xref: /linux/drivers/net/ethernet/sfc/falcon/efx.c (revision 2975489458c59ce2e348b1b3aef5d8d2acb5cc8d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7 
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/delay.h>
13 #include <linux/notifier.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/in.h>
17 #include <linux/ethtool.h>
18 #include <linux/topology.h>
19 #include <linux/gfp.h>
20 #include <linux/aer.h>
21 #include <linux/interrupt.h>
22 #include "net_driver.h"
23 #include "efx.h"
24 #include "nic.h"
25 #include "selftest.h"
26 
27 #include "workarounds.h"
28 
29 /**************************************************************************
30  *
31  * Type name strings
32  *
33  **************************************************************************
34  */
35 
36 /* Loopback mode names (see LOOPBACK_MODE()) */
37 const unsigned int ef4_loopback_mode_max = LOOPBACK_MAX;
38 const char *const ef4_loopback_mode_names[] = {
39 	[LOOPBACK_NONE]		= "NONE",
40 	[LOOPBACK_DATA]		= "DATAPATH",
41 	[LOOPBACK_GMAC]		= "GMAC",
42 	[LOOPBACK_XGMII]	= "XGMII",
43 	[LOOPBACK_XGXS]		= "XGXS",
44 	[LOOPBACK_XAUI]		= "XAUI",
45 	[LOOPBACK_GMII]		= "GMII",
46 	[LOOPBACK_SGMII]	= "SGMII",
47 	[LOOPBACK_XGBR]		= "XGBR",
48 	[LOOPBACK_XFI]		= "XFI",
49 	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
50 	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
51 	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
52 	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
53 	[LOOPBACK_GPHY]		= "GPHY",
54 	[LOOPBACK_PHYXS]	= "PHYXS",
55 	[LOOPBACK_PCS]		= "PCS",
56 	[LOOPBACK_PMAPMD]	= "PMA/PMD",
57 	[LOOPBACK_XPORT]	= "XPORT",
58 	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
59 	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
60 	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
61 	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
62 	[LOOPBACK_GMII_WS]	= "GMII_WS",
63 	[LOOPBACK_XFI_WS]	= "XFI_WS",
64 	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
65 	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
66 };
67 
68 const unsigned int ef4_reset_type_max = RESET_TYPE_MAX;
69 const char *const ef4_reset_type_names[] = {
70 	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
71 	[RESET_TYPE_ALL]                = "ALL",
72 	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
73 	[RESET_TYPE_WORLD]              = "WORLD",
74 	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
75 	[RESET_TYPE_DATAPATH]           = "DATAPATH",
76 	[RESET_TYPE_DISABLE]            = "DISABLE",
77 	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
78 	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
79 	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
80 	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
81 	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
82 };
83 
84 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
85  * queued onto this work queue. This is not a per-nic work queue, because
86  * ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised.
87  */
88 static struct workqueue_struct *reset_workqueue;
89 
90 /* How often and how many times to poll for a reset while waiting for a
91  * BIST that another function started to complete.
92  */
93 #define BIST_WAIT_DELAY_MS	100
94 #define BIST_WAIT_DELAY_COUNT	100
95 
96 /**************************************************************************
97  *
98  * Configurable values
99  *
100  *************************************************************************/
101 
102 /*
103  * Use separate channels for TX and RX events
104  *
105  * Set this to 1 to use separate channels for TX and RX. It allows us
106  * to control interrupt affinity separately for TX and RX.
107  *
108  * This is only used in MSI-X interrupt mode
109  */
110 bool ef4_separate_tx_channels;
111 module_param(ef4_separate_tx_channels, bool, 0444);
112 MODULE_PARM_DESC(ef4_separate_tx_channels,
113 		 "Use separate channels for TX and RX");
114 
115 /* This is the weight assigned to each of the (per-channel) virtual
116  * NAPI devices.
117  */
118 static int napi_weight = 64;
119 
120 /* This is the time (in jiffies) between invocations of the hardware
121  * monitor.
122  * On Falcon-based NICs, this will:
123  * - Check the on-board hardware monitor;
124  * - Poll the link state and reconfigure the hardware as necessary.
125  * On Siena-based NICs for power systems with EEH support, this will give EEH a
126  * chance to start.
127  */
128 static unsigned int ef4_monitor_interval = 1 * HZ;
129 
130 /* Initial interrupt moderation settings.  They can be modified after
131  * module load with ethtool.
132  *
133  * The default for RX should strike a balance between increasing the
134  * round-trip latency and reducing overhead.
135  */
136 static unsigned int rx_irq_mod_usec = 60;
137 
138 /* Initial interrupt moderation settings.  They can be modified after
139  * module load with ethtool.
140  *
141  * This default is chosen to ensure that a 10G link does not go idle
142  * while a TX queue is stopped after it has become full.  A queue is
143  * restarted when it drops below half full.  The time this takes (assuming
144  * worst case 3 descriptors per packet and 1024 descriptors) is
145  *   512 / 3 * 1.2 = 205 usec.
146  */
147 static unsigned int tx_irq_mod_usec = 150;
148 
149 /* This is the first interrupt mode to try out of:
150  * 0 => MSI-X
151  * 1 => MSI
152  * 2 => legacy
153  */
154 static unsigned int interrupt_mode;
155 
156 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
157  * i.e. the number of CPUs among which we may distribute simultaneous
158  * interrupt handling.
159  *
160  * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
161  * The default (0) means to assign an interrupt to each core.
162  */
163 static unsigned int rss_cpus;
164 module_param(rss_cpus, uint, 0444);
165 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
166 
167 static bool phy_flash_cfg;
168 module_param(phy_flash_cfg, bool, 0644);
169 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
170 
171 static unsigned irq_adapt_low_thresh = 8000;
172 module_param(irq_adapt_low_thresh, uint, 0644);
173 MODULE_PARM_DESC(irq_adapt_low_thresh,
174 		 "Threshold score for reducing IRQ moderation");
175 
176 static unsigned irq_adapt_high_thresh = 16000;
177 module_param(irq_adapt_high_thresh, uint, 0644);
178 MODULE_PARM_DESC(irq_adapt_high_thresh,
179 		 "Threshold score for increasing IRQ moderation");
180 
181 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
182 			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
183 			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
184 			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
185 module_param(debug, uint, 0);
186 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
187 
188 /**************************************************************************
189  *
190  * Utility functions and prototypes
191  *
192  *************************************************************************/
193 
194 static int ef4_soft_enable_interrupts(struct ef4_nic *efx);
195 static void ef4_soft_disable_interrupts(struct ef4_nic *efx);
196 static void ef4_remove_channel(struct ef4_channel *channel);
197 static void ef4_remove_channels(struct ef4_nic *efx);
198 static const struct ef4_channel_type ef4_default_channel_type;
199 static void ef4_remove_port(struct ef4_nic *efx);
200 static void ef4_init_napi_channel(struct ef4_channel *channel);
201 static void ef4_fini_napi(struct ef4_nic *efx);
202 static void ef4_fini_napi_channel(struct ef4_channel *channel);
203 static void ef4_fini_struct(struct ef4_nic *efx);
204 static void ef4_start_all(struct ef4_nic *efx);
205 static void ef4_stop_all(struct ef4_nic *efx);
206 
207 #define EF4_ASSERT_RESET_SERIALISED(efx)		\
208 	do {						\
209 		if ((efx->state == STATE_READY) ||	\
210 		    (efx->state == STATE_RECOVERY) ||	\
211 		    (efx->state == STATE_DISABLED))	\
212 			ASSERT_RTNL();			\
213 	} while (0)
214 
215 static int ef4_check_disabled(struct ef4_nic *efx)
216 {
217 	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
218 		netif_err(efx, drv, efx->net_dev,
219 			  "device is disabled due to earlier errors\n");
220 		return -EIO;
221 	}
222 	return 0;
223 }
224 
225 /**************************************************************************
226  *
227  * Event queue processing
228  *
229  *************************************************************************/
230 
231 /* Process channel's event queue
232  *
233  * This function is responsible for processing the event queue of a
234  * single channel.  The caller must guarantee that this function will
235  * never be concurrently called more than once on the same channel,
236  * though different channels may be being processed concurrently.
237  */
238 static int ef4_process_channel(struct ef4_channel *channel, int budget)
239 {
240 	struct ef4_tx_queue *tx_queue;
241 	int spent;
242 
243 	if (unlikely(!channel->enabled))
244 		return 0;
245 
246 	ef4_for_each_channel_tx_queue(tx_queue, channel) {
247 		tx_queue->pkts_compl = 0;
248 		tx_queue->bytes_compl = 0;
249 	}
250 
251 	spent = ef4_nic_process_eventq(channel, budget);
252 	if (spent && ef4_channel_has_rx_queue(channel)) {
253 		struct ef4_rx_queue *rx_queue =
254 			ef4_channel_get_rx_queue(channel);
255 
256 		ef4_rx_flush_packet(channel);
257 		ef4_fast_push_rx_descriptors(rx_queue, true);
258 	}
259 
260 	/* Update BQL */
261 	ef4_for_each_channel_tx_queue(tx_queue, channel) {
262 		if (tx_queue->bytes_compl) {
263 			netdev_tx_completed_queue(tx_queue->core_txq,
264 				tx_queue->pkts_compl, tx_queue->bytes_compl);
265 		}
266 	}
267 
268 	return spent;
269 }
270 
271 /* NAPI poll handler
272  *
273  * NAPI guarantees serialisation of polls of the same device, which
274  * provides the guarantee required by ef4_process_channel().
275  */
276 static void ef4_update_irq_mod(struct ef4_nic *efx, struct ef4_channel *channel)
277 {
278 	int step = efx->irq_mod_step_us;
279 
280 	if (channel->irq_mod_score < irq_adapt_low_thresh) {
281 		if (channel->irq_moderation_us > step) {
282 			channel->irq_moderation_us -= step;
283 			efx->type->push_irq_moderation(channel);
284 		}
285 	} else if (channel->irq_mod_score > irq_adapt_high_thresh) {
286 		if (channel->irq_moderation_us <
287 		    efx->irq_rx_moderation_us) {
288 			channel->irq_moderation_us += step;
289 			efx->type->push_irq_moderation(channel);
290 		}
291 	}
292 
293 	channel->irq_count = 0;
294 	channel->irq_mod_score = 0;
295 }
296 
297 static int ef4_poll(struct napi_struct *napi, int budget)
298 {
299 	struct ef4_channel *channel =
300 		container_of(napi, struct ef4_channel, napi_str);
301 	struct ef4_nic *efx = channel->efx;
302 	int spent;
303 
304 	netif_vdbg(efx, intr, efx->net_dev,
305 		   "channel %d NAPI poll executing on CPU %d\n",
306 		   channel->channel, raw_smp_processor_id());
307 
308 	spent = ef4_process_channel(channel, budget);
309 
310 	if (spent < budget) {
311 		if (ef4_channel_has_rx_queue(channel) &&
312 		    efx->irq_rx_adaptive &&
313 		    unlikely(++channel->irq_count == 1000)) {
314 			ef4_update_irq_mod(efx, channel);
315 		}
316 
317 		ef4_filter_rfs_expire(channel);
318 
319 		/* There is no race here; although napi_disable() will
320 		 * only wait for napi_complete(), this isn't a problem
321 		 * since ef4_nic_eventq_read_ack() will have no effect if
322 		 * interrupts have already been disabled.
323 		 */
324 		napi_complete_done(napi, spent);
325 		ef4_nic_eventq_read_ack(channel);
326 	}
327 
328 	return spent;
329 }
330 
331 /* Create event queue
332  * Event queue memory allocations are done only once.  If the channel
333  * is reset, the memory buffer will be reused; this guards against
334  * errors during channel reset and also simplifies interrupt handling.
