1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2005-2013 Solarflare Communications Inc. 6 */ 7 8 #include <linux/module.h> 9 #include <linux/pci.h> 10 #include <linux/netdevice.h> 11 #include <linux/etherdevice.h> 12 #include <linux/delay.h> 13 #include <linux/notifier.h> 14 #include <linux/ip.h> 15 #include <linux/tcp.h> 16 #include <linux/in.h> 17 #include <linux/ethtool.h> 18 #include <linux/topology.h> 19 #include <linux/gfp.h> 20 #include <linux/interrupt.h> 21 #include "net_driver.h" 22 #include "efx.h" 23 #include "nic.h" 24 #include "selftest.h" 25 26 #include "workarounds.h" 27 28 /************************************************************************** 29 * 30 * Type name strings 31 * 32 ************************************************************************** 33 */ 34 35 /* Loopback mode names (see LOOPBACK_MODE()) */ 36 const unsigned int ef4_loopback_mode_max = LOOPBACK_MAX; 37 const char *const ef4_loopback_mode_names[] = { 38 [LOOPBACK_NONE] = "NONE", 39 [LOOPBACK_DATA] = "DATAPATH", 40 [LOOPBACK_GMAC] = "GMAC", 41 [LOOPBACK_XGMII] = "XGMII", 42 [LOOPBACK_XGXS] = "XGXS", 43 [LOOPBACK_XAUI] = "XAUI", 44 [LOOPBACK_GMII] = "GMII", 45 [LOOPBACK_SGMII] = "SGMII", 46 [LOOPBACK_XGBR] = "XGBR", 47 [LOOPBACK_XFI] = "XFI", 48 [LOOPBACK_XAUI_FAR] = "XAUI_FAR", 49 [LOOPBACK_GMII_FAR] = "GMII_FAR", 50 [LOOPBACK_SGMII_FAR] = "SGMII_FAR", 51 [LOOPBACK_XFI_FAR] = "XFI_FAR", 52 [LOOPBACK_GPHY] = "GPHY", 53 [LOOPBACK_PHYXS] = "PHYXS", 54 [LOOPBACK_PCS] = "PCS", 55 [LOOPBACK_PMAPMD] = "PMA/PMD", 56 [LOOPBACK_XPORT] = "XPORT", 57 [LOOPBACK_XGMII_WS] = "XGMII_WS", 58 [LOOPBACK_XAUI_WS] = "XAUI_WS", 59 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR", 60 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR", 61 [LOOPBACK_GMII_WS] = "GMII_WS", 62 [LOOPBACK_XFI_WS] = "XFI_WS", 63 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR", 64 [LOOPBACK_PHYXS_WS] = "PHYXS_WS", 65 }; 66 67 const unsigned int ef4_reset_type_max = RESET_TYPE_MAX; 68 const char *const ef4_reset_type_names[] = { 69 [RESET_TYPE_INVISIBLE] = "INVISIBLE", 70 [RESET_TYPE_ALL] = "ALL", 71 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL", 72 [RESET_TYPE_WORLD] = "WORLD", 73 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE", 74 [RESET_TYPE_DATAPATH] = "DATAPATH", 75 [RESET_TYPE_DISABLE] = "DISABLE", 76 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG", 77 [RESET_TYPE_INT_ERROR] = "INT_ERROR", 78 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY", 79 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR", 80 [RESET_TYPE_TX_SKIP] = "TX_SKIP", 81 }; 82 83 /* Reset workqueue. If any NIC has a hardware failure then a reset will be 84 * queued onto this work queue. This is not a per-nic work queue, because 85 * ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised. 86 */ 87 static struct workqueue_struct *reset_workqueue; 88 89 /* How often and how many times to poll for a reset while waiting for a 90 * BIST that another function started to complete. 91 */ 92 #define BIST_WAIT_DELAY_MS 100 93 #define BIST_WAIT_DELAY_COUNT 100 94 95 /************************************************************************** 96 * 97 * Configurable values 98 * 99 *************************************************************************/ 100 101 /* 102 * Use separate channels for TX and RX events 103 * 104 * Set this to 1 to use separate channels for TX and RX. It allows us 105 * to control interrupt affinity separately for TX and RX. 106 * 107 * This is only used in MSI-X interrupt mode 108 */ 109 bool ef4_separate_tx_channels; 110 module_param(ef4_separate_tx_channels, bool, 0444); 111 MODULE_PARM_DESC(ef4_separate_tx_channels, 112 "Use separate channels for TX and RX"); 113 114 /* This is the time (in jiffies) between invocations of the hardware 115 * monitor. 116 * On Falcon-based NICs, this will: 117 * - Check the on-board hardware monitor; 118 * - Poll the link state and reconfigure the hardware as necessary. 119 * On Siena-based NICs for power systems with EEH support, this will give EEH a 120 * chance to start. 121 */ 122 static unsigned int ef4_monitor_interval = 1 * HZ; 123 124 /* Initial interrupt moderation settings. They can be modified after 125 * module load with ethtool. 126 * 127 * The default for RX should strike a balance between increasing the 128 * round-trip latency and reducing overhead. 129 */ 130 static unsigned int rx_irq_mod_usec = 60; 131 132 /* Initial interrupt moderation settings. They can be modified after 133 * module load with ethtool. 134 * 135 * This default is chosen to ensure that a 10G link does not go idle 136 * while a TX queue is stopped after it has become full. A queue is 137 * restarted when it drops below half full. The time this takes (assuming 138 * worst case 3 descriptors per packet and 1024 descriptors) is 139 * 512 / 3 * 1.2 = 205 usec. 140 */ 141 static unsigned int tx_irq_mod_usec = 150; 142 143 /* This is the first interrupt mode to try out of: 144 * 0 => MSI-X 145 * 1 => MSI 146 * 2 => legacy 147 */ 148 static unsigned int interrupt_mode; 149 150 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), 151 * i.e. the number of CPUs among which we may distribute simultaneous 152 * interrupt handling. 153 * 154 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. 155 * The default (0) means to assign an interrupt to each core. 156 */ 157 static unsigned int rss_cpus; 158 module_param(rss_cpus, uint, 0444); 159 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); 160 161 static bool phy_flash_cfg; 162 module_param(phy_flash_cfg, bool, 0644); 163 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); 164 165 static unsigned irq_adapt_low_thresh = 8000; 166 module_param(irq_adapt_low_thresh, uint, 0644); 167 MODULE_PARM_DESC(irq_adapt_low_thresh, 168 "Threshold score for reducing IRQ moderation"); 169 170 static unsigned irq_adapt_high_thresh = 16000; 171 module_param(irq_adapt_high_thresh, uint, 0644); 172 MODULE_PARM_DESC(irq_adapt_high_thresh, 173 "Threshold score for increasing IRQ moderation"); 174 175 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 176 NETIF_MSG_LINK | NETIF_MSG_IFDOWN | 177 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | 178 NETIF_MSG_TX_ERR | NETIF_MSG_HW); 179 module_param(debug, uint, 0); 180 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); 181 182 /************************************************************************** 183 * 184 * Utility functions and prototypes 185 * 186 *************************************************************************/ 187 188 static int ef4_soft_enable_interrupts(struct ef4_nic *efx); 189 static void ef4_soft_disable_interrupts(struct ef4_nic *efx); 190 static void ef4_remove_channel(struct ef4_channel *channel); 191 static void ef4_remove_channels(struct ef4_nic *efx); 192 static const struct ef4_channel_type ef4_default_channel_type; 193 static void ef4_remove_port(struct ef4_nic *efx); 194 static void ef4_init_napi_channel(struct ef4_channel *channel); 195 static void ef4_fini_napi(struct ef4_nic *efx); 196 static void ef4_fini_napi_channel(struct ef4_channel *channel); 197 static void ef4_fini_struct(struct ef4_nic *efx); 198 static void ef4_start_all(struct ef4_nic *efx); 199 static void ef4_stop_all(struct ef4_nic *efx); 200 201 #define EF4_ASSERT_RESET_SERIALISED(efx) \ 202 do { \ 203 if ((efx->state == STATE_READY) || \ 204 (efx->state == STATE_RECOVERY) || \ 205 (efx->state == STATE_DISABLED)) \ 206 ASSERT_RTNL(); \ 207 } while (0) 208 209 static int ef4_check_disabled(struct ef4_nic *efx) 210 { 211 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) { 212 netif_err(efx, drv, efx->net_dev, 213 "device is disabled due to earlier errors\n"); 214 return -EIO; 215 } 216 return 0; 217 } 218 219 /************************************************************************** 220 * 221 * Event queue processing 222 * 223 *************************************************************************/ 224 225 /* Process channel's event queue 226 * 227 * This function is responsible for processing the event queue of a 228 * single channel. The caller must guarantee that this function will 229 * never be concurrently called more than once on the same channel, 230 * though different channels may be being processed concurrently. 231 */ 232 static int ef4_process_channel(struct ef4_channel *channel, int budget) 233 { 234 struct ef4_tx_queue *tx_queue; 235 int spent; 236 237 if (unlikely(!channel->enabled)) 238 return 0; 239 240 ef4_for_each_channel_tx_queue(tx_queue, channel) { 241 tx_queue->pkts_compl = 0; 242 tx_queue->bytes_compl = 0; 243 } 244 245 spent = ef4_nic_process_eventq(channel, budget); 246 if (spent && ef4_channel_has_rx_queue(channel)) { 247 struct ef4_rx_queue *rx_queue = 248 ef4_channel_get_rx_queue(channel); 249 250 ef4_rx_flush_packet(channel); 251 ef4_fast_push_rx_descriptors(rx_queue, true); 252 } 253 254 /* Update BQL */ 255 ef4_for_each_channel_tx_queue(tx_queue, channel) { 256 if (tx_queue->bytes_compl) { 257 netdev_tx_completed_queue(tx_queue->core_txq, 258 tx_queue->pkts_compl, tx_queue->bytes_compl); 259 } 260 } 261 262 return spent; 263 } 264 265 /* NAPI poll handler 266 * 267 * NAPI guarantees serialisation of polls of the same device, which 268 * provides the guarantee required by ef4_process_channel(). 269 */ 270 static void ef4_update_irq_mod(struct ef4_nic *efx, struct ef4_channel *channel) 271 { 272 int step = efx->irq_mod_step_us; 273 274 if (channel->irq_mod_score < irq_adapt_low_thresh) { 275 if (channel->irq_moderation_us > step) { 276 channel->irq_moderation_us -= step; 277 efx->type->push_irq_moderation(channel); 278 } 279 } else if (channel->irq_mod_score > irq_adapt_high_thresh) { 280 if (channel->irq_moderation_us < 281 efx->irq_rx_moderation_us) { 282 channel->irq_moderation_us += step; 283 efx->type->push_irq_moderation(channel); 284 } 285 } 286 287 channel->irq_count = 0; 288 channel->irq_mod_score = 0; 289 } 290 291 static int ef4_poll(struct napi_struct *napi, int budget) 292 { 293 struct ef4_channel *channel = 294 container_of(napi, struct ef4_channel, napi_str); 295 struct ef4_nic *efx = channel->efx; 296 int spent; 297 298 netif_vdbg(efx, intr, efx->net_dev, 299 "channel %d NAPI poll executing on CPU %d\n", 300 channel->channel, raw_smp_processor_id()); 301 302 spent = ef4_process_channel(channel, budget); 303 304 if (spent < budget) { 305 if (ef4_channel_has_rx_queue(channel) && 306 efx->irq_rx_adaptive && 307 unlikely(++channel->irq_count == 1000)) { 308 ef4_update_irq_mod(efx, channel); 309 } 310 311 ef4_filter_rfs_expire(channel); 312 313 /* There is no race here; although napi_disable() will 314 * only wait for napi_complete(), this isn't a problem 315 * since ef4_nic_eventq_read_ack() will have no effect if 316 * interrupts have already been disabled. 317 */ 318 napi_complete_done(napi, spent); 319 ef4_nic_eventq_read_ack(channel); 320 } 321 322 return spent; 323 } 324 325 /* Create event queue 326 * Event queue memory allocations are done only once. If the channel 327 * is reset, the memory buffer will be reused; this guards against 328 * errors during channel reset and also simplifies interrupt handling. 