_nic *efx)
1470 {
1471 	struct ef4_link_state old_state = efx->link_state;
1472 
1473 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
1474 	WARN_ON(!LOOPBACK_INTERNAL(efx));
1475 
1476 	efx->link_state.fd = true;
1477 	efx->link_state.fc = efx->wanted_fc;
1478 	efx->link_state.up = true;
1479 	efx->link_state.speed = 10000;
1480 
1481 	return !ef4_link_state_equal(&efx->link_state, &old_state);
1482 }
1483 
1484 static int falcon_reconfigure_port(struct ef4_nic *efx)
1485 {
1486 	int rc;
1487 
1488 	WARN_ON(ef4_nic_rev(efx) > EF4_REV_FALCON_B0);
1489 
1490 	/* Poll the PHY link state *before* reconfiguring it. This means we
1491 	 * will pick up the correct speed (in loopback) to select the correct
1492 	 * MAC.
1493 	 */
1494 	if (LOOPBACK_INTERNAL(efx))
1495 		falcon_loopback_link_poll(efx);
1496 	else
1497 		efx->phy_op->poll(efx);
1498 
1499 	falcon_stop_nic_stats(efx);
1500 	falcon_deconfigure_mac_wrapper(efx);
1501 
1502 	falcon_reset_macs(efx);
1503 
1504 	efx->phy_op->reconfigure(efx);
1505 	rc = falcon_reconfigure_xmac(efx);
1506 	BUG_ON(rc);
1507 
1508 	falcon_start_nic_stats(efx);
1509 
1510 	/* Synchronise efx->link_state with the kernel */
1511 	ef4_link_status_changed(efx);
1512 
1513 	return 0;
1514 }
1515 
1516 /* TX flow control may automatically turn itself off if the link
1517  * partner (intermittently) stops responding to pause frames. There
1518  * isn't any indication that this has happened, so the best we do is
1519  * leave it up to the user to spot this and fix it by cycling transmit
1520  * flow control on this end.
1521  */
1522 
1523 static void falcon_a1_prepare_enable_fc_tx(struct ef4_nic *efx)
1524 {
1525 	/* Schedule a reset to recover */
1526 	ef4_schedule_reset(efx, RESET_TYPE_INVISIBLE);
1527 }
1528 
1529 static void falcon_b0_prepare_enable_fc_tx(struct ef4_nic *efx)
1530 {
1531 	/* Recover by resetting the EM block */
1532 	falcon_stop_nic_stats(efx);
1533 	falcon_drain_tx_fifo(efx);
1534 	falcon_reconfigure_xmac(efx);
1535 	falcon_start_nic_stats(efx);
1536 }
1537 
1538 /**************************************************************************
1539  *
1540  * PHY access via GMII
1541  *
1542  **************************************************************************
1543  */
1544 
1545 /* Wait for GMII access to complete */
1546 static int falcon_gmii_wait(struct ef4_nic *efx)
1547 {
1548 	ef4_oword_t md_stat;
1549 	int count;
1550 
1551 	/* wait up to 50ms - taken max from datasheet */
1552 	for (count = 0; count < 5000; count++) {
1553 		ef4_reado(efx, &md_stat, FR_AB_MD_STAT);
1554 		if (EF4_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
1555 			if (EF4_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
1556 			    EF4_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
1557 				netif_err(efx, hw, efx->net_dev,
1558 					  "error from GMII access "
1559 					  EF4_OWORD_FMT"\n",
1560 					  EF4_OWORD_VAL(md_stat));
1561 				return -EIO;
1562 			}
1563 			return 0;
1564 		}
1565 		udelay(10);
1566 	}
1567 	netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
1568 	return -ETIMEDOUT;
1569 }
1570 
1571 /* Write an MDIO register of a PHY connected to Falcon. */
1572 static int falcon_mdio_write(struct net_device *net_dev,
1573 			     int prtad, int devad, u16 addr, u16 value)
1574 {
1575 	struct ef4_nic *efx = netdev_priv(net_dev);
1576 	struct falcon_nic_data *nic_data = efx->nic_data;
1577 	ef4_oword_t reg;
1578 	int rc;
1579 
1580 	netif_vdbg(efx, hw, efx->net_dev,
1581 		   "writing MDIO %d register %d.%d with 0x%04x\n",
1582 		    prtad, devad, addr, value);
1583 
1584 	mutex_lock(&nic_data->mdio_lock);
1585 
1586 	/* Check MDIO not currently being accessed */
1587 	rc = falcon_gmii_wait(efx);
1588 	if (rc)
1589 		goto out;
1590 
1591 	/* Write the address/ID register */
1592 	EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1593 	ef4_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1594 
1595 	EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1596 			     FRF_AB_MD_DEV_ADR, devad);
1597 	ef4_writeo(efx, &reg, FR_AB_MD_ID);
1598 
1599 	/* Write data */
1600 	EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
1601 	ef4_writeo(efx, &reg, FR_AB_MD_TXD);
1602 
1603 	EF4_POPULATE_OWORD_2(reg,
1604 			     FRF_AB_MD_WRC, 1,
1605 			     FRF_AB_MD_GC, 0);
1606 	ef4_writeo(efx, &reg, FR_AB_MD_CS);
1607 
1608 	/* Wait for data to be written */
1609 	rc = falcon_gmii_wait(efx);
1610 	if (rc) {
1611 		/* Abort the write operation */
1612 		EF4_POPULATE_OWORD_2(reg,
1613 				     FRF_AB_MD_WRC, 0,
1614 				     FRF_AB_MD_GC, 1);
1615 		ef4_writeo(efx, &reg, FR_AB_MD_CS);
1616 		udelay(10);
1617 	}
1618 
1619 out:
1620 	mutex_unlock(&nic_data->mdio_lock);
1621 	return rc;
1622 }
1623 
1624 /* Read an MDIO register of a PHY connected to Falcon. */
1625 static int falcon_mdio_read(struct net_device *net_dev,
1626 			    int prtad, int devad, u16 addr)
1627 {
1628 	struct ef4_nic *efx = netdev_priv(net_dev);
1629 	struct falcon_nic_data *nic_data = efx->nic_data;
1630 	ef4_oword_t reg;
1631 	int rc;
1632 
1633 	mutex_lock(&nic_data->mdio_lock);
1634 
1635 	/* Check MDIO not currently being accessed */
1636 	rc = falcon_gmii_wait(efx);
1637 	if (rc)
1638 		goto out;
1639 
1640 	EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1641 	ef4_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1642 
1643 	EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1644 			     FRF_AB_MD_DEV_ADR, devad);
