xref: /linux/drivers/net/ethernet/sfc/falcon/efx.c (revision b9b77222d4ff6b5bb8f5d87fca20de0910618bb9)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/ethtool.h>
21 #include <linux/topology.h>
22 #include <linux/gfp.h>
23 #include <linux/aer.h>
24 #include <linux/interrupt.h>
25 #include "net_driver.h"
26 #include "efx.h"
27 #include "nic.h"
28 #include "selftest.h"
29 
30 #include "workarounds.h"
31 
32 /**************************************************************************
33  *
34  * Type name strings
35  *
36  **************************************************************************
37  */
38 
39 /* Loopback mode names (see LOOPBACK_MODE()) */
40 const unsigned int ef4_loopback_mode_max = LOOPBACK_MAX;
41 const char *const ef4_loopback_mode_names[] = {
42 	[LOOPBACK_NONE]		= "NONE",
43 	[LOOPBACK_DATA]		= "DATAPATH",
44 	[LOOPBACK_GMAC]		= "GMAC",
45 	[LOOPBACK_XGMII]	= "XGMII",
46 	[LOOPBACK_XGXS]		= "XGXS",
47 	[LOOPBACK_XAUI]		= "XAUI",
48 	[LOOPBACK_GMII]		= "GMII",
49 	[LOOPBACK_SGMII]	= "SGMII",
50 	[LOOPBACK_XGBR]		= "XGBR",
51 	[LOOPBACK_XFI]		= "XFI",
52 	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
53 	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
54 	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
55 	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
56 	[LOOPBACK_GPHY]		= "GPHY",
57 	[LOOPBACK_PHYXS]	= "PHYXS",
58 	[LOOPBACK_PCS]		= "PCS",
59 	[LOOPBACK_PMAPMD]	= "PMA/PMD",
60 	[LOOPBACK_XPORT]	= "XPORT",
61 	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
62 	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
63 	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
64 	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65 	[LOOPBACK_GMII_WS]	= "GMII_WS",
66 	[LOOPBACK_XFI_WS]	= "XFI_WS",
67 	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
68 	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
69 };
70 
71 const unsigned int ef4_reset_type_max = RESET_TYPE_MAX;
72 const char *const ef4_reset_type_names[] = {
73 	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
74 	[RESET_TYPE_ALL]                = "ALL",
75 	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
76 	[RESET_TYPE_WORLD]              = "WORLD",
77 	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
78 	[RESET_TYPE_DATAPATH]           = "DATAPATH",
79 	[RESET_TYPE_DISABLE]            = "DISABLE",
80 	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
81 	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
82 	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
83 	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
84 	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
85 };
86 
87 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
88  * queued onto this work queue. This is not a per-nic work queue, because
89  * ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised.
90  */
91 static struct workqueue_struct *reset_workqueue;
92 
93 /* How often and how many times to poll for a reset while waiting for a
94  * BIST that another function started to complete.
95  */
96 #define BIST_WAIT_DELAY_MS	100
97 #define BIST_WAIT_DELAY_COUNT	100
98 
99 /**************************************************************************
100  *
101  * Configurable values
102  *
103  *************************************************************************/
104 
105 /*
106  * Use separate channels for TX and RX events
107  *
108  * Set this to 1 to use separate channels for TX and RX. It allows us
109  * to control interrupt affinity separately for TX and RX.
110  *
111  * This is only used in MSI-X interrupt mode
112  */
113 bool ef4_separate_tx_channels;
114 module_param(ef4_separate_tx_channels, bool, 0444);
115 MODULE_PARM_DESC(ef4_separate_tx_channels,
116 		 "Use separate channels for TX and RX");
117 
118 /* This is the weight assigned to each of the (per-channel) virtual
119  * NAPI devices.
120  */
121 static int napi_weight = 64;
122 
123 /* This is the time (in jiffies) between invocations of the hardware
124  * monitor.
125  * On Falcon-based NICs, this will:
126  * - Check the on-board hardware monitor;
127  * - Poll the link state and reconfigure the hardware as necessary.
128  * On Siena-based NICs for power systems with EEH support, this will give EEH a
129  * chance to start.
130  */
131 static unsigned int ef4_monitor_interval = 1 * HZ;
132 
133 /* Initial interrupt moderation settings.  They can be modified after
134  * module load with ethtool.
135  *
136  * The default for RX should strike a balance between increasing the
137  * round-trip latency and reducing overhead.
138  */
139 static unsigned int rx_irq_mod_usec = 60;
140 
141 /* Initial interrupt moderation settings.  They can be modified after
142  * module load with ethtool.
143  *
144  * This default is chosen to ensure that a 10G link does not go idle
145  * while a TX queue is stopped after it has become full.  A queue is
146  * restarted when it drops below half full.  The time this takes (assuming
147  * worst case 3 descriptors per packet and 1024 descriptors) is
148  *   512 / 3 * 1.2 = 205 usec.
149  */
150 static unsigned int tx_irq_mod_usec = 150;
151 
152 /* This is the first interrupt mode to try out of:
153  * 0 => MSI-X
154  * 1 => MSI
155  * 2 => legacy
156  */
157 static unsigned int interrupt_mode;
158 
159 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
160  * i.e. the number of CPUs among which we may distribute simultaneous
161  * interrupt handling.
162  *
163  * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
164  * The default (0) means to assign an interrupt to each core.
165  */
166 static unsigned int rss_cpus;
167 module_param(rss_cpus, uint, 0444);
168 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
169 
170 static bool phy_flash_cfg;
171 module_param(phy_flash_cfg, bool, 0644);
172 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
173 
174 static unsigned irq_adapt_low_thresh = 8000;
175 module_param(irq_adapt_low_thresh, uint, 0644);
176 MODULE_PARM_DESC(irq_adapt_low_thresh,
177 		 "Threshold score for reducing IRQ moderation");
178 
179 static unsigned irq_adapt_high_thresh = 16000;
180 module_param(irq_adapt_high_thresh, uint, 0644);
181 MODULE_PARM_DESC(irq_adapt_high_thresh,
182 		 "Threshold score for increasing IRQ moderation");
183 
184 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
185 			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
186 			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
187 			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
188 module_param(debug, uint, 0);
189 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
190 
191 /**************************************************************************
192  *
193  * Utility functions and prototypes
194  *
195  *************************************************************************/
196 
197 static int ef4_soft_enable_interrupts(struct ef4_nic *efx);
198 static void ef4_soft_disable_interrupts(struct ef4_nic *efx);
199 static void ef4_remove_channel(struct ef4_channel *channel);
200 static void ef4_remove_channels(struct ef4_nic *efx);
201 static const struct ef4_channel_type ef4_default_channel_type;
202 static void ef4_remove_port(struct ef4_nic *efx);
203 static void ef4_init_napi_channel(struct ef4_channel *channel);
204 static void ef4_fini_napi(struct ef4_nic *efx);
205 static void ef4_fini_napi_channel(struct ef4_channel *channel);
206 static void ef4_fini_struct(struct ef4_nic *efx);
207 static void ef4_start_all(struct ef4_nic *efx);
208 static void ef4_stop_all(struct ef4_nic *efx);
209 
210 #define EF4_ASSERT_RESET_SERIALISED(efx)		\
211 	do {						\
212 		if ((efx->state == STATE_READY) ||	\
213 		    (efx->state == STATE_RECOVERY) ||	\
214 		    (efx->state == STATE_DISABLED))	\
215 			ASSERT_RTNL();			\
216 	} while (0)
217 
218 static int ef4_check_disabled(struct ef4_nic *efx)
219 {
220 	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
221 		netif_err(efx, drv, efx->net_dev,
222 			  "device is disabled due to earlier errors\n");
223 		return -EIO;
224 	}
225 	return 0;
226 }
227 
228 /**************************************************************************
229  *
230  * Event queue processing
231  *
232  *************************************************************************/
233 
234 /* Process channel's event queue
235  *
236  * This function is responsible for processing the event queue of a
237  * single channel.  The caller must guarantee that this function will
238  * never be concurrently called more than once on the same channel,
239  * though different channels may be being processed concurrently.
240  */
241 static int ef4_process_channel(struct ef4_channel *channel, int budget)
242 {
243 	struct ef4_tx_queue *tx_queue;
244 	int spent;
245 
246 	if (unlikely(!channel->enabled))
247 		return 0;
248 
249 	ef4_for_each_channel_tx_queue(tx_queue, channel) {
250 		tx_queue->pkts_compl = 0;
251 		tx_queue->bytes_compl = 0;
252 	}
253 
254 	spent = ef4_nic_process_eventq(channel, budget);
255 	if (spent && ef4_channel_has_rx_queue(channel)) {
256 		struct ef4_rx_queue *rx_queue =
257 			ef4_channel_get_rx_queue(channel);
258 
259 		ef4_rx_flush_packet(channel);
260 		ef4_fast_push_rx_descriptors(rx_queue, true);
261 	}
262 
263 	/* Update BQL */
264 	ef4_for_each_channel_tx_queue(tx_queue, channel) {
265 		if (tx_queue->bytes_compl) {
266 			netdev_tx_completed_queue(tx_queue->core_txq,
267 				tx_queue->pkts_compl, tx_queue->bytes_compl);
268 		}
269 	}
270 
271 	return spent;
272 }
273 
274 /* NAPI poll handler
275  *
276  * NAPI guarantees serialisation of polls of the same device, which
277  * provides the guarantee required by ef4_process_channel().
278  */
279 static void ef4_update_irq_mod(struct ef4_nic *efx, struct ef4_channel *channel)
280 {
281 	int step = efx->irq_mod_step_us;
282 
283 	if (channel->irq_mod_score < irq_adapt_low_thresh) {
284 		if (channel->irq_moderation_us > step) {
285 			channel->irq_moderation_us -= step;
286 			efx->type->push_irq_moderation(channel);
287 		}
288 	} else if (channel->irq_mod_score > irq_adapt_high_thresh) {
289 		if (channel->irq_moderation_us <
290 		    efx->irq_rx_moderation_us) {
291 			channel->irq_moderation_us += step;
292 			efx->type->push_irq_moderation(channel);
293 		}
294 	}
295 
296 	channel->irq_count = 0;
297 	channel->irq_mod_score = 0;
298 }
299 
300 static int ef4_poll(struct napi_struct *napi, int budget)
301 {
302 	struct ef4_channel *channel =
303 		container_of(napi, struct ef4_channel, napi_str);
304 	struct ef4_nic *efx = channel->efx;
305 	int spent;
306 
307 	netif_vdbg(efx, intr, efx->net_dev,
308 		   "channel %d NAPI poll executing on CPU %d\n",
309 		   channel->channel, raw_smp_processor_id());
310 
311 	spent = ef4_process_channel(channel, budget);
312 
313 	if (spent < budget) {
314 		if (ef4_channel_has_rx_queue(channel) &&
315 		    efx->irq_rx_adaptive &&
316 		    unlikely(++channel->irq_count == 1000)) {
317 			ef4_update_irq_mod(efx, channel);
318 		}
319 
320 		ef4_filter_rfs_expire(channel);
321 
322 		/* There is no race here; although napi_disable() will
323 		 * only wait for napi_complete(), this isn't a problem
324 		 * since ef4_nic_eventq_read_ack() will have no effect if
325 		 * interrupts have already been disabled.
326 		 */
327 		napi_complete_done(napi, spent);
328 		ef4_nic_eventq_read_ack(channel);
329 	}
330 
331 	return spent;
332 }
333 
334 /* Create event queue
335  * Event queue memory allocations are done only once.  If the channel
336  * is reset, the memory buffer will be reused; this guards against
337  * errors during channel reset and also simplifies interrupt handling.
338  */
339 static int ef4_probe_eventq(struct ef4_channel *channel)
340 {
341 	struct ef4_nic *efx = channel->efx;
342 	unsigned long entries;
343 
344 	netif_dbg(efx, probe, efx->net_dev,
345 		  "chan %d create event queue\n", channel->channel);
346 
347 	/* Build an event queue with room for one event per tx and rx buffer,
348 	 * plus some extra for link state events and MCDI completions. */
349 	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
350 	EF4_BUG_ON_PARANOID(entries > EF4_MAX_EVQ_SIZE);
351 	channel->eventq_mask = max(entries, EF4_MIN_EVQ_SIZE) - 1;
352 
353 	return ef4_nic_probe_eventq(channel);
354 }
355 
356 /* Prepare channel's event queue */
357 static int ef4_init_eventq(struct ef4_channel *channel)
358 {
359 	struct ef4_nic *efx = channel->efx;
360 	int rc;
361 
362 	EF4_WARN_ON_PARANOID(channel->eventq_init);
363 
364 	netif_dbg(efx, drv, efx->net_dev,
365 		  "chan %d init event queue\n", channel->channel);
366 
367 	rc = ef4_nic_init_eventq(channel);
368 	if (rc == 0) {
369 		efx->type->push_irq_moderation(channel);
370 		channel->eventq_read_ptr = 0;
371 		channel->eventq_init = true;
372 	}
373 	return rc;
374 }
375 
376 /* Enable event queue processing and NAPI */
377 void ef4_start_eventq(struct ef4_channel *channel)
378 {
379 	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
380 		  "chan %d start event queue\n", channel->channel);
381 
382 	/* Make sure the NAPI handler sees the enabled flag set */
383 	channel->enabled = true;
384 	smp_wmb();
385 
386 	napi_enable(&channel->napi_str);
387 	ef4_nic_eventq_read_ack(channel);
388 }
389 
390 /* Disable event queue processing and NAPI */
391 void ef4_stop_eventq(struct ef4_channel *channel)
392 {
393 	if (!channel->enabled)
394 		return;
395 
396 	napi_disable(&channel->napi_str);
397 	channel->enabled = false;
398 }
399 
400 static void ef4_fini_eventq(struct ef4_channel *channel)
401 {
402 	if (!channel->eventq_init)
403 		return;
404 
405 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
406 		  "chan %d fini event queue\n", channel->channel);
407 
408 	ef4_nic_fini_eventq(channel);
409 	channel->eventq_init = false;
410 }
411 
412 static void ef4_remove_eventq(struct ef4_channel *channel)
413 {
414 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
415 		  "chan %d remove event queue\n", channel->channel);
416 
417 	ef4_nic_remove_eventq(channel);
418 }
419 
420 /**************************************************************************
421  *
422  * Channel handling
423  *
424  *************************************************************************/
425 
426 /* Allocate and initialise a channel structure. */
427 static struct ef4_channel *
428 ef4_alloc_channel(struct ef4_nic *efx, int i, struct ef4_channel *old_channel)
429 {
430 	struct ef4_channel *channel;
431 	struct ef4_rx_queue *rx_queue;
432 	struct ef4_tx_queue *tx_queue;
433 	int j;
434 
435 	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
436 	if (!channel)
437 		return NULL;
438 
439 	channel->efx = efx;
440 	channel->channel = i;
441 	channel->type = &ef4_default_channel_type;
442 
443 	for (j = 0; j < EF4_TXQ_TYPES; j++) {
444 		tx_queue = &channel->tx_queue[j];
445 		tx_queue->efx = efx;
446 		tx_queue->queue = i * EF4_TXQ_TYPES + j;
447 		tx_queue->channel = channel;
448 	}
449 
450 	rx_queue = &channel->rx_queue;
451 	rx_queue->efx = efx;
452 	timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
453 
454 	return channel;
455 }
456 
457 /* Allocate and initialise a channel structure, copying parameters
458  * (but not resources) from an old channel structure.