329 */ 330 static int ef4_probe_eventq(struct ef4_channel *channel) 331 { 332 struct ef4_nic *efx = channel->efx; 333 unsigned long entries; 334 335 netif_dbg(efx, probe, efx->net_dev, 336 "chan %d create event queue\n", channel->channel); 337 338 /* Build an event queue with room for one event per tx and rx buffer, 339 * plus some extra for link state events and MCDI completions. */ 340 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128); 341 EF4_BUG_ON_PARANOID(entries > EF4_MAX_EVQ_SIZE); 342 channel->eventq_mask = max(entries, EF4_MIN_EVQ_SIZE) - 1; 343 344 return ef4_nic_probe_eventq(channel); 345 } 346 347 /* Prepare channel's event queue */ 348 static int ef4_init_eventq(struct ef4_channel *channel) 349 { 350 struct ef4_nic *efx = channel->efx; 351 int rc; 352 353 EF4_WARN_ON_PARANOID(channel->eventq_init); 354 355 netif_dbg(efx, drv, efx->net_dev, 356 "chan %d init event queue\n", channel->channel); 357 358 rc = ef4_nic_init_eventq(channel); 359 if (rc == 0) { 360 efx->type->push_irq_moderation(channel); 361 channel->eventq_read_ptr = 0; 362 channel->eventq_init = true; 363 } 364 return rc; 365 } 366 367 /* Enable event queue processing and NAPI */ 368 void ef4_start_eventq(struct ef4_channel *channel) 369 { 370 netif_dbg(channel->efx, ifup, channel->efx->net_dev, 371 "chan %d start event queue\n", channel->channel); 372 373 /* Make sure the NAPI handler sees the enabled flag set */ 374 channel->enabled = true; 375 smp_wmb(); 376 377 napi_enable(&channel->napi_str); 378 ef4_nic_eventq_read_ack(channel); 379 } 380 381 /* Disable event queue processing and NAPI */ 382 void ef4_stop_eventq(struct ef4_channel *channel) 383 { 384 if (!channel->enabled) 385 return; 386 387 napi_disable(&channel->napi_str); 388 channel->enabled = false; 389 } 390 391 static void ef4_fini_eventq(struct ef4_channel *channel) 392 { 393 if (!channel->eventq_init) 394 return; 395 396 netif_dbg(channel->efx, drv, channel->efx->net_dev, 397 "chan %d fini event queue\n", channel->channel); 398 399 ef4_nic_fini_eventq(channel); 400 channel->eventq_init = false; 401 } 402 403 static void ef4_remove_eventq(struct ef4_channel *channel) 404 { 405 netif_dbg(channel->efx, drv, channel->efx->net_dev, 406 "chan %d remove event queue\n", channel->channel); 407 408 ef4_nic_remove_eventq(channel); 409 } 410 411 /************************************************************************** 412 * 413 * Channel handling 414 * 415 *************************************************************************/ 416 417 /* Allocate and initialise a channel structure. */ 418 static struct ef4_channel * 419 ef4_alloc_channel(struct ef4_nic *efx, int i, struct ef4_channel *old_channel) 420 { 421 struct ef4_channel *channel; 422 struct ef4_rx_queue *rx_queue; 423 struct ef4_tx_queue *tx_queue; 424 int j; 425 426 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 427 if (!channel) 428 return NULL; 429 430 channel->efx = efx; 431 channel->channel = i; 432 channel->type = &ef4_default_channel_type; 433 434 for (j = 0; j < EF4_TXQ_TYPES; j++) { 435 tx_queue = &channel->tx_queue[j]; 436 tx_queue->efx = efx; 437 tx_queue->queue = i * EF4_TXQ_TYPES + j; 438 tx_queue->channel = channel; 439 } 440 441 rx_queue = &channel->rx_queue; 442 rx_queue->efx = efx; 443 timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0); 444 445 return channel; 446 } 447 448 /* Allocate and initialise a channel structure, copying parameters 449 * (but not resources) from an old channel structure. 450 */ 451 static struct ef4_channel * 452 ef4_copy_channel(const struct ef4_channel *old_channel) 453 { 454 struct ef4_channel *channel; 455 struct ef4_rx_queue *rx_queue; 456 struct ef4_tx_queue *tx_queue; 457 int j; 458 459 channel = kmalloc(sizeof(*channel), GFP_KERNEL); 460 if (!channel) 461 return NULL; 462 463 *channel = *old_channel; 464 465 channel->napi_dev = NULL; 466 INIT_HLIST_NODE(&channel->napi_str.napi_hash_node); 467 channel->napi_str.napi_id = 0; 468 channel->napi_str.state = 0; 469 memset(&channel->eventq, 0, sizeof(channel->eventq)); 470 471 for (j = 0; j < EF4_TXQ_TYPES; j++) { 472 tx_queue = &channel->tx_queue[j]; 473 if (tx_queue->channel) 474 tx_queue->channel = channel; 475 tx_queue->buffer = NULL; 476 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd)); 477 } 478 479 rx_queue = &channel->rx_queue; 480 rx_queue->buffer = NULL; 481 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd)); 482 timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0); 483 484 return channel; 485 } 486 487 static int ef4_probe_channel(struct ef4_channel *channel) 488 { 489 struct ef4_tx_queue *tx_queue; 490 struct ef4_rx_queue *rx_queue; 491 int rc; 492 493 netif_dbg(channel->efx, probe, channel->efx->net_dev, 494 "creating channel %d\n", channel->channel); 495 496 rc = channel->type->pre_probe(channel); 497 if (rc) 498 goto fail; 499 500 rc = ef4_probe_eventq(channel); 501 if (rc) 502 goto fail; 503 504 ef4_for_each_channel_tx_queue(tx_queue, channel) { 505 rc = ef4_probe_tx_queue(tx_queue); 506 if (rc) 507 goto fail; 508 } 509 510 ef4_for_each_channel_rx_queue(rx_queue, channel) { 511 rc = ef4_probe_rx_queue(rx_queue); 512 if (rc) 513 goto fail; 514 } 515 516 return 0; 517 518 fail: 519 ef4_remove_channel(channel); 520 return rc; 521 } 522 523 static void 524 ef4_get_channel_name(struct ef4_channel *channel, char *buf, size_t len) 525 { 526 struct ef4_nic *efx = channel->efx; 527 const char *type; 528 int number; 529 530 number = channel->channel; 531 if (efx->tx_channel_offset == 0) { 532 type = ""; 533 } else if (channel->channel < efx->tx_channel_offset) { 534 type = "-rx"; 535 } else { 536 type = "-tx"; 537 number -= efx->tx_channel_offset; 538 } 539 snprintf(buf, len, "%s%s-%d", efx->name, type, number); 540 } 541 542 static void ef4_set_channel_names(struct ef4_nic *efx) 543 { 544 struct ef4_channel *channel; 545 546 ef4_for_each_channel(channel, efx) 547 channel->type->get_name(channel, 548 efx->msi_context[channel->channel].name, 549 sizeof(efx->msi_context[0].name)); 550 } 551 552 static int ef4_probe_channels(struct ef4_nic *efx) 553 { 554 struct ef4_channel *channel; 555 int rc; 556 557 /* Restart special buffer allocation */ 558 efx->next_buffer_table = 0; 559 560 /* Probe channels in reverse, so that any 'extra' channels 561 * use the start of the buffer table. This allows the traffic 562 * channels to be resized without moving them or wasting the 563 * entries before them. 564 */ 565 ef4_for_each_channel_rev(channel, efx) { 566 rc = ef4_probe_channel(channel); 567 if (rc) { 568 netif_err(efx, probe, efx->net_dev, 569 "failed to create channel %d\n", 570 channel->channel); 571 goto fail; 572 } 573 } 574 ef4_set_channel_names(efx); 575 576 return 0; 577 578 fail: 579 ef4_remove_channels(efx); 580 return rc; 581 } 582 583 /* Channels are shutdown and reinitialised whilst the NIC is running 584 * to propagate configuration changes (mtu, checksum offload), or 585 * to clear hardware error conditions 586 */ 587 static void ef4_start_datapath(struct ef4_nic *efx) 588 { 589 netdev_features_t old_features = efx->net_dev->features; 590 bool old_rx_scatter = efx->rx_scatter; 591 struct ef4_tx_queue *tx_queue; 592 struct ef4_rx_queue *rx_queue; 593 struct ef4_channel *channel; 594 size_t rx_buf_len; 595 596 /* Calculate the rx buffer allocation parameters required to 597 * support the current MTU, including padding for header 598 * alignment and overruns. 599 */ 600 efx->rx_dma_len = (efx->rx_prefix_size + 601 EF4_MAX_FRAME_LEN(efx->net_dev->mtu) + 602 efx->type->rx_buffer_padding); 603 rx_buf_len = (sizeof(struct ef4_rx_page_state) + 604 efx->rx_ip_align + efx->rx_dma_len); 605 if (rx_buf_len <= PAGE_SIZE) { 606 efx->rx_scatter = efx->type->always_rx_scatter; 607 efx->rx_buffer_order = 0; 608 } else if (efx->type->can_rx_scatter) { 609 BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE % L1_CACHE_BYTES); 610 BUILD_BUG_ON(sizeof(struct ef4_rx_page_state) + 611 2 * ALIGN(NET_IP_ALIGN + EF4_RX_USR_BUF_SIZE, 612 EF4_RX_BUF_ALIGNMENT) > 613 PAGE_SIZE); 614 efx->rx_scatter = true; 615 efx->rx_dma_len = EF4_RX_USR_BUF_SIZE; 616 efx->rx_buffer_order = 0; 617 } else { 618 efx->rx_scatter = false; 619 efx->rx_buffer_order = get_order(rx_buf_len); 620 } 621 622 ef4_rx_config_page_split(efx); 623 if (efx->rx_buffer_order) 624 netif_dbg(efx, drv, efx->net_dev, 625 "RX buf len=%u; page order=%u batch=%u\n", 626 efx->rx_dma_len, efx->rx_buffer_order, 627 efx->rx_pages_per_batch); 628 else 629 netif_dbg(efx, drv, efx->net_dev, 630 "RX buf len=%u step=%u bpp=%u; page batch=%u\n", 631 efx->rx_dma_len, efx->rx_page_buf_step, 632 efx->rx_bufs_per_page, efx->rx_pages_per_batch); 633 634 /* Restore previously fixed features in hw_features and remove 635 * features which are fixed now 636 */ 637 efx->net_dev->hw_features |= efx->net_dev->features; 638 efx->net_dev->hw_features &= ~efx->fixed_features; 639 efx->net_dev->features |= efx->fixed_features; 640 if (efx->net_dev->features != old_features) 641 netdev_features_change(efx->net_dev); 642 643 /* RX filters may also have scatter-enabled flags */ 644 if (efx->rx_scatter != old_rx_scatter) 645 efx->type->filter_update_rx_scatter(efx); 646 647 /* We must keep at least one descriptor in a TX ring empty. 648 * We could avoid this when the queue size does not exactly 649 * match the hardware ring size, but it's not that important. 650 * Therefore we stop the queue when one more skb might fill 651 * the ring completely. We wake it when half way back to 652 * empty. 653 */ 654 efx->txq_stop_thresh = efx->txq_entries - ef4_tx_max_skb_descs(efx); 655 efx->txq_wake_thresh = efx->txq_stop_thresh / 2; 656 657 /* Initialise the channels */ 658 ef4_for_each_channel(channel, efx) { 659 ef4_for_each_channel_tx_queue(tx_queue, channel) { 660 ef4_init_tx_queue(tx_queue); 661 atomic_inc(&efx->active_queues); 662 } 663 664 ef4_for_each_channel_rx_queue(rx_queue, channel) { 665 ef4_init_rx_queue(rx_queue); 666 atomic_inc(&efx->active_queues); 667 ef4_stop_eventq(channel); 668 ef4_fast_push_rx_descriptors(rx_queue, false); 669 ef4_start_eventq(channel); 670 } 671 672 WARN_ON(channel->rx_pkt_n_frags); 673 } 674 675 if (netif_device_present(efx->net_dev)) 676 netif_tx_wake_all_queues(efx->net_dev); 677 } 678 679 static void ef4_stop_datapath(struct ef4_nic *efx) 680 { 681 struct ef4_channel *channel; 682 struct ef4_tx_queue *tx_queue; 683 struct ef4_rx_queue *rx_queue; 684 int rc; 685 686 EF4_ASSERT_RESET_SERIALISED(efx); 687 BUG_ON(efx->port_enabled); 688 689 /* Stop RX refill */ 690 ef4_for_each_channel(channel, efx) { 691 ef4_for_each_channel_rx_queue(rx_queue, channel) 692 rx_queue->refill_enabled = false; 693 } 694 695 ef4_for_each_channel(channel, efx) { 696 /* RX packet processing is pipelined, so wait for the 697 * NAPI handler to complete. At least event queue 0 698 * might be kept active by non-data events, so don't 699 * use napi_synchronize() but actually disable NAPI 700 * temporarily. 701 */ 702 if (ef4_channel_has_rx_queue(channel)) { 703 ef4_stop_eventq(channel); 704 ef4_start_eventq(channel); 705 } 706 } 707 708 rc = efx->type->fini_dmaq(efx); 709 if (rc && EF4_WORKAROUND_7803(efx)) { 710 /* Schedule a reset to recover from the flush failure. The 711 * descriptor caches reference memory we're about to free, 712 * but falcon_reconfigure_mac_wrapper() won't reconnect 713 * the MACs because of the pending reset. 