1645 	ef4_writeo(efx, &reg, FR_AB_MD_ID);
1646 
1647 	/* Request data to be read */
1648 	EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
1649 	ef4_writeo(efx, &reg, FR_AB_MD_CS);
1650 
1651 	/* Wait for data to become available */
1652 	rc = falcon_gmii_wait(efx);
1653 	if (rc == 0) {
1654 		ef4_reado(efx, &reg, FR_AB_MD_RXD);
1655 		rc = EF4_OWORD_FIELD(reg, FRF_AB_MD_RXD);
1656 		netif_vdbg(efx, hw, efx->net_dev,
1657 			   "read from MDIO %d register %d.%d, got %04x\n",
1658 			   prtad, devad, addr, rc);
1659 	} else {
1660 		/* Abort the read operation */
1661 		EF4_POPULATE_OWORD_2(reg,
1662 				     FRF_AB_MD_RIC, 0,
1663 				     FRF_AB_MD_GC, 1);
1664 		ef4_writeo(efx, &reg, FR_AB_MD_CS);
1665 
1666 		netif_dbg(efx, hw, efx->net_dev,
1667 			  "read from MDIO %d register %d.%d, got error %d\n",
1668 			  prtad, devad, addr, rc);
1669 	}
1670 
1671 out:
1672 	mutex_unlock(&nic_data->mdio_lock);
1673 	return rc;
1674 }
1675 
1676 /* This call is responsible for hooking in the MAC and PHY operations */
1677 static int falcon_probe_port(struct ef4_nic *efx)
1678 {
1679 	struct falcon_nic_data *nic_data = efx->nic_data;
1680 	int rc;
1681 
1682 	switch (efx->phy_type) {
1683 	case PHY_TYPE_SFX7101:
1684 		efx->phy_op = &falcon_sfx7101_phy_ops;
1685 		break;
1686 	case PHY_TYPE_QT2022C2:
1687 	case PHY_TYPE_QT2025C:
1688 		efx->phy_op = &falcon_qt202x_phy_ops;
1689 		break;
1690 	case PHY_TYPE_TXC43128:
1691 		efx->phy_op = &falcon_txc_phy_ops;
1692 		break;
1693 	default:
1694 		netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
1695 			  efx->phy_type);
1696 		return -ENODEV;
1697 	}
1698 
1699 	/* Fill out MDIO structure and loopback modes */
1700 	mutex_init(&nic_data->mdio_lock);
1701 	efx->mdio.mdio_read = falcon_mdio_read;
1702 	efx->mdio.mdio_write = falcon_mdio_write;
1703 	rc = efx->phy_op->probe(efx);
1704 	if (rc != 0)
1705 		return rc;
1706 
1707 	/* Initial assumption */
1708 	efx->link_state.speed = 10000;
1709 	efx->link_state.fd = true;
1710 
1711 	/* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
1712 	if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
1713 		efx->wanted_fc = EF4_FC_RX | EF4_FC_TX;
1714 	else
1715 		efx->wanted_fc = EF4_FC_RX;
1716 	if (efx->mdio.mmds & MDIO_DEVS_AN)
1717 		efx->wanted_fc |= EF4_FC_AUTO;
1718 
1719 	/* Allocate buffer for stats */
1720 	rc = ef4_nic_alloc_buffer(efx, &efx->stats_buffer,
1721 				  FALCON_MAC_STATS_SIZE, GFP_KERNEL);
1722 	if (rc)
1723 		return rc;
1724 	netif_dbg(efx, probe, efx->net_dev,
1725 		  "stats buffer at %llx (virt %p phys %llx)\n",
1726 		  (u64)efx->stats_buffer.dma_addr,
1727 		  efx->stats_buffer.addr,
1728 		  (u64)virt_to_phys(efx->stats_buffer.addr));
1729 
1730 	return 0;
1731 }
1732 
1733 static void falcon_remove_port(struct ef4_nic *efx)
1734 {
1735 	efx->phy_op->remove(efx);
1736 	ef4_nic_free_buffer(efx, &efx->stats_buffer);
1737 }
1738 
1739 /* Global events are basically PHY events */
1740 static bool
1741 falcon_handle_global_event(struct ef4_channel *channel, ef4_qword_t *event)
1742 {
1743 	struct ef4_nic *efx = channel->efx;
1744 	struct falcon_nic_data *nic_data = efx->nic_data;
1745 
1746 	if (EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
1747 	    EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
1748 	    EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
1749 		/* Ignored */
1750 		return true;
1751 
1752 	if ((ef4_nic_rev(efx) == EF4_REV_FALCON_B0) &&
1753 	    EF4_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
1754 		nic_data->xmac_poll_required = true;
1755 		return true;
1756 	}
1757 
1758 	if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1 ?
1759 	    EF4_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
1760 	    EF4_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
1761 		netif_err(efx, rx_err, efx->net_dev,
1762 			  "channel %d seen global RX_RESET event. Resetting.\n",
1763 			  channel->channel);
1764 
1765 		atomic_inc(&efx->rx_reset);
1766 		ef4_schedule_reset(efx, EF4_WORKAROUND_6555(efx) ?
1767 				   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1768 		return true;
1769 	}
1770 
1771 	return false;
1772 }
1773 
1774 /**************************************************************************
1775  *
1776  * Falcon test code
1777  *
1778  **************************************************************************/
1779 
1780 static int
1781 falcon_read_nvram(struct ef4_nic *efx, struct falcon_nvconfig *nvconfig_out)
1782 {
1783 	struct falcon_nic_data *nic_data = efx->nic_data;
1784 	struct falcon_nvconfig *nvconfig;
1785 	struct falcon_spi_device *spi;
1786 	void *region;
1787 	int rc, magic_num, struct_ver;
1788 	__le16 *word, *limit;
1789 	u32 csum;
1790 
1791 	if (falcon_spi_present(&nic_data->spi_flash))
1792 		spi = &nic_data->spi_flash;
1793 	else if (falcon_spi_present(&nic_data->spi_eeprom))
1794 		spi = &nic_data->spi_eeprom;
1795 	else
1796 		return -EINVAL;
1797 
1798 	region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
1799 	if (!region)
1800 		return -ENOMEM;
1801 	nvconfig = region + FALCON_NVCONFIG_OFFSET;
1802 
1803 	mutex_lock(&nic_data->spi_lock);
1804 	rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
1805 	mutex_unlock(&nic_data->spi_lock);
1806 	if (rc) {
1807 		netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
1808 			  falcon_spi_present(&nic_data->spi_flash) ?