459  */
460 static struct ef4_channel *
461 ef4_copy_channel(const struct ef4_channel *old_channel)
462 {
463 	struct ef4_channel *channel;
464 	struct ef4_rx_queue *rx_queue;
465 	struct ef4_tx_queue *tx_queue;
466 	int j;
467 
468 	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
469 	if (!channel)
470 		return NULL;
471 
472 	*channel = *old_channel;
473 
474 	channel->napi_dev = NULL;
475 	INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
476 	channel->napi_str.napi_id = 0;
477 	channel->napi_str.state = 0;
478 	memset(&channel->eventq, 0, sizeof(channel->eventq));
479 
480 	for (j = 0; j < EF4_TXQ_TYPES; j++) {
481 		tx_queue = &channel->tx_queue[j];
482 		if (tx_queue->channel)
483 			tx_queue->channel = channel;
484 		tx_queue->buffer = NULL;
485 		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
486 	}
487 
488 	rx_queue = &channel->rx_queue;
489 	rx_queue->buffer = NULL;
490 	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
491 	timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
492 
493 	return channel;
494 }
495 
496 static int ef4_probe_channel(struct ef4_channel *channel)
497 {
498 	struct ef4_tx_queue *tx_queue;
499 	struct ef4_rx_queue *rx_queue;
500 	int rc;
501 
502 	netif_dbg(channel->efx, probe, channel->efx->net_dev,
503 		  "creating channel %d\n", channel->channel);
504 
505 	rc = channel->type->pre_probe(channel);
506 	if (rc)
507 		goto fail;
508 
509 	rc = ef4_probe_eventq(channel);
510 	if (rc)
511 		goto fail;
512 
513 	ef4_for_each_channel_tx_queue(tx_queue, channel) {
514 		rc = ef4_probe_tx_queue(tx_queue);
515 		if (rc)
516 			goto fail;
517 	}
518 
519 	ef4_for_each_channel_rx_queue(rx_queue, channel) {
520 		rc = ef4_probe_rx_queue(rx_queue);
521 		if (rc)
522 			goto fail;
523 	}
524 
525 	return 0;
526 
527 fail:
528 	ef4_remove_channel(channel);
529 	return rc;
530 }
531 
532 static void
533 ef4_get_channel_name(struct ef4_channel *channel, char *buf, size_t len)
534 {
535 	struct ef4_nic *efx = channel->efx;
536 	const char *type;
537 	int number;
538 
539 	number = channel->channel;
540 	if (efx->tx_channel_offset == 0) {
541 		type = "";
542 	} else if (channel->channel < efx->tx_channel_offset) {
543 		type = "-rx";
544 	} else {
545 		type = "-tx";
546 		number -= efx->tx_channel_offset;
547 	}
548 	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
549 }
550 
551 static void ef4_set_channel_names(struct ef4_nic *efx)
552 {
553 	struct ef4_channel *channel;
554 
555 	ef4_for_each_channel(channel, efx)
556 		channel->type->get_name(channel,
557 					efx->msi_context[channel->channel].name,
558 					sizeof(efx->msi_context[0].name));
559 }
560 
561 static int ef4_probe_channels(struct ef4_nic *efx)
562 {
563 	struct ef4_channel *channel;
564 	int rc;
565 
566 	/* Restart special buffer allocation */
567 	efx->next_buffer_table = 0;
568 
569 	/* Probe channels in reverse, so that any 'extra' channels
570 	 * use the start of the buffer table. This allows the traffic
571 	 * channels to be resized without moving them or wasting the
572 	 * entries before them.
573 	 */
574 	ef4_for_each_channel_rev(channel, efx) {
575 		rc = ef4_probe_channel(channel);
576 		if (rc) {
577 			netif_err(efx, probe, efx->net_dev,
578 				  "failed to create channel %d\n",
579 				  channel->channel);
580 			goto fail;
581 		}
582 	}
583 	ef4_set_channel_names(efx);
584 
585 	return 0;
586 
587 fail:
588 	ef4_remove_channels(efx);
589 	return rc;
590 }
591 
592 /* Channels are shutdown and reinitialised whilst the NIC is running
593  * to propagate configuration changes (mtu, checksum offload), or
594  * to clear hardware error conditions
595  */
596 static void ef4_start_datapath(struct ef4_nic *efx)
597 {
598 	netdev_features_t old_features = efx->net_dev->features;
599 	bool old_rx_scatter = efx->rx_scatter;
600 	struct ef4_tx_queue *tx_queue;
601 	struct ef4_rx_queue *rx_queue;
602 	struct ef4_channel *channel;
603 	size_t rx_buf_len;
604 
605 	/* Calculate the rx buffer allocation parameters required to
606 	 * support the current MTU, including padding for header
607 	 * alignment and overruns.
608 	 */
609 	efx->rx_dma_len = (efx->rx_prefix_size +
610 			   EF4_MAX_FRAME_LEN(efx->net_dev->mtu) +
611 			   efx->type->rx_buffer_padding);
612 	rx_buf_len = (sizeof(struct ef4_rx_page_state) +
613 		      efx->rx_ip_align + efx->rx_dma_len);
614 	if (rx_buf_len <= PAGE_SIZE) {
615 		efx->rx_scatter = efx->type->always_rx_scatter;
616 		efx->rx_buffer_order = 0;
617 	} else if (efx->type->can_rx_scatter) {
618 		BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
619 		BUILD_BUG_ON(sizeof(struct ef4_rx_page_state) +
620 			     2 * ALIGN(NET_IP_ALIGN + EF4_RX_USR_BUF_SIZE,
621 				       EF4_RX_BUF_ALIGNMENT) >
622 			     PAGE_SIZE);
623 		efx->rx_scatter = true;
624 		efx->rx_dma_len = EF4_RX_USR_BUF_SIZE;
625 		efx->rx_buffer_order = 0;
626 	} else {
627 		efx->rx_scatter = false;
628 		efx->rx_buffer_order = get_order(rx_buf_len);
629 	}
630 
631 	ef4_rx_config_page_split(efx);
632 	if (efx->rx_buffer_order)
633 		netif_dbg(efx, drv, efx->net_dev,
634 			  "RX buf len=%u; page order=%u batch=%u\n",
635 			  efx->rx_dma_len, efx->rx_buffer_order,
636 			  efx->rx_pages_per_batch);
637 	else
638 		netif_dbg(efx, drv, efx->net_dev,
639 			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
640 			  efx->rx_dma_len, efx->rx_page_buf_step,
641 			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
642 
643 	/* Restore previously fixed features in hw_features and remove
644 	 * features which are fixed now
645 	 */
646 	efx->net_dev->hw_features |= efx->net_dev->features;
647 	efx->net_dev->hw_features &= ~efx->fixed_features;
648 	efx->net_dev->features |= efx->fixed_features;
649 	if (efx->net_dev->features != old_features)
650 		netdev_features_change(efx->net_dev);
651 
652 	/* RX filters may also have scatter-enabled flags */
653 	if (efx->rx_scatter != old_rx_scatter)
654 		efx->type->filter_update_rx_scatter(efx);
655 
656 	/* We must keep at least one descriptor in a TX ring empty.
657 	 * We could avoid this when the queue size does not exactly
658 	 * match the hardware ring size, but it's not that important.
659 	 * Therefore we stop the queue when one more skb might fill
660 	 * the ring completely.  We wake it when half way back to
661 	 * empty.
662 	 */
663 	efx->txq_stop_thresh = efx->txq_entries - ef4_tx_max_skb_descs(efx);
664 	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
665 
666 	/* Initialise the channels */
667 	ef4_for_each_channel(channel, efx) {
668 		ef4_for_each_channel_tx_queue(tx_queue, channel) {
669 			ef4_init_tx_queue(tx_queue);
670 			atomic_inc(&efx->active_queues);
671 		}
672 
673 		ef4_for_each_channel_rx_queue(rx_queue, channel) {
674 			ef4_init_rx_queue(rx_queue);
675 			atomic_inc(&efx->active_queues);
676 			ef4_stop_eventq(channel);
677 			ef4_fast_push_rx_descriptors(rx_queue, false);
678 			ef4_start_eventq(channel);
679 		}
680 
681 		WARN_ON(channel->rx_pkt_n_frags);
682 	}
683 
684 	if (netif_device_present(efx->net_dev))
685 		netif_tx_wake_all_queues(efx->net_dev);
686 }
687 
688 static void ef4_stop_datapath(struct ef4_nic *efx)
689 {
690 	struct ef4_channel *channel;
691 	struct ef4_tx_queue *tx_queue;
692 	struct ef4_rx_queue *rx_queue;
693 	int rc;
694 
695 	EF4_ASSERT_RESET_SERIALISED(efx);
696 	BUG_ON(efx->port_enabled);
697 
698 	/* Stop RX refill */
699 	ef4_for_each_channel(channel, efx) {
700 		ef4_for_each_channel_rx_queue(rx_queue, channel)
701 			rx_queue->refill_enabled = false;
702 	}
703 
704 	ef4_for_each_channel(channel, efx) {
705 		/* RX packet processing is pipelined, so wait for the
706 		 * NAPI handler to complete.  At least event queue 0
707 		 * might be kept active by non-data events, so don't
708 		 * use napi_synchronize() but actually disable NAPI
709 		 * temporarily.
710 		 */
711 		if (ef4_channel_has_rx_queue(channel)) {
712 			ef4_stop_eventq(channel);
713 			ef4_start_eventq(channel);
714 		}
715 	}
716 
717 	rc = efx->type->fini_dmaq(efx);
718 	if (rc && EF4_WORKAROUND_7803(efx)) {
719 		/* Schedule a reset to recover from the flush failure. The
720 		 * descriptor caches reference memory we're about to free,
721 		 * but falcon_reconfigure_mac_wrapper() won't reconnect
722 		 * the MACs because of the pending reset.
723 		 */
724 		netif_err(efx, drv, efx->net_dev,
725 			  "Resetting to recover from flush failure\n");
726 		ef4_schedule_reset(efx, RESET_TYPE_ALL);
727 	} else if (rc) {
728 		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
729 	} else {
730 		netif_dbg(efx, drv, efx->net_dev,
731 			  "successfully flushed all queues\n");
732 	}
733 
734 	ef4_for_each_channel(channel, efx) {
735 		ef4_for_each_channel_rx_queue(rx_queue, channel)
736 			ef4_fini_rx_queue(rx_queue);
737 		ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
738 			ef4_fini_tx_queue(tx_queue);
739 	}
740 }
741 
742 static void ef4_remove_channel(struct ef4_channel *channel)
743 {
744 	struct ef4_tx_queue *tx_queue;
745 	struct ef4_rx_queue *rx_queue;
746 
747 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
748 		  "destroy chan %d\n", channel->channel);
749 
750 	ef4_for_each_channel_rx_queue(rx_queue, channel)
751 		ef4_remove_rx_queue(rx_queue);
752 	ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
753 		ef4_remove_tx_queue(tx_queue);
754 	ef4_remove_eventq(channel);
755 	channel->type->post_remove(channel);
756 }
757 
758 static void ef4_remove_channels(struct ef4_nic *efx)
759 {
760 	struct ef4_channel *channel;
761 
762 	ef4_for_each_channel(channel, efx)
763 		ef4_remove_channel(channel);
764 }
765 
766 int
767 ef4_realloc_channels(struct ef4_nic *efx, u32 rxq_entries, u32 txq_entries)
768 {
769 	struct ef4_channel *other_channel[EF4_MAX_CHANNELS], *channel;
770 	u32 old_rxq_entries, old_txq_entries;
771 	unsigned i, next_buffer_table = 0;
772 	int rc, rc2;
773 
774 	rc = ef4_check_disabled(efx);
775 	if (rc)
776 		return rc;
777 
778 	/* Not all channels should be reallocated. We must avoid
779 	 * reallocating their buffer table entries.