714 */ 715 netif_err(efx, drv, efx->net_dev, 716 "Resetting to recover from flush failure\n"); 717 ef4_schedule_reset(efx, RESET_TYPE_ALL); 718 } else if (rc) { 719 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n"); 720 } else { 721 netif_dbg(efx, drv, efx->net_dev, 722 "successfully flushed all queues\n"); 723 } 724 725 ef4_for_each_channel(channel, efx) { 726 ef4_for_each_channel_rx_queue(rx_queue, channel) 727 ef4_fini_rx_queue(rx_queue); 728 ef4_for_each_possible_channel_tx_queue(tx_queue, channel) 729 ef4_fini_tx_queue(tx_queue); 730 } 731 } 732 733 static void ef4_remove_channel(struct ef4_channel *channel) 734 { 735 struct ef4_tx_queue *tx_queue; 736 struct ef4_rx_queue *rx_queue; 737 738 netif_dbg(channel->efx, drv, channel->efx->net_dev, 739 "destroy chan %d\n", channel->channel); 740 741 ef4_for_each_channel_rx_queue(rx_queue, channel) 742 ef4_remove_rx_queue(rx_queue); 743 ef4_for_each_possible_channel_tx_queue(tx_queue, channel) 744 ef4_remove_tx_queue(tx_queue); 745 ef4_remove_eventq(channel); 746 channel->type->post_remove(channel); 747 } 748 749 static void ef4_remove_channels(struct ef4_nic *efx) 750 { 751 struct ef4_channel *channel; 752 753 ef4_for_each_channel(channel, efx) 754 ef4_remove_channel(channel); 755 } 756 757 int 758 ef4_realloc_channels(struct ef4_nic *efx, u32 rxq_entries, u32 txq_entries) 759 { 760 struct ef4_channel *other_channel[EF4_MAX_CHANNELS], *channel; 761 u32 old_rxq_entries, old_txq_entries; 762 unsigned i, next_buffer_table = 0; 763 int rc, rc2; 764 765 rc = ef4_check_disabled(efx); 766 if (rc) 767 return rc; 768 769 /* Not all channels should be reallocated. We must avoid 770 * reallocating their buffer table entries. 771 */ 772 ef4_for_each_channel(channel, efx) { 773 struct ef4_rx_queue *rx_queue; 774 struct ef4_tx_queue *tx_queue; 775 776 if (channel->type->copy) 777 continue; 778 next_buffer_table = max(next_buffer_table, 779 channel->eventq.index + 780 channel->eventq.entries); 781 ef4_for_each_channel_rx_queue(rx_queue, channel) 782 next_buffer_table = max(next_buffer_table, 783 rx_queue->rxd.index + 784 rx_queue->rxd.entries); 785 ef4_for_each_channel_tx_queue(tx_queue, channel) 786 next_buffer_table = max(next_buffer_table, 787 tx_queue->txd.index + 788 tx_queue->txd.entries); 789 } 790 791 ef4_device_detach_sync(efx); 792 ef4_stop_all(efx); 793 ef4_soft_disable_interrupts(efx); 794 795 /* Clone channels (where possible) */ 796 memset(other_channel, 0, sizeof(other_channel)); 797 for (i = 0; i < efx->n_channels; i++) { 798 channel = efx->channel[i]; 799 if (channel->type->copy) 800 channel = channel->type->copy(channel); 801 if (!channel) { 802 rc = -ENOMEM; 803 goto out; 804 } 805 other_channel[i] = channel; 806 } 807 808 /* Swap entry counts and channel pointers */ 809 old_rxq_entries = efx->rxq_entries; 810 old_txq_entries = efx->txq_entries; 811 efx->rxq_entries = rxq_entries; 812 efx->txq_entries = txq_entries; 813 for (i = 0; i < efx->n_channels; i++) { 814 swap(efx->channel[i], other_channel[i]); 815 } 816 817 /* Restart buffer table allocation */ 818 efx->next_buffer_table = next_buffer_table; 819 820 for (i = 0; i < efx->n_channels; i++) { 821 channel = efx->channel[i]; 822 if (!channel->type->copy) 823 continue; 824 rc = ef4_probe_channel(channel); 825 if (rc) 826 goto rollback; 827 ef4_init_napi_channel(efx->channel[i]); 828 } 829 830 out: 831 /* Destroy unused channel structures */ 832 for (i = 0; i < efx->n_channels; i++) { 833 channel = other_channel[i]; 834 if (channel && channel->type->copy) { 835 ef4_fini_napi_channel(channel); 836 ef4_remove_channel(channel); 837 kfree(channel); 838 } 839 } 840 841 rc2 = ef4_soft_enable_interrupts(efx); 842 if (rc2) { 843 rc = rc ? rc : rc2; 844 netif_err(efx, drv, efx->net_dev, 845 "unable to restart interrupts on channel reallocation\n"); 846 ef4_schedule_reset(efx, RESET_TYPE_DISABLE); 847 } else { 848 ef4_start_all(efx); 849 netif_device_attach(efx->net_dev); 850 } 851 return rc; 852 853 rollback: 854 /* Swap back */ 855 efx->rxq_entries = old_rxq_entries; 856 efx->txq_entries = old_txq_entries; 857 for (i = 0; i < efx->n_channels; i++) { 858 swap(efx->channel[i], other_channel[i]); 859 } 860 goto out; 861 } 862 863 void ef4_schedule_slow_fill(struct ef4_rx_queue *rx_queue) 864 { 865 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100)); 866 } 867 868 static const struct ef4_channel_type ef4_default_channel_type = { 869 .pre_probe = ef4_channel_dummy_op_int, 870 .post_remove = ef4_channel_dummy_op_void, 871 .get_name = ef4_get_channel_name, 872 .copy = ef4_copy_channel, 873 .keep_eventq = false, 874 }; 875 876 int ef4_channel_dummy_op_int(struct ef4_channel *channel) 877 { 878 return 0; 879 } 880 881 void ef4_channel_dummy_op_void(struct ef4_channel *channel) 882 { 883 } 884 885 /************************************************************************** 886 * 887 * Port handling 888 * 889 **************************************************************************/ 890 891 /* This ensures that the kernel is kept informed (via 892 * netif_carrier_on/off) of the link status, and also maintains the 893 * link status's stop on the port's TX queue. 894 */ 895 void ef4_link_status_changed(struct ef4_nic *efx) 896 { 897 struct ef4_link_state *link_state = &efx->link_state; 898 899 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure 900 * that no events are triggered between unregister_netdev() and the 901 * driver unloading. A more general condition is that NETDEV_CHANGE 902 * can only be generated between NETDEV_UP and NETDEV_DOWN */ 903 if (!netif_running(efx->net_dev)) 904 return; 905 906 if (link_state->up != netif_carrier_ok(efx->net_dev)) { 907 efx->n_link_state_changes++; 908 909 if (link_state->up) 910 netif_carrier_on(efx->net_dev); 911 else 912 netif_carrier_off(efx->net_dev); 913 } 914 915 /* Status message for kernel log */ 916 if (link_state->up) 917 netif_info(efx, link, efx->net_dev, 918 "link up at %uMbps %s-duplex (MTU %d)\n", 919 link_state->speed, link_state->fd ? "full" : "half", 920 efx->net_dev->mtu); 921 else 922 netif_info(efx, link, efx->net_dev, "link down\n"); 923 } 924 925 void ef4_link_set_advertising(struct ef4_nic *efx, u32 advertising) 926 { 927 efx->link_advertising = advertising; 928 if (advertising) { 929 if (advertising & ADVERTISED_Pause) 930 efx->wanted_fc |= (EF4_FC_TX | EF4_FC_RX); 931 else 932 efx->wanted_fc &= ~(EF4_FC_TX | EF4_FC_RX); 933 if (advertising & ADVERTISED_Asym_Pause) 934 efx->wanted_fc ^= EF4_FC_TX; 935 } 936 } 937 938 void ef4_link_set_wanted_fc(struct ef4_nic *efx, u8 wanted_fc) 939 { 940 efx->wanted_fc = wanted_fc; 941 if (efx->link_advertising) { 942 if (wanted_fc & EF4_FC_RX) 943 efx->link_advertising |= (ADVERTISED_Pause | 944 ADVERTISED_Asym_Pause); 945 else 946 efx->link_advertising &= ~(ADVERTISED_Pause | 947 ADVERTISED_Asym_Pause); 948 if (wanted_fc & EF4_FC_TX) 949 efx->link_advertising ^= ADVERTISED_Asym_Pause; 950 } 951 } 952 953 static void ef4_fini_port(struct ef4_nic *efx); 954 955 /* We assume that efx->type->reconfigure_mac will always try to sync RX 956 * filters and therefore needs to read-lock the filter table against freeing 957 */ 958 void ef4_mac_reconfigure(struct ef4_nic *efx) 959 { 960 down_read(&efx->filter_sem); 961 efx->type->reconfigure_mac(efx); 962 up_read(&efx->filter_sem); 963 } 964 965 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure 966 * the MAC appropriately. All other PHY configuration changes are pushed 967 * through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC 968 * through ef4_monitor(). 969 * 970 * Callers must hold the mac_lock 971 */ 972 int __ef4_reconfigure_port(struct ef4_nic *efx) 973 { 974 enum ef4_phy_mode phy_mode; 975 int rc; 976 977 WARN_ON(!mutex_is_locked(&efx->mac_lock)); 978 979 /* Disable PHY transmit in mac level loopbacks */ 980 phy_mode = efx->phy_mode; 981 if (LOOPBACK_INTERNAL(efx)) 982 efx->phy_mode |= PHY_MODE_TX_DISABLED; 983 else 984 efx->phy_mode &= ~PHY_MODE_TX_DISABLED; 985 986 rc = efx->type->reconfigure_port(efx); 987 988 if (rc) 989 efx->phy_mode = phy_mode; 990 991 return rc; 992 } 993 994 /* Reinitialise the MAC to pick up new PHY settings, even if the port is 995 * disabled. */ 996 int ef4_reconfigure_port(struct ef4_nic *efx) 997 { 998 int rc; 999 1000 EF4_ASSERT_RESET_SERIALISED(efx); 1001 1002 mutex_lock(&efx->mac_lock); 1003 rc = __ef4_reconfigure_port(efx); 1004 mutex_unlock(&efx->mac_lock); 1005 1006 return rc; 1007 } 1008 1009 /* Asynchronous work item for changing MAC promiscuity and multicast 1010 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current 1011 * MAC directly. */ 1012 static void ef4_mac_work(struct work_struct *data) 1013 { 1014 struct ef4_nic *efx = container_of(data, struct ef4_nic, mac_work); 1015 1016 mutex_lock(&efx->mac_lock); 1017 if (efx->port_enabled) 1018 ef4_mac_reconfigure(efx); 1019 mutex_unlock(&efx->mac_lock); 1020 } 1021 1022 static int ef4_probe_port(struct ef4_nic *efx) 1023 { 1024 int rc; 1025 1026 netif_dbg(efx, probe, efx->net_dev, "create port\n"); 1027 1028 if (phy_flash_cfg) 1029 efx->phy_mode = PHY_MODE_SPECIAL; 1030 1031 /* Connect up MAC/PHY operations table */ 1032 rc = efx->type->probe_port(efx); 1033 if (rc) 1034 return rc; 1035 1036 /* Initialise MAC address to permanent address */ 1037 eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr); 1038 1039 return 0; 1040 } 1041 1042 static int ef4_init_port(struct ef4_nic *efx) 1043 { 1044 int rc; 1045 1046 netif_dbg(efx, drv, efx->net_dev, "init port\n"); 1047 1048 mutex_lock(&efx->mac_lock); 1049 1050 rc = efx->phy_op->init(efx); 1051 if (rc) 1052 goto fail1; 1053 1054 efx->port_initialized = true; 1055 1056 /* Reconfigure the MAC before creating dma queues (required for 1057 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */ 1058 ef4_mac_reconfigure(efx); 1059 1060 /* Ensure the PHY advertises the correct flow control settings */ 1061 rc = efx->phy_op->reconfigure(efx); 1062 if (rc && rc != -EPERM) 1063 goto fail2; 1064 1065 mutex_unlock(&efx->mac_lock); 1066 return 0; 1067 1068 fail2: 1069 efx->phy_op->fini(efx); 1070 fail1: 1071 mutex_unlock(&efx->mac_lock); 1072 return rc; 1073 } 1074 1075 static void ef4_start_port(struct ef4_nic *efx) 1076 { 1077 netif_dbg(efx, ifup, efx->net_dev, "start port\n"); 1078 BUG_ON(efx->port_enabled); 1079 1080 mutex_lock(&efx->mac_lock); 1081 efx->port_enabled = true; 1082 1083 /* Ensure MAC ingress/egress is enabled */ 1084 ef4_mac_reconfigure(efx); 1085 1086 mutex_unlock(&efx->mac_lock); 1087 } 1088 1089 /* Cancel work for MAC reconfiguration, periodic hardware monitoring 1090 * and the async self-test, wait for them to finish and prevent them 1091 * being scheduled again. This doesn't cover online resets, which 1092 * should only be cancelled when removing the device. 