1809 			  "flash" : "EEPROM");
1810 		rc = -EIO;
1811 		goto out;
1812 	}
1813 
1814 	magic_num = le16_to_cpu(nvconfig->board_magic_num);
1815 	struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
1816 
1817 	rc = -EINVAL;
1818 	if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
1819 		netif_err(efx, hw, efx->net_dev,
1820 			  "NVRAM bad magic 0x%x\n", magic_num);
1821 		goto out;
1822 	}
1823 	if (struct_ver < 2) {
1824 		netif_err(efx, hw, efx->net_dev,
1825 			  "NVRAM has ancient version 0x%x\n", struct_ver);
1826 		goto out;
1827 	} else if (struct_ver < 4) {
1828 		word = &nvconfig->board_magic_num;
1829 		limit = (__le16 *) (nvconfig + 1);
1830 	} else {
1831 		word = region;
1832 		limit = region + FALCON_NVCONFIG_END;
1833 	}
1834 	for (csum = 0; word < limit; ++word)
1835 		csum += le16_to_cpu(*word);
1836 
1837 	if (~csum & 0xffff) {
1838 		netif_err(efx, hw, efx->net_dev,
1839 			  "NVRAM has incorrect checksum\n");
1840 		goto out;
1841 	}
1842 
1843 	rc = 0;
1844 	if (nvconfig_out)
1845 		memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
1846 
1847  out:
1848 	kfree(region);
1849 	return rc;
1850 }
1851 
1852 static int falcon_test_nvram(struct ef4_nic *efx)
1853 {
1854 	return falcon_read_nvram(efx, NULL);
1855 }
1856 
1857 static const struct ef4_farch_register_test falcon_b0_register_tests[] = {
1858 	{ FR_AZ_ADR_REGION,
1859 	  EF4_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1860 	{ FR_AZ_RX_CFG,
1861 	  EF4_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1862 	{ FR_AZ_TX_CFG,
1863 	  EF4_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1864 	{ FR_AZ_TX_RESERVED,
1865 	  EF4_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1866 	{ FR_AB_MAC_CTRL,
1867 	  EF4_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1868 	{ FR_AZ_SRM_TX_DC_CFG,
1869 	  EF4_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1870 	{ FR_AZ_RX_DC_CFG,
1871 	  EF4_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1872 	{ FR_AZ_RX_DC_PF_WM,
1873 	  EF4_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1874 	{ FR_BZ_DP_CTRL,
1875 	  EF4_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1876 	{ FR_AB_GM_CFG2,
1877 	  EF4_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1878 	{ FR_AB_GMF_CFG0,
1879 	  EF4_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1880 	{ FR_AB_XM_GLB_CFG,
1881 	  EF4_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1882 	{ FR_AB_XM_TX_CFG,
1883 	  EF4_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1884 	{ FR_AB_XM_RX_CFG,
1885 	  EF4_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1886 	{ FR_AB_XM_RX_PARAM,
1887 	  EF4_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1888 	{ FR_AB_XM_FC,
1889 	  EF4_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1890 	{ FR_AB_XM_ADR_LO,
1891 	  EF4_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1892 	{ FR_AB_XX_SD_CTL,
1893 	  EF4_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1894 };
1895 
1896 static int
1897 falcon_b0_test_chip(struct ef4_nic *efx, struct ef4_self_tests *tests)
1898 {
1899 	enum reset_type reset_method = RESET_TYPE_INVISIBLE;
1900 	int rc, rc2;
1901 
1902 	mutex_lock(&efx->mac_lock);
1903 	if (efx->loopback_modes) {
1904 		/* We need the 312 clock from the PHY to test the XMAC
1905 		 * registers, so move into XGMII loopback if available */
1906 		if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
1907 			efx->loopback_mode = LOOPBACK_XGMII;
1908 		else
1909 			efx->loopback_mode = __ffs(efx->loopback_modes);
1910 	}
1911 	__ef4_reconfigure_port(efx);
1912 	mutex_unlock(&efx->mac_lock);
1913 
1914 	ef4_reset_down(efx, reset_method);
1915 
1916 	tests->registers =
1917 		ef4_farch_test_registers(efx, falcon_b0_register_tests,
1918 					 ARRAY_SIZE(falcon_b0_register_tests))
1919 		? -1 : 1;
1920 
1921 	rc = falcon_reset_hw(efx, reset_method);
1922 	rc2 = ef4_reset_up(efx, reset_method, rc == 0);
1923 	return rc ? rc : rc2;
1924 }
1925 
1926 /**************************************************************************
1927  *
1928  * Device reset
1929  *
1930  **************************************************************************
1931  */
1932 
1933 static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1934 {
1935 	switch (reason) {
1936 	case RESET_TYPE_RX_RECOVERY:
1937 	case RESET_TYPE_DMA_ERROR:
1938 	case RESET_TYPE_TX_SKIP:
1939 		/* These can occasionally occur due to hardware bugs.
1940 		 * We try to reset without disrupting the link.
1941 		 */
1942 		return RESET_TYPE_INVISIBLE;
1943 	default:
1944 		return RESET_TYPE_ALL;
1945 	}
1946 }
1947 
1948 static int falcon_map_reset_flags(u32 *flags)
1949 {
1950 	enum {
1951 		FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1952 					  ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1953 		FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1954 		FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1955 	};
1956 
1957 	if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1958 		*flags &= ~FALCON_RESET_WORLD;
1959 		return RESET_TYPE_WORLD;
1960 	}
1961 
1962 	if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1963 		*flags &= ~FALCON_RESET_ALL;
1964 		return RESET_TYPE_ALL;
1965 	}
1966 
1967 	if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1968 		*flags &= ~FALCON_RESET_INVISIBLE;
1969 		return RESET_TYPE_INVISIBLE;
1970 	}
1971 
1972 	return -EINVAL;
1973 }
1974 
1975 /* Resets NIC to known state.  This routine must be called in process
1976  * context and is allowed to sleep. */
1977 static int __falcon_reset_hw(struct ef4_nic *efx, enum reset_type method)
1978 {
1979 	struct falcon_nic_data *nic_data = efx->nic_data;
1980 	ef4_oword_t glb_ctl_reg_ker;
1981 	int rc;
1982 
1983 	netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1984 		  RESET_TYPE(method));
1985 
1986 	/* Initiate device reset */
1987 	if (method == RESET_TYPE_WORLD) {
1988 		rc = pci_save_state(efx->pci_dev);
1989 		if (rc) {
1990 			netif_err(efx, drv, efx->net_dev,
1991 				  "failed to backup PCI state of primary "
1992 				  "function prior to hardware reset\n");
1993 			goto fail1;
1994 		}
1995 		if (ef4_nic_is_dual_func(efx)) {
1996 			rc = pci_save_state(nic_data->pci_dev2);
1997 			if (rc) {
1998 				netif_err(efx, drv, efx->net_dev,
1999 					  "failed to backup PCI state of "
2000 					  "secondary function prior to "
2001 					  "hardware reset\n");
2002 				goto fail2;
2003 			}
2004 		}
2005 
2006 		EF4_POPULATE_OWORD_2(glb_ctl_reg_ker,
2007 				     FRF_AB_EXT_PHY_RST_DUR,
2008 				     FFE_AB_EXT_PHY_RST_DUR_10240US,
2009 				     FRF_AB_SWRST, 1);
2010 	} else {
2011 		EF4_POPULATE_OWORD_7(glb_ctl_reg_ker,
2012 				     /* exclude PHY from "invisible" reset */
2013 				     FRF_AB_EXT_PHY_RST_CTL,
2014 				     method == RESET_TYPE_INVISIBLE,
2015 				     /* exclude EEPROM/flash and PCIe */
2016 				     FRF_AB_PCIE_CORE_RST_CTL, 1,
2017 				     FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2018 				     FRF_AB_PCIE_SD_RST_CTL, 1,
2019 				     FRF_AB_EE_RST_CTL, 1,
2020 				     FRF_AB_EXT_PHY_RST_DUR,
2021 				     FFE_AB_EXT_PHY_RST_DUR_10240US,
2022 				     FRF_AB_SWRST, 1);
2023 	}
2024 	ef4_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2025 
2026 	netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
2027 	schedule_timeout_uninterruptible(HZ / 20);
2028 
2029 	/* Restore PCI configuration if needed */
2030 	if (method == RESET_TYPE_WORLD) {
2031 		if (ef4_nic_is_dual_func(efx))
2032 			pci_restore_state(nic_data->pci_dev2);
2033 		pci_restore_state(efx->pci_dev);
2034 		netif_dbg(efx, drv, efx->net_dev,
2035 			  "successfully restored PCI config\n");
2036 	}
2037 
2038 	/* Assert that reset complete */
2039 	ef4_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2040 	if (EF4_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2041 		rc = -ETIMEDOUT;