780 	 */
781 	ef4_for_each_channel(channel, efx) {
782 		struct ef4_rx_queue *rx_queue;
783 		struct ef4_tx_queue *tx_queue;
784 
785 		if (channel->type->copy)
786 			continue;
787 		next_buffer_table = max(next_buffer_table,
788 					channel->eventq.index +
789 					channel->eventq.entries);
790 		ef4_for_each_channel_rx_queue(rx_queue, channel)
791 			next_buffer_table = max(next_buffer_table,
792 						rx_queue->rxd.index +
793 						rx_queue->rxd.entries);
794 		ef4_for_each_channel_tx_queue(tx_queue, channel)
795 			next_buffer_table = max(next_buffer_table,
796 						tx_queue->txd.index +
797 						tx_queue->txd.entries);
798 	}
799 
800 	ef4_device_detach_sync(efx);
801 	ef4_stop_all(efx);
802 	ef4_soft_disable_interrupts(efx);
803 
804 	/* Clone channels (where possible) */
805 	memset(other_channel, 0, sizeof(other_channel));
806 	for (i = 0; i < efx->n_channels; i++) {
807 		channel = efx->channel[i];
808 		if (channel->type->copy)
809 			channel = channel->type->copy(channel);
810 		if (!channel) {
811 			rc = -ENOMEM;
812 			goto out;
813 		}
814 		other_channel[i] = channel;
815 	}
816 
817 	/* Swap entry counts and channel pointers */
818 	old_rxq_entries = efx->rxq_entries;
819 	old_txq_entries = efx->txq_entries;
820 	efx->rxq_entries = rxq_entries;
821 	efx->txq_entries = txq_entries;
822 	for (i = 0; i < efx->n_channels; i++) {
823 		channel = efx->channel[i];
824 		efx->channel[i] = other_channel[i];
825 		other_channel[i] = channel;
826 	}
827 
828 	/* Restart buffer table allocation */
829 	efx->next_buffer_table = next_buffer_table;
830 
831 	for (i = 0; i < efx->n_channels; i++) {
832 		channel = efx->channel[i];
833 		if (!channel->type->copy)
834 			continue;
835 		rc = ef4_probe_channel(channel);
836 		if (rc)
837 			goto rollback;
838 		ef4_init_napi_channel(efx->channel[i]);
839 	}
840 
841 out:
842 	/* Destroy unused channel structures */
843 	for (i = 0; i < efx->n_channels; i++) {
844 		channel = other_channel[i];
845 		if (channel && channel->type->copy) {
846 			ef4_fini_napi_channel(channel);
847 			ef4_remove_channel(channel);
848 			kfree(channel);
849 		}
850 	}
851 
852 	rc2 = ef4_soft_enable_interrupts(efx);
853 	if (rc2) {
854 		rc = rc ? rc : rc2;
855 		netif_err(efx, drv, efx->net_dev,
856 			  "unable to restart interrupts on channel reallocation\n");
857 		ef4_schedule_reset(efx, RESET_TYPE_DISABLE);
858 	} else {
859 		ef4_start_all(efx);
860 		netif_device_attach(efx->net_dev);
861 	}
862 	return rc;
863 
864 rollback:
865 	/* Swap back */
866 	efx->rxq_entries = old_rxq_entries;
867 	efx->txq_entries = old_txq_entries;
868 	for (i = 0; i < efx->n_channels; i++) {
869 		channel = efx->channel[i];
870 		efx->channel[i] = other_channel[i];
871 		other_channel[i] = channel;
872 	}
873 	goto out;
874 }
875 
876 void ef4_schedule_slow_fill(struct ef4_rx_queue *rx_queue)
877 {
878 	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
879 }
880 
881 static const struct ef4_channel_type ef4_default_channel_type = {
882 	.pre_probe		= ef4_channel_dummy_op_int,
883 	.post_remove		= ef4_channel_dummy_op_void,
884 	.get_name		= ef4_get_channel_name,
885 	.copy			= ef4_copy_channel,
886 	.keep_eventq		= false,
887 };
888 
889 int ef4_channel_dummy_op_int(struct ef4_channel *channel)
890 {
891 	return 0;
892 }
893 
894 void ef4_channel_dummy_op_void(struct ef4_channel *channel)
895 {
896 }
897 
898 /**************************************************************************
899  *
900  * Port handling
901  *
902  **************************************************************************/
903 
904 /* This ensures that the kernel is kept informed (via
905  * netif_carrier_on/off) of the link status, and also maintains the
906  * link status's stop on the port's TX queue.
907  */
908 void ef4_link_status_changed(struct ef4_nic *efx)
909 {
910 	struct ef4_link_state *link_state = &efx->link_state;
911 
912 	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
913 	 * that no events are triggered between unregister_netdev() and the
914 	 * driver unloading. A more general condition is that NETDEV_CHANGE
915 	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
916 	if (!netif_running(efx->net_dev))
917 		return;
918 
919 	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
920 		efx->n_link_state_changes++;
921 
922 		if (link_state->up)
923 			netif_carrier_on(efx->net_dev);
924 		else
925 			netif_carrier_off(efx->net_dev);
926 	}
927 
928 	/* Status message for kernel log */
929 	if (link_state->up)
930 		netif_info(efx, link, efx->net_dev,
931 			   "link up at %uMbps %s-duplex (MTU %d)\n",
932 			   link_state->speed, link_state->fd ? "full" : "half",
933 			   efx->net_dev->mtu);
934 	else
935 		netif_info(efx, link, efx->net_dev, "link down\n");
936 }
937 
938 void ef4_link_set_advertising(struct ef4_nic *efx, u32 advertising)
939 {
940 	efx->link_advertising = advertising;
941 	if (advertising) {
942 		if (advertising & ADVERTISED_Pause)
943 			efx->wanted_fc |= (EF4_FC_TX | EF4_FC_RX);
944 		else
945 			efx->wanted_fc &= ~(EF4_FC_TX | EF4_FC_RX);
946 		if (advertising & ADVERTISED_Asym_Pause)
947 			efx->wanted_fc ^= EF4_FC_TX;
948 	}
949 }
950 
951 void ef4_link_set_wanted_fc(struct ef4_nic *efx, u8 wanted_fc)
952 {
953 	efx->wanted_fc = wanted_fc;
954 	if (efx->link_advertising) {
955 		if (wanted_fc & EF4_FC_RX)
956 			efx->link_advertising |= (ADVERTISED_Pause |
957 						  ADVERTISED_Asym_Pause);
958 		else
959 			efx->link_advertising &= ~(ADVERTISED_Pause |
960 						   ADVERTISED_Asym_Pause);
961 		if (wanted_fc & EF4_FC_TX)
962 			efx->link_advertising ^= ADVERTISED_Asym_Pause;
963 	}
964 }
965 
966 static void ef4_fini_port(struct ef4_nic *efx);
967 
968 /* We assume that efx->type->reconfigure_mac will always try to sync RX
969  * filters and therefore needs to read-lock the filter table against freeing
970  */
971 void ef4_mac_reconfigure(struct ef4_nic *efx)
972 {
973 	down_read(&efx->filter_sem);
974 	efx->type->reconfigure_mac(efx);
975 	up_read(&efx->filter_sem);
976 }
977 
978 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
979  * the MAC appropriately. All other PHY configuration changes are pushed
980  * through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC
981  * through ef4_monitor().
982  *
983  * Callers must hold the mac_lock
984  */
985 int __ef4_reconfigure_port(struct ef4_nic *efx)
986 {
987 	enum ef4_phy_mode phy_mode;
988 	int rc;
989 
990 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
991 
992 	/* Disable PHY transmit in mac level loopbacks */
993 	phy_mode = efx->phy_mode;
994 	if (LOOPBACK_INTERNAL(efx))
995 		efx->phy_mode |= PHY_MODE_TX_DISABLED;
996 	else
997 		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
998 
999 	rc = efx->type->reconfigure_port(efx);
1000 
1001 	if (rc)
1002 		efx->phy_mode = phy_mode;
1003 
1004 	return rc;
1005 }
1006 
1007 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
1008  * disabled. */
1009 int ef4_reconfigure_port(struct ef4_nic *efx)
1010 {
1011 	int rc;
1012 
1013 	EF4_ASSERT_RESET_SERIALISED(efx);
1014 
1015 	mutex_lock(&efx->mac_lock);
1016 	rc = __ef4_reconfigure_port(efx);
1017 	mutex_unlock(&efx->mac_lock);
1018 
1019 	return rc;
1020 }
1021 
1022 /* Asynchronous work item for changing MAC promiscuity and multicast
1023  * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
1024  * MAC directly. */
1025 static void ef4_mac_work(struct work_struct *data)
1026 {
1027 	struct ef4_nic *efx = container_of(data, struct ef4_nic, mac_work);
1028 
1029 	mutex_lock(&efx->mac_lock);
1030 	if (efx->port_enabled)
1031 		ef4_mac_reconfigure(efx);
1032 	mutex_unlock(&efx->mac_lock);
1033 }
1034 
1035 static int ef4_probe_port(struct ef4_nic *efx)
1036 {
1037 	int rc;
1038 
1039 	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1040 
1041 	if (phy_flash_cfg)
1042 		efx->phy_mode = PHY_MODE_SPECIAL;
1043 
1044 	/* Connect up MAC/PHY operations table */
1045 	rc = efx->type->probe_port(efx);
1046 	if (rc)
1047 		return rc;
1048 
1049 	/* Initialise MAC address to permanent address */
1050 	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1051 
1052 	return 0;
1053 }
1054 
1055 static int ef4_init_port(struct ef4_nic *efx)
1056 {
1057 	int rc;
1058 
1059 	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1060 
1061 	mutex_lock(&efx->mac_lock);
1062 
1063 	rc = efx->phy_op->init(efx);
1064 	if (rc)
1065 		goto fail1;
1066 
1067 	efx->port_initialized = true;
1068 
1069 	/* Reconfigure the MAC before creating dma queues (required for
1070 	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1071 	ef4_mac_reconfigure(efx);
1072 
1073 	/* Ensure the PHY advertises the correct flow control settings */
1074 	rc = efx->phy_op->reconfigure(efx);
1075 	if (rc && rc != -EPERM)
1076 		goto fail2;
1077 
1078 	mutex_unlock(&efx->mac_lock);
1079 	return 0;
1080 
1081 fail2:
1082 	efx->phy_op->fini(efx);
1083 fail1:
1084 	mutex_unlock(&efx->mac_lock);
1085 	return rc;
1086 }
1087 
1088 static void ef4_start_port(struct ef4_nic *efx)
1089 {
1090 	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1091 	BUG_ON(efx->port_enabled);
1092 
1093 	mutex_lock(&efx->mac_lock);
1094 	efx->port_enabled = true;
1095 
1096 	/* Ensure MAC ingress/egress is enabled */
1097 	ef4_mac_reconfigure(efx);
1098 
1099 	mutex_unlock(&efx->mac_lock);
1100 }
1101 
1102 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1103  * and the async self-test, wait for them to finish and prevent them
1104  * being scheduled again.  This doesn't cover online resets, which
1105  * should only be cancelled when removing the device.
1106  */
1107 static void ef4_stop_port(struct ef4_nic *efx)
1108 {
1109 	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1110 
1111 	EF4_ASSERT_RESET_SERIALISED(efx);
1112 
1113 	mutex_lock(&efx->mac_lock);
1114 	efx->port_enabled = false;
1115 	mutex_unlock(&efx->mac_lock);
1116 
1117 	/* Serialise against ef4_set_multicast_list() */
1118 	netif_addr_lock_bh(efx->net_dev);
1119 	netif_addr_unlock_bh(efx->net_dev);
1120 
1121 	cancel_delayed_work_sync(&efx->monitor_work);
1122 	ef4_selftest_async_cancel(efx);
1123 	cancel_work_sync(&efx->mac_work);
1124 }
1125 
1126 static void ef4_fini_port(struct ef4_nic *efx)
1127 {
1128 	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1129 
1130 	if (!efx->port_initialized)
1131 		return;
1132 
1133 	efx->phy_op->fini(efx);
1134 	efx->port_initialized = false;
1135 
1136 	efx->link_state.up = false;
1137 	ef4_link_status_changed(efx);
1138 }
1139 
1140 static void ef4_remove_port(struct ef4_nic *efx)
1141 {
1142 	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1143 
1144 	efx->type->remove_port(efx);
1145 }
1146 
1147 /**************************************************************************
1148  *
1149  * NIC handling
1150  *
1151  **************************************************************************/
1152 
1153 static LIST_HEAD(ef4_primary_list);
1154 static LIST_HEAD(ef4_unassociated_list);
1155 
1156 static bool ef4_same_controller(struct ef4_nic *left, struct ef4_nic *right)
1157 {
1158 	return left->type == right->type &&
1159 		left->vpd_sn && right->vpd_sn &&
1160 		!strcmp(left->vpd_sn, right->vpd_sn);
1161 }
1162 
1163 static void ef4_associate(struct ef4_nic *efx)
1164 {
1165 	struct ef4_nic *other, *next;
1166 
1167 	if (efx->primary == efx) {
1168 		/* Adding primary function; look for secondaries */
1169 
1170 		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1171 		list_add_tail(&efx->node, &ef4_primary_list);
1172 
1173 		list_for_each_entry_safe(other, next, &ef4_unassociated_list,
1174 					 node) {
1175 			if (ef4_same_controller(efx, other)) {
1176 				list_del(&other->node);
1177 				netif_dbg(other, probe, other->net_dev,
1178 					  "moving to secondary list of %s %s\n",
1179 					  pci_name(efx->pci_dev),
1180 					  efx->net_dev->name);
1181 				list_add_tail(&other->node,
1182 					      &efx->secondary_list);
1183 				other->primary = efx;
1184 			}
1185 		}
1186 	} else {
1187 		/* Adding secondary function; look for primary */
1188 
1189 		list_for_each_entry(other, &ef4_primary_list, node) {
1190 			if (ef4_same_controller(efx, other)) {
1191 				netif_dbg(efx, probe, efx->net_dev,
1192 					  "adding to secondary list of %s %s\n",
1193 					  pci_name(other->pci_dev),
1194 					  other->net_dev->name);
1195 				list_add_tail(&efx->node,
1196 					      &other->secondary_list);
1197 				efx->primary = other;
1198 				return;
1199 			}
1200 		}
1201 
1202 		netif_dbg(efx, probe, efx->net_dev,
1203 			  "adding to unassociated list\n");
1204 		list_add_tail(&efx->node, &ef4_unassociated_list);
1205 	}
1206 }
1207 
1208 static void ef4_dissociate(struct ef4_nic *efx)
1209 {
1210 	struct ef4_nic *other, *next;
1211 
1212 	list_del(&efx->node);
1213 	efx->primary = NULL;
1214 
1215 	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1216 		list_del(&other->node);
1217 		netif_dbg(other, probe, other->net_dev,
1218 			  "moving to unassociated list\n");
1219 		list_add_tail(&other->node, &ef4_unassociated_list);
1220 		other->primary = NULL;
1221 	}
1222 }
1223 
1224 /* This configures the PCI device to enable I/O and DMA. */
1225 static int ef4_init_io(struct ef4_nic *efx)
1226 {
1227 	struct pci_dev *pci_dev = efx->pci_dev;
1228 	dma_addr_t dma_mask = efx->type->max_dma_mask;
1229 	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1230 	int rc, bar;
1231 
1232 	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1233 
1234 	bar = efx->type->mem_bar;
1235 
1236 	rc = pci_enable_device(pci_dev);
1237 	if (rc) {
1238 		netif_err(efx, probe, efx->net_dev,
1239 			  "failed to enable PCI device\n");
1240 		goto fail1;
1241 	}
1242 
1243 	pci_set_master(pci_dev);
1244 
1245 	/* Set the PCI DMA mask.  Try all possibilities from our genuine mask
1246 	 * down to 32 bits, because some architectures will allow 40 bit
1247 	 * masks event though they reject 46 bit masks.