335  */
336 static int ef4_probe_eventq(struct ef4_channel *channel)
337 {
338 	struct ef4_nic *efx = channel->efx;
339 	unsigned long entries;
340 
341 	netif_dbg(efx, probe, efx->net_dev,
342 		  "chan %d create event queue\n", channel->channel);
343 
344 	/* Build an event queue with room for one event per tx and rx buffer,
345 	 * plus some extra for link state events and MCDI completions. */
346 	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
347 	EF4_BUG_ON_PARANOID(entries > EF4_MAX_EVQ_SIZE);
348 	channel->eventq_mask = max(entries, EF4_MIN_EVQ_SIZE) - 1;
349 
350 	return ef4_nic_probe_eventq(channel);
351 }
352 
353 /* Prepare channel's event queue */
354 static int ef4_init_eventq(struct ef4_channel *channel)
355 {
356 	struct ef4_nic *efx = channel->efx;
357 	int rc;
358 
359 	EF4_WARN_ON_PARANOID(channel->eventq_init);
360 
361 	netif_dbg(efx, drv, efx->net_dev,
362 		  "chan %d init event queue\n", channel->channel);
363 
364 	rc = ef4_nic_init_eventq(channel);
365 	if (rc == 0) {
366 		efx->type->push_irq_moderation(channel);
367 		channel->eventq_read_ptr = 0;
368 		channel->eventq_init = true;
369 	}
370 	return rc;
371 }
372 
373 /* Enable event queue processing and NAPI */
374 void ef4_start_eventq(struct ef4_channel *channel)
375 {
376 	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
377 		  "chan %d start event queue\n", channel->channel);
378 
379 	/* Make sure the NAPI handler sees the enabled flag set */
380 	channel->enabled = true;
381 	smp_wmb();
382 
383 	napi_enable(&channel->napi_str);
384 	ef4_nic_eventq_read_ack(channel);
385 }
386 
387 /* Disable event queue processing and NAPI */
388 void ef4_stop_eventq(struct ef4_channel *channel)
389 {
390 	if (!channel->enabled)
391 		return;
392 
393 	napi_disable(&channel->napi_str);
394 	channel->enabled = false;
395 }
396 
397 static void ef4_fini_eventq(struct ef4_channel *channel)
398 {
399 	if (!channel->eventq_init)
400 		return;
401 
402 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
403 		  "chan %d fini event queue\n", channel->channel);
404 
405 	ef4_nic_fini_eventq(channel);
406 	channel->eventq_init = false;
407 }
408 
409 static void ef4_remove_eventq(struct ef4_channel *channel)
410 {
411 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
412 		  "chan %d remove event queue\n", channel->channel);
413 
414 	ef4_nic_remove_eventq(channel);
415 }
416 
417 /**************************************************************************
418  *
419  * Channel handling
420  *
421  *************************************************************************/
422 
423 /* Allocate and initialise a channel structure. */
424 static struct ef4_channel *
425 ef4_alloc_channel(struct ef4_nic *efx, int i, struct ef4_channel *old_channel)
426 {
427 	struct ef4_channel *channel;
428 	struct ef4_rx_queue *rx_queue;
429 	struct ef4_tx_queue *tx_queue;
430 	int j;
431 
432 	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
433 	if (!channel)
434 		return NULL;
435 
436 	channel->efx = efx;
437 	channel->channel = i;
438 	channel->type = &ef4_default_channel_type;
439 
440 	for (j = 0; j < EF4_TXQ_TYPES; j++) {
441 		tx_queue = &channel->tx_queue[j];
442 		tx_queue->efx = efx;
443 		tx_queue->queue = i * EF4_TXQ_TYPES + j;
444 		tx_queue->channel = channel;
445 	}
446 
447 	rx_queue = &channel->rx_queue;
448 	rx_queue->efx = efx;
449 	timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
450 
451 	return channel;
452 }
453 
454 /* Allocate and initialise a channel structure, copying parameters
455  * (but not resources) from an old channel structure.
456  */
457 static struct ef4_channel *
458 ef4_copy_channel(const struct ef4_channel *old_channel)
459 {
460 	struct ef4_channel *channel;
461 	struct ef4_rx_queue *rx_queue;
462 	struct ef4_tx_queue *tx_queue;
463 	int j;
464 
465 	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
466 	if (!channel)
467 		return NULL;
468 
469 	*channel = *old_channel;
470 
471 	channel->napi_dev = NULL;
472 	INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
473 	channel->napi_str.napi_id = 0;
474 	channel->napi_str.state = 0;
475 	memset(&channel->eventq, 0, sizeof(channel->eventq));
476 
477 	for (j = 0; j < EF4_TXQ_TYPES; j++) {
478 		tx_queue = &channel->tx_queue[j];
479 		if (tx_queue->channel)
480 			tx_queue->channel = channel;
481 		tx_queue->buffer = NULL;
482 		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
483 	}
484 
485 	rx_queue = &channel->rx_queue;
486 	rx_queue->buffer = NULL;
487 	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
488 	timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
489 
490 	return channel;
491 }
492 
493 static int ef4_probe_channel(struct ef4_channel *channel)
494 {
495 	struct ef4_tx_queue *tx_queue;
496 	struct ef4_rx_queue *rx_queue;
497 	int rc;
498 
499 	netif_dbg(channel->efx, probe, channel->efx->net_dev,
500 		  "creating channel %d\n", channel->channel);
501 
502 	rc = channel->type->pre_probe(channel);
503 	if (rc)
504 		goto fail;
505 
506 	rc = ef4_probe_eventq(channel);
507 	if (rc)
508 		goto fail;
509 
510 	ef4_for_each_channel_tx_queue(tx_queue, channel) {
511 		rc = ef4_probe_tx_queue(tx_queue);
512 		if (rc)
513 			goto fail;
514 	}
515 
516 	ef4_for_each_channel_rx_queue(rx_queue, channel) {
517 		rc = ef4_probe_rx_queue(rx_queue);
518 		if (rc)
519 			goto fail;
520 	}
521 
522 	return 0;
523 
524 fail:
525 	ef4_remove_channel(channel);
526 	return rc;
527 }
528 
529 static void
530 ef4_get_channel_name(struct ef4_channel *channel, char *buf, size_t len)
531 {
532 	struct ef4_nic *efx = channel->efx;
533 	const char *type;
534 	int number;
535 
536 	number = channel->channel;
537 	if (efx->tx_channel_offset == 0) {
538 		type = "";
539 	} else if (channel->channel < efx->tx_channel_offset) {
540 		type = "-rx";
541 	} else {
542 		type = "-tx";
543 		number -= efx->tx_channel_offset;
544 	}
545 	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
546 }
547 
548 static void ef4_set_channel_names(struct ef4_nic *efx)
549 {
550 	struct ef4_channel *channel;
551 
552 	ef4_for_each_channel(channel, efx)
553 		channel->type->get_name(channel,
554 					efx->msi_context[channel->channel].name,
555 					sizeof(efx->msi_context[0].name));
556 }
557 
558 static int ef4_probe_channels(struct ef4_nic *efx)
559 {
560 	struct ef4_channel *channel;
561 	int rc;
562 
563 	/* Restart special buffer allocation */
564 	efx->next_buffer_table = 0;
565 
566 	/* Probe channels in reverse, so that any 'extra' channels
567 	 * use the start of the buffer table. This allows the traffic
568 	 * channels to be resized without moving them or wasting the
569 	 * entries before them.
570 	 */
571 	ef4_for_each_channel_rev(channel, efx) {
572 		rc = ef4_probe_channel(channel);
573 		if (rc) {
574 			netif_err(efx, probe, efx->net_dev,
575 				  "failed to create channel %d\n",
576 				  channel->channel);
577 			goto fail;
578 		}
579 	}
580 	ef4_set_channel_names(efx);
581 
582 	return 0;
583 
584 fail:
585 	ef4_remove_channels(efx);
586 	return rc;
587 }
588 
589 /* Channels are shutdown and reinitialised whilst the NIC is running
590  * to propagate configuration changes (mtu, checksum offload), or
591  * to clear hardware error conditions
592  */
593 static void ef4_start_datapath(struct ef4_nic *efx)
594 {
595 	netdev_features_t old_features = efx->net_dev->features;
596 	bool old_rx_scatter = efx->rx_scatter;
597 	struct ef4_tx_queue *tx_queue;
598 	struct ef4_rx_queue *rx_queue;
599 	struct ef4_channel *channel;
600 	size_t rx_buf_len;
601 
602 	/* Calculate the rx buffer allocation parameters required to
603 	 * support the current MTU, including padding for header
604 	 * alignment and overruns.
605 	 */
606 	efx->rx_dma_len = (efx->rx_prefix_size +
607 			   EF4_MAX_FRAME_LEN(efx->net_dev->mtu) +
608 			   efx->type->rx_buffer_padding);
609 	rx_buf_len = (sizeof(struct ef4_rx_page_state) +
610 		      efx->rx_ip_align + efx->rx_dma_len);
611 	if (rx_buf_len <= PAGE_SIZE) {
612 		efx->rx_scatter = efx->type->always_rx_scatter;
613 		efx->rx_buffer_order = 0;
614 	} else if (efx->type->can_rx_scatter) {
615 		BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
616 		BUILD_BUG_ON(sizeof(struct ef4_rx_page_state) +
617 			     2 * ALIGN(NET_IP_ALIGN + EF4_RX_USR_BUF_SIZE,
618 				       EF4_RX_BUF_ALIGNMENT) >
619 			     PAGE_SIZE);
620 		efx->rx_scatter = true;
621 		efx->rx_dma_len = EF4_RX_USR_BUF_SIZE;
622 		efx->rx_buffer_order = 0;
623 	} else {
624 		efx->rx_scatter = false;
625 		efx->rx_buffer_order = get_order(rx_buf_len);
626 	}
627 
628 	ef4_rx_config_page_split(efx);
629 	if (efx->rx_buffer_order)
630 		netif_dbg(efx, drv, efx->net_dev,
631 			  "RX buf len=%u; page order=%u batch=%u\n",
632 			  efx->rx_dma_len, efx->rx_buffer_order,
633 			  efx->rx_pages_per_batch);
634 	else
635 		netif_dbg(efx, drv, efx->net_dev,
636 			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
637 			  efx->rx_dma_len, efx->rx_page_buf_step,
638 			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
639 
640 	/* Restore previously fixed features in hw_features and remove
641 	 * features which are fixed now
642 	 */
643 	efx->net_dev->hw_features |= efx->net_dev->features;
644 	efx->net_dev->hw_features &= ~efx->fixed_features;
645 	efx->net_dev->features |= efx->fixed_features;
646 	if (efx->net_dev->features != old_features)
647 		netdev_features_change(efx->net_dev);
648 
649 	/* RX filters may also have scatter-enabled flags */
650 	if (efx->rx_scatter != old_rx_scatter)
651 		efx->type->filter_update_rx_scatter(efx);
652 
653 	/* We must keep at least one descriptor in a TX ring empty.
654 	 * We could avoid this when the queue size does not exactly
655 	 * match the hardware ring size, but it's not that important.
656 	 * Therefore we stop the queue when one more skb might fill
657 	 * the ring completely.  We wake it when half way back to
658 	 * empty.
659 	 */
660 	efx->txq_stop_thresh = efx->txq_entries - ef4_tx_max_skb_descs(efx);
661 	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
662 
663 	/* Initialise the channels */
664 	ef4_for_each_channel(channel, efx) {
665 		ef4_for_each_channel_tx_queue(tx_queue, channel) {
666 			ef4_init_tx_queue(tx_queue);
667 			atomic_inc(&efx->active_queues);
668 		}
669 
670 		ef4_for_each_channel_rx_queue(rx_queue, channel) {
671 			ef4_init_rx_queue(rx_queue);
672 			atomic_inc(&efx->active_queues);
673 			ef4_stop_eventq(channel);
674 			ef4_fast_push_rx_descriptors(rx_queue, false);
675 			ef4_start_eventq(channel);
676 		}
677 
678 		WARN_ON(channel->rx_pkt_n_frags);
679 	}
680 
681 	if (netif_device_present(efx->net_dev))
682 		netif_tx_wake_all_queues(efx->net_dev);
683 }
684 
685 static void ef4_stop_datapath(struct ef4_nic *efx)
686 {
687 	struct ef4_channel *channel;
688 	struct ef4_tx_queue *tx_queue;
689 	struct ef4_rx_queue *rx_queue;
690 	int rc;
691 
692 	EF4_ASSERT_RESET_SERIALISED(efx);
693 	BUG_ON(efx->port_enabled);
694 
695 	/* Stop RX refill */
696 	ef4_for_each_channel(channel, efx) {
697 		ef4_for_each_channel_rx_queue(rx_queue, channel)
698 			rx_queue->refill_enabled = false;
699 	}
700 
701 	ef4_for_each_channel(channel, efx) {
702 		/* RX packet processing is pipelined, so wait for the
703 		 * NAPI handler to complete.  At least event queue 0
704 		 * might be kept active by non-data events, so don't
705 		 * use napi_synchronize() but actually disable NAPI
706 		 * temporarily.
707 		 */
708 		if (ef4_channel_has_rx_queue(channel)) {
709 			ef4_stop_eventq(channel);
710 			ef4_start_eventq(channel);
711 		}
712 	}
713 
714 	rc = efx->type->fini_dmaq(efx);
715 	if (rc && EF4_WORKAROUND_7803(efx)) {
716 		/* Schedule a reset to recover from the flush failure. The
717 		 * descriptor caches reference memory we're about to free,
718 		 * but falcon_reconfigure_mac_wrapper() won't reconnect
719 		 * the MACs because of the pending reset.