2042 		netif_err(efx, hw, efx->net_dev,
2043 			  "timed out waiting for hardware reset\n");
2044 		goto fail3;
2045 	}
2046 	netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
2047 
2048 	return 0;
2049 
2050 	/* pci_save_state() and pci_restore_state() MUST be called in pairs */
2051 fail2:
2052 	pci_restore_state(efx->pci_dev);
2053 fail1:
2054 fail3:
2055 	return rc;
2056 }
2057 
2058 static int falcon_reset_hw(struct ef4_nic *efx, enum reset_type method)
2059 {
2060 	struct falcon_nic_data *nic_data = efx->nic_data;
2061 	int rc;
2062 
2063 	mutex_lock(&nic_data->spi_lock);
2064 	rc = __falcon_reset_hw(efx, method);
2065 	mutex_unlock(&nic_data->spi_lock);
2066 
2067 	return rc;
2068 }
2069 
2070 static void falcon_monitor(struct ef4_nic *efx)
2071 {
2072 	bool link_changed;
2073 	int rc;
2074 
2075 	BUG_ON(!mutex_is_locked(&efx->mac_lock));
2076 
2077 	rc = falcon_board(efx)->type->monitor(efx);
2078 	if (rc) {
2079 		netif_err(efx, hw, efx->net_dev,
2080 			  "Board sensor %s; shutting down PHY\n",
2081 			  (rc == -ERANGE) ? "reported fault" : "failed");
2082 		efx->phy_mode |= PHY_MODE_LOW_POWER;
2083 		rc = __ef4_reconfigure_port(efx);
2084 		WARN_ON(rc);
2085 	}
2086 
2087 	if (LOOPBACK_INTERNAL(efx))
2088 		link_changed = falcon_loopback_link_poll(efx);
2089 	else
2090 		link_changed = efx->phy_op->poll(efx);
2091 
2092 	if (link_changed) {
2093 		falcon_stop_nic_stats(efx);
2094 		falcon_deconfigure_mac_wrapper(efx);
2095 
2096 		falcon_reset_macs(efx);
2097 		rc = falcon_reconfigure_xmac(efx);
2098 		BUG_ON(rc);
2099 
2100 		falcon_start_nic_stats(efx);
2101 
2102 		ef4_link_status_changed(efx);
2103 	}
2104 
2105 	falcon_poll_xmac(efx);
2106 }
2107 
2108 /* Zeroes out the SRAM contents.  This routine must be called in
2109  * process context and is allowed to sleep.
2110  */
2111 static int falcon_reset_sram(struct ef4_nic *efx)
2112 {
2113 	ef4_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2114 	int count;
2115 
2116 	/* Set the SRAM wake/sleep GPIO appropriately. */
2117 	ef4_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2118 	EF4_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2119 	EF4_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2120 	ef4_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2121 
2122 	/* Initiate SRAM reset */
2123 	EF4_POPULATE_OWORD_2(srm_cfg_reg_ker,
2124 			     FRF_AZ_SRM_INIT_EN, 1,
2125 			     FRF_AZ_SRM_NB_SZ, 0);
2126 	ef4_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2127 
2128 	/* Wait for SRAM reset to complete */
2129 	count = 0;
2130 	do {
2131 		netif_dbg(efx, hw, efx->net_dev,
2132 			  "waiting for SRAM reset (attempt %d)...\n", count);
2133 
2134 		/* SRAM reset is slow; expect around 16ms */
2135 		schedule_timeout_uninterruptible(HZ / 50);
2136 
2137 		/* Check for reset complete */
2138 		ef4_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2139 		if (!EF4_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2140 			netif_dbg(efx, hw, efx->net_dev,
2141 				  "SRAM reset complete\n");
2142 
2143 			return 0;
2144 		}
2145 	} while (++count < 20);	/* wait up to 0.4 sec */
2146 
2147 	netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
2148 	return -ETIMEDOUT;
2149 }
2150 
2151 static void falcon_spi_device_init(struct ef4_nic *efx,
2152 				  struct falcon_spi_device *spi_device,
2153 				  unsigned int device_id, u32 device_type)
2154 {
2155 	if (device_type != 0) {
2156 		spi_device->device_id = device_id;
2157 		spi_device->size =
2158 			1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2159 		spi_device->addr_len =
2160 			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2161 		spi_device->munge_address = (spi_device->size == 1 << 9 &&
2162 					     spi_device->addr_len == 1);
2163 		spi_device->erase_command =
2164 			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2165 		spi_device->erase_size =
2166 			1 << SPI_DEV_TYPE_FIELD(device_type,
2167 						SPI_DEV_TYPE_ERASE_SIZE);
2168 		spi_device->block_size =
2169 			1 << SPI_DEV_TYPE_FIELD(device_type,
2170 						SPI_DEV_TYPE_BLOCK_SIZE);
2171 	} else {
2172 		spi_device->size = 0;
2173 	}
2174 }
2175 
2176 /* Extract non-volatile configuration */
2177 static int falcon_probe_nvconfig(struct ef4_nic *efx)
2178 {
2179 	struct falcon_nic_data *nic_data = efx->nic_data;
2180 	struct falcon_nvconfig *nvconfig;
2181 	int rc;
2182 
2183 	nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2184 	if (!nvconfig)
2185 		return -ENOMEM;
2186 
2187 	rc = falcon_read_nvram(efx, nvconfig);
2188 	if (rc)
2189 		goto out;
2190 
2191 	efx->phy_type = nvconfig->board_v2.port0_phy_type;
2192 	efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
2193 
2194 	if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2195 		falcon_spi_device_init(
2196 			efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2197 			le32_to_cpu(nvconfig->board_v3
2198 				    .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
2199 		falcon_spi_device_init(
2200 			efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2201 			le32_to_cpu(nvconfig->board_v3
2202 				    .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
2203 	}
2204 
2205 	/* Read the MAC addresses */
2206 	ether_addr_copy(efx->net_dev->perm_addr, nvconfig->mac_address[0]);
2207 
2208 	netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
2209 		  efx->phy_type, efx->mdio.prtad);
2210 
2211 	rc = falcon_probe_board(efx,
2212 				le16_to_cpu(nvconfig->board_v2.board_revision));
2213 out:
2214 	kfree(nvconfig);
2215 	return rc;
2216 }
2217 
2218 static int falcon_dimension_resources(struct ef4_nic *efx)
2219 {
2220 	efx->rx_dc_base = 0x20000;
2221 	efx->tx_dc_base = 0x26000;
2222 	return 0;
2223 }
2224 
2225 /* Probe all SPI devices on the NIC */
2226 static void falcon_probe_spi_devices(struct ef4_nic *efx)
2227 {
2228 	struct falcon_nic_data *nic_data = efx->nic_data;
2229 	ef4_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2230 	int boot_dev;
2231 
2232 	ef4_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2233 	ef4_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2234 	ef4_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2235 
2236 	if (EF4_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2237 		boot_dev = (EF4_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2238 			    FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2239 		netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
2240 			  boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
2241 			  "flash" : "EEPROM");
2242 	} else {
2243 		/* Disable VPD and set clock dividers to safe
2244 		 * values for initial programming. */
2245 		boot_dev = -1;
2246 		netif_dbg(efx, probe, efx->net_dev,
2247 			  "Booted from internal ASIC settings;"
2248 			  " setting SPI config\n");
2249 		EF4_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2250 				     /* 125 MHz / 7 ~= 20 MHz */
2251 				     FRF_AB_EE_SF_CLOCK_DIV, 7,
2252 				     /* 125 MHz / 63 ~= 2 MHz */
2253 				     FRF_AB_EE_EE_CLOCK_DIV, 63);
2254 		ef4_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2255 	}
2256 
2257 	mutex_init(&nic_data->spi_lock);
2258 
2259 	if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2260 		falcon_spi_device_init(efx, &nic_data->spi_flash,
2261 				       FFE_AB_SPI_DEVICE_FLASH,
2262 				       default_flash_type);
2263 	if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2264 		falcon_spi_device_init(efx, &nic_data->spi_eeprom,
2265 				       FFE_AB_SPI_DEVICE_EEPROM,
2266 				       large_eeprom_type);
2267 }
2268 
2269 static unsigned int falcon_a1_mem_map_size(struct ef4_nic *efx)
2270 {
2271 	return 0x20000;
2272 }
2273 
2274 static unsigned int falcon_b0_mem_map_size(struct ef4_nic *efx)
2275 {
2276 	/* Map everything up to and including the RSS indirection table.