1248 	 */
1249 	while (dma_mask > 0x7fffffffUL) {
1250 		rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1251 		if (rc == 0)
1252 			break;
1253 		dma_mask >>= 1;
1254 	}
1255 	if (rc) {
1256 		netif_err(efx, probe, efx->net_dev,
1257 			  "could not find a suitable DMA mask\n");
1258 		goto fail2;
1259 	}
1260 	netif_dbg(efx, probe, efx->net_dev,
1261 		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1262 
1263 	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1264 	rc = pci_request_region(pci_dev, bar, "sfc");
1265 	if (rc) {
1266 		netif_err(efx, probe, efx->net_dev,
1267 			  "request for memory BAR failed\n");
1268 		rc = -EIO;
1269 		goto fail3;
1270 	}
1271 	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1272 	if (!efx->membase) {
1273 		netif_err(efx, probe, efx->net_dev,
1274 			  "could not map memory BAR at %llx+%x\n",
1275 			  (unsigned long long)efx->membase_phys, mem_map_size);
1276 		rc = -ENOMEM;
1277 		goto fail4;
1278 	}
1279 	netif_dbg(efx, probe, efx->net_dev,
1280 		  "memory BAR at %llx+%x (virtual %p)\n",
1281 		  (unsigned long long)efx->membase_phys, mem_map_size,
1282 		  efx->membase);
1283 
1284 	return 0;
1285 
1286  fail4:
1287 	pci_release_region(efx->pci_dev, bar);
1288  fail3:
1289 	efx->membase_phys = 0;
1290  fail2:
1291 	pci_disable_device(efx->pci_dev);
1292  fail1:
1293 	return rc;
1294 }
1295 
1296 static void ef4_fini_io(struct ef4_nic *efx)
1297 {
1298 	int bar;
1299 
1300 	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1301 
1302 	if (efx->membase) {
1303 		iounmap(efx->membase);
1304 		efx->membase = NULL;
1305 	}
1306 
1307 	if (efx->membase_phys) {
1308 		bar = efx->type->mem_bar;
1309 		pci_release_region(efx->pci_dev, bar);
1310 		efx->membase_phys = 0;
1311 	}
1312 
1313 	/* Don't disable bus-mastering if VFs are assigned */
1314 	if (!pci_vfs_assigned(efx->pci_dev))
1315 		pci_disable_device(efx->pci_dev);
1316 }
1317 
1318 void ef4_set_default_rx_indir_table(struct ef4_nic *efx)
1319 {
1320 	size_t i;
1321 
1322 	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1323 		efx->rx_indir_table[i] =
1324 			ethtool_rxfh_indir_default(i, efx->rss_spread);
1325 }
1326 
1327 static unsigned int ef4_wanted_parallelism(struct ef4_nic *efx)
1328 {
1329 	cpumask_var_t thread_mask;
1330 	unsigned int count;
1331 	int cpu;
1332 
1333 	if (rss_cpus) {
1334 		count = rss_cpus;
1335 	} else {
1336 		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1337 			netif_warn(efx, probe, efx->net_dev,
1338 				   "RSS disabled due to allocation failure\n");
1339 			return 1;
1340 		}
1341 
1342 		count = 0;
1343 		for_each_online_cpu(cpu) {
1344 			if (!cpumask_test_cpu(cpu, thread_mask)) {
1345 				++count;
1346 				cpumask_or(thread_mask, thread_mask,
1347 					   topology_sibling_cpumask(cpu));
1348 			}
1349 		}
1350 
1351 		free_cpumask_var(thread_mask);
1352 	}
1353 
1354 	if (count > EF4_MAX_RX_QUEUES) {
1355 		netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn,
1356 			       "Reducing number of rx queues from %u to %u.\n",
1357 			       count, EF4_MAX_RX_QUEUES);
1358 		count = EF4_MAX_RX_QUEUES;
1359 	}
1360 
1361 	return count;
1362 }
1363 
1364 /* Probe the number and type of interrupts we are able to obtain, and
1365  * the resulting numbers of channels and RX queues.
1366  */
1367 static int ef4_probe_interrupts(struct ef4_nic *efx)
1368 {
1369 	unsigned int extra_channels = 0;
1370 	unsigned int i, j;
1371 	int rc;
1372 
1373 	for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++)
1374 		if (efx->extra_channel_type[i])
1375 			++extra_channels;
1376 
1377 	if (efx->interrupt_mode == EF4_INT_MODE_MSIX) {
1378 		struct msix_entry xentries[EF4_MAX_CHANNELS];
1379 		unsigned int n_channels;
1380 
1381 		n_channels = ef4_wanted_parallelism(efx);
1382 		if (ef4_separate_tx_channels)
1383 			n_channels *= 2;
1384 		n_channels += extra_channels;
1385 		n_channels = min(n_channels, efx->max_channels);
1386 
1387 		for (i = 0; i < n_channels; i++)
1388 			xentries[i].entry = i;
1389 		rc = pci_enable_msix_range(efx->pci_dev,
1390 					   xentries, 1, n_channels);
1391 		if (rc < 0) {
1392 			/* Fall back to single channel MSI */
1393 			efx->interrupt_mode = EF4_INT_MODE_MSI;
1394 			netif_err(efx, drv, efx->net_dev,
1395 				  "could not enable MSI-X\n");
1396 		} else if (rc < n_channels) {
1397 			netif_err(efx, drv, efx->net_dev,
1398 				  "WARNING: Insufficient MSI-X vectors"
1399 				  " available (%d < %u).\n", rc, n_channels);
1400 			netif_err(efx, drv, efx->net_dev,
1401 				  "WARNING: Performance may be reduced.\n");
1402 			n_channels = rc;
1403 		}
1404 
1405 		if (rc > 0) {
1406 			efx->n_channels = n_channels;
1407 			if (n_channels > extra_channels)
1408 				n_channels -= extra_channels;
1409 			if (ef4_separate_tx_channels) {
1410 				efx->n_tx_channels = min(max(n_channels / 2,
1411 							     1U),
1412 							 efx->max_tx_channels);
1413 				efx->n_rx_channels = max(n_channels -
1414 							 efx->n_tx_channels,
1415 							 1U);
1416 			} else {
1417 				efx->n_tx_channels = min(n_channels,
1418 							 efx->max_tx_channels);
1419 				efx->n_rx_channels = n_channels;
1420 			}
1421 			for (i = 0; i < efx->n_channels; i++)
1422 				ef4_get_channel(efx, i)->irq =
1423 					xentries[i].vector;
1424 		}
1425 	}
1426 
1427 	/* Try single interrupt MSI */
1428 	if (efx->interrupt_mode == EF4_INT_MODE_MSI) {
1429 		efx->n_channels = 1;
1430 		efx->n_rx_channels = 1;
1431 		efx->n_tx_channels = 1;
1432 		rc = pci_enable_msi(efx->pci_dev);
1433 		if (rc == 0) {
1434 			ef4_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1435 		} else {
1436 			netif_err(efx, drv, efx->net_dev,
1437 				  "could not enable MSI\n");
1438 			efx->interrupt_mode = EF4_INT_MODE_LEGACY;
1439 		}
1440 	}
1441 
1442 	/* Assume legacy interrupts */
1443 	if (efx->interrupt_mode == EF4_INT_MODE_LEGACY) {
1444 		efx->n_channels = 1 + (ef4_separate_tx_channels ? 1 : 0);
1445 		efx->n_rx_channels = 1;
1446 		efx->n_tx_channels = 1;
1447 		efx->legacy_irq = efx->pci_dev->irq;
1448 	}
1449 
1450 	/* Assign extra channels if possible */
1451 	j = efx->n_channels;
1452 	for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) {
1453 		if (!efx->extra_channel_type[i])
1454 			continue;
1455 		if (efx->interrupt_mode != EF4_INT_MODE_MSIX ||
1456 		    efx->n_channels <= extra_channels) {
1457 			efx->extra_channel_type[i]->handle_no_channel(efx);
1458 		} else {
1459 			--j;
1460 			ef4_get_channel(efx, j)->type =
1461 				efx->extra_channel_type[i];
1462 		}
1463 	}
1464 
1465 	efx->rss_spread = efx->n_rx_channels;
1466 
1467 	return 0;
1468 }
1469 
1470 static int ef4_soft_enable_interrupts(struct ef4_nic *efx)
1471 {
1472 	struct ef4_channel *channel, *end_channel;
1473 	int rc;
1474 
1475 	BUG_ON(efx->state == STATE_DISABLED);
1476 
1477 	efx->irq_soft_enabled = true;
1478 	smp_wmb();
1479 
1480 	ef4_for_each_channel(channel, efx) {
1481 		if (!channel->type->keep_eventq) {
1482 			rc = ef4_init_eventq(channel);
1483 			if (rc)
1484 				goto fail;
1485 		}
1486 		ef4_start_eventq(channel);
1487 	}
1488 
1489 	return 0;
1490 fail:
1491 	end_channel = channel;
1492 	ef4_for_each_channel(channel, efx) {
1493 		if (channel == end_channel)
1494 			break;
1495 		ef4_stop_eventq(channel);
1496 		if (!channel->type->keep_eventq)
1497 			ef4_fini_eventq(channel);
1498 	}
1499 
1500 	return rc;
1501 }
1502 
1503 static void ef4_soft_disable_interrupts(struct ef4_nic *efx)
1504 {
1505 	struct ef4_channel *channel;
1506 
1507 	if (efx->state == STATE_DISABLED)
1508 		return;
1509 
1510 	efx->irq_soft_enabled = false;
1511 	smp_wmb();
1512 
1513 	if (efx->legacy_irq)
1514 		synchronize_irq(efx->legacy_irq);
1515 
1516 	ef4_for_each_channel(channel, efx) {
1517 		if (channel->irq)
1518 			synchronize_irq(channel->irq);
1519 
1520 		ef4_stop_eventq(channel);
1521 		if (!channel->type->keep_eventq)
1522 			ef4_fini_eventq(channel);
1523 	}
1524 }
1525 
1526 static int ef4_enable_interrupts(struct ef4_nic *efx)
1527 {
1528 	struct ef4_channel *channel, *end_channel;
1529 	int rc;
1530 
1531 	BUG_ON(efx->state == STATE_DISABLED);
1532 
1533 	if (efx->eeh_disabled_legacy_irq) {
1534 		enable_irq(efx->legacy_irq);
1535 		efx->eeh_disabled_legacy_irq = false;
1536 	}
1537 
1538 	efx->type->irq_enable_master(efx);
1539 
1540 	ef4_for_each_channel(channel, efx) {
1541 		if (channel->type->keep_eventq) {
1542 			rc = ef4_init_eventq(channel);
1543 			if (rc)
1544 				goto fail;
1545 		}
1546 	}
1547 
1548 	rc = ef4_soft_enable_interrupts(efx);
1549 	if (rc)
1550 		goto fail;
1551 
1552 	return 0;
1553 
1554 fail:
1555 	end_channel = channel;
1556 	ef4_for_each_channel(channel, efx) {
1557 		if (channel == end_channel)
1558 			break;
1559 		if (channel->type->keep_eventq)
1560 			ef4_fini_eventq(channel);
1561 	}
1562 
1563 	efx->type->irq_disable_non_ev(efx);
1564 
1565 	return rc;
1566 }
1567 
1568 static void ef4_disable_interrupts(struct ef4_nic *efx)
1569 {
1570 	struct ef4_channel *channel;
1571 
1572 	ef4_soft_disable_interrupts(efx);
1573 
1574 	ef4_for_each_channel(channel, efx) {
1575 		if (channel->type->keep_eventq)
1576 			ef4_fini_eventq(channel);
1577 	}
1578 
1579 	efx->type->irq_disable_non_ev(efx);
1580 }
1581 
1582 static void ef4_remove_interrupts(struct ef4_nic *efx)
1583 {
1584 	struct ef4_channel *channel;
1585 
1586 	/* Remove MSI/MSI-X interrupts */
1587 	ef4_for_each_channel(channel, efx)
1588 		channel->irq = 0;
1589 	pci_disable_msi(efx->pci_dev);
1590 	pci_disable_msix(efx->pci_dev);
1591 
1592 	/* Remove legacy interrupt */
1593 	efx->legacy_irq = 0;
1594 }
1595 
1596 static void ef4_set_channels(struct ef4_nic *efx)
1597 {
1598 	struct ef4_channel *channel;
1599 	struct ef4_tx_queue *tx_queue;
1600 
1601 	efx->tx_channel_offset =
1602 		ef4_separate_tx_channels ?
1603 		efx->n_channels - efx->n_tx_channels : 0;
1604 
1605 	/* We need to mark which channels really have RX and TX
1606 	 * queues, and adjust the TX queue numbers if we have separate
1607 	 * RX-only and TX-only channels.
1608 	 */
1609 	ef4_for_each_channel(channel, efx) {
1610 		if (channel->channel < efx->n_rx_channels)
1611 			channel->rx_queue.core_index = channel->channel;
1612 		else
1613 			channel->rx_queue.core_index = -1;
1614 
1615 		ef4_for_each_channel_tx_queue(tx_queue, channel)
1616 			tx_queue->queue -= (efx->tx_channel_offset *
1617 					    EF4_TXQ_TYPES);
1618 	}
1619 }
1620 
1621 static int ef4_probe_nic(struct ef4_nic *efx)
1622 {
1623 	int rc;
1624 
1625 	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1626 
1627 	/* Carry out hardware-type specific initialisation */
1628 	rc = efx->type->probe(efx);
1629 	if (rc)
1630 		return rc;
1631 
1632 	do {
1633 		if (!efx->max_channels || !efx->max_tx_channels) {
1634 			netif_err(efx, drv, efx->net_dev,
1635 				  "Insufficient resources to allocate"
1636 				  " any channels\n");
1637 			rc = -ENOSPC;
1638 			goto fail1;
1639 		}
1640 
1641 		/* Determine the number of channels and queues by trying
1642 		 * to hook in MSI-X interrupts.