720 		 */
721 		netif_err(efx, drv, efx->net_dev,
722 			  "Resetting to recover from flush failure\n");
723 		ef4_schedule_reset(efx, RESET_TYPE_ALL);
724 	} else if (rc) {
725 		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
726 	} else {
727 		netif_dbg(efx, drv, efx->net_dev,
728 			  "successfully flushed all queues\n");
729 	}
730 
731 	ef4_for_each_channel(channel, efx) {
732 		ef4_for_each_channel_rx_queue(rx_queue, channel)
733 			ef4_fini_rx_queue(rx_queue);
734 		ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
735 			ef4_fini_tx_queue(tx_queue);
736 	}
737 }
738 
739 static void ef4_remove_channel(struct ef4_channel *channel)
740 {
741 	struct ef4_tx_queue *tx_queue;
742 	struct ef4_rx_queue *rx_queue;
743 
744 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
745 		  "destroy chan %d\n", channel->channel);
746 
747 	ef4_for_each_channel_rx_queue(rx_queue, channel)
748 		ef4_remove_rx_queue(rx_queue);
749 	ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
750 		ef4_remove_tx_queue(tx_queue);
751 	ef4_remove_eventq(channel);
752 	channel->type->post_remove(channel);
753 }
754 
755 static void ef4_remove_channels(struct ef4_nic *efx)
756 {
757 	struct ef4_channel *channel;
758 
759 	ef4_for_each_channel(channel, efx)
760 		ef4_remove_channel(channel);
761 }
762 
763 int
764 ef4_realloc_channels(struct ef4_nic *efx, u32 rxq_entries, u32 txq_entries)
765 {
766 	struct ef4_channel *other_channel[EF4_MAX_CHANNELS], *channel;
767 	u32 old_rxq_entries, old_txq_entries;
768 	unsigned i, next_buffer_table = 0;
769 	int rc, rc2;
770 
771 	rc = ef4_check_disabled(efx);
772 	if (rc)
773 		return rc;
774 
775 	/* Not all channels should be reallocated. We must avoid
776 	 * reallocating their buffer table entries.
777 	 */
778 	ef4_for_each_channel(channel, efx) {
779 		struct ef4_rx_queue *rx_queue;
780 		struct ef4_tx_queue *tx_queue;
781 
782 		if (channel->type->copy)
783 			continue;
784 		next_buffer_table = max(next_buffer_table,
785 					channel->eventq.index +
786 					channel->eventq.entries);
787 		ef4_for_each_channel_rx_queue(rx_queue, channel)
788 			next_buffer_table = max(next_buffer_table,
789 						rx_queue->rxd.index +
790 						rx_queue->rxd.entries);
791 		ef4_for_each_channel_tx_queue(tx_queue, channel)
792 			next_buffer_table = max(next_buffer_table,
793 						tx_queue->txd.index +
794 						tx_queue->txd.entries);
795 	}
796 
797 	ef4_device_detach_sync(efx);
798 	ef4_stop_all(efx);
799 	ef4_soft_disable_interrupts(efx);
800 
801 	/* Clone channels (where possible) */
802 	memset(other_channel, 0, sizeof(other_channel));
803 	for (i = 0; i < efx->n_channels; i++) {
804 		channel = efx->channel[i];
805 		if (channel->type->copy)
806 			channel = channel->type->copy(channel);
807 		if (!channel) {
808 			rc = -ENOMEM;
809 			goto out;
810 		}
811 		other_channel[i] = channel;
812 	}
813 
814 	/* Swap entry counts and channel pointers */
815 	old_rxq_entries = efx->rxq_entries;
816 	old_txq_entries = efx->txq_entries;
817 	efx->rxq_entries = rxq_entries;
818 	efx->txq_entries = txq_entries;
819 	for (i = 0; i < efx->n_channels; i++) {
820 		channel = efx->channel[i];
821 		efx->channel[i] = other_channel[i];
822 		other_channel[i] = channel;
823 	}
824 
825 	/* Restart buffer table allocation */
826 	efx->next_buffer_table = next_buffer_table;
827 
828 	for (i = 0; i < efx->n_channels; i++) {
829 		channel = efx->channel[i];
830 		if (!channel->type->copy)
831 			continue;
832 		rc = ef4_probe_channel(channel);
833 		if (rc)
834 			goto rollback;
835 		ef4_init_napi_channel(efx->channel[i]);
836 	}
837 
838 out:
839 	/* Destroy unused channel structures */
840 	for (i = 0; i < efx->n_channels; i++) {
841 		channel = other_channel[i];
842 		if (channel && channel->type->copy) {
843 			ef4_fini_napi_channel(channel);
844 			ef4_remove_channel(channel);
845 			kfree(channel);
846 		}
847 	}
848 
849 	rc2 = ef4_soft_enable_interrupts(efx);
850 	if (rc2) {
851 		rc = rc ? rc : rc2;
852 		netif_err(efx, drv, efx->net_dev,
853 			  "unable to restart interrupts on channel reallocation\n");
854 		ef4_schedule_reset(efx, RESET_TYPE_DISABLE);
855 	} else {
856 		ef4_start_all(efx);
857 		netif_device_attach(efx->net_dev);
858 	}
859 	return rc;
860 
861 rollback:
862 	/* Swap back */
863 	efx->rxq_entries = old_rxq_entries;
864 	efx->txq_entries = old_txq_entries;
865 	for (i = 0; i < efx->n_channels; i++) {
866 		channel = efx->channel[i];
867 		efx->channel[i] = other_channel[i];
868 		other_channel[i] = channel;
869 	}
870 	goto out;
871 }
872 
873 void ef4_schedule_slow_fill(struct ef4_rx_queue *rx_queue)
874 {
875 	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
876 }
877 
878 static const struct ef4_channel_type ef4_default_channel_type = {
879 	.pre_probe		= ef4_channel_dummy_op_int,
880 	.post_remove		= ef4_channel_dummy_op_void,
881 	.get_name		= ef4_get_channel_name,
882 	.copy			= ef4_copy_channel,
883 	.keep_eventq		= false,
884 };
885 
886 int ef4_channel_dummy_op_int(struct ef4_channel *channel)
887 {
888 	return 0;
889 }
890 
891 void ef4_channel_dummy_op_void(struct ef4_channel *channel)
892 {
893 }
894 
895 /**************************************************************************
896  *
897  * Port handling
898  *
899  **************************************************************************/
900 
901 /* This ensures that the kernel is kept informed (via
902  * netif_carrier_on/off) of the link status, and also maintains the
903  * link status's stop on the port's TX queue.
904  */
905 void ef4_link_status_changed(struct ef4_nic *efx)
906 {
907 	struct ef4_link_state *link_state = &efx->link_state;
908 
909 	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
910 	 * that no events are triggered between unregister_netdev() and the
911 	 * driver unloading. A more general condition is that NETDEV_CHANGE
912 	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
913 	if (!netif_running(efx->net_dev))
914 		return;
915 
916 	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
917 		efx->n_link_state_changes++;
918 
919 		if (link_state->up)
920 			netif_carrier_on(efx->net_dev);
921 		else
922 			netif_carrier_off(efx->net_dev);
923 	}
924 
925 	/* Status message for kernel log */
926 	if (link_state->up)
927 		netif_info(efx, link, efx->net_dev,
928 			   "link up at %uMbps %s-duplex (MTU %d)\n",
929 			   link_state->speed, link_state->fd ? "full" : "half",
930 			   efx->net_dev->mtu);
931 	else
932 		netif_info(efx, link, efx->net_dev, "link down\n");
933 }
934 
935 void ef4_link_set_advertising(struct ef4_nic *efx, u32 advertising)
936 {
937 	efx->link_advertising = advertising;
938 	if (advertising) {
939 		if (advertising & ADVERTISED_Pause)
940 			efx->wanted_fc |= (EF4_FC_TX | EF4_FC_RX);
941 		else
942 			efx->wanted_fc &= ~(EF4_FC_TX | EF4_FC_RX);
943 		if (advertising & ADVERTISED_Asym_Pause)
944 			efx->wanted_fc ^= EF4_FC_TX;
945 	}
946 }
947 
948 void ef4_link_set_wanted_fc(struct ef4_nic *efx, u8 wanted_fc)
949 {
950 	efx->wanted_fc = wanted_fc;
951 	if (efx->link_advertising) {
952 		if (wanted_fc & EF4_FC_RX)
953 			efx->link_advertising |= (ADVERTISED_Pause |
954 						  ADVERTISED_Asym_Pause);
955 		else
956 			efx->link_advertising &= ~(ADVERTISED_Pause |
957 						   ADVERTISED_Asym_Pause);
958 		if (wanted_fc & EF4_FC_TX)
959 			efx->link_advertising ^= ADVERTISED_Asym_Pause;
960 	}
961 }
962 
963 static void ef4_fini_port(struct ef4_nic *efx);
964 
965 /* We assume that efx->type->reconfigure_mac will always try to sync RX
966  * filters and therefore needs to read-lock the filter table against freeing
967  */
968 void ef4_mac_reconfigure(struct ef4_nic *efx)
969 {
970 	down_read(&efx->filter_sem);
971 	efx->type->reconfigure_mac(efx);
972 	up_read(&efx->filter_sem);
973 }
974 
975 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
976  * the MAC appropriately. All other PHY configuration changes are pushed
977  * through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC
978  * through ef4_monitor().
979  *
980  * Callers must hold the mac_lock
981  */
982 int __ef4_reconfigure_port(struct ef4_nic *efx)
983 {
984 	enum ef4_phy_mode phy_mode;
985 	int rc;
986 
987 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
988 
989 	/* Disable PHY transmit in mac level loopbacks */
990 	phy_mode = efx->phy_mode;
991 	if (LOOPBACK_INTERNAL(efx))
992 		efx->phy_mode |= PHY_MODE_TX_DISABLED;
993 	else
994 		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
995 
996 	rc = efx->type->reconfigure_port(efx);
997 
998 	if (rc)
999 		efx->phy_mode = phy_mode;
1000 
1001 	return rc;
1002 }
1003 
1004 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
1005  * disabled. */
1006 int ef4_reconfigure_port(struct ef4_nic *efx)
1007 {
1008 	int rc;
1009 
1010 	EF4_ASSERT_RESET_SERIALISED(efx);
1011 
1012 	mutex_lock(&efx->mac_lock);
1013 	rc = __ef4_reconfigure_port(efx);
1014 	mutex_unlock(&efx->mac_lock);
1015 
1016 	return rc;
1017 }
1018 
1019 /* Asynchronous work item for changing MAC promiscuity and multicast
1020  * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
1021  * MAC directly. */
1022 static void ef4_mac_work(struct work_struct *data)
1023 {
1024 	struct ef4_nic *efx = container_of(data, struct ef4_nic, mac_work);
1025 
1026 	mutex_lock(&efx->mac_lock);
1027 	if (efx->port_enabled)
1028 		ef4_mac_reconfigure(efx);
1029 	mutex_unlock(&efx->mac_lock);
1030 }
1031 
1032 static int ef4_probe_port(struct ef4_nic *efx)
1033 {
1034 	int rc;
1035 
1036 	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1037 
1038 	if (phy_flash_cfg)
1039 		efx->phy_mode = PHY_MODE_SPECIAL;
1040 
1041 	/* Connect up MAC/PHY operations table */
1042 	rc = efx->type->probe_port(efx);
1043 	if (rc)
1044 		return rc;
1045 
1046 	/* Initialise MAC address to permanent address */
1047 	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1048 
1049 	return 0;
1050 }
1051 
1052 static int ef4_init_port(struct ef4_nic *efx)
1053 {
1054 	int rc;
1055 
1056 	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1057 
1058 	mutex_lock(&efx->mac_lock);
1059 
1060 	rc = efx->phy_op->init(efx);
1061 	if (rc)
1062 		goto fail1;
1063 
1064 	efx->port_initialized = true;
1065 
1066 	/* Reconfigure the MAC before creating dma queues (required for
1067 	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1068 	ef4_mac_reconfigure(efx);
1069 
1070 	/* Ensure the PHY advertises the correct flow control settings */
1071 	rc = efx->phy_op->reconfigure(efx);
1072 	if (rc && rc != -EPERM)
1073 		goto fail2;
1074 
1075 	mutex_unlock(&efx->mac_lock);
1076 	return 0;
1077 
1078 fail2:
1079 	efx->phy_op->fini(efx);
1080 fail1:
1081 	mutex_unlock(&efx->mac_lock);
1082 	return rc;
1083 }
1084 
1085 static void ef4_start_port(struct ef4_nic *efx)
1086 {
1087 	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1088 	BUG_ON(efx->port_enabled);
1089 
1090 	mutex_lock(&efx->mac_lock);
1091 	efx->port_enabled = true;
1092 
1093 	/* Ensure MAC ingress/egress is enabled */
1094 	ef4_mac_reconfigure(efx);
1095 
1096 	mutex_unlock(&efx->mac_lock);
1097 }
1098 
1099 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1100  * and the async self-test, wait for them to finish and prevent them
1101  * being scheduled again.  This doesn't cover online resets, which
1102  * should only be cancelled when removing the device.