2277 	 * The PCI core takes care of mapping the MSI-X tables.
2278 	 */
2279 	return FR_BZ_RX_INDIRECTION_TBL +
2280 		FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS;
2281 }
2282 
2283 static int falcon_probe_nic(struct ef4_nic *efx)
2284 {
2285 	struct falcon_nic_data *nic_data;
2286 	struct falcon_board *board;
2287 	int rc;
2288 
2289 	efx->primary = efx; /* only one usable function per controller */
2290 
2291 	/* Allocate storage for hardware specific data */
2292 	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2293 	if (!nic_data)
2294 		return -ENOMEM;
2295 	efx->nic_data = nic_data;
2296 	nic_data->efx = efx;
2297 
2298 	rc = -ENODEV;
2299 
2300 	if (ef4_farch_fpga_ver(efx) != 0) {
2301 		netif_err(efx, probe, efx->net_dev,
2302 			  "Falcon FPGA not supported\n");
2303 		goto fail1;
2304 	}
2305 
2306 	if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1) {
2307 		ef4_oword_t nic_stat;
2308 		struct pci_dev *dev;
2309 		u8 pci_rev = efx->pci_dev->revision;
2310 
2311 		if ((pci_rev == 0xff) || (pci_rev == 0)) {
2312 			netif_err(efx, probe, efx->net_dev,
2313 				  "Falcon rev A0 not supported\n");
2314 			goto fail1;
2315 		}
2316 		ef4_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2317 		if (EF4_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
2318 			netif_err(efx, probe, efx->net_dev,
2319 				  "Falcon rev A1 1G not supported\n");
2320 			goto fail1;
2321 		}
2322 		if (EF4_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2323 			netif_err(efx, probe, efx->net_dev,
2324 				  "Falcon rev A1 PCI-X not supported\n");
2325 			goto fail1;
2326 		}
2327 
2328 		dev = pci_dev_get(efx->pci_dev);
2329 		while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
2330 					     PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
2331 					     dev))) {
2332 			if (dev->bus == efx->pci_dev->bus &&
2333 			    dev->devfn == efx->pci_dev->devfn + 1) {
2334 				nic_data->pci_dev2 = dev;
2335 				break;
2336 			}
2337 		}
2338 		if (!nic_data->pci_dev2) {
2339 			netif_err(efx, probe, efx->net_dev,
2340 				  "failed to find secondary function\n");
2341 			rc = -ENODEV;
2342 			goto fail2;
2343 		}
2344 	}
2345 
2346 	/* Now we can reset the NIC */
2347 	rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
2348 	if (rc) {
2349 		netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
2350 		goto fail3;
2351 	}
2352 
2353 	/* Allocate memory for INT_KER */
2354 	rc = ef4_nic_alloc_buffer(efx, &efx->irq_status, sizeof(ef4_oword_t),
2355 				  GFP_KERNEL);
2356 	if (rc)
2357 		goto fail4;
2358 	BUG_ON(efx->irq_status.dma_addr & 0x0f);
2359 
2360 	netif_dbg(efx, probe, efx->net_dev,
2361 		  "INT_KER at %llx (virt %p phys %llx)\n",
2362 		  (u64)efx->irq_status.dma_addr,
2363 		  efx->irq_status.addr,
2364 		  (u64)virt_to_phys(efx->irq_status.addr));
2365 
2366 	falcon_probe_spi_devices(efx);
2367 
2368 	/* Read in the non-volatile configuration */
2369 	rc = falcon_probe_nvconfig(efx);
2370 	if (rc) {
2371 		if (rc == -EINVAL)
2372 			netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
2373 		goto fail5;
2374 	}
2375 
2376 	efx->max_channels = (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1 ? 4 :
2377 			     EF4_MAX_CHANNELS);
2378 	efx->max_tx_channels = efx->max_channels;
2379 	efx->timer_quantum_ns = 4968; /* 621 cycles */
2380 	efx->timer_max_ns = efx->type->timer_period_max *
2381 			    efx->timer_quantum_ns;
2382 
2383 	/* Initialise I2C adapter */
2384 	board = falcon_board(efx);
2385 	board->i2c_adap.owner = THIS_MODULE;
2386 	board->i2c_data = falcon_i2c_bit_operations;
2387 	board->i2c_data.data = efx;
2388 	board->i2c_adap.algo_data = &board->i2c_data;
2389 	board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2390 	strscpy(board->i2c_adap.name, "SFC4000 GPIO",
2391 		sizeof(board->i2c_adap.name));
2392 	rc = i2c_bit_add_bus(&board->i2c_adap);
2393 	if (rc)
2394 		goto fail5;
2395 
2396 	rc = falcon_board(efx)->type->init(efx);
2397 	if (rc) {
2398 		netif_err(efx, probe, efx->net_dev,
2399 			  "failed to initialise board\n");
2400 		goto fail6;
2401 	}
2402 
2403 	nic_data->stats_disable_count = 1;
2404 	timer_setup(&nic_data->stats_timer, falcon_stats_timer_func, 0);
2405 
2406 	return 0;
2407 
2408  fail6:
2409 	i2c_del_adapter(&board->i2c_adap);
2410 	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2411  fail5:
2412 	ef4_nic_free_buffer(efx, &efx->irq_status);
2413  fail4:
2414  fail3:
2415 	if (nic_data->pci_dev2) {
2416 		pci_dev_put(nic_data->pci_dev2);
2417 		nic_data->pci_dev2 = NULL;
2418 	}
2419  fail2:
2420  fail1:
2421 	kfree(efx->nic_data);
2422 	return rc;
2423 }
2424 
2425 static void falcon_init_rx_cfg(struct ef4_nic *efx)
2426 {
2427 	/* RX control FIFO thresholds (32 entries) */
2428 	const unsigned ctrl_xon_thr = 20;
2429 	const unsigned ctrl_xoff_thr = 25;
2430 	ef4_oword_t reg;
2431 
2432 	ef4_reado(efx, &reg, FR_AZ_RX_CFG);
2433 	if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1) {
2434 		/* Data FIFO size is 5.5K.  The RX DMA engine only
2435 		 * supports scattering for user-mode queues, but will
2436 		 * split DMA writes at intervals of RX_USR_BUF_SIZE
2437 		 * (32-byte units) even for kernel-mode queues.  We
2438 		 * set it to be so large that that never happens.