1093 */ 1094 static void ef4_stop_port(struct ef4_nic *efx) 1095 { 1096 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n"); 1097 1098 EF4_ASSERT_RESET_SERIALISED(efx); 1099 1100 mutex_lock(&efx->mac_lock); 1101 efx->port_enabled = false; 1102 mutex_unlock(&efx->mac_lock); 1103 1104 /* Serialise against ef4_set_multicast_list() */ 1105 netif_addr_lock_bh(efx->net_dev); 1106 netif_addr_unlock_bh(efx->net_dev); 1107 1108 cancel_delayed_work_sync(&efx->monitor_work); 1109 ef4_selftest_async_cancel(efx); 1110 cancel_work_sync(&efx->mac_work); 1111 } 1112 1113 static void ef4_fini_port(struct ef4_nic *efx) 1114 { 1115 netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); 1116 1117 if (!efx->port_initialized) 1118 return; 1119 1120 efx->phy_op->fini(efx); 1121 efx->port_initialized = false; 1122 1123 efx->link_state.up = false; 1124 ef4_link_status_changed(efx); 1125 } 1126 1127 static void ef4_remove_port(struct ef4_nic *efx) 1128 { 1129 netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); 1130 1131 efx->type->remove_port(efx); 1132 } 1133 1134 /************************************************************************** 1135 * 1136 * NIC handling 1137 * 1138 **************************************************************************/ 1139 1140 static LIST_HEAD(ef4_primary_list); 1141 static LIST_HEAD(ef4_unassociated_list); 1142 1143 static bool ef4_same_controller(struct ef4_nic *left, struct ef4_nic *right) 1144 { 1145 return left->type == right->type && 1146 left->vpd_sn && right->vpd_sn && 1147 !strcmp(left->vpd_sn, right->vpd_sn); 1148 } 1149 1150 static void ef4_associate(struct ef4_nic *efx) 1151 { 1152 struct ef4_nic *other, *next; 1153 1154 if (efx->primary == efx) { 1155 /* Adding primary function; look for secondaries */ 1156 1157 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n"); 1158 list_add_tail(&efx->node, &ef4_primary_list); 1159 1160 list_for_each_entry_safe(other, next, &ef4_unassociated_list, 1161 node) { 1162 if (ef4_same_controller(efx, other)) { 1163 list_del(&other->node); 1164 netif_dbg(other, probe, other->net_dev, 1165 "moving to secondary list of %s %s\n", 1166 pci_name(efx->pci_dev), 1167 efx->net_dev->name); 1168 list_add_tail(&other->node, 1169 &efx->secondary_list); 1170 other->primary = efx; 1171 } 1172 } 1173 } else { 1174 /* Adding secondary function; look for primary */ 1175 1176 list_for_each_entry(other, &ef4_primary_list, node) { 1177 if (ef4_same_controller(efx, other)) { 1178 netif_dbg(efx, probe, efx->net_dev, 1179 "adding to secondary list of %s %s\n", 1180 pci_name(other->pci_dev), 1181 other->net_dev->name); 1182 list_add_tail(&efx->node, 1183 &other->secondary_list); 1184 efx->primary = other; 1185 return; 1186 } 1187 } 1188 1189 netif_dbg(efx, probe, efx->net_dev, 1190 "adding to unassociated list\n"); 1191 list_add_tail(&efx->node, &ef4_unassociated_list); 1192 } 1193 } 1194 1195 static void ef4_dissociate(struct ef4_nic *efx) 1196 { 1197 struct ef4_nic *other, *next; 1198 1199 list_del(&efx->node); 1200 efx->primary = NULL; 1201 1202 list_for_each_entry_safe(other, next, &efx->secondary_list, node) { 1203 list_del(&other->node); 1204 netif_dbg(other, probe, other->net_dev, 1205 "moving to unassociated list\n"); 1206 list_add_tail(&other->node, &ef4_unassociated_list); 1207 other->primary = NULL; 1208 } 1209 } 1210 1211 /* This configures the PCI device to enable I/O and DMA. */ 1212 static int ef4_init_io(struct ef4_nic *efx) 1213 { 1214 struct pci_dev *pci_dev = efx->pci_dev; 1215 dma_addr_t dma_mask = efx->type->max_dma_mask; 1216 unsigned int mem_map_size = efx->type->mem_map_size(efx); 1217 int rc, bar; 1218 1219 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n"); 1220 1221 bar = efx->type->mem_bar; 1222 1223 rc = pci_enable_device(pci_dev); 1224 if (rc) { 1225 netif_err(efx, probe, efx->net_dev, 1226 "failed to enable PCI device\n"); 1227 goto fail1; 1228 } 1229 1230 pci_set_master(pci_dev); 1231 1232 /* Set the PCI DMA mask. Try all possibilities from our genuine mask 1233 * down to 32 bits, because some architectures will allow 40 bit 1234 * masks event though they reject 46 bit masks. 1235 */ 1236 while (dma_mask > 0x7fffffffUL) { 1237 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask); 1238 if (rc == 0) 1239 break; 1240 dma_mask >>= 1; 1241 } 1242 if (rc) { 1243 netif_err(efx, probe, efx->net_dev, 1244 "could not find a suitable DMA mask\n"); 1245 goto fail2; 1246 } 1247 netif_dbg(efx, probe, efx->net_dev, 1248 "using DMA mask %llx\n", (unsigned long long) dma_mask); 1249 1250 efx->membase_phys = pci_resource_start(efx->pci_dev, bar); 1251 rc = pci_request_region(pci_dev, bar, "sfc"); 1252 if (rc) { 1253 netif_err(efx, probe, efx->net_dev, 1254 "request for memory BAR failed\n"); 1255 rc = -EIO; 1256 goto fail3; 1257 } 1258 efx->membase = ioremap(efx->membase_phys, mem_map_size); 1259 if (!efx->membase) { 1260 netif_err(efx, probe, efx->net_dev, 1261 "could not map memory BAR at %llx+%x\n", 1262 (unsigned long long)efx->membase_phys, mem_map_size); 1263 rc = -ENOMEM; 1264 goto fail4; 1265 } 1266 netif_dbg(efx, probe, efx->net_dev, 1267 "memory BAR at %llx+%x (virtual %p)\n", 1268 (unsigned long long)efx->membase_phys, mem_map_size, 1269 efx->membase); 1270 1271 return 0; 1272 1273 fail4: 1274 pci_release_region(efx->pci_dev, bar); 1275 fail3: 1276 efx->membase_phys = 0; 1277 fail2: 1278 pci_disable_device(efx->pci_dev); 1279 fail1: 1280 return rc; 1281 } 1282 1283 static void ef4_fini_io(struct ef4_nic *efx) 1284 { 1285 int bar; 1286 1287 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n"); 1288 1289 if (efx->membase) { 1290 iounmap(efx->membase); 1291 efx->membase = NULL; 1292 } 1293 1294 if (efx->membase_phys) { 1295 bar = efx->type->mem_bar; 1296 pci_release_region(efx->pci_dev, bar); 1297 efx->membase_phys = 0; 1298 } 1299 1300 /* Don't disable bus-mastering if VFs are assigned */ 1301 if (!pci_vfs_assigned(efx->pci_dev)) 1302 pci_disable_device(efx->pci_dev); 1303 } 1304 1305 void ef4_set_default_rx_indir_table(struct ef4_nic *efx) 1306 { 1307 size_t i; 1308 1309 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++) 1310 efx->rx_indir_table[i] = 1311 ethtool_rxfh_indir_default(i, efx->rss_spread); 1312 } 1313 1314 static unsigned int ef4_wanted_parallelism(struct ef4_nic *efx) 1315 { 1316 cpumask_var_t thread_mask; 1317 unsigned int count; 1318 int cpu; 1319 1320 if (rss_cpus) { 1321 count = rss_cpus; 1322 } else { 1323 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) { 1324 netif_warn(efx, probe, efx->net_dev, 1325 "RSS disabled due to allocation failure\n"); 1326 return 1; 1327 } 1328 1329 count = 0; 1330 for_each_online_cpu(cpu) { 1331 if (!cpumask_test_cpu(cpu, thread_mask)) { 1332 ++count; 1333 cpumask_or(thread_mask, thread_mask, 1334 topology_sibling_cpumask(cpu)); 1335 } 1336 } 1337 1338 free_cpumask_var(thread_mask); 1339 } 1340 1341 if (count > EF4_MAX_RX_QUEUES) { 1342 netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn, 1343 "Reducing number of rx queues from %u to %u.\n", 1344 count, EF4_MAX_RX_QUEUES); 1345 count = EF4_MAX_RX_QUEUES; 1346 } 1347 1348 return count; 1349 } 1350 1351 /* Probe the number and type of interrupts we are able to obtain, and 1352 * the resulting numbers of channels and RX queues. 1353 */ 1354 static int ef4_probe_interrupts(struct ef4_nic *efx) 1355 { 1356 unsigned int extra_channels = 0; 1357 unsigned int i, j; 1358 int rc; 1359 1360 for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) 1361 if (efx->extra_channel_type[i]) 1362 ++extra_channels; 1363 1364 if (efx->interrupt_mode == EF4_INT_MODE_MSIX) { 1365 struct msix_entry xentries[EF4_MAX_CHANNELS]; 1366 unsigned int n_channels; 1367 1368 n_channels = ef4_wanted_parallelism(efx); 1369 if (ef4_separate_tx_channels) 1370 n_channels *= 2; 1371 n_channels += extra_channels; 1372 n_channels = min(n_channels, efx->max_channels); 1373 1374 for (i = 0; i < n_channels; i++) 1375 xentries[i].entry = i; 1376 rc = pci_enable_msix_range(efx->pci_dev, 1377 xentries, 1, n_channels); 1378 if (rc < 0) { 1379 /* Fall back to single channel MSI */ 1380 efx->interrupt_mode = EF4_INT_MODE_MSI; 1381 netif_err(efx, drv, efx->net_dev, 1382 "could not enable MSI-X\n"); 1383 } else if (rc < n_channels) { 1384 netif_err(efx, drv, efx->net_dev, 1385 "WARNING: Insufficient MSI-X vectors" 1386 " available (%d < %u).\n", rc, n_channels); 1387 netif_err(efx, drv, efx->net_dev, 1388 "WARNING: Performance may be reduced.\n"); 1389 n_channels = rc; 1390 } 1391 1392 if (rc > 0) { 1393 efx->n_channels = n_channels; 1394 if (n_channels > extra_channels) 1395 n_channels -= extra_channels; 1396 if (ef4_separate_tx_channels) { 1397 efx->n_tx_channels = min(max(n_channels / 2, 1398 1U), 1399 efx->max_tx_channels); 1400 efx->n_rx_channels = max(n_channels - 1401 efx->n_tx_channels, 1402 1U); 1403 } else { 1404 efx->n_tx_channels = min(n_channels, 1405 efx->max_tx_channels); 1406 efx->n_rx_channels = n_channels; 1407 } 1408 for (i = 0; i < efx->n_channels; i++) 1409 ef4_get_channel(efx, i)->irq = 1410 xentries[i].vector; 1411 } 1412 } 1413 1414 /* Try single interrupt MSI */ 1415 if (efx->interrupt_mode == EF4_INT_MODE_MSI) { 1416 efx->n_channels = 1; 1417 efx->n_rx_channels = 1; 1418 efx->n_tx_channels = 1; 1419 rc = pci_enable_msi(efx->pci_dev); 1420 if (rc == 0) { 1421 ef4_get_channel(efx, 0)->irq = efx->pci_dev->irq; 1422 } else { 1423 netif_err(efx, drv, efx->net_dev, 1424 "could not enable MSI\n"); 1425 efx->interrupt_mode = EF4_INT_MODE_LEGACY; 1426 } 1427 } 1428 1429 /* Assume legacy interrupts */ 1430 if (efx->interrupt_mode == EF4_INT_MODE_LEGACY) { 1431 efx->n_channels = 1 + (ef4_separate_tx_channels ? 1 : 0); 1432 efx->n_rx_channels = 1; 1433 efx->n_tx_channels = 1; 1434 efx->legacy_irq = efx->pci_dev->irq; 1435 } 1436 1437 /* Assign extra channels if possible */ 1438 j = efx->n_channels; 1439 for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) { 1440 if (!efx->extra_channel_type[i]) 1441 continue; 1442 if (efx->interrupt_mode != EF4_INT_MODE_MSIX || 1443 efx->n_channels <= extra_channels) { 1444 efx->extra_channel_type[i]->handle_no_channel(efx); 1445 } else { 1446 --j; 1447 ef4_get_channel(efx, j)->type = 1448 efx->extra_channel_type[i]; 1449 } 1450 } 1451 1452 efx->rss_spread = efx->n_rx_channels; 1453 1454 return 0; 1455 } 1456 1457 static int ef4_soft_enable_interrupts(struct ef4_nic *efx) 1458 { 1459 struct ef4_channel *channel, *end_channel; 1460 int rc; 1461 1462 BUG_ON(efx->state == STATE_DISABLED); 1463 1464 efx->irq_soft_enabled = true; 1465 smp_wmb(); 1466 1467 ef4_for_each_channel(channel, efx) { 1468 if (!channel->type->keep_eventq) { 1469 rc = ef4_init_eventq(channel); 1470 if (rc) 1471 goto fail; 1472 } 1473 ef4_start_eventq(channel); 1474 } 1475 1476 return 0; 1477 fail: 1478 end_channel = channel; 1479 ef4_for_each_channel(channel, efx) { 1480 if (channel == end_channel) 1481 break; 1482 ef4_stop_eventq(channel); 1483 if (!channel->type->keep_eventq) 1484 ef4_fini_eventq(channel); 1485 } 1486 1487 return rc; 1488 } 1489 1490 static void ef4_soft_disable_interrupts(struct ef4_nic *efx) 1491 { 1492 struct ef4_channel *channel; 1493 1494 if (efx->state == STATE_DISABLED) 1495 return; 1496 1497 efx->irq_soft_enabled = false; 1498 smp_wmb(); 1499 1500 if (efx->legacy_irq) 1501 synchronize_irq(efx->legacy_irq); 1502 1503 ef4_for_each_channel(channel, efx) { 1504 if (channel->irq) 1505 synchronize_irq(channel->irq); 1506 1507 ef4_stop_eventq(channel); 1508 if (!channel->type->keep_eventq) 1509 ef4_fini_eventq(channel); 1510 } 1511 } 1512 1513 static int ef4_enable_interrupts(struct ef4_nic *efx) 1514 { 1515 struct ef4_channel *channel, *end_channel; 1516 int rc; 1517 1518 BUG_ON(efx->state == STATE_DISABLED); 1519 1520 if (efx->eeh_disabled_legacy_irq) { 1521 enable_irq(efx->legacy_irq); 1522 efx->eeh_disabled_legacy_irq = false; 1523 } 1524 1525 efx->type->irq_enable_master(efx); 1526 1527 ef4_for_each_channel(channel, efx) { 1528 if (channel->type->keep_eventq) { 1529 rc = ef4_init_eventq(channel); 1530 if (rc) 1531 goto fail; 1532 } 1533 } 1534 1535 rc = ef4_soft_enable_interrupts(efx); 1536 if (rc) 1537 goto fail; 1538 1539 return 0; 1540 1541 fail: 1542 end_channel = channel; 1543 ef4_for_each_channel(channel, efx) { 1544 if (channel == end_channel) 1545 break; 1546 if (channel->type->keep_eventq) 1547 ef4_fini_eventq(channel); 1548 } 1549 1550 efx->type->irq_disable_non_ev(efx); 1551 1552 return rc; 1553 } 1554 1555 static void ef4_disable_interrupts(struct ef4_nic *efx) 1556 { 1557 struct ef4_channel *channel; 1558 1559 ef4_soft_disable_interrupts(efx); 1560 1561 ef4_for_each_channel(channel, efx) { 1562 if (channel->type->keep_eventq) 1563 ef4_fini_eventq(channel); 1564 } 1565 1566 efx->type->irq_disable_non_ev(efx); 1567 } 1568 1569 static void ef4_remove_interrupts(struct ef4_nic *efx) 1570 { 1571 struct ef4_channel *channel; 1572 1573 /* Remove MSI/MSI-X interrupts */ 1574 ef4_for_each_channel(channel, efx) 1575 channel->irq = 0; 1576 pci_disable_msi(efx->pci_dev); 1577 pci_disable_msix(efx->pci_dev); 1578 1579 /* Remove legacy interrupt */ 1580 efx->legacy_irq = 0; 1581 } 1582 1583 static void ef4_set_channels(struct ef4_nic *efx) 1584 { 1585 struct ef4_channel *channel; 1586 struct ef4_tx_queue *tx_queue; 1587 1588 efx->tx_channel_offset = 1589 ef4_separate_tx_channels ? 