1103  */
1104 static void ef4_stop_port(struct ef4_nic *efx)
1105 {
1106 	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1107 
1108 	EF4_ASSERT_RESET_SERIALISED(efx);
1109 
1110 	mutex_lock(&efx->mac_lock);
1111 	efx->port_enabled = false;
1112 	mutex_unlock(&efx->mac_lock);
1113 
1114 	/* Serialise against ef4_set_multicast_list() */
1115 	netif_addr_lock_bh(efx->net_dev);
1116 	netif_addr_unlock_bh(efx->net_dev);
1117 
1118 	cancel_delayed_work_sync(&efx->monitor_work);
1119 	ef4_selftest_async_cancel(efx);
1120 	cancel_work_sync(&efx->mac_work);
1121 }
1122 
1123 static void ef4_fini_port(struct ef4_nic *efx)
1124 {
1125 	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1126 
1127 	if (!efx->port_initialized)
1128 		return;
1129 
1130 	efx->phy_op->fini(efx);
1131 	efx->port_initialized = false;
1132 
1133 	efx->link_state.up = false;
1134 	ef4_link_status_changed(efx);
1135 }
1136 
1137 static void ef4_remove_port(struct ef4_nic *efx)
1138 {
1139 	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1140 
1141 	efx->type->remove_port(efx);
1142 }
1143 
1144 /**************************************************************************
1145  *
1146  * NIC handling
1147  *
1148  **************************************************************************/
1149 
1150 static LIST_HEAD(ef4_primary_list);
1151 static LIST_HEAD(ef4_unassociated_list);
1152 
1153 static bool ef4_same_controller(struct ef4_nic *left, struct ef4_nic *right)
1154 {
1155 	return left->type == right->type &&
1156 		left->vpd_sn && right->vpd_sn &&
1157 		!strcmp(left->vpd_sn, right->vpd_sn);
1158 }
1159 
1160 static void ef4_associate(struct ef4_nic *efx)
1161 {
1162 	struct ef4_nic *other, *next;
1163 
1164 	if (efx->primary == efx) {
1165 		/* Adding primary function; look for secondaries */
1166 
1167 		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1168 		list_add_tail(&efx->node, &ef4_primary_list);
1169 
1170 		list_for_each_entry_safe(other, next, &ef4_unassociated_list,
1171 					 node) {
1172 			if (ef4_same_controller(efx, other)) {
1173 				list_del(&other->node);
1174 				netif_dbg(other, probe, other->net_dev,
1175 					  "moving to secondary list of %s %s\n",
1176 					  pci_name(efx->pci_dev),
1177 					  efx->net_dev->name);
1178 				list_add_tail(&other->node,
1179 					      &efx->secondary_list);
1180 				other->primary = efx;
1181 			}
1182 		}
1183 	} else {
1184 		/* Adding secondary function; look for primary */
1185 
1186 		list_for_each_entry(other, &ef4_primary_list, node) {
1187 			if (ef4_same_controller(efx, other)) {
1188 				netif_dbg(efx, probe, efx->net_dev,
1189 					  "adding to secondary list of %s %s\n",
1190 					  pci_name(other->pci_dev),
1191 					  other->net_dev->name);
1192 				list_add_tail(&efx->node,
1193 					      &other->secondary_list);
1194 				efx->primary = other;
1195 				return;
1196 			}
1197 		}
1198 
1199 		netif_dbg(efx, probe, efx->net_dev,
1200 			  "adding to unassociated list\n");
1201 		list_add_tail(&efx->node, &ef4_unassociated_list);
1202 	}
1203 }
1204 
1205 static void ef4_dissociate(struct ef4_nic *efx)
1206 {
1207 	struct ef4_nic *other, *next;
1208 
1209 	list_del(&efx->node);
1210 	efx->primary = NULL;
1211 
1212 	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1213 		list_del(&other->node);
1214 		netif_dbg(other, probe, other->net_dev,
1215 			  "moving to unassociated list\n");
1216 		list_add_tail(&other->node, &ef4_unassociated_list);
1217 		other->primary = NULL;
1218 	}
1219 }
1220 
1221 /* This configures the PCI device to enable I/O and DMA. */
1222 static int ef4_init_io(struct ef4_nic *efx)
1223 {
1224 	struct pci_dev *pci_dev = efx->pci_dev;
1225 	dma_addr_t dma_mask = efx->type->max_dma_mask;
1226 	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1227 	int rc, bar;
1228 
1229 	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1230 
1231 	bar = efx->type->mem_bar;
1232 
1233 	rc = pci_enable_device(pci_dev);
1234 	if (rc) {
1235 		netif_err(efx, probe, efx->net_dev,
1236 			  "failed to enable PCI device\n");
1237 		goto fail1;
1238 	}
1239 
1240 	pci_set_master(pci_dev);
1241 
1242 	/* Set the PCI DMA mask.  Try all possibilities from our genuine mask
1243 	 * down to 32 bits, because some architectures will allow 40 bit
1244 	 * masks event though they reject 46 bit masks.
1245 	 */
1246 	while (dma_mask > 0x7fffffffUL) {
1247 		rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1248 		if (rc == 0)
1249 			break;
1250 		dma_mask >>= 1;
1251 	}
1252 	if (rc) {
1253 		netif_err(efx, probe, efx->net_dev,
1254 			  "could not find a suitable DMA mask\n");
1255 		goto fail2;
1256 	}
1257 	netif_dbg(efx, probe, efx->net_dev,
1258 		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1259 
1260 	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1261 	rc = pci_request_region(pci_dev, bar, "sfc");
1262 	if (rc) {
1263 		netif_err(efx, probe, efx->net_dev,
1264 			  "request for memory BAR failed\n");
1265 		rc = -EIO;
1266 		goto fail3;
1267 	}
1268 	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1269 	if (!efx->membase) {
1270 		netif_err(efx, probe, efx->net_dev,
1271 			  "could not map memory BAR at %llx+%x\n",
1272 			  (unsigned long long)efx->membase_phys, mem_map_size);
1273 		rc = -ENOMEM;
1274 		goto fail4;
1275 	}
1276 	netif_dbg(efx, probe, efx->net_dev,
1277 		  "memory BAR at %llx+%x (virtual %p)\n",
1278 		  (unsigned long long)efx->membase_phys, mem_map_size,
1279 		  efx->membase);
1280 
1281 	return 0;
1282 
1283  fail4:
1284 	pci_release_region(efx->pci_dev, bar);
1285  fail3:
1286 	efx->membase_phys = 0;
1287  fail2:
1288 	pci_disable_device(efx->pci_dev);
1289  fail1:
1290 	return rc;
1291 }
1292 
1293 static void ef4_fini_io(struct ef4_nic *efx)
1294 {
1295 	int bar;
1296 
1297 	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1298 
1299 	if (efx->membase) {
1300 		iounmap(efx->membase);
1301 		efx->membase = NULL;
1302 	}
1303 
1304 	if (efx->membase_phys) {
1305 		bar = efx->type->mem_bar;
1306 		pci_release_region(efx->pci_dev, bar);
1307 		efx->membase_phys = 0;
1308 	}
1309 
1310 	/* Don't disable bus-mastering if VFs are assigned */
1311 	if (!pci_vfs_assigned(efx->pci_dev))
1312 		pci_disable_device(efx->pci_dev);
1313 }
1314 
1315 void ef4_set_default_rx_indir_table(struct ef4_nic *efx)
1316 {
1317 	size_t i;
1318 
1319 	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1320 		efx->rx_indir_table[i] =
1321 			ethtool_rxfh_indir_default(i, efx->rss_spread);
1322 }
1323 
1324 static unsigned int ef4_wanted_parallelism(struct ef4_nic *efx)
1325 {
1326 	cpumask_var_t thread_mask;
1327 	unsigned int count;
1328 	int cpu;
1329 
1330 	if (rss_cpus) {
1331 		count = rss_cpus;
1332 	} else {
1333 		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1334 			netif_warn(efx, probe, efx->net_dev,
1335 				   "RSS disabled due to allocation failure\n");
1336 			return 1;
1337 		}
1338 
1339 		count = 0;
1340 		for_each_online_cpu(cpu) {
1341 			if (!cpumask_test_cpu(cpu, thread_mask)) {
1342 				++count;
1343 				cpumask_or(thread_mask, thread_mask,
1344 					   topology_sibling_cpumask(cpu));
1345 			}
1346 		}
1347 
1348 		free_cpumask_var(thread_mask);
1349 	}
1350 
1351 	if (count > EF4_MAX_RX_QUEUES) {
1352 		netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn,
1353 			       "Reducing number of rx queues from %u to %u.\n",
1354 			       count, EF4_MAX_RX_QUEUES);
1355 		count = EF4_MAX_RX_QUEUES;
1356 	}
1357 
1358 	return count;
1359 }
1360 
1361 /* Probe the number and type of interrupts we are able to obtain, and
1362  * the resulting numbers of channels and RX queues.