2439 		 */
2440 		EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2441 		EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2442 				    (3 * 4096) >> 5);
2443 		EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
2444 		EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
2445 		EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2446 		EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2447 	} else {
2448 		/* Data FIFO size is 80K; register fields moved */
2449 		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2450 		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2451 				    EF4_RX_USR_BUF_SIZE >> 5);
2452 		/* Send XON and XOFF at ~3 * max MTU away from empty/full */
2453 		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
2454 		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
2455 		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2456 		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2457 		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2458 
2459 		/* Enable hash insertion. This is broken for the
2460 		 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
2461 		 * IPv4 hashes. */
2462 		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
2463 		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
2464 		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
2465 	}
2466 	/* Always enable XOFF signal from RX FIFO.  We enable
2467 	 * or disable transmission of pause frames at the MAC. */
2468 	EF4_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
2469 	ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
2470 }
2471 
2472 /* This call performs hardware-specific global initialisation, such as
2473  * defining the descriptor cache sizes and number of RSS channels.
2474  * It does not set up any buffers, descriptor rings or event queues.
2475  */
2476 static int falcon_init_nic(struct ef4_nic *efx)
2477 {
2478 	ef4_oword_t temp;
2479 	int rc;
2480 
2481 	/* Use on-chip SRAM */
2482 	ef4_reado(efx, &temp, FR_AB_NIC_STAT);
2483 	EF4_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2484 	ef4_writeo(efx, &temp, FR_AB_NIC_STAT);
2485 
2486 	rc = falcon_reset_sram(efx);
2487 	if (rc)
2488 		return rc;
2489 
2490 	/* Clear the parity enables on the TX data fifos as
2491 	 * they produce false parity errors because of timing issues
2492 	 */
2493 	if (EF4_WORKAROUND_5129(efx)) {
2494 		ef4_reado(efx, &temp, FR_AZ_CSR_SPARE);
2495 		EF4_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
2496 		ef4_writeo(efx, &temp, FR_AZ_CSR_SPARE);
2497 	}
2498 
2499 	if (EF4_WORKAROUND_7244(efx)) {
2500 		ef4_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
2501 		EF4_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
2502 		EF4_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
2503 		EF4_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
2504 		EF4_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
2505 		ef4_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
2506 	}
2507 
2508 	/* XXX This is documented only for Falcon A0/A1 */
2509 	/* Setup RX.  Wait for descriptor is broken and must
2510 	 * be disabled.  RXDP recovery shouldn't be needed, but is.
2511 	 */
2512 	ef4_reado(efx, &temp, FR_AA_RX_SELF_RST);
2513 	EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
2514 	EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
2515 	if (EF4_WORKAROUND_5583(efx))
2516 		EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
2517 	ef4_writeo(efx, &temp, FR_AA_RX_SELF_RST);
2518 
2519 	/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2520 	 * descriptors (which is bad).
2521 	 */
2522 	ef4_reado(efx, &temp, FR_AZ_TX_CFG);
2523 	EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
2524 	ef4_writeo(efx, &temp, FR_AZ_TX_CFG);
2525 
2526 	falcon_init_rx_cfg(efx);
2527 
2528 	if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
2529 		falcon_b0_rx_push_rss_config(efx, false, efx->rx_indir_table);
2530 
2531 		/* Set destination of both TX and RX Flush events */
2532 		EF4_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
2533 		ef4_writeo(efx, &temp, FR_BZ_DP_CTRL);
2534 	}
2535 
2536 	ef4_farch_init_common(efx);
2537 
2538 	return 0;
2539 }
2540 
2541 static void falcon_remove_nic(struct ef4_nic *efx)
2542 {
2543 	struct falcon_nic_data *nic_data = efx->nic_data;
2544 	struct falcon_board *board = falcon_board(efx);
2545 
2546 	board->type->fini(efx);
2547 
2548 	/* Remove I2C adapter and clear it in preparation for a retry */
2549 	i2c_del_adapter(&board->i2c_adap);
2550 	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2551 
2552 	ef4_nic_free_buffer(efx, &efx->irq_status);
2553 
2554 	__falcon_reset_hw(efx, RESET_TYPE_ALL);
2555 
2556 	/* Release the second function after the reset */
2557 	if (nic_data->pci_dev2) {
2558 		pci_dev_put(nic_data->pci_dev2);
2559 		nic_data->pci_dev2 = NULL;
2560 	}
2561 
2562 	/* Tear down the private nic state */
2563 	kfree(efx->nic_data);
2564 	efx->nic_data = NULL;
2565 }
2566 
2567 static size_t falcon_describe_nic_stats(struct ef4_nic *efx, u8 *names)
2568 {
2569 	return ef4_nic_describe_stats(falcon_stat_desc, FALCON_STAT_COUNT,
2570 				      falcon_stat_mask, names);
2571 }
2572 
2573 static size_t falcon_update_nic_stats(struct ef4_nic *efx, u64 *full_stats,
2574 				      struct rtnl_link_stats64 *core_stats)
2575 {
2576 	struct falcon_nic_data *nic_data = efx->nic_data;
2577 	u64 *stats = nic_data->stats;
2578 	ef4_oword_t cnt;
2579 
2580 	if (!nic_data->stats_disable_count) {
2581 		ef4_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
2582 		stats[FALCON_STAT_rx_nodesc_drop_cnt] +=
2583 			EF4_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
2584 
2585 		if (nic_data->stats_pending &&
2586 		    FALCON_XMAC_STATS_DMA_FLAG(efx)) {
2587 			nic_data->stats_pending = false;
2588 			rmb(); /* read the done flag before the stats */
2589 			ef4_nic_update_stats(
2590 				falcon_stat_desc, FALCON_STAT_COUNT,
2591 				falcon_stat_mask,
2592 				stats, efx->stats_buffer.addr, true);
2593 		}
2594 
2595 		/* Update derived statistic */
2596 		ef4_update_diff_stat(&stats[FALCON_STAT_rx_bad_bytes],
2597 				     stats[FALCON_STAT_rx_bytes] -
2598 				     stats[FALCON_STAT_rx_good_bytes] -