1590 efx->n_channels - efx->n_tx_channels : 0; 1591 1592 /* We need to mark which channels really have RX and TX 1593 * queues, and adjust the TX queue numbers if we have separate 1594 * RX-only and TX-only channels. 1595 */ 1596 ef4_for_each_channel(channel, efx) { 1597 if (channel->channel < efx->n_rx_channels) 1598 channel->rx_queue.core_index = channel->channel; 1599 else 1600 channel->rx_queue.core_index = -1; 1601 1602 ef4_for_each_channel_tx_queue(tx_queue, channel) 1603 tx_queue->queue -= (efx->tx_channel_offset * 1604 EF4_TXQ_TYPES); 1605 } 1606 } 1607 1608 static int ef4_probe_nic(struct ef4_nic *efx) 1609 { 1610 int rc; 1611 1612 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); 1613 1614 /* Carry out hardware-type specific initialisation */ 1615 rc = efx->type->probe(efx); 1616 if (rc) 1617 return rc; 1618 1619 do { 1620 if (!efx->max_channels || !efx->max_tx_channels) { 1621 netif_err(efx, drv, efx->net_dev, 1622 "Insufficient resources to allocate" 1623 " any channels\n"); 1624 rc = -ENOSPC; 1625 goto fail1; 1626 } 1627 1628 /* Determine the number of channels and queues by trying 1629 * to hook in MSI-X interrupts. 1630 */ 1631 rc = ef4_probe_interrupts(efx); 1632 if (rc) 1633 goto fail1; 1634 1635 ef4_set_channels(efx); 1636 1637 /* dimension_resources can fail with EAGAIN */ 1638 rc = efx->type->dimension_resources(efx); 1639 if (rc != 0 && rc != -EAGAIN) 1640 goto fail2; 1641 1642 if (rc == -EAGAIN) 1643 /* try again with new max_channels */ 1644 ef4_remove_interrupts(efx); 1645 1646 } while (rc == -EAGAIN); 1647 1648 if (efx->n_channels > 1) 1649 netdev_rss_key_fill(&efx->rx_hash_key, 1650 sizeof(efx->rx_hash_key)); 1651 ef4_set_default_rx_indir_table(efx); 1652 1653 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels); 1654 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels); 1655 1656 /* Initialise the interrupt moderation settings */ 1657 efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000); 1658 ef4_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true, 1659 true); 1660 1661 return 0; 1662 1663 fail2: 1664 ef4_remove_interrupts(efx); 1665 fail1: 1666 efx->type->remove(efx); 1667 return rc; 1668 } 1669 1670 static void ef4_remove_nic(struct ef4_nic *efx) 1671 { 1672 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); 1673 1674 ef4_remove_interrupts(efx); 1675 efx->type->remove(efx); 1676 } 1677 1678 static int ef4_probe_filters(struct ef4_nic *efx) 1679 { 1680 int rc; 1681 1682 spin_lock_init(&efx->filter_lock); 1683 init_rwsem(&efx->filter_sem); 1684 mutex_lock(&efx->mac_lock); 1685 down_write(&efx->filter_sem); 1686 rc = efx->type->filter_table_probe(efx); 1687 if (rc) 1688 goto out_unlock; 1689 1690 #ifdef CONFIG_RFS_ACCEL 1691 if (efx->type->offload_features & NETIF_F_NTUPLE) { 1692 struct ef4_channel *channel; 1693 int i, success = 1; 1694 1695 ef4_for_each_channel(channel, efx) { 1696 channel->rps_flow_id = 1697 kcalloc(efx->type->max_rx_ip_filters, 1698 sizeof(*channel->rps_flow_id), 1699 GFP_KERNEL); 1700 if (!channel->rps_flow_id) 1701 success = 0; 1702 else 1703 for (i = 0; 1704 i < efx->type->max_rx_ip_filters; 1705 ++i) 1706 channel->rps_flow_id[i] = 1707 RPS_FLOW_ID_INVALID; 1708 } 1709 1710 if (!success) { 1711 ef4_for_each_channel(channel, efx) 1712 kfree(channel->rps_flow_id); 1713 efx->type->filter_table_remove(efx); 1714 rc = -ENOMEM; 1715 goto out_unlock; 1716 } 1717 1718 efx->rps_expire_index = efx->rps_expire_channel = 0; 1719 } 1720 #endif 1721 out_unlock: 1722 up_write(&efx->filter_sem); 1723 mutex_unlock(&efx->mac_lock); 1724 return rc; 1725 } 1726 1727 static void ef4_remove_filters(struct ef4_nic *efx) 1728 { 1729 #ifdef CONFIG_RFS_ACCEL 1730 struct ef4_channel *channel; 1731 1732 ef4_for_each_channel(channel, efx) 1733 kfree(channel->rps_flow_id); 1734 #endif 1735 down_write(&efx->filter_sem); 1736 efx->type->filter_table_remove(efx); 1737 up_write(&efx->filter_sem); 1738 } 1739 1740 static void ef4_restore_filters(struct ef4_nic *efx) 1741 { 1742 down_read(&efx->filter_sem); 1743 efx->type->filter_table_restore(efx); 1744 up_read(&efx->filter_sem); 1745 } 1746 1747 /************************************************************************** 1748 * 1749 * NIC startup/shutdown 1750 * 1751 *************************************************************************/ 1752 1753 static int ef4_probe_all(struct ef4_nic *efx) 1754 { 1755 int rc; 1756 1757 rc = ef4_probe_nic(efx); 1758 if (rc) { 1759 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); 1760 goto fail1; 1761 } 1762 1763 rc = ef4_probe_port(efx); 1764 if (rc) { 1765 netif_err(efx, probe, efx->net_dev, "failed to create port\n"); 1766 goto fail2; 1767 } 1768 1769 BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_RXQ_MIN_ENT); 1770 if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_TXQ_MIN_ENT(efx))) { 1771 rc = -EINVAL; 1772 goto fail3; 1773 } 1774 efx->rxq_entries = efx->txq_entries = EF4_DEFAULT_DMAQ_SIZE; 1775 1776 rc = ef4_probe_filters(efx); 1777 if (rc) { 1778 netif_err(efx, probe, efx->net_dev, 1779 "failed to create filter tables\n"); 1780 goto fail4; 1781 } 1782 1783 rc = ef4_probe_channels(efx); 1784 if (rc) 1785 goto fail5; 1786 1787 return 0; 1788 1789 fail5: 1790 ef4_remove_filters(efx); 1791 fail4: 1792 fail3: 1793 ef4_remove_port(efx); 1794 fail2: 1795 ef4_remove_nic(efx); 1796 fail1: 1797 return rc; 1798 } 1799 1800 /* If the interface is supposed to be running but is not, start 1801 * the hardware and software data path, regular activity for the port 1802 * (MAC statistics, link polling, etc.) and schedule the port to be 1803 * reconfigured. Interrupts must already be enabled. This function 1804 * is safe to call multiple times, so long as the NIC is not disabled. 1805 * Requires the RTNL lock. 1806 */ 1807 static void ef4_start_all(struct ef4_nic *efx) 1808 { 1809 EF4_ASSERT_RESET_SERIALISED(efx); 1810 BUG_ON(efx->state == STATE_DISABLED); 1811 1812 /* Check that it is appropriate to restart the interface. All 1813 * of these flags are safe to read under just the rtnl lock */ 1814 if (efx->port_enabled || !netif_running(efx->net_dev) || 1815 efx->reset_pending) 1816 return; 1817 1818 ef4_start_port(efx); 1819 ef4_start_datapath(efx); 1820 1821 /* Start the hardware monitor if there is one */ 1822 if (efx->type->monitor != NULL) 1823 queue_delayed_work(efx->workqueue, &efx->monitor_work, 1824 ef4_monitor_interval); 1825 1826 efx->type->start_stats(efx); 1827 efx->type->pull_stats(efx); 1828 spin_lock_bh(&efx->stats_lock); 1829 efx->type->update_stats(efx, NULL, NULL); 1830 spin_unlock_bh(&efx->stats_lock); 1831 } 1832 1833 /* Quiesce the hardware and software data path, and regular activity 1834 * for the port without bringing the link down. Safe to call multiple 1835 * times with the NIC in almost any state, but interrupts should be 1836 * enabled. Requires the RTNL lock. 1837 */ 1838 static void ef4_stop_all(struct ef4_nic *efx) 1839 { 1840 EF4_ASSERT_RESET_SERIALISED(efx); 1841 1842 /* port_enabled can be read safely under the rtnl lock */ 1843 if (!efx->port_enabled) 1844 return; 1845 1846 /* update stats before we go down so we can accurately count 1847 * rx_nodesc_drops 1848 */ 1849 efx->type->pull_stats(efx); 1850 spin_lock_bh(&efx->stats_lock); 1851 efx->type->update_stats(efx, NULL, NULL); 1852 spin_unlock_bh(&efx->stats_lock); 1853 efx->type->stop_stats(efx); 1854 ef4_stop_port(efx); 1855 1856 /* Stop the kernel transmit interface. This is only valid if 1857 * the device is stopped or detached; otherwise the watchdog 1858 * may fire immediately. 1859 */ 1860 WARN_ON(netif_running(efx->net_dev) && 1861 netif_device_present(efx->net_dev)); 1862 netif_tx_disable(efx->net_dev); 1863 1864 ef4_stop_datapath(efx); 1865 } 1866 1867 static void ef4_remove_all(struct ef4_nic *efx) 1868 { 1869 ef4_remove_channels(efx); 1870 ef4_remove_filters(efx); 1871 ef4_remove_port(efx); 1872 ef4_remove_nic(efx); 1873 } 1874 1875 /************************************************************************** 1876 * 1877 * Interrupt moderation 1878 * 1879 **************************************************************************/ 1880 unsigned int ef4_usecs_to_ticks(struct ef4_nic *efx, unsigned int usecs) 1881 { 1882 if (usecs == 0) 1883 return 0; 1884 if (usecs * 1000 < efx->timer_quantum_ns) 1885 return 1; /* never round down to 0 */ 1886 return usecs * 1000 / efx->timer_quantum_ns; 1887 } 1888 1889 unsigned int ef4_ticks_to_usecs(struct ef4_nic *efx, unsigned int ticks) 1890 { 1891 /* We must round up when converting ticks to microseconds 1892 * because we round down when converting the other way. 1893 */ 1894 return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000); 1895 } 1896 1897 /* Set interrupt moderation parameters */ 1898 int ef4_init_irq_moderation(struct ef4_nic *efx, unsigned int tx_usecs, 1899 unsigned int rx_usecs, bool rx_adaptive, 1900 bool rx_may_override_tx) 1901 { 1902 struct ef4_channel *channel; 1903 unsigned int timer_max_us; 1904 1905 EF4_ASSERT_RESET_SERIALISED(efx); 1906 1907 timer_max_us = efx->timer_max_ns / 1000; 1908 1909 if (tx_usecs > timer_max_us || rx_usecs > timer_max_us) 1910 return -EINVAL; 1911 1912 if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 && 1913 !rx_may_override_tx) { 1914 netif_err(efx, drv, efx->net_dev, "Channels are shared. " 1915 "RX and TX IRQ moderation must be equal\n"); 1916 return -EINVAL; 1917 } 1918 1919 efx->irq_rx_adaptive = rx_adaptive; 1920 efx->irq_rx_moderation_us = rx_usecs; 1921 ef4_for_each_channel(channel, efx) { 1922 if (ef4_channel_has_rx_queue(channel)) 1923 channel->irq_moderation_us = rx_usecs; 1924 else if (ef4_channel_has_tx_queues(channel)) 1925 channel->irq_moderation_us = tx_usecs; 1926 } 1927 1928 return 0; 1929 } 1930 1931 void ef4_get_irq_moderation(struct ef4_nic *efx, unsigned int *tx_usecs, 1932 unsigned int *rx_usecs, bool *rx_adaptive) 1933 { 1934 *rx_adaptive = efx->irq_rx_adaptive; 1935 *rx_usecs = efx->irq_rx_moderation_us; 1936 1937 /* If channels are shared between RX and TX, so is IRQ 1938 * moderation. Otherwise, IRQ moderation is the same for all 1939 * TX channels and is not adaptive. 