1643 		 */
1644 		rc = ef4_probe_interrupts(efx);
1645 		if (rc)
1646 			goto fail1;
1647 
1648 		ef4_set_channels(efx);
1649 
1650 		/* dimension_resources can fail with EAGAIN */
1651 		rc = efx->type->dimension_resources(efx);
1652 		if (rc != 0 && rc != -EAGAIN)
1653 			goto fail2;
1654 
1655 		if (rc == -EAGAIN)
1656 			/* try again with new max_channels */
1657 			ef4_remove_interrupts(efx);
1658 
1659 	} while (rc == -EAGAIN);
1660 
1661 	if (efx->n_channels > 1)
1662 		netdev_rss_key_fill(&efx->rx_hash_key,
1663 				    sizeof(efx->rx_hash_key));
1664 	ef4_set_default_rx_indir_table(efx);
1665 
1666 	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1667 	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1668 
1669 	/* Initialise the interrupt moderation settings */
1670 	efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
1671 	ef4_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1672 				true);
1673 
1674 	return 0;
1675 
1676 fail2:
1677 	ef4_remove_interrupts(efx);
1678 fail1:
1679 	efx->type->remove(efx);
1680 	return rc;
1681 }
1682 
1683 static void ef4_remove_nic(struct ef4_nic *efx)
1684 {
1685 	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1686 
1687 	ef4_remove_interrupts(efx);
1688 	efx->type->remove(efx);
1689 }
1690 
1691 static int ef4_probe_filters(struct ef4_nic *efx)
1692 {
1693 	int rc;
1694 
1695 	spin_lock_init(&efx->filter_lock);
1696 	init_rwsem(&efx->filter_sem);
1697 	mutex_lock(&efx->mac_lock);
1698 	down_write(&efx->filter_sem);
1699 	rc = efx->type->filter_table_probe(efx);
1700 	if (rc)
1701 		goto out_unlock;
1702 
1703 #ifdef CONFIG_RFS_ACCEL
1704 	if (efx->type->offload_features & NETIF_F_NTUPLE) {
1705 		struct ef4_channel *channel;
1706 		int i, success = 1;
1707 
1708 		ef4_for_each_channel(channel, efx) {
1709 			channel->rps_flow_id =
1710 				kcalloc(efx->type->max_rx_ip_filters,
1711 					sizeof(*channel->rps_flow_id),
1712 					GFP_KERNEL);
1713 			if (!channel->rps_flow_id)
1714 				success = 0;
1715 			else
1716 				for (i = 0;
1717 				     i < efx->type->max_rx_ip_filters;
1718 				     ++i)
1719 					channel->rps_flow_id[i] =
1720 						RPS_FLOW_ID_INVALID;
1721 		}
1722 
1723 		if (!success) {
1724 			ef4_for_each_channel(channel, efx)
1725 				kfree(channel->rps_flow_id);
1726 			efx->type->filter_table_remove(efx);
1727 			rc = -ENOMEM;
1728 			goto out_unlock;
1729 		}
1730 
1731 		efx->rps_expire_index = efx->rps_expire_channel = 0;
1732 	}
1733 #endif
1734 out_unlock:
1735 	up_write(&efx->filter_sem);
1736 	mutex_unlock(&efx->mac_lock);
1737 	return rc;
1738 }
1739 
1740 static void ef4_remove_filters(struct ef4_nic *efx)
1741 {
1742 #ifdef CONFIG_RFS_ACCEL
1743 	struct ef4_channel *channel;
1744 
1745 	ef4_for_each_channel(channel, efx)
1746 		kfree(channel->rps_flow_id);
1747 #endif
1748 	down_write(&efx->filter_sem);
1749 	efx->type->filter_table_remove(efx);
1750 	up_write(&efx->filter_sem);
1751 }
1752 
1753 static void ef4_restore_filters(struct ef4_nic *efx)
1754 {
1755 	down_read(&efx->filter_sem);
1756 	efx->type->filter_table_restore(efx);
1757 	up_read(&efx->filter_sem);
1758 }
1759 
1760 /**************************************************************************
1761  *
1762  * NIC startup/shutdown
1763  *
1764  *************************************************************************/
1765 
1766 static int ef4_probe_all(struct ef4_nic *efx)
1767 {
1768 	int rc;
1769 
1770 	rc = ef4_probe_nic(efx);
1771 	if (rc) {
1772 		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1773 		goto fail1;
1774 	}
1775 
1776 	rc = ef4_probe_port(efx);
1777 	if (rc) {
1778 		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1779 		goto fail2;
1780 	}
1781 
1782 	BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_RXQ_MIN_ENT);
1783 	if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_TXQ_MIN_ENT(efx))) {
1784 		rc = -EINVAL;
1785 		goto fail3;
1786 	}
1787 	efx->rxq_entries = efx->txq_entries = EF4_DEFAULT_DMAQ_SIZE;
1788 
1789 	rc = ef4_probe_filters(efx);
1790 	if (rc) {
1791 		netif_err(efx, probe, efx->net_dev,
1792 			  "failed to create filter tables\n");
1793 		goto fail4;
1794 	}
1795 
1796 	rc = ef4_probe_channels(efx);
1797 	if (rc)
1798 		goto fail5;
1799 
1800 	return 0;
1801 
1802  fail5:
1803 	ef4_remove_filters(efx);
1804  fail4:
1805  fail3:
1806 	ef4_remove_port(efx);
1807  fail2:
1808 	ef4_remove_nic(efx);
1809  fail1:
1810 	return rc;
1811 }
1812 
1813 /* If the interface is supposed to be running but is not, start
1814  * the hardware and software data path, regular activity for the port
1815  * (MAC statistics, link polling, etc.) and schedule the port to be
1816  * reconfigured.  Interrupts must already be enabled.  This function
1817  * is safe to call multiple times, so long as the NIC is not disabled.
1818  * Requires the RTNL lock.
1819  */
1820 static void ef4_start_all(struct ef4_nic *efx)
1821 {
1822 	EF4_ASSERT_RESET_SERIALISED(efx);
1823 	BUG_ON(efx->state == STATE_DISABLED);
1824 
1825 	/* Check that it is appropriate to restart the interface. All
1826 	 * of these flags are safe to read under just the rtnl lock */
1827 	if (efx->port_enabled || !netif_running(efx->net_dev) ||
1828 	    efx->reset_pending)
1829 		return;
1830 
1831 	ef4_start_port(efx);
1832 	ef4_start_datapath(efx);
1833 
1834 	/* Start the hardware monitor if there is one */
1835 	if (efx->type->monitor != NULL)
1836 		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1837 				   ef4_monitor_interval);
1838 
1839 	efx->type->start_stats(efx);
1840 	efx->type->pull_stats(efx);
1841 	spin_lock_bh(&efx->stats_lock);
1842 	efx->type->update_stats(efx, NULL, NULL);
1843 	spin_unlock_bh(&efx->stats_lock);
1844 }
1845 
1846 /* Quiesce the hardware and software data path, and regular activity
1847  * for the port without bringing the link down.  Safe to call multiple
1848  * times with the NIC in almost any state, but interrupts should be
1849  * enabled.  Requires the RTNL lock.
1850  */
1851 static void ef4_stop_all(struct ef4_nic *efx)
1852 {
1853 	EF4_ASSERT_RESET_SERIALISED(efx);
1854 
1855 	/* port_enabled can be read safely under the rtnl lock */
1856 	if (!efx->port_enabled)
1857 		return;
1858 
1859 	/* update stats before we go down so we can accurately count
1860 	 * rx_nodesc_drops
1861 	 */
1862 	efx->type->pull_stats(efx);
1863 	spin_lock_bh(&efx->stats_lock);
1864 	efx->type->update_stats(efx, NULL, NULL);
1865 	spin_unlock_bh(&efx->stats_lock);
1866 	efx->type->stop_stats(efx);
1867 	ef4_stop_port(efx);
1868 
1869 	/* Stop the kernel transmit interface.  This is only valid if
1870 	 * the device is stopped or detached; otherwise the watchdog
1871 	 * may fire immediately.
1872 	 */
1873 	WARN_ON(netif_running(efx->net_dev) &&
1874 		netif_device_present(efx->net_dev));
1875 	netif_tx_disable(efx->net_dev);
1876 
1877 	ef4_stop_datapath(efx);
1878 }
1879 
1880 static void ef4_remove_all(struct ef4_nic *efx)
1881 {
1882 	ef4_remove_channels(efx);
1883 	ef4_remove_filters(efx);
1884 	ef4_remove_port(efx);
1885 	ef4_remove_nic(efx);
1886 }
1887 
1888 /**************************************************************************
1889  *
1890  * Interrupt moderation
1891  *
1892  **************************************************************************/
1893 unsigned int ef4_usecs_to_ticks(struct ef4_nic *efx, unsigned int usecs)
1894 {
1895 	if (usecs == 0)
1896 		return 0;
1897 	if (usecs * 1000 < efx->timer_quantum_ns)
1898 		return 1; /* never round down to 0 */
1899 	return usecs * 1000 / efx->timer_quantum_ns;
1900 }
1901 
1902 unsigned int ef4_ticks_to_usecs(struct ef4_nic *efx, unsigned int ticks)
1903 {
1904 	/* We must round up when converting ticks to microseconds
1905 	 * because we round down when converting the other way.
1906 	 */
1907 	return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
1908 }
1909 
1910 /* Set interrupt moderation parameters */
1911 int ef4_init_irq_moderation(struct ef4_nic *efx, unsigned int tx_usecs,
1912 			    unsigned int rx_usecs, bool rx_adaptive,
1913 			    bool rx_may_override_tx)
1914 {
1915 	struct ef4_channel *channel;
1916 	unsigned int timer_max_us;
1917 
1918 	EF4_ASSERT_RESET_SERIALISED(efx);
1919 
1920 	timer_max_us = efx->timer_max_ns / 1000;
1921 
1922 	if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
1923 		return -EINVAL;
1924 
1925 	if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
1926 	    !rx_may_override_tx) {
1927 		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1928 			  "RX and TX IRQ moderation must be equal\n");
1929 		return -EINVAL;
1930 	}
1931 
1932 	efx->irq_rx_adaptive = rx_adaptive;
1933 	efx->irq_rx_moderation_us = rx_usecs;
1934 	ef4_for_each_channel(channel, efx) {
1935 		if (ef4_channel_has_rx_queue(channel))
1936 			channel->irq_moderation_us = rx_usecs;
1937 		else if (ef4_channel_has_tx_queues(channel))
1938 			channel->irq_moderation_us = tx_usecs;
1939 	}
1940 
1941 	return 0;
1942 }
1943 
1944 void ef4_get_irq_moderation(struct ef4_nic *efx, unsigned int *tx_usecs,
1945 			    unsigned int *rx_usecs, bool *rx_adaptive)
1946 {
1947 	*rx_adaptive = efx->irq_rx_adaptive;
1948 	*rx_usecs = efx->irq_rx_moderation_us;
1949 
1950 	/* If channels are shared between RX and TX, so is IRQ
1951 	 * moderation.  Otherwise, IRQ moderation is the same for all
1952 	 * TX channels and is not adaptive.
1953 	 */
1954 	if (efx->tx_channel_offset == 0) {
1955 		*tx_usecs = *rx_usecs;
1956 	} else {
1957 		struct ef4_channel *tx_channel;
1958 
1959 		tx_channel = efx->channel[efx->tx_channel_offset];
1960 		*tx_usecs = tx_channel->irq_moderation_us;
1961 	}
1962 }
1963 
1964 /**************************************************************************
1965  *
1966  * Hardware monitor
1967  *
1968  **************************************************************************/
1969 
1970 /* Run periodically off the general workqueue */
1971 static void ef4_monitor(struct work_struct *data)
1972 {
1973 	struct ef4_nic *efx = container_of(data, struct ef4_nic,
1974 					   monitor_work.work);
1975 
1976 	netif_vdbg(efx, timer, efx->net_dev,
1977 		   "hardware monitor executing on CPU %d\n",
1978 		   raw_smp_processor_id());
1979 	BUG_ON(efx->type->monitor == NULL);
1980 
1981 	/* If the mac_lock is already held then it is likely a port
1982 	 * reconfiguration is already in place, which will likely do
1983 	 * most of the work of monitor() anyway. */
1984 	if (mutex_trylock(&efx->mac_lock)) {
1985 		if (efx->port_enabled)
1986 			efx->type->monitor(efx);
1987 		mutex_unlock(&efx->mac_lock);
1988 	}
1989 
1990 	queue_delayed_work(efx->workqueue, &efx->monitor_work,
1991 			   ef4_monitor_interval);
1992 }
1993 
1994 /**************************************************************************
1995  *
1996  * ioctls
1997  *
1998  *************************************************************************/
1999 
2000 /* Net device ioctl
2001  * Context: process, rtnl_lock() held.
2002  */
2003 static int ef4_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
2004 {
2005 	struct ef4_nic *efx = netdev_priv(net_dev);
2006 	struct mii_ioctl_data *data = if_mii(ifr);
2007 
2008 	/* Convert phy_id from older PRTAD/DEVAD format */
2009 	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
2010 	    (data->phy_id & 0xfc00) == 0x0400)
2011 		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
2012 
2013 	return mdio_mii_ioctl(&efx->mdio, data, cmd);
2014 }
2015 
2016 /**************************************************************************
2017  *
2018  * NAPI interface
2019  *
2020  **************************************************************************/
2021 
2022 static void ef4_init_napi_channel(struct ef4_channel *channel)
2023 {
2024 	struct ef4_nic *efx = channel->efx;
2025 
2026 	channel->napi_dev = efx->net_dev;
2027 	netif_napi_add(channel->napi_dev, &channel->napi_str,
2028 		       ef4_poll, napi_weight);
2029 }
2030 
2031 static void ef4_init_napi(struct ef4_nic *efx)
2032 {
2033 	struct ef4_channel *channel;
2034 
2035 	ef4_for_each_channel(channel, efx)
2036 		ef4_init_napi_channel(channel);
2037 }
2038 
2039 static void ef4_fini_napi_channel(struct ef4_channel *channel)
2040 {
2041 	if (channel->napi_dev)
2042 		netif_napi_del(&channel->napi_str);
2043 
2044 	channel->napi_dev = NULL;
2045 }
2046 
2047 static void ef4_fini_napi(struct ef4_nic *efx)
2048 {
2049 	struct ef4_channel *channel;
2050 
2051 	ef4_for_each_channel(channel, efx)
2052 		ef4_fini_napi_channel(channel);
2053 }
2054 
2055 /**************************************************************************
2056  *
2057  * Kernel netpoll interface
2058  *
2059  *************************************************************************/
2060 
2061 #ifdef CONFIG_NET_POLL_CONTROLLER
2062 
2063 /* Although in the common case interrupts will be disabled, this is not
2064  * guaranteed. However, all our work happens inside the NAPI callback,
2065  * so no locking is required.