1363  */
1364 static int ef4_probe_interrupts(struct ef4_nic *efx)
1365 {
1366 	unsigned int extra_channels = 0;
1367 	unsigned int i, j;
1368 	int rc;
1369 
1370 	for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++)
1371 		if (efx->extra_channel_type[i])
1372 			++extra_channels;
1373 
1374 	if (efx->interrupt_mode == EF4_INT_MODE_MSIX) {
1375 		struct msix_entry xentries[EF4_MAX_CHANNELS];
1376 		unsigned int n_channels;
1377 
1378 		n_channels = ef4_wanted_parallelism(efx);
1379 		if (ef4_separate_tx_channels)
1380 			n_channels *= 2;
1381 		n_channels += extra_channels;
1382 		n_channels = min(n_channels, efx->max_channels);
1383 
1384 		for (i = 0; i < n_channels; i++)
1385 			xentries[i].entry = i;
1386 		rc = pci_enable_msix_range(efx->pci_dev,
1387 					   xentries, 1, n_channels);
1388 		if (rc < 0) {
1389 			/* Fall back to single channel MSI */
1390 			efx->interrupt_mode = EF4_INT_MODE_MSI;
1391 			netif_err(efx, drv, efx->net_dev,
1392 				  "could not enable MSI-X\n");
1393 		} else if (rc < n_channels) {
1394 			netif_err(efx, drv, efx->net_dev,
1395 				  "WARNING: Insufficient MSI-X vectors"
1396 				  " available (%d < %u).\n", rc, n_channels);
1397 			netif_err(efx, drv, efx->net_dev,
1398 				  "WARNING: Performance may be reduced.\n");
1399 			n_channels = rc;
1400 		}
1401 
1402 		if (rc > 0) {
1403 			efx->n_channels = n_channels;
1404 			if (n_channels > extra_channels)
1405 				n_channels -= extra_channels;
1406 			if (ef4_separate_tx_channels) {
1407 				efx->n_tx_channels = min(max(n_channels / 2,
1408 							     1U),
1409 							 efx->max_tx_channels);
1410 				efx->n_rx_channels = max(n_channels -
1411 							 efx->n_tx_channels,
1412 							 1U);
1413 			} else {
1414 				efx->n_tx_channels = min(n_channels,
1415 							 efx->max_tx_channels);
1416 				efx->n_rx_channels = n_channels;
1417 			}
1418 			for (i = 0; i < efx->n_channels; i++)
1419 				ef4_get_channel(efx, i)->irq =
1420 					xentries[i].vector;
1421 		}
1422 	}
1423 
1424 	/* Try single interrupt MSI */
1425 	if (efx->interrupt_mode == EF4_INT_MODE_MSI) {
1426 		efx->n_channels = 1;
1427 		efx->n_rx_channels = 1;
1428 		efx->n_tx_channels = 1;
1429 		rc = pci_enable_msi(efx->pci_dev);
1430 		if (rc == 0) {
1431 			ef4_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1432 		} else {
1433 			netif_err(efx, drv, efx->net_dev,
1434 				  "could not enable MSI\n");
1435 			efx->interrupt_mode = EF4_INT_MODE_LEGACY;
1436 		}
1437 	}
1438 
1439 	/* Assume legacy interrupts */
1440 	if (efx->interrupt_mode == EF4_INT_MODE_LEGACY) {
1441 		efx->n_channels = 1 + (ef4_separate_tx_channels ? 1 : 0);
1442 		efx->n_rx_channels = 1;
1443 		efx->n_tx_channels = 1;
1444 		efx->legacy_irq = efx->pci_dev->irq;
1445 	}
1446 
1447 	/* Assign extra channels if possible */
1448 	j = efx->n_channels;
1449 	for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) {
1450 		if (!efx->extra_channel_type[i])
1451 			continue;
1452 		if (efx->interrupt_mode != EF4_INT_MODE_MSIX ||
1453 		    efx->n_channels <= extra_channels) {
1454 			efx->extra_channel_type[i]->handle_no_channel(efx);
1455 		} else {
1456 			--j;
1457 			ef4_get_channel(efx, j)->type =
1458 				efx->extra_channel_type[i];
1459 		}
1460 	}
1461 
1462 	efx->rss_spread = efx->n_rx_channels;
1463 
1464 	return 0;
1465 }
1466 
1467 static int ef4_soft_enable_interrupts(struct ef4_nic *efx)
1468 {
1469 	struct ef4_channel *channel, *end_channel;
1470 	int rc;
1471 
1472 	BUG_ON(efx->state == STATE_DISABLED);
1473 
1474 	efx->irq_soft_enabled = true;
1475 	smp_wmb();
1476 
1477 	ef4_for_each_channel(channel, efx) {
1478 		if (!channel->type->keep_eventq) {
1479 			rc = ef4_init_eventq(channel);
1480 			if (rc)
1481 				goto fail;
1482 		}
1483 		ef4_start_eventq(channel);
1484 	}
1485 
1486 	return 0;
1487 fail:
1488 	end_channel = channel;
1489 	ef4_for_each_channel(channel, efx) {
1490 		if (channel == end_channel)
1491 			break;
1492 		ef4_stop_eventq(channel);
1493 		if (!channel->type->keep_eventq)
1494 			ef4_fini_eventq(channel);
1495 	}
1496 
1497 	return rc;
1498 }
1499 
1500 static void ef4_soft_disable_interrupts(struct ef4_nic *efx)
1501 {
1502 	struct ef4_channel *channel;
1503 
1504 	if (efx->state == STATE_DISABLED)
1505 		return;
1506 
1507 	efx->irq_soft_enabled = false;
1508 	smp_wmb();
1509 
1510 	if (efx->legacy_irq)
1511 		synchronize_irq(efx->legacy_irq);
1512 
1513 	ef4_for_each_channel(channel, efx) {
1514 		if (channel->irq)
1515 			synchronize_irq(channel->irq);
1516 
1517 		ef4_stop_eventq(channel);
1518 		if (!channel->type->keep_eventq)
1519 			ef4_fini_eventq(channel);
1520 	}
1521 }
1522 
1523 static int ef4_enable_interrupts(struct ef4_nic *efx)
1524 {
1525 	struct ef4_channel *channel, *end_channel;
1526 	int rc;
1527 
1528 	BUG_ON(efx->state == STATE_DISABLED);
1529 
1530 	if (efx->eeh_disabled_legacy_irq) {
1531 		enable_irq(efx->legacy_irq);
1532 		efx->eeh_disabled_legacy_irq = false;
1533 	}
1534 
1535 	efx->type->irq_enable_master(efx);
1536 
1537 	ef4_for_each_channel(channel, efx) {
1538 		if (channel->type->keep_eventq) {
1539 			rc = ef4_init_eventq(channel);
1540 			if (rc)
1541 				goto fail;
1542 		}
1543 	}
1544 
1545 	rc = ef4_soft_enable_interrupts(efx);
1546 	if (rc)
1547 		goto fail;
1548 
1549 	return 0;
1550 
1551 fail:
1552 	end_channel = channel;
1553 	ef4_for_each_channel(channel, efx) {
1554 		if (channel == end_channel)
1555 			break;
1556 		if (channel->type->keep_eventq)
1557 			ef4_fini_eventq(channel);
1558 	}
1559 
1560 	efx->type->irq_disable_non_ev(efx);
1561 
1562 	return rc;
1563 }
1564 
1565 static void ef4_disable_interrupts(struct ef4_nic *efx)
1566 {
1567 	struct ef4_channel *channel;
1568 
1569 	ef4_soft_disable_interrupts(efx);
1570 
1571 	ef4_for_each_channel(channel, efx) {
1572 		if (channel->type->keep_eventq)
1573 			ef4_fini_eventq(channel);
1574 	}
1575 
1576 	efx->type->irq_disable_non_ev(efx);
1577 }
1578 
1579 static void ef4_remove_interrupts(struct ef4_nic *efx)
1580 {
1581 	struct ef4_channel *channel;
1582 
1583 	/* Remove MSI/MSI-X interrupts */
1584 	ef4_for_each_channel(channel, efx)
1585 		channel->irq = 0;
1586 	pci_disable_msi(efx->pci_dev);
1587 	pci_disable_msix(efx->pci_dev);
1588 
1589 	/* Remove legacy interrupt */
1590 	efx->legacy_irq = 0;
1591 }
1592 
1593 static void ef4_set_channels(struct ef4_nic *efx)
1594 {
1595 	struct ef4_channel *channel;
1596 	struct ef4_tx_queue *tx_queue;
1597 
1598 	efx->tx_channel_offset =
1599 		ef4_separate_tx_channels ?
1600 		efx->n_channels - efx->n_tx_channels : 0;
1601 
1602 	/* We need to mark which channels really have RX and TX
1603 	 * queues, and adjust the TX queue numbers if we have separate
1604 	 * RX-only and TX-only channels.
1605 	 */
1606 	ef4_for_each_channel(channel, efx) {
1607 		if (channel->channel < efx->n_rx_channels)
1608 			channel->rx_queue.core_index = channel->channel;
1609 		else
1610 			channel->rx_queue.core_index = -1;
1611 
1612 		ef4_for_each_channel_tx_queue(tx_queue, channel)
1613 			tx_queue->queue -= (efx->tx_channel_offset *
1614 					    EF4_TXQ_TYPES);
1615 	}
1616 }
1617 
1618 static int ef4_probe_nic(struct ef4_nic *efx)
1619 {
1620 	int rc;
1621 
1622 	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1623 
1624 	/* Carry out hardware-type specific initialisation */
1625 	rc = efx->type->probe(efx);
1626 	if (rc)
1627 		return rc;
1628 
1629 	do {
1630 		if (!efx->max_channels || !efx->max_tx_channels) {
1631 			netif_err(efx, drv, efx->net_dev,
1632 				  "Insufficient resources to allocate"
1633 				  " any channels\n");
1634 			rc = -ENOSPC;
1635 			goto fail1;
1636 		}
1637 
1638 		/* Determine the number of channels and queues by trying
1639 		 * to hook in MSI-X interrupts.
1640 		 */
1641 		rc = ef4_probe_interrupts(efx);
1642 		if (rc)
1643 			goto fail1;
1644 
1645 		ef4_set_channels(efx);
1646 
1647 		/* dimension_resources can fail with EAGAIN */
1648 		rc = efx->type->dimension_resources(efx);
1649 		if (rc != 0 && rc != -EAGAIN)
1650 			goto fail2;
1651 
1652 		if (rc == -EAGAIN)
1653 			/* try again with new max_channels */
1654 			ef4_remove_interrupts(efx);
1655 
1656 	} while (rc == -EAGAIN);
1657 
1658 	if (efx->n_channels > 1)
1659 		netdev_rss_key_fill(&efx->rx_hash_key,
1660 				    sizeof(efx->rx_hash_key));
1661 	ef4_set_default_rx_indir_table(efx);
1662 
1663 	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1664 	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1665 
1666 	/* Initialise the interrupt moderation settings */
1667 	efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
1668 	ef4_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1669 				true);
1670 
1671 	return 0;
1672 
1673 fail2:
1674 	ef4_remove_interrupts(efx);
1675 fail1:
1676 	efx->type->remove(efx);
1677 	return rc;
1678 }
1679 
1680 static void ef4_remove_nic(struct ef4_nic *efx)
1681 {
1682 	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1683 
1684 	ef4_remove_interrupts(efx);
1685 	efx->type->remove(efx);
1686 }
1687 
1688 static int ef4_probe_filters(struct ef4_nic *efx)
1689 {
1690 	int rc;
1691 
1692 	spin_lock_init(&efx->filter_lock);
1693 	init_rwsem(&efx->filter_sem);
1694 	mutex_lock(&efx->mac_lock);
1695 	down_write(&efx->filter_sem);
1696 	rc = efx->type->filter_table_probe(efx);
1697 	if (rc)
1698 		goto out_unlock;
1699 
1700 #ifdef CONFIG_RFS_ACCEL
1701 	if (efx->type->offload_features & NETIF_F_NTUPLE) {
1702 		struct ef4_channel *channel;
1703 		int i, success = 1;
1704 
1705 		ef4_for_each_channel(channel, efx) {
1706 			channel->rps_flow_id =
1707 				kcalloc(efx->type->max_rx_ip_filters,
1708 					sizeof(*channel->rps_flow_id),
1709 					GFP_KERNEL);
1710 			if (!channel->rps_flow_id)
1711 				success = 0;
1712 			else
1713 				for (i = 0;
1714 				     i < efx->type->max_rx_ip_filters;
1715 				     ++i)
1716 					channel->rps_flow_id[i] =
1717 						RPS_FLOW_ID_INVALID;
1718 		}
1719 
1720 		if (!success) {
1721 			ef4_for_each_channel(channel, efx)
1722 				kfree(channel->rps_flow_id);
1723 			efx->type->filter_table_remove(efx);
1724 			rc = -ENOMEM;
1725 			goto out_unlock;
1726 		}
1727 
1728 		efx->rps_expire_index = efx->rps_expire_channel = 0;
1729 	}
1730 #endif
1731 out_unlock:
1732 	up_write(&efx->filter_sem);
1733 	mutex_unlock(&efx->mac_lock);
1734 	return rc;
1735 }
1736 
1737 static void ef4_remove_filters(struct ef4_nic *efx)
1738 {
1739 #ifdef CONFIG_RFS_ACCEL
1740 	struct ef4_channel *channel;
1741 
1742 	ef4_for_each_channel(channel, efx)
1743 		kfree(channel->rps_flow_id);
1744 #endif
1745 	down_write(&efx->filter_sem);
1746 	efx->type->filter_table_remove(efx);
1747 	up_write(&efx->filter_sem);
1748 }
1749 
1750 static void ef4_restore_filters(struct ef4_nic *efx)
1751 {
1752 	down_read(&efx->filter_sem);
1753 	efx->type->filter_table_restore(efx);
1754 	up_read(&efx->filter_sem);
1755 }
1756 
1757 /**************************************************************************
1758  *
1759  * NIC startup/shutdown
1760  *
1761  *************************************************************************/
1762 
1763 static int ef4_probe_all(struct ef4_nic *efx)
1764 {
1765 	int rc;
1766 
1767 	rc = ef4_probe_nic(efx);
1768 	if (rc) {
1769 		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1770 		goto fail1;
1771 	}
1772 
1773 	rc = ef4_probe_port(efx);
1774 	if (rc) {
1775 		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1776 		goto fail2;
1777 	}
1778 
1779 	BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_RXQ_MIN_ENT);
1780 	if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_TXQ_MIN_ENT(efx))) {
1781 		rc = -EINVAL;
1782 		goto fail3;
1783 	}
1784 	efx->rxq_entries = efx->txq_entries = EF4_DEFAULT_DMAQ_SIZE;
1785 
1786 	rc = ef4_probe_filters(efx);
1787 	if (rc) {
1788 		netif_err(efx, probe, efx->net_dev,
1789 			  "failed to create filter tables\n");
1790 		goto fail4;
1791 	}
1792 
1793 	rc = ef4_probe_channels(efx);
1794 	if (rc)
1795 		goto fail5;
1796 
1797 	return 0;
1798 
1799  fail5:
1800 	ef4_remove_filters(efx);
1801  fail4:
1802  fail3:
1803 	ef4_remove_port(efx);
1804  fail2:
1805 	ef4_remove_nic(efx);
1806  fail1:
1807 	return rc;
1808 }
1809 
1810 /* If the interface is supposed to be running but is not, start
1811  * the hardware and software data path, regular activity for the port
1812  * (MAC statistics, link polling, etc.) and schedule the port to be
1813  * reconfigured.  Interrupts must already be enabled.  This function
1814  * is safe to call multiple times, so long as the NIC is not disabled.
1815  * Requires the RTNL lock.