1940 */ 1941 if (efx->tx_channel_offset == 0) { 1942 *tx_usecs = *rx_usecs; 1943 } else { 1944 struct ef4_channel *tx_channel; 1945 1946 tx_channel = efx->channel[efx->tx_channel_offset]; 1947 *tx_usecs = tx_channel->irq_moderation_us; 1948 } 1949 } 1950 1951 /************************************************************************** 1952 * 1953 * Hardware monitor 1954 * 1955 **************************************************************************/ 1956 1957 /* Run periodically off the general workqueue */ 1958 static void ef4_monitor(struct work_struct *data) 1959 { 1960 struct ef4_nic *efx = container_of(data, struct ef4_nic, 1961 monitor_work.work); 1962 1963 netif_vdbg(efx, timer, efx->net_dev, 1964 "hardware monitor executing on CPU %d\n", 1965 raw_smp_processor_id()); 1966 BUG_ON(efx->type->monitor == NULL); 1967 1968 /* If the mac_lock is already held then it is likely a port 1969 * reconfiguration is already in place, which will likely do 1970 * most of the work of monitor() anyway. */ 1971 if (mutex_trylock(&efx->mac_lock)) { 1972 if (efx->port_enabled) 1973 efx->type->monitor(efx); 1974 mutex_unlock(&efx->mac_lock); 1975 } 1976 1977 queue_delayed_work(efx->workqueue, &efx->monitor_work, 1978 ef4_monitor_interval); 1979 } 1980 1981 /************************************************************************** 1982 * 1983 * ioctls 1984 * 1985 *************************************************************************/ 1986 1987 /* Net device ioctl 1988 * Context: process, rtnl_lock() held. 1989 */ 1990 static int ef4_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) 1991 { 1992 struct ef4_nic *efx = netdev_priv(net_dev); 1993 struct mii_ioctl_data *data = if_mii(ifr); 1994 1995 /* Convert phy_id from older PRTAD/DEVAD format */ 1996 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && 1997 (data->phy_id & 0xfc00) == 0x0400) 1998 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; 1999 2000 return mdio_mii_ioctl(&efx->mdio, data, cmd); 2001 } 2002 2003 /************************************************************************** 2004 * 2005 * NAPI interface 2006 * 2007 **************************************************************************/ 2008 2009 static void ef4_init_napi_channel(struct ef4_channel *channel) 2010 { 2011 struct ef4_nic *efx = channel->efx; 2012 2013 channel->napi_dev = efx->net_dev; 2014 netif_napi_add(channel->napi_dev, &channel->napi_str, ef4_poll); 2015 } 2016 2017 static void ef4_init_napi(struct ef4_nic *efx) 2018 { 2019 struct ef4_channel *channel; 2020 2021 ef4_for_each_channel(channel, efx) 2022 ef4_init_napi_channel(channel); 2023 } 2024 2025 static void ef4_fini_napi_channel(struct ef4_channel *channel) 2026 { 2027 if (channel->napi_dev) 2028 netif_napi_del(&channel->napi_str); 2029 2030 channel->napi_dev = NULL; 2031 } 2032 2033 static void ef4_fini_napi(struct ef4_nic *efx) 2034 { 2035 struct ef4_channel *channel; 2036 2037 ef4_for_each_channel(channel, efx) 2038 ef4_fini_napi_channel(channel); 2039 } 2040 2041 /************************************************************************** 2042 * 2043 * Kernel net device interface 2044 * 2045 *************************************************************************/ 2046 2047 /* Context: process, rtnl_lock() held. */ 2048 int ef4_net_open(struct net_device *net_dev) 2049 { 2050 struct ef4_nic *efx = netdev_priv(net_dev); 2051 int rc; 2052 2053 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", 2054 raw_smp_processor_id()); 2055 2056 rc = ef4_check_disabled(efx); 2057 if (rc) 2058 return rc; 2059 if (efx->phy_mode & PHY_MODE_SPECIAL) 2060 return -EBUSY; 2061 2062 /* Notify the kernel of the link state polled during driver load, 2063 * before the monitor starts running */ 2064 ef4_link_status_changed(efx); 2065 2066 ef4_start_all(efx); 2067 ef4_selftest_async_start(efx); 2068 return 0; 2069 } 2070 2071 /* Context: process, rtnl_lock() held. 2072 * Note that the kernel will ignore our return code; this method 2073 * should really be a void. 2074 */ 2075 int ef4_net_stop(struct net_device *net_dev) 2076 { 2077 struct ef4_nic *efx = netdev_priv(net_dev); 2078 2079 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", 2080 raw_smp_processor_id()); 2081 2082 /* Stop the device and flush all the channels */ 2083 ef4_stop_all(efx); 2084 2085 return 0; 2086 } 2087 2088 /* Context: process, rcu_read_lock or RTNL held, non-blocking. */ 2089 static void ef4_net_stats(struct net_device *net_dev, 2090 struct rtnl_link_stats64 *stats) 2091 { 2092 struct ef4_nic *efx = netdev_priv(net_dev); 2093 2094 spin_lock_bh(&efx->stats_lock); 2095 efx->type->update_stats(efx, NULL, stats); 2096 spin_unlock_bh(&efx->stats_lock); 2097 } 2098 2099 /* Context: netif_tx_lock held, BHs disabled. */ 2100 static void ef4_watchdog(struct net_device *net_dev, unsigned int txqueue) 2101 { 2102 struct ef4_nic *efx = netdev_priv(net_dev); 2103 2104 netif_err(efx, tx_err, efx->net_dev, 2105 "TX stuck with port_enabled=%d: resetting channels\n", 2106 efx->port_enabled); 2107 2108 ef4_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); 2109 } 2110 2111 2112 /* Context: process, rtnl_lock() held. */ 2113 static int ef4_change_mtu(struct net_device *net_dev, int new_mtu) 2114 { 2115 struct ef4_nic *efx = netdev_priv(net_dev); 2116 int rc; 2117 2118 rc = ef4_check_disabled(efx); 2119 if (rc) 2120 return rc; 2121 2122 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu); 2123 2124 ef4_device_detach_sync(efx); 2125 ef4_stop_all(efx); 2126 2127 mutex_lock(&efx->mac_lock); 2128 net_dev->mtu = new_mtu; 2129 ef4_mac_reconfigure(efx); 2130 mutex_unlock(&efx->mac_lock); 2131 2132 ef4_start_all(efx); 2133 netif_device_attach(efx->net_dev); 2134 return 0; 2135 } 2136 2137 static int ef4_set_mac_address(struct net_device *net_dev, void *data) 2138 { 2139 struct ef4_nic *efx = netdev_priv(net_dev); 2140 struct sockaddr *addr = data; 2141 u8 *new_addr = addr->sa_data; 2142 u8 old_addr[6]; 2143 int rc; 2144 2145 if (!is_valid_ether_addr(new_addr)) { 2146 netif_err(efx, drv, efx->net_dev, 2147 "invalid ethernet MAC address requested: %pM\n", 2148 new_addr); 2149 return -EADDRNOTAVAIL; 2150 } 2151 2152 /* save old address */ 2153 ether_addr_copy(old_addr, net_dev->dev_addr); 2154 eth_hw_addr_set(net_dev, new_addr); 2155 if (efx->type->set_mac_address) { 2156 rc = efx->type->set_mac_address(efx); 2157 if (rc) { 2158 eth_hw_addr_set(net_dev, old_addr); 2159 return rc; 2160 } 2161 } 2162 2163 /* Reconfigure the MAC */ 2164 mutex_lock(&efx->mac_lock); 2165 ef4_mac_reconfigure(efx); 2166 mutex_unlock(&efx->mac_lock); 2167 2168 return 0; 2169 } 2170 2171 /* Context: netif_addr_lock held, BHs disabled. */ 2172 static void ef4_set_rx_mode(struct net_device *net_dev) 2173 { 2174 struct ef4_nic *efx = netdev_priv(net_dev); 2175 2176 if (efx->port_enabled) 2177 queue_work(efx->workqueue, &efx->mac_work); 2178 /* Otherwise ef4_start_port() will do this */ 2179 } 2180 2181 static int ef4_set_features(struct net_device *net_dev, netdev_features_t data) 2182 { 2183 struct ef4_nic *efx = netdev_priv(net_dev); 2184 int rc; 2185 2186 /* If disabling RX n-tuple filtering, clear existing filters */ 2187 if (net_dev->features & ~data & NETIF_F_NTUPLE) { 2188 rc = efx->type->filter_clear_rx(efx, EF4_FILTER_PRI_MANUAL); 2189 if (rc) 2190 return rc; 2191 } 2192 2193 /* If Rx VLAN filter is changed, update filters via mac_reconfigure */ 2194 if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) { 2195 /* ef4_set_rx_mode() will schedule MAC work to update filters 2196 * when a new features are finally set in net_dev. 2197 */ 2198 ef4_set_rx_mode(net_dev); 2199 } 2200 2201 return 0; 2202 } 2203 2204 static const struct net_device_ops ef4_netdev_ops = { 2205 .ndo_open = ef4_net_open, 2206 .ndo_stop = ef4_net_stop, 2207 .ndo_get_stats64 = ef4_net_stats, 2208 .ndo_tx_timeout = ef4_watchdog, 2209 .ndo_start_xmit = ef4_hard_start_xmit, 2210 .ndo_validate_addr = eth_validate_addr, 2211 .ndo_eth_ioctl = ef4_ioctl, 2212 .ndo_change_mtu = ef4_change_mtu, 2213 .ndo_set_mac_address = ef4_set_mac_address, 2214 .ndo_set_rx_mode = ef4_set_rx_mode, 2215 .ndo_set_features = ef4_set_features, 2216 .ndo_setup_tc = ef4_setup_tc, 2217 #ifdef CONFIG_RFS_ACCEL 2218 .ndo_rx_flow_steer = ef4_filter_rfs, 2219 #endif 2220 }; 2221 2222 static void ef4_update_name(struct ef4_nic *efx) 2223 { 2224 strcpy(efx->name, efx->net_dev->name); 2225 ef4_mtd_rename(efx); 2226 ef4_set_channel_names(efx); 2227 } 2228 2229 static int ef4_netdev_event(struct notifier_block *this, 2230 unsigned long event, void *ptr) 2231 { 2232 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr); 2233 2234 if ((net_dev->netdev_ops == &ef4_netdev_ops) && 2235 event == NETDEV_CHANGENAME) 2236 ef4_update_name(netdev_priv(net_dev)); 2237 2238 return NOTIFY_DONE; 2239 } 2240 2241 static struct notifier_block ef4_netdev_notifier = { 2242 .notifier_call = ef4_netdev_event, 2243 }; 2244 2245 static ssize_t 2246 phy_type_show(struct device *dev, struct device_attribute *attr, char *buf) 2247 { 2248 struct ef4_nic *efx = dev_get_drvdata(dev); 2249 return sprintf(buf, "%d\n", efx->phy_type); 2250 } 2251 static DEVICE_ATTR_RO(phy_type); 2252 2253 static int ef4_register_netdev(struct ef4_nic *efx) 2254 { 2255 struct net_device *net_dev = efx->net_dev; 2256 struct ef4_channel *channel; 2257 int rc; 2258 2259 net_dev->watchdog_timeo = 5 * HZ; 2260 net_dev->irq = efx->pci_dev->irq; 2261 net_dev->netdev_ops = &ef4_netdev_ops; 2262 net_dev->ethtool_ops = &ef4_ethtool_ops; 2263 netif_set_tso_max_segs(net_dev, EF4_TSO_MAX_SEGS); 2264 net_dev->min_mtu = EF4_MIN_MTU; 2265 net_dev->max_mtu = EF4_MAX_MTU; 2266 2267 rtnl_lock(); 2268 2269 /* Enable resets to be scheduled and check whether any were 2270 * already requested. If so, the NIC is probably hosed so we 2271 * abort. 2272 */ 2273 efx->state = STATE_READY; 2274 smp_mb(); /* ensure we change state before checking reset_pending */ 2275 if (efx->reset_pending) { 2276 netif_err(efx, probe, efx->net_dev, 2277 "aborting probe due to scheduled reset\n"); 2278 rc = -EIO; 2279 goto fail_locked; 2280 } 2281 2282 rc = dev_alloc_name(net_dev, net_dev->name); 2283 if (rc < 0) 2284 goto fail_locked; 2285 ef4_update_name(efx); 2286 2287 /* Always start with carrier off; PHY events will detect the link */ 2288 netif_carrier_off(net_dev); 2289 2290 rc = register_netdevice(net_dev); 2291 if (rc) 2292 goto fail_locked; 2293 2294 ef4_for_each_channel(channel, efx) { 2295 struct ef4_tx_queue *tx_queue; 2296 ef4_for_each_channel_tx_queue(tx_queue, channel) 2297 ef4_init_tx_queue_core_txq(tx_queue); 2298 } 2299 2300 ef4_associate(efx); 2301 2302 rtnl_unlock(); 2303 2304 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); 2305 if (rc) { 2306 netif_err(efx, drv, efx->net_dev, 2307 "failed to init net dev attributes\n"); 2308 goto fail_registered; 2309 } 2310 return 0; 2311 2312 fail_registered: 2313 rtnl_lock(); 2314 ef4_dissociate(efx); 2315 unregister_netdevice(net_dev); 2316 fail_locked: 2317 efx->state = STATE_UNINIT; 2318 rtnl_unlock(); 2319 netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); 2320 return rc; 2321 } 2322 2323 static void ef4_unregister_netdev(struct ef4_nic *efx) 2324 { 2325 if (!efx->net_dev) 2326 return; 2327 2328 BUG_ON(netdev_priv(efx->net_dev) != efx); 2329 2330 if (ef4_dev_registered(efx)) { 2331 strscpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); 2332 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); 2333 unregister_netdev(efx->net_dev); 2334 } 2335 } 2336 2337 /************************************************************************** 2338 * 2339 * Device reset and suspend 2340 * 2341 **************************************************************************/ 2342 2343 /* Tears down the entire software state and most of the hardware state 2344 * before reset. */ 2345 void ef4_reset_down(struct ef4_nic *efx, enum reset_type method) 2346 { 2347 EF4_ASSERT_RESET_SERIALISED(efx); 2348 2349 ef4_stop_all(efx); 2350 ef4_disable_interrupts(efx); 2351 2352 mutex_lock(&efx->mac_lock); 2353 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE && 2354 method != RESET_TYPE_DATAPATH) 2355 efx->phy_op->fini(efx); 2356 efx->type->fini(efx); 2357 } 2358 2359 /* This function will always ensure that the locks acquired in 2360 * ef4_reset_down() are released. A failure return code indicates 2361 * that we were unable to reinitialise the hardware, and the 2362 * driver should be disabled. If ok is false, then the rx and tx 2363 * engines are not restarted, pending a RESET_DISABLE. */ 2364 int ef4_reset_up(struct ef4_nic *efx, enum reset_type method, bool ok) 2365 { 2366 int rc; 2367 2368 EF4_ASSERT_RESET_SERIALISED(efx); 2369 2370 /* Ensure that SRAM is initialised even if we're disabling the device */ 2371 rc = efx->type->init(efx); 2372 if (rc) { 2373 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n"); 2374 goto fail; 2375 } 2376 2377 if (!ok) 2378 goto fail; 2379 2380 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE && 2381 method != RESET_TYPE_DATAPATH) { 2382 rc = efx->phy_op->init(efx); 2383 if (rc) 2384 goto fail; 2385 rc = efx->phy_op->reconfigure(efx); 2386 if (rc && rc != -EPERM) 2387 netif_err(efx, drv, efx->net_dev, 2388 "could not restore PHY settings\n"); 2389 } 2390 2391 rc = ef4_enable_interrupts(efx); 2392 if (rc) 2393 goto fail; 2394 2395 down_read(&efx->filter_sem); 2396 ef4_restore_filters(efx); 2397 up_read(&efx->filter_sem); 2398 2399 mutex_unlock(&efx->mac_lock); 2400 2401 ef4_start_all(efx); 2402 2403 return 0; 2404 2405 fail: 2406 efx->port_initialized = false; 2407 2408 mutex_unlock(&efx->mac_lock); 2409 2410 return rc; 2411 } 2412 2413 /* Reset the NIC using the specified method. Note that the reset may 2414 * fail, in which case the card will be left in an unusable state. 