2599 				     stats[FALCON_STAT_rx_control] * 64);
2600 		ef4_update_sw_stats(efx, stats);
2601 	}
2602 
2603 	if (full_stats)
2604 		memcpy(full_stats, stats, sizeof(u64) * FALCON_STAT_COUNT);
2605 
2606 	if (core_stats) {
2607 		core_stats->rx_packets = stats[FALCON_STAT_rx_packets];
2608 		core_stats->tx_packets = stats[FALCON_STAT_tx_packets];
2609 		core_stats->rx_bytes = stats[FALCON_STAT_rx_bytes];
2610 		core_stats->tx_bytes = stats[FALCON_STAT_tx_bytes];
2611 		core_stats->rx_dropped = stats[FALCON_STAT_rx_nodesc_drop_cnt] +
2612 					 stats[GENERIC_STAT_rx_nodesc_trunc] +
2613 					 stats[GENERIC_STAT_rx_noskb_drops];
2614 		core_stats->multicast = stats[FALCON_STAT_rx_multicast];
2615 		core_stats->rx_length_errors =
2616 			stats[FALCON_STAT_rx_gtjumbo] +
2617 			stats[FALCON_STAT_rx_length_error];
2618 		core_stats->rx_crc_errors = stats[FALCON_STAT_rx_bad];
2619 		core_stats->rx_frame_errors = stats[FALCON_STAT_rx_align_error];
2620 		core_stats->rx_fifo_errors = stats[FALCON_STAT_rx_overflow];
2621 
2622 		core_stats->rx_errors = (core_stats->rx_length_errors +
2623 					 core_stats->rx_crc_errors +
2624 					 core_stats->rx_frame_errors +
2625 					 stats[FALCON_STAT_rx_symbol_error]);
2626 	}
2627 
2628 	return FALCON_STAT_COUNT;
2629 }
2630 
2631 void falcon_start_nic_stats(struct ef4_nic *efx)
2632 {
2633 	struct falcon_nic_data *nic_data = efx->nic_data;
2634 
2635 	spin_lock_bh(&efx->stats_lock);
2636 	if (--nic_data->stats_disable_count == 0)
2637 		falcon_stats_request(efx);
2638 	spin_unlock_bh(&efx->stats_lock);
2639 }
2640 
2641 /* We don't acutally pull stats on falcon. Wait 10ms so that
2642  * they arrive when we call this just after start_stats
2643  */
2644 static void falcon_pull_nic_stats(struct ef4_nic *efx)
2645 {
2646 	msleep(10);
2647 }
2648 
2649 void falcon_stop_nic_stats(struct ef4_nic *efx)
2650 {
2651 	struct falcon_nic_data *nic_data = efx->nic_data;
2652 	int i;
2653 
2654 	might_sleep();
2655 
2656 	spin_lock_bh(&efx->stats_lock);
2657 	++nic_data->stats_disable_count;
2658 	spin_unlock_bh(&efx->stats_lock);
2659 
2660 	del_timer_sync(&nic_data->stats_timer);
2661 
2662 	/* Wait enough time for the most recent transfer to
2663 	 * complete. */
2664 	for (i = 0; i < 4 && nic_data->stats_pending; i++) {
2665 		if (FALCON_XMAC_STATS_DMA_FLAG(efx))
2666 			break;
2667 		msleep(1);
2668 	}
2669 
2670 	spin_lock_bh(&efx->stats_lock);
2671 	falcon_stats_complete(efx);
2672 	spin_unlock_bh(&efx->stats_lock);
2673 }
2674 
2675 static void falcon_set_id_led(struct ef4_nic *efx, enum ef4_led_mode mode)
2676 {
2677 	falcon_board(efx)->type->set_id_led(efx, mode);
2678 }
2679 
2680 /**************************************************************************
2681  *
2682  * Wake on LAN
2683  *
2684  **************************************************************************
2685  */
2686 
2687 static void falcon_get_wol(struct ef4_nic *efx, struct ethtool_wolinfo *wol)
2688 {
2689 	wol->supported = 0;
2690 	wol->wolopts = 0;
2691 	memset(&wol->sopass, 0, sizeof(wol->sopass));
2692 }
2693 
2694 static int falcon_set_wol(struct ef4_nic *efx, u32 type)
2695 {
2696 	if (type != 0)
2697 		return -EINVAL;
2698 	return 0;
2699 }
2700 
2701 /**************************************************************************
2702  *
2703  * Revision-dependent attributes used by efx.c and nic.c
2704  *
2705  **************************************************************************
2706  */
2707 
2708 const struct ef4_nic_type falcon_a1_nic_type = {
2709 	.mem_bar = EF4_MEM_BAR,
2710 	.mem_map_size = falcon_a1_mem_map_size,
2711 	.probe = falcon_probe_nic,
2712 	.remove = falcon_remove_nic,
2713 	.init = falcon_init_nic,
2714 	.dimension_resources = falcon_dimension_resources,
2715 	.fini = falcon_irq_ack_a1,
2716 	.monitor = falcon_monitor,
2717 	.map_reset_reason = falcon_map_reset_reason,
2718 	.map_reset_flags = falcon_map_reset_flags,
2719 	.reset = falcon_reset_hw,
2720 	.probe_port = falcon_probe_port,
2721 	.remove_port = falcon_remove_port,
2722 	.handle_global_event = falcon_handle_global_event,
2723 	.fini_dmaq = ef4_farch_fini_dmaq,
2724 	.prepare_flush = falcon_prepare_flush,
2725 	.finish_flush = ef4_port_dummy_op_void,
2726 	.prepare_flr = ef4_port_dummy_op_void,
2727 	.finish_flr = ef4_farch_finish_flr,
2728 	.describe_stats = falcon_describe_nic_stats,
2729 	.update_stats = falcon_update_nic_stats,
2730 	.start_stats = falcon_start_nic_stats,
2731 	.pull_stats = falcon_pull_nic_stats,
2732 	.stop_stats = falcon_stop_nic_stats,
2733 	.set_id_led = falcon_set_id_led,
2734 	.push_irq_moderation = falcon_push_irq_moderation,
2735 	.reconfigure_port = falcon_reconfigure_port,
2736 	.prepare_enable_fc_tx = falcon_a1_prepare_enable_fc_tx,
2737 	.reconfigure_mac = falcon_reconfigure_xmac,
2738 	.check_mac_fault = falcon_xmac_check_fault,
2739 	.get_wol = falcon_get_wol,
2740 	.set_wol = falcon_set_wol,
2741 	.resume_wol = ef4_port_dummy_op_void,
2742 	.test_nvram = falcon_test_nvram,
2743 	.irq_enable_master = ef4_farch_irq_enable_master,
2744 	.irq_test_generate = ef4_farch_irq_test_generate,
2745 	.irq_disable_non_ev = ef4_farch_irq_disable_master,
2746 	.irq_handle_msi = ef4_farch_msi_interrupt,
2747 	.irq_handle_legacy = falcon_legacy_interrupt_a1,
2748 	.tx_probe = ef4_farch_tx_probe,
2749 	.tx_init = ef4_farch_tx_init,
2750 	.tx_remove = ef4_farch_tx_remove,
2751 	.tx_write = ef4_farch_tx_write,
2752 	.tx_limit_len = ef4_farch_tx_limit_len,
2753 	.rx_push_rss_config = dummy_rx_push_rss_config,
2754 	.rx_probe = ef4_farch_rx_probe,
2755 	.rx_init = ef4_farch_rx_init,
2756 	.rx_remove = ef4_farch_rx_remove,
2757 	.rx_write = ef4_farch_rx_write,
2758 	.rx_defer_refill = ef4_farch_rx_defer_refill,
2759 	.ev_probe = ef4_farch_ev_probe,
2760 	.ev_init = ef4_farch_ev_init,
2761 	.ev_fini = ef4_farch_ev_fini,
2762 	.ev_remove = ef4_farch_ev_remove,
2763 	.ev_process = ef4_farch_ev_process,
2764 	.ev_read_ack = ef4_farch_ev_read_ack,
2765 	.ev_test_generate = ef4_farch_ev_test_generate,
2766 
2767 	/* We don't expose the filter table on Falcon A1 as it is not
2768 	 * mapped into function 0, but these implementations still
2769 	 * work with a degenerate case of all tables set to size 0.