1816  */
1817 static void ef4_start_all(struct ef4_nic *efx)
1818 {
1819 	EF4_ASSERT_RESET_SERIALISED(efx);
1820 	BUG_ON(efx->state == STATE_DISABLED);
1821 
1822 	/* Check that it is appropriate to restart the interface. All
1823 	 * of these flags are safe to read under just the rtnl lock */
1824 	if (efx->port_enabled || !netif_running(efx->net_dev) ||
1825 	    efx->reset_pending)
1826 		return;
1827 
1828 	ef4_start_port(efx);
1829 	ef4_start_datapath(efx);
1830 
1831 	/* Start the hardware monitor if there is one */
1832 	if (efx->type->monitor != NULL)
1833 		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1834 				   ef4_monitor_interval);
1835 
1836 	efx->type->start_stats(efx);
1837 	efx->type->pull_stats(efx);
1838 	spin_lock_bh(&efx->stats_lock);
1839 	efx->type->update_stats(efx, NULL, NULL);
1840 	spin_unlock_bh(&efx->stats_lock);
1841 }
1842 
1843 /* Quiesce the hardware and software data path, and regular activity
1844  * for the port without bringing the link down.  Safe to call multiple
1845  * times with the NIC in almost any state, but interrupts should be
1846  * enabled.  Requires the RTNL lock.
1847  */
1848 static void ef4_stop_all(struct ef4_nic *efx)
1849 {
1850 	EF4_ASSERT_RESET_SERIALISED(efx);
1851 
1852 	/* port_enabled can be read safely under the rtnl lock */
1853 	if (!efx->port_enabled)
1854 		return;
1855 
1856 	/* update stats before we go down so we can accurately count
1857 	 * rx_nodesc_drops
1858 	 */
1859 	efx->type->pull_stats(efx);
1860 	spin_lock_bh(&efx->stats_lock);
1861 	efx->type->update_stats(efx, NULL, NULL);
1862 	spin_unlock_bh(&efx->stats_lock);
1863 	efx->type->stop_stats(efx);
1864 	ef4_stop_port(efx);
1865 
1866 	/* Stop the kernel transmit interface.  This is only valid if
1867 	 * the device is stopped or detached; otherwise the watchdog
1868 	 * may fire immediately.
1869 	 */
1870 	WARN_ON(netif_running(efx->net_dev) &&
1871 		netif_device_present(efx->net_dev));
1872 	netif_tx_disable(efx->net_dev);
1873 
1874 	ef4_stop_datapath(efx);
1875 }
1876 
1877 static void ef4_remove_all(struct ef4_nic *efx)
1878 {
1879 	ef4_remove_channels(efx);
1880 	ef4_remove_filters(efx);
1881 	ef4_remove_port(efx);
1882 	ef4_remove_nic(efx);
1883 }
1884 
1885 /**************************************************************************
1886  *
1887  * Interrupt moderation
1888  *
1889  **************************************************************************/
1890 unsigned int ef4_usecs_to_ticks(struct ef4_nic *efx, unsigned int usecs)
1891 {
1892 	if (usecs == 0)
1893 		return 0;
1894 	if (usecs * 1000 < efx->timer_quantum_ns)
1895 		return 1; /* never round down to 0 */
1896 	return usecs * 1000 / efx->timer_quantum_ns;
1897 }
1898 
1899 unsigned int ef4_ticks_to_usecs(struct ef4_nic *efx, unsigned int ticks)
1900 {
1901 	/* We must round up when converting ticks to microseconds
1902 	 * because we round down when converting the other way.
1903 	 */
1904 	return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
1905 }
1906 
1907 /* Set interrupt moderation parameters */
1908 int ef4_init_irq_moderation(struct ef4_nic *efx, unsigned int tx_usecs,
1909 			    unsigned int rx_usecs, bool rx_adaptive,
1910 			    bool rx_may_override_tx)
1911 {
1912 	struct ef4_channel *channel;
1913 	unsigned int timer_max_us;
1914 
1915 	EF4_ASSERT_RESET_SERIALISED(efx);
1916 
1917 	timer_max_us = efx->timer_max_ns / 1000;
1918 
1919 	if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
1920 		return -EINVAL;
1921 
1922 	if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
1923 	    !rx_may_override_tx) {
1924 		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1925 			  "RX and TX IRQ moderation must be equal\n");
1926 		return -EINVAL;
1927 	}
1928 
1929 	efx->irq_rx_adaptive = rx_adaptive;
1930 	efx->irq_rx_moderation_us = rx_usecs;
1931 	ef4_for_each_channel(channel, efx) {
1932 		if (ef4_channel_has_rx_queue(channel))
1933 			channel->irq_moderation_us = rx_usecs;
1934 		else if (ef4_channel_has_tx_queues(channel))
1935 			channel->irq_moderation_us = tx_usecs;
1936 	}
1937 
1938 	return 0;
1939 }
1940 
1941 void ef4_get_irq_moderation(struct ef4_nic *efx, unsigned int *tx_usecs,
1942 			    unsigned int *rx_usecs, bool *rx_adaptive)
1943 {
1944 	*rx_adaptive = efx->irq_rx_adaptive;
1945 	*rx_usecs = efx->irq_rx_moderation_us;
1946 
1947 	/* If channels are shared between RX and TX, so is IRQ
1948 	 * moderation.  Otherwise, IRQ moderation is the same for all
1949 	 * TX channels and is not adaptive.
1950 	 */
1951 	if (efx->tx_channel_offset == 0) {
1952 		*tx_usecs = *rx_usecs;
1953 	} else {
1954 		struct ef4_channel *tx_channel;
1955 
1956 		tx_channel = efx->channel[efx->tx_channel_offset];
1957 		*tx_usecs = tx_channel->irq_moderation_us;
1958 	}
1959 }
1960 
1961 /**************************************************************************
1962  *
1963  * Hardware monitor
1964  *
1965  **************************************************************************/
1966 
1967 /* Run periodically off the general workqueue */
1968 static void ef4_monitor(struct work_struct *data)
1969 {
1970 	struct ef4_nic *efx = container_of(data, struct ef4_nic,
1971 					   monitor_work.work);
1972 
1973 	netif_vdbg(efx, timer, efx->net_dev,
1974 		   "hardware monitor executing on CPU %d\n",
1975 		   raw_smp_processor_id());
1976 	BUG_ON(efx->type->monitor == NULL);
1977 
1978 	/* If the mac_lock is already held then it is likely a port
1979 	 * reconfiguration is already in place, which will likely do
1980 	 * most of the work of monitor() anyway. */
1981 	if (mutex_trylock(&efx->mac_lock)) {
1982 		if (efx->port_enabled)
1983 			efx->type->monitor(efx);
1984 		mutex_unlock(&efx->mac_lock);
1985 	}
1986 
1987 	queue_delayed_work(efx->workqueue, &efx->monitor_work,
1988 			   ef4_monitor_interval);
1989 }
1990 
1991 /**************************************************************************
1992  *
1993  * ioctls
1994  *
1995  *************************************************************************/
1996 
1997 /* Net device ioctl
1998  * Context: process, rtnl_lock() held.
1999  */
2000 static int ef4_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
2001 {
2002 	struct ef4_nic *efx = netdev_priv(net_dev);
2003 	struct mii_ioctl_data *data = if_mii(ifr);
2004 
2005 	/* Convert phy_id from older PRTAD/DEVAD format */
2006 	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
2007 	    (data->phy_id & 0xfc00) == 0x0400)
2008 		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
2009 
2010 	return mdio_mii_ioctl(&efx->mdio, data, cmd);
2011 }
2012 
2013 /**************************************************************************
2014  *
2015  * NAPI interface
2016  *
2017  **************************************************************************/
2018 
2019 static void ef4_init_napi_channel(struct ef4_channel *channel)
2020 {
2021 	struct ef4_nic *efx = channel->efx;
2022 
2023 	channel->napi_dev = efx->net_dev;
2024 	netif_napi_add(channel->napi_dev, &channel->napi_str,
2025 		       ef4_poll, napi_weight);
2026 }
2027 
2028 static void ef4_init_napi(struct ef4_nic *efx)
2029 {
2030 	struct ef4_channel *channel;
2031 
2032 	ef4_for_each_channel(channel, efx)
2033 		ef4_init_napi_channel(channel);
2034 }
2035 
2036 static void ef4_fini_napi_channel(struct ef4_channel *channel)
2037 {
2038 	if (channel->napi_dev)
2039 		netif_napi_del(&channel->napi_str);
2040 
2041 	channel->napi_dev = NULL;
2042 }
2043 
2044 static void ef4_fini_napi(struct ef4_nic *efx)
2045 {
2046 	struct ef4_channel *channel;
2047 
2048 	ef4_for_each_channel(channel, efx)
2049 		ef4_fini_napi_channel(channel);
2050 }
2051 
2052 /**************************************************************************
2053  *
2054  * Kernel net device interface
2055  *
2056  *************************************************************************/
2057 
2058 /* Context: process, rtnl_lock() held. */
2059 int ef4_net_open(struct net_device *net_dev)
2060 {
2061 	struct ef4_nic *efx = netdev_priv(net_dev);
2062 	int rc;
2063 
2064 	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2065 		  raw_smp_processor_id());
2066 
2067 	rc = ef4_check_disabled(efx);
2068 	if (rc)
2069 		return rc;
2070 	if (efx->phy_mode & PHY_MODE_SPECIAL)
2071 		return -EBUSY;
2072 
2073 	/* Notify the kernel of the link state polled during driver load,
2074 	 * before the monitor starts running */
2075 	ef4_link_status_changed(efx);
2076 
2077 	ef4_start_all(efx);
2078 	ef4_selftest_async_start(efx);
2079 	return 0;
2080 }
2081 
2082 /* Context: process, rtnl_lock() held.
2083  * Note that the kernel will ignore our return code; this method
2084  * should really be a void.
2085  */
2086 int ef4_net_stop(struct net_device *net_dev)
2087 {
2088 	struct ef4_nic *efx = netdev_priv(net_dev);
2089 
2090 	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2091 		  raw_smp_processor_id());
2092 
2093 	/* Stop the device and flush all the channels */
2094 	ef4_stop_all(efx);
2095 
2096 	return 0;
2097 }
2098 
2099 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
2100 static void ef4_net_stats(struct net_device *net_dev,
2101 			  struct rtnl_link_stats64 *stats)
2102 {
2103 	struct ef4_nic *efx = netdev_priv(net_dev);
2104 
2105 	spin_lock_bh(&efx->stats_lock);
2106 	efx->type->update_stats(efx, NULL, stats);
2107 	spin_unlock_bh(&efx->stats_lock);
2108 }
2109 
2110 /* Context: netif_tx_lock held, BHs disabled. */
2111 static void ef4_watchdog(struct net_device *net_dev)
2112 {
2113 	struct ef4_nic *efx = netdev_priv(net_dev);
2114 
2115 	netif_err(efx, tx_err, efx->net_dev,
2116 		  "TX stuck with port_enabled=%d: resetting channels\n",
2117 		  efx->port_enabled);
2118 
2119 	ef4_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2120 }
2121 
2122 
2123 /* Context: process, rtnl_lock() held. */
2124 static int ef4_change_mtu(struct net_device *net_dev, int new_mtu)
2125 {
2126 	struct ef4_nic *efx = netdev_priv(net_dev);
2127 	int rc;
2128 
2129 	rc = ef4_check_disabled(efx);
2130 	if (rc)
2131 		return rc;
2132 
2133 	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2134 
2135 	ef4_device_detach_sync(efx);
2136 	ef4_stop_all(efx);
2137 
2138 	mutex_lock(&efx->mac_lock);
2139 	net_dev->mtu = new_mtu;
2140 	ef4_mac_reconfigure(efx);
2141 	mutex_unlock(&efx->mac_lock);
2142 
2143 	ef4_start_all(efx);
2144 	netif_device_attach(efx->net_dev);
2145 	return 0;
2146 }
2147 
2148 static int ef4_set_mac_address(struct net_device *net_dev, void *data)
2149 {
2150 	struct ef4_nic *efx = netdev_priv(net_dev);
2151 	struct sockaddr *addr = data;
2152 	u8 *new_addr = addr->sa_data;
2153 	u8 old_addr[6];
2154 	int rc;
2155 
2156 	if (!is_valid_ether_addr(new_addr)) {
2157 		netif_err(efx, drv, efx->net_dev,
2158 			  "invalid ethernet MAC address requested: %pM\n",
2159 			  new_addr);
2160 		return -EADDRNOTAVAIL;
2161 	}
2162 
2163 	/* save old address */
2164 	ether_addr_copy(old_addr, net_dev->dev_addr);
2165 	ether_addr_copy(net_dev->dev_addr, new_addr);
2166 	if (efx->type->set_mac_address) {
2167 		rc = efx->type->set_mac_address(efx);
2168 		if (rc) {
2169 			ether_addr_copy(net_dev->dev_addr, old_addr);
2170 			return rc;
2171 		}
2172 	}
2173 
2174 	/* Reconfigure the MAC */
2175 	mutex_lock(&efx->mac_lock);
2176 	ef4_mac_reconfigure(efx);
2177 	mutex_unlock(&efx->mac_lock);
2178 
2179 	return 0;
2180 }
2181 
2182 /* Context: netif_addr_lock held, BHs disabled. */
2183 static void ef4_set_rx_mode(struct net_device *net_dev)
2184 {
2185 	struct ef4_nic *efx = netdev_priv(net_dev);
2186 
2187 	if (efx->port_enabled)
2188 		queue_work(efx->workqueue, &efx->mac_work);
2189 	/* Otherwise ef4_start_port() will do this */
2190 }
2191 
2192 static int ef4_set_features(struct net_device *net_dev, netdev_features_t data)
2193 {
2194 	struct ef4_nic *efx = netdev_priv(net_dev);
2195 	int rc;
2196 
2197 	/* If disabling RX n-tuple filtering, clear existing filters */
2198 	if (net_dev->features & ~data & NETIF_F_NTUPLE) {
2199 		rc = efx->type->filter_clear_rx(efx, EF4_FILTER_PRI_MANUAL);
2200 		if (rc)
2201 			return rc;
2202 	}
2203 
2204 	/* If Rx VLAN filter is changed, update filters via mac_reconfigure */
2205 	if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) {
2206 		/* ef4_set_rx_mode() will schedule MAC work to update filters
2207 		 * when a new features are finally set in net_dev.