2415 * 2416 * Caller must hold the rtnl_lock. 2417 */ 2418 int ef4_reset(struct ef4_nic *efx, enum reset_type method) 2419 { 2420 int rc, rc2; 2421 bool disabled; 2422 2423 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n", 2424 RESET_TYPE(method)); 2425 2426 ef4_device_detach_sync(efx); 2427 ef4_reset_down(efx, method); 2428 2429 rc = efx->type->reset(efx, method); 2430 if (rc) { 2431 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n"); 2432 goto out; 2433 } 2434 2435 /* Clear flags for the scopes we covered. We assume the NIC and 2436 * driver are now quiescent so that there is no race here. 2437 */ 2438 if (method < RESET_TYPE_MAX_METHOD) 2439 efx->reset_pending &= -(1 << (method + 1)); 2440 else /* it doesn't fit into the well-ordered scope hierarchy */ 2441 __clear_bit(method, &efx->reset_pending); 2442 2443 /* Reinitialise bus-mastering, which may have been turned off before 2444 * the reset was scheduled. This is still appropriate, even in the 2445 * RESET_TYPE_DISABLE since this driver generally assumes the hardware 2446 * can respond to requests. */ 2447 pci_set_master(efx->pci_dev); 2448 2449 out: 2450 /* Leave device stopped if necessary */ 2451 disabled = rc || 2452 method == RESET_TYPE_DISABLE || 2453 method == RESET_TYPE_RECOVER_OR_DISABLE; 2454 rc2 = ef4_reset_up(efx, method, !disabled); 2455 if (rc2) { 2456 disabled = true; 2457 if (!rc) 2458 rc = rc2; 2459 } 2460 2461 if (disabled) { 2462 dev_close(efx->net_dev); 2463 netif_err(efx, drv, efx->net_dev, "has been disabled\n"); 2464 efx->state = STATE_DISABLED; 2465 } else { 2466 netif_dbg(efx, drv, efx->net_dev, "reset complete\n"); 2467 netif_device_attach(efx->net_dev); 2468 } 2469 return rc; 2470 } 2471 2472 /* Try recovery mechanisms. 2473 * For now only EEH is supported. 2474 * Returns 0 if the recovery mechanisms are unsuccessful. 2475 * Returns a non-zero value otherwise. 2476 */ 2477 int ef4_try_recovery(struct ef4_nic *efx) 2478 { 2479 #ifdef CONFIG_EEH 2480 /* A PCI error can occur and not be seen by EEH because nothing 2481 * happens on the PCI bus. In this case the driver may fail and 2482 * schedule a 'recover or reset', leading to this recovery handler. 2483 * Manually call the eeh failure check function. 2484 */ 2485 struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev); 2486 if (eeh_dev_check_failure(eehdev)) { 2487 /* The EEH mechanisms will handle the error and reset the 2488 * device if necessary. 2489 */ 2490 return 1; 2491 } 2492 #endif 2493 return 0; 2494 } 2495 2496 /* The worker thread exists so that code that cannot sleep can 2497 * schedule a reset for later. 2498 */ 2499 static void ef4_reset_work(struct work_struct *data) 2500 { 2501 struct ef4_nic *efx = container_of(data, struct ef4_nic, reset_work); 2502 unsigned long pending; 2503 enum reset_type method; 2504 2505 pending = READ_ONCE(efx->reset_pending); 2506 method = fls(pending) - 1; 2507 2508 if ((method == RESET_TYPE_RECOVER_OR_DISABLE || 2509 method == RESET_TYPE_RECOVER_OR_ALL) && 2510 ef4_try_recovery(efx)) 2511 return; 2512 2513 if (!pending) 2514 return; 2515 2516 rtnl_lock(); 2517 2518 /* We checked the state in ef4_schedule_reset() but it may 2519 * have changed by now. Now that we have the RTNL lock, 2520 * it cannot change again. 2521 */ 2522 if (efx->state == STATE_READY) 2523 (void)ef4_reset(efx, method); 2524 2525 rtnl_unlock(); 2526 } 2527 2528 void ef4_schedule_reset(struct ef4_nic *efx, enum reset_type type) 2529 { 2530 enum reset_type method; 2531 2532 if (efx->state == STATE_RECOVERY) { 2533 netif_dbg(efx, drv, efx->net_dev, 2534 "recovering: skip scheduling %s reset\n", 2535 RESET_TYPE(type)); 2536 return; 2537 } 2538 2539 switch (type) { 2540 case RESET_TYPE_INVISIBLE: 2541 case RESET_TYPE_ALL: 2542 case RESET_TYPE_RECOVER_OR_ALL: 2543 case RESET_TYPE_WORLD: 2544 case RESET_TYPE_DISABLE: 2545 case RESET_TYPE_RECOVER_OR_DISABLE: 2546 case RESET_TYPE_DATAPATH: 2547 method = type; 2548 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n", 2549 RESET_TYPE(method)); 2550 break; 2551 default: 2552 method = efx->type->map_reset_reason(type); 2553 netif_dbg(efx, drv, efx->net_dev, 2554 "scheduling %s reset for %s\n", 2555 RESET_TYPE(method), RESET_TYPE(type)); 2556 break; 2557 } 2558 2559 set_bit(method, &efx->reset_pending); 2560 smp_mb(); /* ensure we change reset_pending before checking state */ 2561 2562 /* If we're not READY then just leave the flags set as the cue 2563 * to abort probing or reschedule the reset later. 2564 */ 2565 if (READ_ONCE(efx->state) != STATE_READY) 2566 return; 2567 2568 queue_work(reset_workqueue, &efx->reset_work); 2569 } 2570 2571 /************************************************************************** 2572 * 2573 * List of NICs we support 2574 * 2575 **************************************************************************/ 2576 2577 /* PCI device ID table */ 2578 static const struct pci_device_id ef4_pci_table[] = { 2579 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 2580 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0), 2581 .driver_data = (unsigned long) &falcon_a1_nic_type}, 2582 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 2583 PCI_DEVICE_ID_SOLARFLARE_SFC4000B), 2584 .driver_data = (unsigned long) &falcon_b0_nic_type}, 2585 {0} /* end of list */ 2586 }; 2587 2588 /************************************************************************** 2589 * 2590 * Dummy PHY/MAC operations 2591 * 2592 * Can be used for some unimplemented operations 2593 * Needed so all function pointers are valid and do not have to be tested 2594 * before use 2595 * 2596 **************************************************************************/ 2597 int ef4_port_dummy_op_int(struct ef4_nic *efx) 2598 { 2599 return 0; 2600 } 2601 void ef4_port_dummy_op_void(struct ef4_nic *efx) {} 2602 2603 static bool ef4_port_dummy_op_poll(struct ef4_nic *efx) 2604 { 2605 return false; 2606 } 2607 2608 static const struct ef4_phy_operations ef4_dummy_phy_operations = { 2609 .init = ef4_port_dummy_op_int, 2610 .reconfigure = ef4_port_dummy_op_int, 2611 .poll = ef4_port_dummy_op_poll, 2612 .fini = ef4_port_dummy_op_void, 2613 }; 2614 2615 /************************************************************************** 2616 * 2617 * Data housekeeping 2618 * 2619 **************************************************************************/ 2620 2621 /* This zeroes out and then fills in the invariants in a struct 2622 * ef4_nic (including all sub-structures). 2623 */ 2624 static int ef4_init_struct(struct ef4_nic *efx, 2625 struct pci_dev *pci_dev, struct net_device *net_dev) 2626 { 2627 int i; 2628 2629 /* Initialise common structures */ 2630 INIT_LIST_HEAD(&efx->node); 2631 INIT_LIST_HEAD(&efx->secondary_list); 2632 spin_lock_init(&efx->biu_lock); 2633 #ifdef CONFIG_SFC_FALCON_MTD 2634 INIT_LIST_HEAD(&efx->mtd_list); 2635 #endif 2636 INIT_WORK(&efx->reset_work, ef4_reset_work); 2637 INIT_DELAYED_WORK(&efx->monitor_work, ef4_monitor); 2638 INIT_DELAYED_WORK(&efx->selftest_work, ef4_selftest_async_work); 2639 efx->pci_dev = pci_dev; 2640 efx->msg_enable = debug; 2641 efx->state = STATE_UNINIT; 2642 strscpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); 2643 2644 efx->net_dev = net_dev; 2645 efx->rx_prefix_size = efx->type->rx_prefix_size; 2646 efx->rx_ip_align = 2647 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0; 2648 efx->rx_packet_hash_offset = 2649 efx->type->rx_hash_offset - efx->type->rx_prefix_size; 2650 efx->rx_packet_ts_offset = 2651 efx->type->rx_ts_offset - efx->type->rx_prefix_size; 2652 spin_lock_init(&efx->stats_lock); 2653 mutex_init(&efx->mac_lock); 2654 efx->phy_op = &ef4_dummy_phy_operations; 2655 efx->mdio.dev = net_dev; 2656 INIT_WORK(&efx->mac_work, ef4_mac_work); 2657 init_waitqueue_head(&efx->flush_wq); 2658 2659 for (i = 0; i < EF4_MAX_CHANNELS; i++) { 2660 efx->channel[i] = ef4_alloc_channel(efx, i, NULL); 2661 if (!efx->channel[i]) 2662 goto fail; 2663 efx->msi_context[i].efx = efx; 2664 efx->msi_context[i].index = i; 2665 } 2666 2667 /* Higher numbered interrupt modes are less capable! */ 2668 efx->interrupt_mode = max(efx->type->max_interrupt_mode, 2669 interrupt_mode); 2670 2671 /* Would be good to use the net_dev name, but we're too early */ 2672 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s", 2673 pci_name(pci_dev)); 2674 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name); 2675 if (!efx->workqueue) 2676 goto fail; 2677 2678 return 0; 2679 2680 fail: 2681 ef4_fini_struct(efx); 2682 return -ENOMEM; 2683 } 2684 2685 static void ef4_fini_struct(struct ef4_nic *efx) 2686 { 2687 int i; 2688 2689 for (i = 0; i < EF4_MAX_CHANNELS; i++) 2690 kfree(efx->channel[i]); 2691 2692 kfree(efx->vpd_sn); 2693 2694 if (efx->workqueue) { 2695 destroy_workqueue(efx->workqueue); 2696 efx->workqueue = NULL; 2697 } 2698 } 2699 2700 void ef4_update_sw_stats(struct ef4_nic *efx, u64 *stats) 2701 { 2702 u64 n_rx_nodesc_trunc = 0; 2703 struct ef4_channel *channel; 2704 2705 ef4_for_each_channel(channel, efx) 2706 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc; 2707 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc; 2708 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops); 2709 } 2710 2711 /************************************************************************** 2712 * 2713 * PCI interface 2714 * 2715 **************************************************************************/ 2716 2717 /* Main body of final NIC shutdown code 2718 * This is called only at module unload (or hotplug removal). 2719 */ 2720 static void ef4_pci_remove_main(struct ef4_nic *efx) 2721 { 2722 /* Flush reset_work. It can no longer be scheduled since we 2723 * are not READY. 2724 */ 2725 BUG_ON(efx->state == STATE_READY); 2726 cancel_work_sync(&efx->reset_work); 2727 2728 ef4_disable_interrupts(efx); 2729 ef4_nic_fini_interrupt(efx); 2730 ef4_fini_port(efx); 2731 efx->type->fini(efx); 2732 ef4_fini_napi(efx); 2733 ef4_remove_all(efx); 2734 } 2735 2736 /* Final NIC shutdown 2737 * This is called only at module unload (or hotplug removal). A PF can call 2738 * this on its VFs to ensure they are unbound first. 2739 */ 2740 static void ef4_pci_remove(struct pci_dev *pci_dev) 2741 { 2742 struct ef4_nic *efx; 2743 2744 efx = pci_get_drvdata(pci_dev); 2745 if (!efx) 2746 return; 2747 2748 /* Mark the NIC as fini, then stop the interface */ 2749 rtnl_lock(); 2750 ef4_dissociate(efx); 2751 dev_close(efx->net_dev); 2752 ef4_disable_interrupts(efx); 2753 efx->state = STATE_UNINIT; 2754 rtnl_unlock(); 2755 2756 ef4_unregister_netdev(efx); 2757 2758 ef4_mtd_remove(efx); 2759 2760 ef4_pci_remove_main(efx); 2761 2762 ef4_fini_io(efx); 2763 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); 2764 2765 ef4_fini_struct(efx); 2766 free_netdev(efx->net_dev); 2767 }; 2768 2769 /* NIC VPD information 2770 * Called during probe to display the part number of the installed NIC. 2771 */ 2772 static void ef4_probe_vpd_strings(struct ef4_nic *efx) 2773 { 2774 struct pci_dev *dev = efx->pci_dev; 2775 unsigned int vpd_size, kw_len; 2776 u8 *vpd_data; 2777 int start; 2778 2779 vpd_data = pci_vpd_alloc(dev, &vpd_size); 2780 if (IS_ERR(vpd_data)) { 2781 pci_warn(dev, "Unable to read VPD\n"); 2782 return; 2783 } 2784 2785 start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 2786 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); 2787 if (start < 0) 2788 pci_warn(dev, "Part number not found or incomplete\n"); 2789 else 2790 pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start); 2791 2792 start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 2793 PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len); 2794 if (start < 0) 2795 pci_warn(dev, "Serial number not found or incomplete\n"); 2796 else 2797 efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL); 2798 2799 kfree(vpd_data); 2800 } 2801 2802 2803 /* Main body of NIC initialisation 2804 * This is called at module load (or hotplug insertion, theoretically). 