2770 	 */
2771 	.filter_table_probe = ef4_farch_filter_table_probe,
2772 	.filter_table_restore = ef4_farch_filter_table_restore,
2773 	.filter_table_remove = ef4_farch_filter_table_remove,
2774 	.filter_insert = ef4_farch_filter_insert,
2775 	.filter_remove_safe = ef4_farch_filter_remove_safe,
2776 	.filter_get_safe = ef4_farch_filter_get_safe,
2777 	.filter_clear_rx = ef4_farch_filter_clear_rx,
2778 	.filter_count_rx_used = ef4_farch_filter_count_rx_used,
2779 	.filter_get_rx_id_limit = ef4_farch_filter_get_rx_id_limit,
2780 	.filter_get_rx_ids = ef4_farch_filter_get_rx_ids,
2781 
2782 #ifdef CONFIG_SFC_FALCON_MTD
2783 	.mtd_probe = falcon_mtd_probe,
2784 	.mtd_rename = falcon_mtd_rename,
2785 	.mtd_read = falcon_mtd_read,
2786 	.mtd_erase = falcon_mtd_erase,
2787 	.mtd_write = falcon_mtd_write,
2788 	.mtd_sync = falcon_mtd_sync,
2789 #endif
2790 
2791 	.revision = EF4_REV_FALCON_A1,
2792 	.txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
2793 	.rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
2794 	.buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
2795 	.evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
2796 	.evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
2797 	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2798 	.rx_buffer_padding = 0x24,
2799 	.can_rx_scatter = false,
2800 	.max_interrupt_mode = EF4_INT_MODE_MSI,
2801 	.timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2802 	.offload_features = NETIF_F_IP_CSUM,
2803 };
2804 
2805 const struct ef4_nic_type falcon_b0_nic_type = {
2806 	.mem_bar = EF4_MEM_BAR,
2807 	.mem_map_size = falcon_b0_mem_map_size,
2808 	.probe = falcon_probe_nic,
2809 	.remove = falcon_remove_nic,
2810 	.init = falcon_init_nic,
2811 	.dimension_resources = falcon_dimension_resources,
2812 	.fini = ef4_port_dummy_op_void,
2813 	.monitor = falcon_monitor,
2814 	.map_reset_reason = falcon_map_reset_reason,
2815 	.map_reset_flags = falcon_map_reset_flags,
2816 	.reset = falcon_reset_hw,
2817 	.probe_port = falcon_probe_port,
2818 	.remove_port = falcon_remove_port,
2819 	.handle_global_event = falcon_handle_global_event,
2820 	.fini_dmaq = ef4_farch_fini_dmaq,
2821 	.prepare_flush = falcon_prepare_flush,
2822 	.finish_flush = ef4_port_dummy_op_void,
2823 	.prepare_flr = ef4_port_dummy_op_void,
2824 	.finish_flr = ef4_farch_finish_flr,
2825 	.describe_stats = falcon_describe_nic_stats,
2826 	.update_stats = falcon_update_nic_stats,
2827 	.start_stats = falcon_start_nic_stats,
2828 	.pull_stats = falcon_pull_nic_stats,
2829 	.stop_stats = falcon_stop_nic_stats,
2830 	.set_id_led = falcon_set_id_led,
2831 	.push_irq_moderation = falcon_push_irq_moderation,
2832 	.reconfigure_port = falcon_reconfigure_port,
2833 	.prepare_enable_fc_tx = falcon_b0_prepare_enable_fc_tx,
2834 	.reconfigure_mac = falcon_reconfigure_xmac,
2835 	.check_mac_fault = falcon_xmac_check_fault,
2836 	.get_wol = falcon_get_wol,
2837 	.set_wol = falcon_set_wol,
2838 	.resume_wol = ef4_port_dummy_op_void,
2839 	.test_chip = falcon_b0_test_chip,
2840 	.test_nvram = falcon_test_nvram,
2841 	.irq_enable_master = ef4_farch_irq_enable_master,
2842 	.irq_test_generate = ef4_farch_irq_test_generate,
2843 	.irq_disable_non_ev = ef4_farch_irq_disable_master,
2844 	.irq_handle_msi = ef4_farch_msi_interrupt,
2845 	.irq_handle_legacy = ef4_farch_legacy_interrupt,
2846 	.tx_probe = ef4_farch_tx_probe,
2847 	.tx_init = ef4_farch_tx_init,
2848 	.tx_remove = ef4_farch_tx_remove,
2849 	.tx_write = ef4_farch_tx_write,
2850 	.tx_limit_len = ef4_farch_tx_limit_len,
2851 	.rx_push_rss_config = falcon_b0_rx_push_rss_config,
2852 	.rx_probe = ef4_farch_rx_probe,
2853 	.rx_init = ef4_farch_rx_init,
2854 	.rx_remove = ef4_farch_rx_remove,
2855 	.rx_write = ef4_farch_rx_write,
2856 	.rx_defer_refill = ef4_farch_rx_defer_refill,
2857 	.ev_probe = ef4_farch_ev_probe,
2858 	.ev_init = ef4_farch_ev_init,
2859 	.ev_fini = ef4_farch_ev_fini,
2860 	.ev_remove = ef4_farch_ev_remove,
2861 	.ev_process = ef4_farch_ev_process,
2862 	.ev_read_ack = ef4_farch_ev_read_ack,
2863 	.ev_test_generate = ef4_farch_ev_test_generate,
2864 	.filter_table_probe = ef4_farch_filter_table_probe,
2865 	.filter_table_restore = ef4_farch_filter_table_restore,
2866 	.filter_table_remove = ef4_farch_filter_table_remove,
2867 	.filter_update_rx_scatter = ef4_farch_filter_update_rx_scatter,
2868 	.filter_insert = ef4_farch_filter_insert,
2869 	.filter_remove_safe = ef4_farch_filter_remove_safe,
2870 	.filter_get_safe = ef4_farch_filter_get_safe,
2871 	.filter_clear_rx = ef4_farch_filter_clear_rx,
2872 	.filter_count_rx_used = ef4_farch_filter_count_rx_used,
2873 	.filter_get_rx_id_limit = ef4_farch_filter_get_rx_id_limit,
2874 	.filter_get_rx_ids = ef4_farch_filter_get_rx_ids,
2875 #ifdef CONFIG_RFS_ACCEL
2876 	.filter_rfs_insert = ef4_farch_filter_rfs_insert,
2877 	.filter_rfs_expire_one = ef4_farch_filter_rfs_expire_one,
2878 #endif
2879 #ifdef CONFIG_SFC_FALCON_MTD
2880 	.mtd_probe = falcon_mtd_probe,
2881 	.mtd_rename = falcon_mtd_rename,
2882 	.mtd_read = falcon_mtd_read,
2883 	.mtd_erase = falcon_mtd_erase,
2884 	.mtd_write = falcon_mtd_write,
2885 	.mtd_sync = falcon_mtd_sync,
2886 #endif
2887 
2888 	.revision = EF4_REV_FALCON_B0,
2889 	.txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
2890 	.rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
2891 	.buf_tbl_base = FR_BZ_BUF_FULL_TBL,
2892 	.evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
2893 	.evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
2894 	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2895 	.rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
2896 	.rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
2897 	.rx_buffer_padding = 0,
2898 	.can_rx_scatter = true,
2899 	.max_interrupt_mode = EF4_INT_MODE_MSIX,
2900 	.timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2901 	.offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
2902 	.max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
2903 };
2904