2066  */
2067 static void ef4_netpoll(struct net_device *net_dev)
2068 {
2069 	struct ef4_nic *efx = netdev_priv(net_dev);
2070 	struct ef4_channel *channel;
2071 
2072 	ef4_for_each_channel(channel, efx)
2073 		ef4_schedule_channel(channel);
2074 }
2075 
2076 #endif
2077 
2078 /**************************************************************************
2079  *
2080  * Kernel net device interface
2081  *
2082  *************************************************************************/
2083 
2084 /* Context: process, rtnl_lock() held. */
2085 int ef4_net_open(struct net_device *net_dev)
2086 {
2087 	struct ef4_nic *efx = netdev_priv(net_dev);
2088 	int rc;
2089 
2090 	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2091 		  raw_smp_processor_id());
2092 
2093 	rc = ef4_check_disabled(efx);
2094 	if (rc)
2095 		return rc;
2096 	if (efx->phy_mode & PHY_MODE_SPECIAL)
2097 		return -EBUSY;
2098 
2099 	/* Notify the kernel of the link state polled during driver load,
2100 	 * before the monitor starts running */
2101 	ef4_link_status_changed(efx);
2102 
2103 	ef4_start_all(efx);
2104 	ef4_selftest_async_start(efx);
2105 	return 0;
2106 }
2107 
2108 /* Context: process, rtnl_lock() held.
2109  * Note that the kernel will ignore our return code; this method
2110  * should really be a void.
2111  */
2112 int ef4_net_stop(struct net_device *net_dev)
2113 {
2114 	struct ef4_nic *efx = netdev_priv(net_dev);
2115 
2116 	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2117 		  raw_smp_processor_id());
2118 
2119 	/* Stop the device and flush all the channels */
2120 	ef4_stop_all(efx);
2121 
2122 	return 0;
2123 }
2124 
2125 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
2126 static void ef4_net_stats(struct net_device *net_dev,
2127 			  struct rtnl_link_stats64 *stats)
2128 {
2129 	struct ef4_nic *efx = netdev_priv(net_dev);
2130 
2131 	spin_lock_bh(&efx->stats_lock);
2132 	efx->type->update_stats(efx, NULL, stats);
2133 	spin_unlock_bh(&efx->stats_lock);
2134 }
2135 
2136 /* Context: netif_tx_lock held, BHs disabled. */
2137 static void ef4_watchdog(struct net_device *net_dev)
2138 {
2139 	struct ef4_nic *efx = netdev_priv(net_dev);
2140 
2141 	netif_err(efx, tx_err, efx->net_dev,
2142 		  "TX stuck with port_enabled=%d: resetting channels\n",
2143 		  efx->port_enabled);
2144 
2145 	ef4_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2146 }
2147 
2148 
2149 /* Context: process, rtnl_lock() held. */
2150 static int ef4_change_mtu(struct net_device *net_dev, int new_mtu)
2151 {
2152 	struct ef4_nic *efx = netdev_priv(net_dev);
2153 	int rc;
2154 
2155 	rc = ef4_check_disabled(efx);
2156 	if (rc)
2157 		return rc;
2158 
2159 	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2160 
2161 	ef4_device_detach_sync(efx);
2162 	ef4_stop_all(efx);
2163 
2164 	mutex_lock(&efx->mac_lock);
2165 	net_dev->mtu = new_mtu;
2166 	ef4_mac_reconfigure(efx);
2167 	mutex_unlock(&efx->mac_lock);
2168 
2169 	ef4_start_all(efx);
2170 	netif_device_attach(efx->net_dev);
2171 	return 0;
2172 }
2173 
2174 static int ef4_set_mac_address(struct net_device *net_dev, void *data)
2175 {
2176 	struct ef4_nic *efx = netdev_priv(net_dev);
2177 	struct sockaddr *addr = data;
2178 	u8 *new_addr = addr->sa_data;
2179 	u8 old_addr[6];
2180 	int rc;
2181 
2182 	if (!is_valid_ether_addr(new_addr)) {
2183 		netif_err(efx, drv, efx->net_dev,
2184 			  "invalid ethernet MAC address requested: %pM\n",
2185 			  new_addr);
2186 		return -EADDRNOTAVAIL;
2187 	}
2188 
2189 	/* save old address */
2190 	ether_addr_copy(old_addr, net_dev->dev_addr);
2191 	ether_addr_copy(net_dev->dev_addr, new_addr);
2192 	if (efx->type->set_mac_address) {
2193 		rc = efx->type->set_mac_address(efx);
2194 		if (rc) {
2195 			ether_addr_copy(net_dev->dev_addr, old_addr);
2196 			return rc;
2197 		}
2198 	}
2199 
2200 	/* Reconfigure the MAC */
2201 	mutex_lock(&efx->mac_lock);
2202 	ef4_mac_reconfigure(efx);
2203 	mutex_unlock(&efx->mac_lock);
2204 
2205 	return 0;
2206 }
2207 
2208 /* Context: netif_addr_lock held, BHs disabled. */
2209 static void ef4_set_rx_mode(struct net_device *net_dev)
2210 {
2211 	struct ef4_nic *efx = netdev_priv(net_dev);
2212 
2213 	if (efx->port_enabled)
2214 		queue_work(efx->workqueue, &efx->mac_work);
2215 	/* Otherwise ef4_start_port() will do this */
2216 }
2217 
2218 static int ef4_set_features(struct net_device *net_dev, netdev_features_t data)
2219 {
2220 	struct ef4_nic *efx = netdev_priv(net_dev);
2221 	int rc;
2222 
2223 	/* If disabling RX n-tuple filtering, clear existing filters */
2224 	if (net_dev->features & ~data & NETIF_F_NTUPLE) {
2225 		rc = efx->type->filter_clear_rx(efx, EF4_FILTER_PRI_MANUAL);
2226 		if (rc)
2227 			return rc;
2228 	}
2229 
2230 	/* If Rx VLAN filter is changed, update filters via mac_reconfigure */
2231 	if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) {
2232 		/* ef4_set_rx_mode() will schedule MAC work to update filters
2233 		 * when a new features are finally set in net_dev.
2234 		 */
2235 		ef4_set_rx_mode(net_dev);
2236 	}
2237 
2238 	return 0;
2239 }
2240 
2241 static const struct net_device_ops ef4_netdev_ops = {
2242 	.ndo_open		= ef4_net_open,
2243 	.ndo_stop		= ef4_net_stop,
2244 	.ndo_get_stats64	= ef4_net_stats,
2245 	.ndo_tx_timeout		= ef4_watchdog,
2246 	.ndo_start_xmit		= ef4_hard_start_xmit,
2247 	.ndo_validate_addr	= eth_validate_addr,
2248 	.ndo_do_ioctl		= ef4_ioctl,
2249 	.ndo_change_mtu		= ef4_change_mtu,
2250 	.ndo_set_mac_address	= ef4_set_mac_address,
2251 	.ndo_set_rx_mode	= ef4_set_rx_mode,
2252 	.ndo_set_features	= ef4_set_features,
2253 #ifdef CONFIG_NET_POLL_CONTROLLER
2254 	.ndo_poll_controller = ef4_netpoll,
2255 #endif
2256 	.ndo_setup_tc		= ef4_setup_tc,
2257 #ifdef CONFIG_RFS_ACCEL
2258 	.ndo_rx_flow_steer	= ef4_filter_rfs,
2259 #endif
2260 };
2261 
2262 static void ef4_update_name(struct ef4_nic *efx)
2263 {
2264 	strcpy(efx->name, efx->net_dev->name);
2265 	ef4_mtd_rename(efx);
2266 	ef4_set_channel_names(efx);
2267 }
2268 
2269 static int ef4_netdev_event(struct notifier_block *this,
2270 			    unsigned long event, void *ptr)
2271 {
2272 	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2273 
2274 	if ((net_dev->netdev_ops == &ef4_netdev_ops) &&
2275 	    event == NETDEV_CHANGENAME)
2276 		ef4_update_name(netdev_priv(net_dev));
2277 
2278 	return NOTIFY_DONE;
2279 }
2280 
2281 static struct notifier_block ef4_netdev_notifier = {
2282 	.notifier_call = ef4_netdev_event,
2283 };
2284 
2285 static ssize_t
2286 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2287 {
2288 	struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2289 	return sprintf(buf, "%d\n", efx->phy_type);
2290 }
2291 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2292 
2293 static int ef4_register_netdev(struct ef4_nic *efx)
2294 {
2295 	struct net_device *net_dev = efx->net_dev;
2296 	struct ef4_channel *channel;
2297 	int rc;
2298 
2299 	net_dev->watchdog_timeo = 5 * HZ;
2300 	net_dev->irq = efx->pci_dev->irq;
2301 	net_dev->netdev_ops = &ef4_netdev_ops;
2302 	net_dev->ethtool_ops = &ef4_ethtool_ops;
2303 	net_dev->gso_max_segs = EF4_TSO_MAX_SEGS;
2304 	net_dev->min_mtu = EF4_MIN_MTU;
2305 	net_dev->max_mtu = EF4_MAX_MTU;
2306 
2307 	rtnl_lock();
2308 
2309 	/* Enable resets to be scheduled and check whether any were
2310 	 * already requested.  If so, the NIC is probably hosed so we
2311 	 * abort.
2312 	 */
2313 	efx->state = STATE_READY;
2314 	smp_mb(); /* ensure we change state before checking reset_pending */
2315 	if (efx->reset_pending) {
2316 		netif_err(efx, probe, efx->net_dev,
2317 			  "aborting probe due to scheduled reset\n");
2318 		rc = -EIO;
2319 		goto fail_locked;
2320 	}
2321 
2322 	rc = dev_alloc_name(net_dev, net_dev->name);
2323 	if (rc < 0)
2324 		goto fail_locked;
2325 	ef4_update_name(efx);
2326 
2327 	/* Always start with carrier off; PHY events will detect the link */
2328 	netif_carrier_off(net_dev);
2329 
2330 	rc = register_netdevice(net_dev);
2331 	if (rc)
2332 		goto fail_locked;
2333 
2334 	ef4_for_each_channel(channel, efx) {
2335 		struct ef4_tx_queue *tx_queue;
2336 		ef4_for_each_channel_tx_queue(tx_queue, channel)
2337 			ef4_init_tx_queue_core_txq(tx_queue);
2338 	}
2339 
2340 	ef4_associate(efx);
2341 
2342 	rtnl_unlock();
2343 
2344 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2345 	if (rc) {
2346 		netif_err(efx, drv, efx->net_dev,
2347 			  "failed to init net dev attributes\n");
2348 		goto fail_registered;
2349 	}
2350 	return 0;
2351 
2352 fail_registered:
2353 	rtnl_lock();
2354 	ef4_dissociate(efx);
2355 	unregister_netdevice(net_dev);
2356 fail_locked:
2357 	efx->state = STATE_UNINIT;
2358 	rtnl_unlock();
2359 	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2360 	return rc;
2361 }
2362 
2363 static void ef4_unregister_netdev(struct ef4_nic *efx)
2364 {
2365 	if (!efx->net_dev)
2366 		return;
2367 
2368 	BUG_ON(netdev_priv(efx->net_dev) != efx);
2369 
2370 	if (ef4_dev_registered(efx)) {
2371 		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2372 		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2373 		unregister_netdev(efx->net_dev);
2374 	}
2375 }
2376 
2377 /**************************************************************************
2378  *
2379  * Device reset and suspend
2380  *
2381  **************************************************************************/
2382 
2383 /* Tears down the entire software state and most of the hardware state
2384  * before reset.  */
2385 void ef4_reset_down(struct ef4_nic *efx, enum reset_type method)
2386 {
2387 	EF4_ASSERT_RESET_SERIALISED(efx);
2388 
2389 	ef4_stop_all(efx);
2390 	ef4_disable_interrupts(efx);
2391 
2392 	mutex_lock(&efx->mac_lock);
2393 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2394 	    method != RESET_TYPE_DATAPATH)
2395 		efx->phy_op->fini(efx);
2396 	efx->type->fini(efx);
2397 }
2398 
2399 /* This function will always ensure that the locks acquired in
2400  * ef4_reset_down() are released. A failure return code indicates
2401  * that we were unable to reinitialise the hardware, and the
2402  * driver should be disabled. If ok is false, then the rx and tx
2403  * engines are not restarted, pending a RESET_DISABLE. */
2404 int ef4_reset_up(struct ef4_nic *efx, enum reset_type method, bool ok)
2405 {
2406 	int rc;
2407 
2408 	EF4_ASSERT_RESET_SERIALISED(efx);
2409 
2410 	/* Ensure that SRAM is initialised even if we're disabling the device */
2411 	rc = efx->type->init(efx);
2412 	if (rc) {
2413 		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2414 		goto fail;
2415 	}
2416 
2417 	if (!ok)
2418 		goto fail;
2419 
2420 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2421 	    method != RESET_TYPE_DATAPATH) {
2422 		rc = efx->phy_op->init(efx);
2423 		if (rc)
2424 			goto fail;
2425 		rc = efx->phy_op->reconfigure(efx);
2426 		if (rc && rc != -EPERM)
2427 			netif_err(efx, drv, efx->net_dev,
2428 				  "could not restore PHY settings\n");
2429 	}
2430 
2431 	rc = ef4_enable_interrupts(efx);
2432 	if (rc)
2433 		goto fail;
2434 
2435 	down_read(&efx->filter_sem);
2436 	ef4_restore_filters(efx);
2437 	up_read(&efx->filter_sem);
2438 
2439 	mutex_unlock(&efx->mac_lock);
2440 
2441 	ef4_start_all(efx);
2442 
2443 	return 0;
2444 
2445 fail:
2446 	efx->port_initialized = false;
2447 
2448 	mutex_unlock(&efx->mac_lock);
2449 
2450 	return rc;
2451 }
2452 
2453 /* Reset the NIC using the specified method.  Note that the reset may
2454  * fail, in which case the card will be left in an unusable state.
2455  *
2456  * Caller must hold the rtnl_lock.
2457  */
2458 int ef4_reset(struct ef4_nic *efx, enum reset_type method)
2459 {
2460 	int rc, rc2;
2461 	bool disabled;
2462 
2463 	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2464 		   RESET_TYPE(method));
2465 
2466 	ef4_device_detach_sync(efx);
2467 	ef4_reset_down(efx, method);
2468 
2469 	rc = efx->type->reset(efx, method);
2470 	if (rc) {
2471 		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2472 		goto out;
2473 	}
2474 
2475 	/* Clear flags for the scopes we covered.  We assume the NIC and
2476 	 * driver are now quiescent so that there is no race here.