2805 */ 2806 static int ef4_pci_probe_main(struct ef4_nic *efx) 2807 { 2808 int rc; 2809 2810 /* Do start-of-day initialisation */ 2811 rc = ef4_probe_all(efx); 2812 if (rc) 2813 goto fail1; 2814 2815 ef4_init_napi(efx); 2816 2817 rc = efx->type->init(efx); 2818 if (rc) { 2819 netif_err(efx, probe, efx->net_dev, 2820 "failed to initialise NIC\n"); 2821 goto fail3; 2822 } 2823 2824 rc = ef4_init_port(efx); 2825 if (rc) { 2826 netif_err(efx, probe, efx->net_dev, 2827 "failed to initialise port\n"); 2828 goto fail4; 2829 } 2830 2831 rc = ef4_nic_init_interrupt(efx); 2832 if (rc) 2833 goto fail5; 2834 rc = ef4_enable_interrupts(efx); 2835 if (rc) 2836 goto fail6; 2837 2838 return 0; 2839 2840 fail6: 2841 ef4_nic_fini_interrupt(efx); 2842 fail5: 2843 ef4_fini_port(efx); 2844 fail4: 2845 efx->type->fini(efx); 2846 fail3: 2847 ef4_fini_napi(efx); 2848 ef4_remove_all(efx); 2849 fail1: 2850 return rc; 2851 } 2852 2853 /* NIC initialisation 2854 * 2855 * This is called at module load (or hotplug insertion, 2856 * theoretically). It sets up PCI mappings, resets the NIC, 2857 * sets up and registers the network devices with the kernel and hooks 2858 * the interrupt service routine. It does not prepare the device for 2859 * transmission; this is left to the first time one of the network 2860 * interfaces is brought up (i.e. ef4_net_open). 2861 */ 2862 static int ef4_pci_probe(struct pci_dev *pci_dev, 2863 const struct pci_device_id *entry) 2864 { 2865 struct net_device *net_dev; 2866 struct ef4_nic *efx; 2867 int rc; 2868 2869 /* Allocate and initialise a struct net_device and struct ef4_nic */ 2870 net_dev = alloc_etherdev_mqs(sizeof(*efx), EF4_MAX_CORE_TX_QUEUES, 2871 EF4_MAX_RX_QUEUES); 2872 if (!net_dev) 2873 return -ENOMEM; 2874 efx = netdev_priv(net_dev); 2875 efx->type = (const struct ef4_nic_type *) entry->driver_data; 2876 efx->fixed_features |= NETIF_F_HIGHDMA; 2877 2878 pci_set_drvdata(pci_dev, efx); 2879 SET_NETDEV_DEV(net_dev, &pci_dev->dev); 2880 rc = ef4_init_struct(efx, pci_dev, net_dev); 2881 if (rc) 2882 goto fail1; 2883 2884 netif_info(efx, probe, efx->net_dev, 2885 "Solarflare NIC detected\n"); 2886 2887 ef4_probe_vpd_strings(efx); 2888 2889 /* Set up basic I/O (BAR mappings etc) */ 2890 rc = ef4_init_io(efx); 2891 if (rc) 2892 goto fail2; 2893 2894 rc = ef4_pci_probe_main(efx); 2895 if (rc) 2896 goto fail3; 2897 2898 net_dev->features |= (efx->type->offload_features | NETIF_F_SG | 2899 NETIF_F_RXCSUM); 2900 /* Mask for features that also apply to VLAN devices */ 2901 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG | 2902 NETIF_F_HIGHDMA | NETIF_F_RXCSUM); 2903 2904 net_dev->hw_features = net_dev->features & ~efx->fixed_features; 2905 2906 /* Disable VLAN filtering by default. It may be enforced if 2907 * the feature is fixed (i.e. VLAN filters are required to 2908 * receive VLAN tagged packets due to vPort restrictions). 2909 */ 2910 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 2911 net_dev->features |= efx->fixed_features; 2912 2913 rc = ef4_register_netdev(efx); 2914 if (rc) 2915 goto fail4; 2916 2917 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); 2918 2919 /* Try to create MTDs, but allow this to fail */ 2920 rtnl_lock(); 2921 rc = ef4_mtd_probe(efx); 2922 rtnl_unlock(); 2923 if (rc && rc != -EPERM) 2924 netif_warn(efx, probe, efx->net_dev, 2925 "failed to create MTDs (%d)\n", rc); 2926 2927 return 0; 2928 2929 fail4: 2930 ef4_pci_remove_main(efx); 2931 fail3: 2932 ef4_fini_io(efx); 2933 fail2: 2934 ef4_fini_struct(efx); 2935 fail1: 2936 WARN_ON(rc > 0); 2937 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); 2938 free_netdev(net_dev); 2939 return rc; 2940 } 2941 2942 static int ef4_pm_freeze(struct device *dev) 2943 { 2944 struct ef4_nic *efx = dev_get_drvdata(dev); 2945 2946 rtnl_lock(); 2947 2948 if (efx->state != STATE_DISABLED) { 2949 efx->state = STATE_UNINIT; 2950 2951 ef4_device_detach_sync(efx); 2952 2953 ef4_stop_all(efx); 2954 ef4_disable_interrupts(efx); 2955 } 2956 2957 rtnl_unlock(); 2958 2959 return 0; 2960 } 2961 2962 static int ef4_pm_thaw(struct device *dev) 2963 { 2964 int rc; 2965 struct ef4_nic *efx = dev_get_drvdata(dev); 2966 2967 rtnl_lock(); 2968 2969 if (efx->state != STATE_DISABLED) { 2970 rc = ef4_enable_interrupts(efx); 2971 if (rc) 2972 goto fail; 2973 2974 mutex_lock(&efx->mac_lock); 2975 efx->phy_op->reconfigure(efx); 2976 mutex_unlock(&efx->mac_lock); 2977 2978 ef4_start_all(efx); 2979 2980 netif_device_attach(efx->net_dev); 2981 2982 efx->state = STATE_READY; 2983 2984 efx->type->resume_wol(efx); 2985 } 2986 2987 rtnl_unlock(); 2988 2989 /* Reschedule any quenched resets scheduled during ef4_pm_freeze() */ 2990 queue_work(reset_workqueue, &efx->reset_work); 2991 2992 return 0; 2993 2994 fail: 2995 rtnl_unlock(); 2996 2997 return rc; 2998 } 2999 3000 static int ef4_pm_poweroff(struct device *dev) 3001 { 3002 struct pci_dev *pci_dev = to_pci_dev(dev); 3003 struct ef4_nic *efx = pci_get_drvdata(pci_dev); 3004 3005 efx->type->fini(efx); 3006 3007 efx->reset_pending = 0; 3008 3009 pci_save_state(pci_dev); 3010 return pci_set_power_state(pci_dev, PCI_D3hot); 3011 } 3012 3013 /* Used for both resume and restore */ 3014 static int ef4_pm_resume(struct device *dev) 3015 { 3016 struct pci_dev *pci_dev = to_pci_dev(dev); 3017 struct ef4_nic *efx = pci_get_drvdata(pci_dev); 3018 int rc; 3019 3020 rc = pci_set_power_state(pci_dev, PCI_D0); 3021 if (rc) 3022 return rc; 3023 pci_restore_state(pci_dev); 3024 rc = pci_enable_device(pci_dev); 3025 if (rc) 3026 return rc; 3027 pci_set_master(efx->pci_dev); 3028 rc = efx->type->reset(efx, RESET_TYPE_ALL); 3029 if (rc) 3030 return rc; 3031 rc = efx->type->init(efx); 3032 if (rc) 3033 return rc; 3034 rc = ef4_pm_thaw(dev); 3035 return rc; 3036 } 3037 3038 static int ef4_pm_suspend(struct device *dev) 3039 { 3040 int rc; 3041 3042 ef4_pm_freeze(dev); 3043 rc = ef4_pm_poweroff(dev); 3044 if (rc) 3045 ef4_pm_resume(dev); 3046 return rc; 3047 } 3048 3049 static const struct dev_pm_ops ef4_pm_ops = { 3050 .suspend = ef4_pm_suspend, 3051 .resume = ef4_pm_resume, 3052 .freeze = ef4_pm_freeze, 3053 .thaw = ef4_pm_thaw, 3054 .poweroff = ef4_pm_poweroff, 3055 .restore = ef4_pm_resume, 3056 }; 3057 3058 /* A PCI error affecting this device was detected. 3059 * At this point MMIO and DMA may be disabled. 3060 * Stop the software path and request a slot reset. 3061 */ 3062 static pci_ers_result_t ef4_io_error_detected(struct pci_dev *pdev, 3063 pci_channel_state_t state) 3064 { 3065 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 3066 struct ef4_nic *efx = pci_get_drvdata(pdev); 3067 3068 if (state == pci_channel_io_perm_failure) 3069 return PCI_ERS_RESULT_DISCONNECT; 3070 3071 rtnl_lock(); 3072 3073 if (efx->state != STATE_DISABLED) { 3074 efx->state = STATE_RECOVERY; 3075 efx->reset_pending = 0; 3076 3077 ef4_device_detach_sync(efx); 3078 3079 ef4_stop_all(efx); 3080 ef4_disable_interrupts(efx); 3081 3082 status = PCI_ERS_RESULT_NEED_RESET; 3083 } else { 3084 /* If the interface is disabled we don't want to do anything 3085 * with it. 3086 */ 3087 status = PCI_ERS_RESULT_RECOVERED; 3088 } 3089 3090 rtnl_unlock(); 3091 3092 pci_disable_device(pdev); 3093 3094 return status; 3095 } 3096 3097 /* Fake a successful reset, which will be performed later in ef4_io_resume. */ 3098 static pci_ers_result_t ef4_io_slot_reset(struct pci_dev *pdev) 3099 { 3100 struct ef4_nic *efx = pci_get_drvdata(pdev); 3101 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 3102 3103 if (pci_enable_device(pdev)) { 3104 netif_err(efx, hw, efx->net_dev, 3105 "Cannot re-enable PCI device after reset.\n"); 3106 status = PCI_ERS_RESULT_DISCONNECT; 3107 } 3108 3109 return status; 3110 } 3111 3112 /* Perform the actual reset and resume I/O operations. */ 3113 static void ef4_io_resume(struct pci_dev *pdev) 3114 { 3115 struct ef4_nic *efx = pci_get_drvdata(pdev); 3116 int rc; 3117 3118 rtnl_lock(); 3119 3120 if (efx->state == STATE_DISABLED) 3121 goto out; 3122 3123 rc = ef4_reset(efx, RESET_TYPE_ALL); 3124 if (rc) { 3125 netif_err(efx, hw, efx->net_dev, 3126 "ef4_reset failed after PCI error (%d)\n", rc); 3127 } else { 3128 efx->state = STATE_READY; 3129 netif_dbg(efx, hw, efx->net_dev, 3130 "Done resetting and resuming IO after PCI error.\n"); 3131 } 3132 3133 out: 3134 rtnl_unlock(); 3135 } 3136 3137 /* For simplicity and reliability, we always require a slot reset and try to 3138 * reset the hardware when a pci error affecting the device is detected. 3139 * We leave both the link_reset and mmio_enabled callback unimplemented: 3140 * with our request for slot reset the mmio_enabled callback will never be 3141 * called, and the link_reset callback is not used by AER or EEH mechanisms. 3142 */ 3143 static const struct pci_error_handlers ef4_err_handlers = { 3144 .error_detected = ef4_io_error_detected, 3145 .slot_reset = ef4_io_slot_reset, 3146 .resume = ef4_io_resume, 3147 }; 3148 3149 static struct pci_driver ef4_pci_driver = { 3150 .name = KBUILD_MODNAME, 3151 .id_table = ef4_pci_table, 3152 .probe = ef4_pci_probe, 3153 .remove = ef4_pci_remove, 3154 .driver.pm = &ef4_pm_ops, 3155 .err_handler = &ef4_err_handlers, 3156 }; 3157 3158 /************************************************************************** 3159 * 3160 * Kernel module interface 3161 * 3162 *************************************************************************/ 3163 3164 module_param(interrupt_mode, uint, 0444); 3165 MODULE_PARM_DESC(interrupt_mode, 3166 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); 3167 3168 static int __init ef4_init_module(void) 3169 { 3170 int rc; 3171 3172 printk(KERN_INFO "Solarflare Falcon driver v" EF4_DRIVER_VERSION "\n"); 3173 3174 rc = register_netdevice_notifier(&ef4_netdev_notifier); 3175 if (rc) 3176 goto err_notifier; 3177 3178 reset_workqueue = create_singlethread_workqueue("sfc_reset"); 3179 if (!reset_workqueue) { 3180 rc = -ENOMEM; 3181 goto err_reset; 3182 } 3183 3184 rc = pci_register_driver(&ef4_pci_driver); 3185 if (rc < 0) 3186 goto err_pci; 3187 3188 return 0; 3189 3190 err_pci: 3191 destroy_workqueue(reset_workqueue); 3192 err_reset: 3193 unregister_netdevice_notifier(&ef4_netdev_notifier); 3194 err_notifier: 3195 return rc; 3196 } 3197 3198 static void __exit ef4_exit_module(void) 3199 { 3200 printk(KERN_INFO "Solarflare Falcon driver unloading\n"); 3201 3202 pci_unregister_driver(&ef4_pci_driver); 3203 destroy_workqueue(reset_workqueue); 3204 unregister_netdevice_notifier(&ef4_netdev_notifier); 3205 3206 } 3207 3208 module_init(ef4_init_module); 3209 module_exit(ef4_exit_module); 3210 3211 MODULE_AUTHOR("Solarflare Communications and " 3212 "Michael Brown <mbrown@fensystems.co.uk>"); 3213 MODULE_DESCRIPTION("Solarflare Falcon network driver"); 3214 MODULE_LICENSE("GPL"); 3215 MODULE_DEVICE_TABLE(pci, ef4_pci_table); 3216 MODULE_VERSION(EF4_DRIVER_VERSION); 3217