2208 		 */
2209 		ef4_set_rx_mode(net_dev);
2210 	}
2211 
2212 	return 0;
2213 }
2214 
2215 static const struct net_device_ops ef4_netdev_ops = {
2216 	.ndo_open		= ef4_net_open,
2217 	.ndo_stop		= ef4_net_stop,
2218 	.ndo_get_stats64	= ef4_net_stats,
2219 	.ndo_tx_timeout		= ef4_watchdog,
2220 	.ndo_start_xmit		= ef4_hard_start_xmit,
2221 	.ndo_validate_addr	= eth_validate_addr,
2222 	.ndo_do_ioctl		= ef4_ioctl,
2223 	.ndo_change_mtu		= ef4_change_mtu,
2224 	.ndo_set_mac_address	= ef4_set_mac_address,
2225 	.ndo_set_rx_mode	= ef4_set_rx_mode,
2226 	.ndo_set_features	= ef4_set_features,
2227 	.ndo_setup_tc		= ef4_setup_tc,
2228 #ifdef CONFIG_RFS_ACCEL
2229 	.ndo_rx_flow_steer	= ef4_filter_rfs,
2230 #endif
2231 };
2232 
2233 static void ef4_update_name(struct ef4_nic *efx)
2234 {
2235 	strcpy(efx->name, efx->net_dev->name);
2236 	ef4_mtd_rename(efx);
2237 	ef4_set_channel_names(efx);
2238 }
2239 
2240 static int ef4_netdev_event(struct notifier_block *this,
2241 			    unsigned long event, void *ptr)
2242 {
2243 	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2244 
2245 	if ((net_dev->netdev_ops == &ef4_netdev_ops) &&
2246 	    event == NETDEV_CHANGENAME)
2247 		ef4_update_name(netdev_priv(net_dev));
2248 
2249 	return NOTIFY_DONE;
2250 }
2251 
2252 static struct notifier_block ef4_netdev_notifier = {
2253 	.notifier_call = ef4_netdev_event,
2254 };
2255 
2256 static ssize_t
2257 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2258 {
2259 	struct ef4_nic *efx = dev_get_drvdata(dev);
2260 	return sprintf(buf, "%d\n", efx->phy_type);
2261 }
2262 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2263 
2264 static int ef4_register_netdev(struct ef4_nic *efx)
2265 {
2266 	struct net_device *net_dev = efx->net_dev;
2267 	struct ef4_channel *channel;
2268 	int rc;
2269 
2270 	net_dev->watchdog_timeo = 5 * HZ;
2271 	net_dev->irq = efx->pci_dev->irq;
2272 	net_dev->netdev_ops = &ef4_netdev_ops;
2273 	net_dev->ethtool_ops = &ef4_ethtool_ops;
2274 	net_dev->gso_max_segs = EF4_TSO_MAX_SEGS;
2275 	net_dev->min_mtu = EF4_MIN_MTU;
2276 	net_dev->max_mtu = EF4_MAX_MTU;
2277 
2278 	rtnl_lock();
2279 
2280 	/* Enable resets to be scheduled and check whether any were
2281 	 * already requested.  If so, the NIC is probably hosed so we
2282 	 * abort.
2283 	 */
2284 	efx->state = STATE_READY;
2285 	smp_mb(); /* ensure we change state before checking reset_pending */
2286 	if (efx->reset_pending) {
2287 		netif_err(efx, probe, efx->net_dev,
2288 			  "aborting probe due to scheduled reset\n");
2289 		rc = -EIO;
2290 		goto fail_locked;
2291 	}
2292 
2293 	rc = dev_alloc_name(net_dev, net_dev->name);
2294 	if (rc < 0)
2295 		goto fail_locked;
2296 	ef4_update_name(efx);
2297 
2298 	/* Always start with carrier off; PHY events will detect the link */
2299 	netif_carrier_off(net_dev);
2300 
2301 	rc = register_netdevice(net_dev);
2302 	if (rc)
2303 		goto fail_locked;
2304 
2305 	ef4_for_each_channel(channel, efx) {
2306 		struct ef4_tx_queue *tx_queue;
2307 		ef4_for_each_channel_tx_queue(tx_queue, channel)
2308 			ef4_init_tx_queue_core_txq(tx_queue);
2309 	}
2310 
2311 	ef4_associate(efx);
2312 
2313 	rtnl_unlock();
2314 
2315 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2316 	if (rc) {
2317 		netif_err(efx, drv, efx->net_dev,
2318 			  "failed to init net dev attributes\n");
2319 		goto fail_registered;
2320 	}
2321 	return 0;
2322 
2323 fail_registered:
2324 	rtnl_lock();
2325 	ef4_dissociate(efx);
2326 	unregister_netdevice(net_dev);
2327 fail_locked:
2328 	efx->state = STATE_UNINIT;
2329 	rtnl_unlock();
2330 	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2331 	return rc;
2332 }
2333 
2334 static void ef4_unregister_netdev(struct ef4_nic *efx)
2335 {
2336 	if (!efx->net_dev)
2337 		return;
2338 
2339 	BUG_ON(netdev_priv(efx->net_dev) != efx);
2340 
2341 	if (ef4_dev_registered(efx)) {
2342 		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2343 		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2344 		unregister_netdev(efx->net_dev);
2345 	}
2346 }
2347 
2348 /**************************************************************************
2349  *
2350  * Device reset and suspend
2351  *
2352  **************************************************************************/
2353 
2354 /* Tears down the entire software state and most of the hardware state
2355  * before reset.  */
2356 void ef4_reset_down(struct ef4_nic *efx, enum reset_type method)
2357 {
2358 	EF4_ASSERT_RESET_SERIALISED(efx);
2359 
2360 	ef4_stop_all(efx);
2361 	ef4_disable_interrupts(efx);
2362 
2363 	mutex_lock(&efx->mac_lock);
2364 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2365 	    method != RESET_TYPE_DATAPATH)
2366 		efx->phy_op->fini(efx);
2367 	efx->type->fini(efx);
2368 }
2369 
2370 /* This function will always ensure that the locks acquired in
2371  * ef4_reset_down() are released. A failure return code indicates
2372  * that we were unable to reinitialise the hardware, and the
2373  * driver should be disabled. If ok is false, then the rx and tx
2374  * engines are not restarted, pending a RESET_DISABLE. */
2375 int ef4_reset_up(struct ef4_nic *efx, enum reset_type method, bool ok)
2376 {
2377 	int rc;
2378 
2379 	EF4_ASSERT_RESET_SERIALISED(efx);
2380 
2381 	/* Ensure that SRAM is initialised even if we're disabling the device */
2382 	rc = efx->type->init(efx);
2383 	if (rc) {
2384 		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2385 		goto fail;
2386 	}
2387 
2388 	if (!ok)
2389 		goto fail;
2390 
2391 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2392 	    method != RESET_TYPE_DATAPATH) {
2393 		rc = efx->phy_op->init(efx);
2394 		if (rc)
2395 			goto fail;
2396 		rc = efx->phy_op->reconfigure(efx);
2397 		if (rc && rc != -EPERM)
2398 			netif_err(efx, drv, efx->net_dev,
2399 				  "could not restore PHY settings\n");
2400 	}
2401 
2402 	rc = ef4_enable_interrupts(efx);
2403 	if (rc)
2404 		goto fail;
2405 
2406 	down_read(&efx->filter_sem);
2407 	ef4_restore_filters(efx);
2408 	up_read(&efx->filter_sem);
2409 
2410 	mutex_unlock(&efx->mac_lock);
2411 
2412 	ef4_start_all(efx);
2413 
2414 	return 0;
2415 
2416 fail:
2417 	efx->port_initialized = false;
2418 
2419 	mutex_unlock(&efx->mac_lock);
2420 
2421 	return rc;
2422 }
2423 
2424 /* Reset the NIC using the specified method.  Note that the reset may
2425  * fail, in which case the card will be left in an unusable state.
2426  *
2427  * Caller must hold the rtnl_lock.
2428  */
2429 int ef4_reset(struct ef4_nic *efx, enum reset_type method)
2430 {
2431 	int rc, rc2;
2432 	bool disabled;
2433 
2434 	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2435 		   RESET_TYPE(method));
2436 
2437 	ef4_device_detach_sync(efx);
2438 	ef4_reset_down(efx, method);
2439 
2440 	rc = efx->type->reset(efx, method);
2441 	if (rc) {
2442 		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2443 		goto out;
2444 	}
2445 
2446 	/* Clear flags for the scopes we covered.  We assume the NIC and
2447 	 * driver are now quiescent so that there is no race here.
2448 	 */
2449 	if (method < RESET_TYPE_MAX_METHOD)
2450 		efx->reset_pending &= -(1 << (method + 1));
2451 	else /* it doesn't fit into the well-ordered scope hierarchy */
2452 		__clear_bit(method, &efx->reset_pending);
2453 
2454 	/* Reinitialise bus-mastering, which may have been turned off before
2455 	 * the reset was scheduled. This is still appropriate, even in the
2456 	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2457 	 * can respond to requests. */
2458 	pci_set_master(efx->pci_dev);
2459 
2460 out:
2461 	/* Leave device stopped if necessary */
2462 	disabled = rc ||
2463 		method == RESET_TYPE_DISABLE ||
2464 		method == RESET_TYPE_RECOVER_OR_DISABLE;
2465 	rc2 = ef4_reset_up(efx, method, !disabled);
2466 	if (rc2) {
2467 		disabled = true;
2468 		if (!rc)
2469 			rc = rc2;
2470 	}
2471 
2472 	if (disabled) {
2473 		dev_close(efx->net_dev);
2474 		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2475 		efx->state = STATE_DISABLED;
2476 	} else {
2477 		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2478 		netif_device_attach(efx->net_dev);
2479 	}
2480 	return rc;
2481 }
2482 
2483 /* Try recovery mechanisms.
2484  * For now only EEH is supported.
2485  * Returns 0 if the recovery mechanisms are unsuccessful.
2486  * Returns a non-zero value otherwise.
2487  */
2488 int ef4_try_recovery(struct ef4_nic *efx)
2489 {
2490 #ifdef CONFIG_EEH
2491 	/* A PCI error can occur and not be seen by EEH because nothing
2492 	 * happens on the PCI bus. In this case the driver may fail and
2493 	 * schedule a 'recover or reset', leading to this recovery handler.
2494 	 * Manually call the eeh failure check function.
2495 	 */
2496 	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2497 	if (eeh_dev_check_failure(eehdev)) {
2498 		/* The EEH mechanisms will handle the error and reset the
2499 		 * device if necessary.
2500 		 */
2501 		return 1;
2502 	}
2503 #endif
2504 	return 0;
2505 }
2506 
2507 /* The worker thread exists so that code that cannot sleep can
2508  * schedule a reset for later.
2509  */
2510 static void ef4_reset_work(struct work_struct *data)
2511 {
2512 	struct ef4_nic *efx = container_of(data, struct ef4_nic, reset_work);
2513 	unsigned long pending;
2514 	enum reset_type method;
2515 
2516 	pending = READ_ONCE(efx->reset_pending);
2517 	method = fls(pending) - 1;
2518 
2519 	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2520 	     method == RESET_TYPE_RECOVER_OR_ALL) &&
2521 	    ef4_try_recovery(efx))
2522 		return;
2523 
2524 	if (!pending)
2525 		return;
2526 
2527 	rtnl_lock();
2528 
2529 	/* We checked the state in ef4_schedule_reset() but it may
2530 	 * have changed by now.  Now that we have the RTNL lock,
2531 	 * it cannot change again.