2477 	 */
2478 	if (method < RESET_TYPE_MAX_METHOD)
2479 		efx->reset_pending &= -(1 << (method + 1));
2480 	else /* it doesn't fit into the well-ordered scope hierarchy */
2481 		__clear_bit(method, &efx->reset_pending);
2482 
2483 	/* Reinitialise bus-mastering, which may have been turned off before
2484 	 * the reset was scheduled. This is still appropriate, even in the
2485 	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2486 	 * can respond to requests. */
2487 	pci_set_master(efx->pci_dev);
2488 
2489 out:
2490 	/* Leave device stopped if necessary */
2491 	disabled = rc ||
2492 		method == RESET_TYPE_DISABLE ||
2493 		method == RESET_TYPE_RECOVER_OR_DISABLE;
2494 	rc2 = ef4_reset_up(efx, method, !disabled);
2495 	if (rc2) {
2496 		disabled = true;
2497 		if (!rc)
2498 			rc = rc2;
2499 	}
2500 
2501 	if (disabled) {
2502 		dev_close(efx->net_dev);
2503 		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2504 		efx->state = STATE_DISABLED;
2505 	} else {
2506 		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2507 		netif_device_attach(efx->net_dev);
2508 	}
2509 	return rc;
2510 }
2511 
2512 /* Try recovery mechanisms.
2513  * For now only EEH is supported.
2514  * Returns 0 if the recovery mechanisms are unsuccessful.
2515  * Returns a non-zero value otherwise.
2516  */
2517 int ef4_try_recovery(struct ef4_nic *efx)
2518 {
2519 #ifdef CONFIG_EEH
2520 	/* A PCI error can occur and not be seen by EEH because nothing
2521 	 * happens on the PCI bus. In this case the driver may fail and
2522 	 * schedule a 'recover or reset', leading to this recovery handler.
2523 	 * Manually call the eeh failure check function.
2524 	 */
2525 	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2526 	if (eeh_dev_check_failure(eehdev)) {
2527 		/* The EEH mechanisms will handle the error and reset the
2528 		 * device if necessary.
2529 		 */
2530 		return 1;
2531 	}
2532 #endif
2533 	return 0;
2534 }
2535 
2536 /* The worker thread exists so that code that cannot sleep can
2537  * schedule a reset for later.
2538  */
2539 static void ef4_reset_work(struct work_struct *data)
2540 {
2541 	struct ef4_nic *efx = container_of(data, struct ef4_nic, reset_work);
2542 	unsigned long pending;
2543 	enum reset_type method;
2544 
2545 	pending = READ_ONCE(efx->reset_pending);
2546 	method = fls(pending) - 1;
2547 
2548 	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2549 	     method == RESET_TYPE_RECOVER_OR_ALL) &&
2550 	    ef4_try_recovery(efx))
2551 		return;
2552 
2553 	if (!pending)
2554 		return;
2555 
2556 	rtnl_lock();
2557 
2558 	/* We checked the state in ef4_schedule_reset() but it may
2559 	 * have changed by now.  Now that we have the RTNL lock,
2560 	 * it cannot change again.
2561 	 */
2562 	if (efx->state == STATE_READY)
2563 		(void)ef4_reset(efx, method);
2564 
2565 	rtnl_unlock();
2566 }
2567 
2568 void ef4_schedule_reset(struct ef4_nic *efx, enum reset_type type)
2569 {
2570 	enum reset_type method;
2571 
2572 	if (efx->state == STATE_RECOVERY) {
2573 		netif_dbg(efx, drv, efx->net_dev,
2574 			  "recovering: skip scheduling %s reset\n",
2575 			  RESET_TYPE(type));
2576 		return;
2577 	}
2578 
2579 	switch (type) {
2580 	case RESET_TYPE_INVISIBLE:
2581 	case RESET_TYPE_ALL:
2582 	case RESET_TYPE_RECOVER_OR_ALL:
2583 	case RESET_TYPE_WORLD:
2584 	case RESET_TYPE_DISABLE:
2585 	case RESET_TYPE_RECOVER_OR_DISABLE:
2586 	case RESET_TYPE_DATAPATH:
2587 		method = type;
2588 		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2589 			  RESET_TYPE(method));
2590 		break;
2591 	default:
2592 		method = efx->type->map_reset_reason(type);
2593 		netif_dbg(efx, drv, efx->net_dev,
2594 			  "scheduling %s reset for %s\n",
2595 			  RESET_TYPE(method), RESET_TYPE(type));
2596 		break;
2597 	}
2598 
2599 	set_bit(method, &efx->reset_pending);
2600 	smp_mb(); /* ensure we change reset_pending before checking state */
2601 
2602 	/* If we're not READY then just leave the flags set as the cue
2603 	 * to abort probing or reschedule the reset later.
2604 	 */
2605 	if (READ_ONCE(efx->state) != STATE_READY)
2606 		return;
2607 
2608 	queue_work(reset_workqueue, &efx->reset_work);
2609 }
2610 
2611 /**************************************************************************
2612  *
2613  * List of NICs we support
2614  *
2615  **************************************************************************/
2616 
2617 /* PCI device ID table */
2618 static const struct pci_device_id ef4_pci_table[] = {
2619 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2620 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2621 	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2622 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2623 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2624 	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2625 	{0}			/* end of list */
2626 };
2627 
2628 /**************************************************************************
2629  *
2630  * Dummy PHY/MAC operations
2631  *
2632  * Can be used for some unimplemented operations
2633  * Needed so all function pointers are valid and do not have to be tested
2634  * before use
2635  *
2636  **************************************************************************/
2637 int ef4_port_dummy_op_int(struct ef4_nic *efx)
2638 {
2639 	return 0;
2640 }
2641 void ef4_port_dummy_op_void(struct ef4_nic *efx) {}
2642 
2643 static bool ef4_port_dummy_op_poll(struct ef4_nic *efx)
2644 {
2645 	return false;
2646 }
2647 
2648 static const struct ef4_phy_operations ef4_dummy_phy_operations = {
2649 	.init		 = ef4_port_dummy_op_int,
2650 	.reconfigure	 = ef4_port_dummy_op_int,
2651 	.poll		 = ef4_port_dummy_op_poll,
2652 	.fini		 = ef4_port_dummy_op_void,
2653 };
2654 
2655 /**************************************************************************
2656  *
2657  * Data housekeeping
2658  *
2659  **************************************************************************/
2660 
2661 /* This zeroes out and then fills in the invariants in a struct
2662  * ef4_nic (including all sub-structures).
2663  */
2664 static int ef4_init_struct(struct ef4_nic *efx,
2665 			   struct pci_dev *pci_dev, struct net_device *net_dev)
2666 {
2667 	int i;
2668 
2669 	/* Initialise common structures */
2670 	INIT_LIST_HEAD(&efx->node);
2671 	INIT_LIST_HEAD(&efx->secondary_list);
2672 	spin_lock_init(&efx->biu_lock);
2673 #ifdef CONFIG_SFC_FALCON_MTD
2674 	INIT_LIST_HEAD(&efx->mtd_list);
2675 #endif
2676 	INIT_WORK(&efx->reset_work, ef4_reset_work);
2677 	INIT_DELAYED_WORK(&efx->monitor_work, ef4_monitor);
2678 	INIT_DELAYED_WORK(&efx->selftest_work, ef4_selftest_async_work);
2679 	efx->pci_dev = pci_dev;
2680 	efx->msg_enable = debug;
2681 	efx->state = STATE_UNINIT;
2682 	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2683 
2684 	efx->net_dev = net_dev;
2685 	efx->rx_prefix_size = efx->type->rx_prefix_size;
2686 	efx->rx_ip_align =
2687 		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2688 	efx->rx_packet_hash_offset =
2689 		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2690 	efx->rx_packet_ts_offset =
2691 		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2692 	spin_lock_init(&efx->stats_lock);
2693 	mutex_init(&efx->mac_lock);
2694 	efx->phy_op = &ef4_dummy_phy_operations;
2695 	efx->mdio.dev = net_dev;
2696 	INIT_WORK(&efx->mac_work, ef4_mac_work);
2697 	init_waitqueue_head(&efx->flush_wq);
2698 
2699 	for (i = 0; i < EF4_MAX_CHANNELS; i++) {
2700 		efx->channel[i] = ef4_alloc_channel(efx, i, NULL);
2701 		if (!efx->channel[i])
2702 			goto fail;
2703 		efx->msi_context[i].efx = efx;
2704 		efx->msi_context[i].index = i;
2705 	}
2706 
2707 	/* Higher numbered interrupt modes are less capable! */
2708 	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2709 				  interrupt_mode);
2710 
2711 	/* Would be good to use the net_dev name, but we're too early */
2712 	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2713 		 pci_name(pci_dev));
2714 	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2715 	if (!efx->workqueue)
2716 		goto fail;
2717 
2718 	return 0;
2719 
2720 fail:
2721 	ef4_fini_struct(efx);
2722 	return -ENOMEM;
2723 }
2724 
2725 static void ef4_fini_struct(struct ef4_nic *efx)
2726 {
2727 	int i;
2728 
2729 	for (i = 0; i < EF4_MAX_CHANNELS; i++)
2730 		kfree(efx->channel[i]);
2731 
2732 	kfree(efx->vpd_sn);
2733 
2734 	if (efx->workqueue) {
2735 		destroy_workqueue(efx->workqueue);
2736 		efx->workqueue = NULL;
2737 	}
2738 }
2739 
2740 void ef4_update_sw_stats(struct ef4_nic *efx, u64 *stats)
2741 {
2742 	u64 n_rx_nodesc_trunc = 0;
2743 	struct ef4_channel *channel;
2744 
2745 	ef4_for_each_channel(channel, efx)
2746 		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2747 	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2748 	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2749 }
2750 
2751 /**************************************************************************
2752  *
2753  * PCI interface
2754  *
2755  **************************************************************************/
2756 
2757 /* Main body of final NIC shutdown code
2758  * This is called only at module unload (or hotplug removal).
2759  */
2760 static void ef4_pci_remove_main(struct ef4_nic *efx)
2761 {
2762 	/* Flush reset_work. It can no longer be scheduled since we
2763 	 * are not READY.
2764 	 */
2765 	BUG_ON(efx->state == STATE_READY);
2766 	cancel_work_sync(&efx->reset_work);
2767 
2768 	ef4_disable_interrupts(efx);
2769 	ef4_nic_fini_interrupt(efx);
2770 	ef4_fini_port(efx);
2771 	efx->type->fini(efx);
2772 	ef4_fini_napi(efx);
2773 	ef4_remove_all(efx);
2774 }
2775 
2776 /* Final NIC shutdown
2777  * This is called only at module unload (or hotplug removal).  A PF can call
2778  * this on its VFs to ensure they are unbound first.
2779  */
2780 static void ef4_pci_remove(struct pci_dev *pci_dev)
2781 {
2782 	struct ef4_nic *efx;
2783 
2784 	efx = pci_get_drvdata(pci_dev);
2785 	if (!efx)
2786 		return;
2787 
2788 	/* Mark the NIC as fini, then stop the interface */
2789 	rtnl_lock();
2790 	ef4_dissociate(efx);
2791 	dev_close(efx->net_dev);
2792 	ef4_disable_interrupts(efx);
2793 	efx->state = STATE_UNINIT;
2794 	rtnl_unlock();
2795 
2796 	ef4_unregister_netdev(efx);
2797 
2798 	ef4_mtd_remove(efx);
2799 
2800 	ef4_pci_remove_main(efx);
2801 
2802 	ef4_fini_io(efx);
2803 	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2804 
2805 	ef4_fini_struct(efx);
2806 	free_netdev(efx->net_dev);
2807 
2808 	pci_disable_pcie_error_reporting(pci_dev);
2809 };
2810 
2811 /* NIC VPD information
2812  * Called during probe to display the part number of the
2813  * installed NIC.  VPD is potentially very large but this should
2814  * always appear within the first 512 bytes.
2815  */
2816 #define SFC_VPD_LEN 512
2817 static void ef4_probe_vpd_strings(struct ef4_nic *efx)
2818 {
2819 	struct pci_dev *dev = efx->pci_dev;
2820 	char vpd_data[SFC_VPD_LEN];
2821 	ssize_t vpd_size;
2822 	int ro_start, ro_size, i, j;
2823 
2824 	/* Get the vpd data from the device */
2825 	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2826 	if (vpd_size <= 0) {
2827 		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2828 		return;
2829 	}
2830 
2831 	/* Get the Read only section */
2832 	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2833 	if (ro_start < 0) {
2834 		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2835 		return;
2836 	}
2837 
2838 	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
2839 	j = ro_size;
2840 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2841 	if (i + j > vpd_size)
2842 		j = vpd_size - i;
2843 
2844 	/* Get the Part number */
2845 	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2846 	if (i < 0) {
2847 		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2848 		return;
2849 	}
2850 
2851 	j = pci_vpd_info_field_size(&vpd_data[i]);
2852 	i += PCI_VPD_INFO_FLD_HDR_SIZE;
2853 	if (i + j > vpd_size) {
2854 		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
2855 		return;
2856 	}
2857 
2858 	netif_info(efx, drv, efx->net_dev,
2859 		   "Part Number : %.*s\n", j, &vpd_data[i]);
2860 
2861 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2862 	j = ro_size;
2863 	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
2864 	if (i < 0) {
2865 		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
2866 		return;
2867 	}
2868 
2869 	j = pci_vpd_info_field_size(&vpd_data[i]);
2870 	i += PCI_VPD_INFO_FLD_HDR_SIZE;
2871 	if (i + j > vpd_size) {
2872 		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
2873 		return;
2874 	}
2875 
2876 	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
2877 	if (!efx->vpd_sn)
2878 		return;
2879 
2880 	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
2881 }
2882 
2883 
2884 /* Main body of NIC initialisation
2885  * This is called at module load (or hotplug insertion, theoretically).
2886  */
2887 static int ef4_pci_probe_main(struct ef4_nic *efx)
2888 {
2889 	int rc;
2890 
2891 	/* Do start-of-day initialisation */
2892 	rc = ef4_probe_all(efx);
2893 	if (rc)
2894 		goto fail1;
2895 
2896 	ef4_init_napi(efx);
2897 
2898 	rc = efx->type->init(efx);
2899 	if (rc) {
2900 		netif_err(efx, probe, efx->net_dev,
2901 			  "failed to initialise NIC\n");
2902 		goto fail3;
2903 	}
2904 
2905 	rc = ef4_init_port(efx);
2906 	if (rc) {
2907 		netif_err(efx, probe, efx->net_dev,
2908 			  "failed to initialise port\n");
2909 		goto fail4;
2910 	}
2911 
2912 	rc = ef4_nic_init_interrupt(efx);
2913 	if (rc)
2914 		goto fail5;
2915 	rc = ef4_enable_interrupts(efx);
2916 	if (rc)
2917 		goto fail6;
2918 
2919 	return 0;
2920 
2921  fail6:
2922 	ef4_nic_fini_interrupt(efx);
2923  fail5:
2924 	ef4_fini_port(efx);
2925  fail4:
2926 	efx->type->fini(efx);
2927  fail3:
2928 	ef4_fini_napi(efx);
2929 	ef4_remove_all(efx);
2930  fail1:
2931 	return rc;
2932 }
2933 
2934 /* NIC initialisation
2935  *
2936  * This is called at module load (or hotplug insertion,
2937  * theoretically).  It sets up PCI mappings, resets the NIC,
2938  * sets up and registers the network devices with the kernel and hooks
2939  * the interrupt service routine.  It does not prepare the device for
2940  * transmission; this is left to the first time one of the network
2941  * interfaces is brought up (i.e. ef4_net_open).
2942  */
2943 static int ef4_pci_probe(struct pci_dev *pci_dev,
2944 			 const struct pci_device_id *entry)
2945 {
2946 	struct net_device *net_dev;
2947 	struct ef4_nic *efx;
2948 	int rc;
2949 
2950 	/* Allocate and initialise a struct net_device and struct ef4_nic */
2951 	net_dev = alloc_etherdev_mqs(sizeof(*efx), EF4_MAX_CORE_TX_QUEUES,
2952 				     EF4_MAX_RX_QUEUES);
2953 	if (!net_dev)
2954 		return -ENOMEM;
2955 	efx = netdev_priv(net_dev);
2956 	efx->type = (const struct ef4_nic_type *) entry->driver_data;
2957 	efx->fixed_features |= NETIF_F_HIGHDMA;
2958 
2959 	pci_set_drvdata(pci_dev, efx);
2960 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2961 	rc = ef4_init_struct(efx, pci_dev, net_dev);
2962 	if (rc)
2963 		goto fail1;
2964 
2965 	netif_info(efx, probe, efx->net_dev,
2966 		   "Solarflare NIC detected\n");
2967 
2968 	ef4_probe_vpd_strings(efx);
2969 
2970 	/* Set up basic I/O (BAR mappings etc) */
2971 	rc = ef4_init_io(efx);
2972 	if (rc)
2973 		goto fail2;
2974 
2975 	rc = ef4_pci_probe_main(efx);
2976 	if (rc)
2977 		goto fail3;
2978 
2979 	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2980 			      NETIF_F_RXCSUM);
2981 	/* Mask for features that also apply to VLAN devices */
2982 	net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
2983 				   NETIF_F_HIGHDMA | NETIF_F_RXCSUM);
2984 
2985 	net_dev->hw_features = net_dev->features & ~efx->fixed_features;
2986 
2987 	/* Disable VLAN filtering by default.  It may be enforced if
2988 	 * the feature is fixed (i.e. VLAN filters are required to
2989 	 * receive VLAN tagged packets due to vPort restrictions).
2990 	 */
2991 	net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
2992 	net_dev->features |= efx->fixed_features;
2993 
2994 	rc = ef4_register_netdev(efx);
2995 	if (rc)
2996 		goto fail4;
2997 
2998 	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2999 
3000 	/* Try to create MTDs, but allow this to fail */
3001 	rtnl_lock();
3002 	rc = ef4_mtd_probe(efx);
3003 	rtnl_unlock();
3004 	if (rc && rc != -EPERM)
3005 		netif_warn(efx, probe, efx->net_dev,
3006 			   "failed to create MTDs (%d)\n", rc);
3007 
3008 	rc = pci_enable_pcie_error_reporting(pci_dev);
3009 	if (rc && rc != -EINVAL)
3010 		netif_notice(efx, probe, efx->net_dev,
3011 			     "PCIE error reporting unavailable (%d).\n",
3012 			     rc);
3013 
3014 	return 0;
3015 
3016  fail4:
3017 	ef4_pci_remove_main(efx);
3018  fail3:
3019 	ef4_fini_io(efx);
3020  fail2:
3021 	ef4_fini_struct(efx);
3022  fail1:
3023 	WARN_ON(rc > 0);
3024 	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3025 	free_netdev(net_dev);
3026 	return rc;
3027 }
3028 
3029 static int ef4_pm_freeze(struct device *dev)
3030 {
3031 	struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3032 
3033 	rtnl_lock();
3034 
3035 	if (efx->state != STATE_DISABLED) {
3036 		efx->state = STATE_UNINIT;
3037 
3038 		ef4_device_detach_sync(efx);
3039 
3040 		ef4_stop_all(efx);
3041 		ef4_disable_interrupts(efx);
3042 	}
3043 
3044 	rtnl_unlock();
3045 
3046 	return 0;
3047 }
3048 
3049 static int ef4_pm_thaw(struct device *dev)
3050 {
3051 	int rc;
3052 	struct ef4_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3053 
3054 	rtnl_lock();
3055 
3056 	if (efx->state != STATE_DISABLED) {
3057 		rc = ef4_enable_interrupts(efx);
3058 		if (rc)
3059 			goto fail;
3060 
3061 		mutex_lock(&efx->mac_lock);
3062 		efx->phy_op->reconfigure(efx);
3063 		mutex_unlock(&efx->mac_lock);
3064 
3065 		ef4_start_all(efx);
3066 
3067 		netif_device_attach(efx->net_dev);
3068 
3069 		efx->state = STATE_READY;
3070 
3071 		efx->type->resume_wol(efx);
3072 	}
3073 
3074 	rtnl_unlock();
3075 
3076 	/* Reschedule any quenched resets scheduled during ef4_pm_freeze() */
3077 	queue_work(reset_workqueue, &efx->reset_work);
3078 
3079 	return 0;
3080 
3081 fail:
3082 	rtnl_unlock();
3083 
3084 	return rc;
3085 }
3086 
3087 static int ef4_pm_poweroff(struct device *dev)
3088 {
3089 	struct pci_dev *pci_dev = to_pci_dev(dev);
3090 	struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3091 
3092 	efx->type->fini(efx);
3093 
3094 	efx->reset_pending = 0;
3095 
3096 	pci_save_state(pci_dev);
3097 	return pci_set_power_state(pci_dev, PCI_D3hot);
3098 }
3099 
3100 /* Used for both resume and restore */
3101 static int ef4_pm_resume(struct device *dev)
3102 {
3103 	struct pci_dev *pci_dev = to_pci_dev(dev);
3104 	struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3105 	int rc;
3106 
3107 	rc = pci_set_power_state(pci_dev, PCI_D0);
3108 	if (rc)
3109 		return rc;
3110 	pci_restore_state(pci_dev);
3111 	rc = pci_enable_device(pci_dev);
3112 	if (rc)
3113 		return rc;
3114 	pci_set_master(efx->pci_dev);
3115 	rc = efx->type->reset(efx, RESET_TYPE_ALL);
3116 	if (rc)
3117 		return rc;
3118 	rc = efx->type->init(efx);
3119 	if (rc)
3120 		return rc;
3121 	rc = ef4_pm_thaw(dev);
3122 	return rc;
3123 }
3124 
3125 static int ef4_pm_suspend(struct device *dev)
3126 {
3127 	int rc;
3128 
3129 	ef4_pm_freeze(dev);
3130 	rc = ef4_pm_poweroff(dev);
3131 	if (rc)
3132 		ef4_pm_resume(dev);
3133 	return rc;
3134 }
3135 
3136 static const struct dev_pm_ops ef4_pm_ops = {
3137 	.suspend	= ef4_pm_suspend,
3138 	.resume		= ef4_pm_resume,
3139 	.freeze		= ef4_pm_freeze,
3140 	.thaw		= ef4_pm_thaw,
3141 	.poweroff	= ef4_pm_poweroff,
3142 	.restore	= ef4_pm_resume,
3143 };
3144 
3145 /* A PCI error affecting this device was detected.
3146  * At this point MMIO and DMA may be disabled.
3147  * Stop the software path and request a slot reset.
3148  */
3149 static pci_ers_result_t ef4_io_error_detected(struct pci_dev *pdev,
3150 					      enum pci_channel_state state)
3151 {
3152 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3153 	struct ef4_nic *efx = pci_get_drvdata(pdev);
3154 
3155 	if (state == pci_channel_io_perm_failure)
3156 		return PCI_ERS_RESULT_DISCONNECT;
3157 
3158 	rtnl_lock();
3159 
3160 	if (efx->state != STATE_DISABLED) {
3161 		efx->state = STATE_RECOVERY;
3162 		efx->reset_pending = 0;
3163 
3164 		ef4_device_detach_sync(efx);
3165 
3166 		ef4_stop_all(efx);
3167 		ef4_disable_interrupts(efx);
3168 
3169 		status = PCI_ERS_RESULT_NEED_RESET;
3170 	} else {
3171 		/* If the interface is disabled we don't want to do anything
3172 		 * with it.
3173 		 */
3174 		status = PCI_ERS_RESULT_RECOVERED;
3175 	}
3176 
3177 	rtnl_unlock();
3178 
3179 	pci_disable_device(pdev);
3180 
3181 	return status;
3182 }
3183 
3184 /* Fake a successful reset, which will be performed later in ef4_io_resume. */
3185 static pci_ers_result_t ef4_io_slot_reset(struct pci_dev *pdev)
3186 {
3187 	struct ef4_nic *efx = pci_get_drvdata(pdev);
3188 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3189 	int rc;
3190 
3191 	if (pci_enable_device(pdev)) {
3192 		netif_err(efx, hw, efx->net_dev,
3193 			  "Cannot re-enable PCI device after reset.\n");
3194 		status =  PCI_ERS_RESULT_DISCONNECT;
3195 	}
3196 
3197 	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
3198 	if (rc) {
3199 		netif_err(efx, hw, efx->net_dev,
3200 		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
3201 		/* Non-fatal error. Continue. */
3202 	}
3203 
3204 	return status;
3205 }
3206 
3207 /* Perform the actual reset and resume I/O operations. */
3208 static void ef4_io_resume(struct pci_dev *pdev)
3209 {
3210 	struct ef4_nic *efx = pci_get_drvdata(pdev);
3211 	int rc;
3212 
3213 	rtnl_lock();
3214 
3215 	if (efx->state == STATE_DISABLED)
3216 		goto out;
3217 
3218 	rc = ef4_reset(efx, RESET_TYPE_ALL);
3219 	if (rc) {
3220 		netif_err(efx, hw, efx->net_dev,
3221 			  "ef4_reset failed after PCI error (%d)\n", rc);
3222 	} else {
3223 		efx->state = STATE_READY;
3224 		netif_dbg(efx, hw, efx->net_dev,
3225 			  "Done resetting and resuming IO after PCI error.\n");
3226 	}
3227 
3228 out:
3229 	rtnl_unlock();
3230 }
3231 
3232 /* For simplicity and reliability, we always require a slot reset and try to
3233  * reset the hardware when a pci error affecting the device is detected.
3234  * We leave both the link_reset and mmio_enabled callback unimplemented:
3235  * with our request for slot reset the mmio_enabled callback will never be
3236  * called, and the link_reset callback is not used by AER or EEH mechanisms.
3237  */
3238 static const struct pci_error_handlers ef4_err_handlers = {
3239 	.error_detected = ef4_io_error_detected,
3240 	.slot_reset	= ef4_io_slot_reset,
3241 	.resume		= ef4_io_resume,
3242 };
3243 
3244 static struct pci_driver ef4_pci_driver = {
3245 	.name		= KBUILD_MODNAME,
3246 	.id_table	= ef4_pci_table,
3247 	.probe		= ef4_pci_probe,
3248 	.remove		= ef4_pci_remove,
3249 	.driver.pm	= &ef4_pm_ops,
3250 	.err_handler	= &ef4_err_handlers,
3251 };
3252 
3253 /**************************************************************************
3254  *
3255  * Kernel module interface
3256  *
3257  *************************************************************************/
3258 
3259 module_param(interrupt_mode, uint, 0444);
3260 MODULE_PARM_DESC(interrupt_mode,
3261 		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3262 
3263 static int __init ef4_init_module(void)
3264 {
3265 	int rc;
3266 
3267 	printk(KERN_INFO "Solarflare Falcon driver v" EF4_DRIVER_VERSION "\n");
3268 
3269 	rc = register_netdevice_notifier(&ef4_netdev_notifier);
3270 	if (rc)
3271 		goto err_notifier;
3272 
3273 	reset_workqueue = create_singlethread_workqueue("sfc_reset");
3274 	if (!reset_workqueue) {
3275 		rc = -ENOMEM;
3276 		goto err_reset;
3277 	}
3278 
3279 	rc = pci_register_driver(&ef4_pci_driver);
3280 	if (rc < 0)
3281 		goto err_pci;
3282 
3283 	return 0;
3284 
3285  err_pci:
3286 	destroy_workqueue(reset_workqueue);
3287  err_reset:
3288 	unregister_netdevice_notifier(&ef4_netdev_notifier);
3289  err_notifier:
3290 	return rc;
3291 }
3292 
3293 static void __exit ef4_exit_module(void)
3294 {
3295 	printk(KERN_INFO "Solarflare Falcon driver unloading\n");
3296 
3297 	pci_unregister_driver(&ef4_pci_driver);
3298 	destroy_workqueue(reset_workqueue);
3299 	unregister_netdevice_notifier(&ef4_netdev_notifier);
3300 
3301 }
3302 
3303 module_init(ef4_init_module);
3304 module_exit(ef4_exit_module);
3305 
3306 MODULE_AUTHOR("Solarflare Communications and "
3307 	      "Michael Brown <mbrown@fensystems.co.uk>");
3308 MODULE_DESCRIPTION("Solarflare Falcon network driver");
3309 MODULE_LICENSE("GPL");
3310 MODULE_DEVICE_TABLE(pci, ef4_pci_table);
3311 MODULE_VERSION(EF4_DRIVER_VERSION);
3312