2532 	 */
2533 	if (efx->state == STATE_READY)
2534 		(void)ef4_reset(efx, method);
2535 
2536 	rtnl_unlock();
2537 }
2538 
2539 void ef4_schedule_reset(struct ef4_nic *efx, enum reset_type type)
2540 {
2541 	enum reset_type method;
2542 
2543 	if (efx->state == STATE_RECOVERY) {
2544 		netif_dbg(efx, drv, efx->net_dev,
2545 			  "recovering: skip scheduling %s reset\n",
2546 			  RESET_TYPE(type));
2547 		return;
2548 	}
2549 
2550 	switch (type) {
2551 	case RESET_TYPE_INVISIBLE:
2552 	case RESET_TYPE_ALL:
2553 	case RESET_TYPE_RECOVER_OR_ALL:
2554 	case RESET_TYPE_WORLD:
2555 	case RESET_TYPE_DISABLE:
2556 	case RESET_TYPE_RECOVER_OR_DISABLE:
2557 	case RESET_TYPE_DATAPATH:
2558 		method = type;
2559 		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2560 			  RESET_TYPE(method));
2561 		break;
2562 	default:
2563 		method = efx->type->map_reset_reason(type);
2564 		netif_dbg(efx, drv, efx->net_dev,
2565 			  "scheduling %s reset for %s\n",
2566 			  RESET_TYPE(method), RESET_TYPE(type));
2567 		break;
2568 	}
2569 
2570 	set_bit(method, &efx->reset_pending);
2571 	smp_mb(); /* ensure we change reset_pending before checking state */
2572 
2573 	/* If we're not READY then just leave the flags set as the cue
2574 	 * to abort probing or reschedule the reset later.
2575 	 */
2576 	if (READ_ONCE(efx->state) != STATE_READY)
2577 		return;
2578 
2579 	queue_work(reset_workqueue, &efx->reset_work);
2580 }
2581 
2582 /**************************************************************************
2583  *
2584  * List of NICs we support
2585  *
2586  **************************************************************************/
2587 
2588 /* PCI device ID table */
2589 static const struct pci_device_id ef4_pci_table[] = {
2590 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2591 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2592 	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2593 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2594 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2595 	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2596 	{0}			/* end of list */
2597 };
2598 
2599 /**************************************************************************
2600  *
2601  * Dummy PHY/MAC operations
2602  *
2603  * Can be used for some unimplemented operations
2604  * Needed so all function pointers are valid and do not have to be tested
2605  * before use
2606  *
2607  **************************************************************************/
2608 int ef4_port_dummy_op_int(struct ef4_nic *efx)
2609 {
2610 	return 0;
2611 }
2612 void ef4_port_dummy_op_void(struct ef4_nic *efx) {}
2613 
2614 static bool ef4_port_dummy_op_poll(struct ef4_nic *efx)
2615 {
2616 	return false;
2617 }
2618 
2619 static const struct ef4_phy_operations ef4_dummy_phy_operations = {
2620 	.init		 = ef4_port_dummy_op_int,
2621 	.reconfigure	 = ef4_port_dummy_op_int,
2622 	.poll		 = ef4_port_dummy_op_poll,
2623 	.fini		 = ef4_port_dummy_op_void,
2624 };
2625 
2626 /**************************************************************************
2627  *
2628  * Data housekeeping
2629  *
2630  **************************************************************************/
2631 
2632 /* This zeroes out and then fills in the invariants in a struct
2633  * ef4_nic (including all sub-structures).
2634  */
2635 static int ef4_init_struct(struct ef4_nic *efx,
2636 			   struct pci_dev *pci_dev, struct net_device *net_dev)
2637 {
2638 	int i;
2639 
2640 	/* Initialise common structures */
2641 	INIT_LIST_HEAD(&efx->node);
2642 	INIT_LIST_HEAD(&efx->secondary_list);
2643 	spin_lock_init(&efx->biu_lock);
2644 #ifdef CONFIG_SFC_FALCON_MTD
2645 	INIT_LIST_HEAD(&efx->mtd_list);
2646 #endif
2647 	INIT_WORK(&efx->reset_work, ef4_reset_work);
2648 	INIT_DELAYED_WORK(&efx->monitor_work, ef4_monitor);
2649 	INIT_DELAYED_WORK(&efx->selftest_work, ef4_selftest_async_work);
2650 	efx->pci_dev = pci_dev;
2651 	efx->msg_enable = debug;
2652 	efx->state = STATE_UNINIT;
2653 	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2654 
2655 	efx->net_dev = net_dev;
2656 	efx->rx_prefix_size = efx->type->rx_prefix_size;
2657 	efx->rx_ip_align =
2658 		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2659 	efx->rx_packet_hash_offset =
2660 		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2661 	efx->rx_packet_ts_offset =
2662 		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2663 	spin_lock_init(&efx->stats_lock);
2664 	mutex_init(&efx->mac_lock);
2665 	efx->phy_op = &ef4_dummy_phy_operations;
2666 	efx->mdio.dev = net_dev;
2667 	INIT_WORK(&efx->mac_work, ef4_mac_work);
2668 	init_waitqueue_head(&efx->flush_wq);
2669 
2670 	for (i = 0; i < EF4_MAX_CHANNELS; i++) {
2671 		efx->channel[i] = ef4_alloc_channel(efx, i, NULL);
2672 		if (!efx->channel[i])
2673 			goto fail;
2674 		efx->msi_context[i].efx = efx;
2675 		efx->msi_context[i].index = i;
2676 	}
2677 
2678 	/* Higher numbered interrupt modes are less capable! */
2679 	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2680 				  interrupt_mode);
2681 
2682 	/* Would be good to use the net_dev name, but we're too early */
2683 	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2684 		 pci_name(pci_dev));
2685 	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2686 	if (!efx->workqueue)
2687 		goto fail;
2688 
2689 	return 0;
2690 
2691 fail:
2692 	ef4_fini_struct(efx);
2693 	return -ENOMEM;
2694 }
2695 
2696 static void ef4_fini_struct(struct ef4_nic *efx)
2697 {
2698 	int i;
2699 
2700 	for (i = 0; i < EF4_MAX_CHANNELS; i++)
2701 		kfree(efx->channel[i]);
2702 
2703 	kfree(efx->vpd_sn);
2704 
2705 	if (efx->workqueue) {
2706 		destroy_workqueue(efx->workqueue);
2707 		efx->workqueue = NULL;
2708 	}
2709 }
2710 
2711 void ef4_update_sw_stats(struct ef4_nic *efx, u64 *stats)
2712 {
2713 	u64 n_rx_nodesc_trunc = 0;
2714 	struct ef4_channel *channel;
2715 
2716 	ef4_for_each_channel(channel, efx)
2717 		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2718 	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2719 	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2720 }
2721 
2722 /**************************************************************************
2723  *
2724  * PCI interface
2725  *
2726  **************************************************************************/
2727 
2728 /* Main body of final NIC shutdown code
2729  * This is called only at module unload (or hotplug removal).
2730  */
2731 static void ef4_pci_remove_main(struct ef4_nic *efx)
2732 {
2733 	/* Flush reset_work. It can no longer be scheduled since we
2734 	 * are not READY.
2735 	 */
2736 	BUG_ON(efx->state == STATE_READY);
2737 	cancel_work_sync(&efx->reset_work);
2738 
2739 	ef4_disable_interrupts(efx);
2740 	ef4_nic_fini_interrupt(efx);
2741 	ef4_fini_port(efx);
2742 	efx->type->fini(efx);
2743 	ef4_fini_napi(efx);
2744 	ef4_remove_all(efx);
2745 }
2746 
2747 /* Final NIC shutdown
2748  * This is called only at module unload (or hotplug removal).  A PF can call
2749  * this on its VFs to ensure they are unbound first.
2750  */
2751 static void ef4_pci_remove(struct pci_dev *pci_dev)
2752 {
2753 	struct ef4_nic *efx;
2754 
2755 	efx = pci_get_drvdata(pci_dev);
2756 	if (!efx)
2757 		return;
2758 
2759 	/* Mark the NIC as fini, then stop the interface */
2760 	rtnl_lock();
2761 	ef4_dissociate(efx);
2762 	dev_close(efx->net_dev);
2763 	ef4_disable_interrupts(efx);
2764 	efx->state = STATE_UNINIT;
2765 	rtnl_unlock();
2766 
2767 	ef4_unregister_netdev(efx);
2768 
2769 	ef4_mtd_remove(efx);
2770 
2771 	ef4_pci_remove_main(efx);
2772 
2773 	ef4_fini_io(efx);
2774 	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2775 
2776 	ef4_fini_struct(efx);
2777 	free_netdev(efx->net_dev);
2778 
2779 	pci_disable_pcie_error_reporting(pci_dev);
2780 };
2781 
2782 /* NIC VPD information
2783  * Called during probe to display the part number of the
2784  * installed NIC.  VPD is potentially very large but this should
2785  * always appear within the first 512 bytes.
2786  */
2787 #define SFC_VPD_LEN 512
2788 static void ef4_probe_vpd_strings(struct ef4_nic *efx)
2789 {
2790 	struct pci_dev *dev = efx->pci_dev;
2791 	char vpd_data[SFC_VPD_LEN];
2792 	ssize_t vpd_size;
2793 	int ro_start, ro_size, i, j;
2794 
2795 	/* Get the vpd data from the device */
2796 	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2797 	if (vpd_size <= 0) {
2798 		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2799 		return;
2800 	}
2801 
2802 	/* Get the Read only section */
2803 	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2804 	if (ro_start < 0) {
2805 		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2806 		return;
2807 	}
2808 
2809 	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
2810 	j = ro_size;
2811 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2812 	if (i + j > vpd_size)
2813 		j = vpd_size - i;
2814 
2815 	/* Get the Part number */
2816 	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2817 	if (i < 0) {
2818 		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2819 		return;
2820 	}
2821 
2822 	j = pci_vpd_info_field_size(&vpd_data[i]);
2823 	i += PCI_VPD_INFO_FLD_HDR_SIZE;
2824 	if (i + j > vpd_size) {
2825 		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
2826 		return;
2827 	}
2828 
2829 	netif_info(efx, drv, efx->net_dev,
2830 		   "Part Number : %.*s\n", j, &vpd_data[i]);
2831 
2832 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2833 	j = ro_size;
2834 	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
2835 	if (i < 0) {
2836 		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
2837 		return;
2838 	}
2839 
2840 	j = pci_vpd_info_field_size(&vpd_data[i]);
2841 	i += PCI_VPD_INFO_FLD_HDR_SIZE;
2842 	if (i + j > vpd_size) {
2843 		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
2844 		return;
2845 	}
2846 
2847 	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
2848 	if (!efx->vpd_sn)
2849 		return;
2850 
2851 	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
2852 }
2853 
2854 
2855 /* Main body of NIC initialisation
2856  * This is called at module load (or hotplug insertion, theoretically).
2857  */
2858 static int ef4_pci_probe_main(struct ef4_nic *efx)
2859 {
2860 	int rc;
2861 
2862 	/* Do start-of-day initialisation */
2863 	rc = ef4_probe_all(efx);
2864 	if (rc)
2865 		goto fail1;
2866 
2867 	ef4_init_napi(efx);
2868 
2869 	rc = efx->type->init(efx);
2870 	if (rc) {
2871 		netif_err(efx, probe, efx->net_dev,
2872 			  "failed to initialise NIC\n");
2873 		goto fail3;
2874 	}
2875 
2876 	rc = ef4_init_port(efx);
2877 	if (rc) {
2878 		netif_err(efx, probe, efx->net_dev,
2879 			  "failed to initialise port\n");
2880 		goto fail4;
2881 	}
2882 
2883 	rc = ef4_nic_init_interrupt(efx);
2884 	if (rc)
2885 		goto fail5;
2886 	rc = ef4_enable_interrupts(efx);
2887 	if (rc)
2888 		goto fail6;
2889 
2890 	return 0;
2891 
2892  fail6:
2893 	ef4_nic_fini_interrupt(efx);
2894  fail5:
2895 	ef4_fini_port(efx);
2896  fail4:
2897 	efx->type->fini(efx);
2898  fail3:
2899 	ef4_fini_napi(efx);
2900 	ef4_remove_all(efx);
2901  fail1:
2902 	return rc;
2903 }
2904 
2905 /* NIC initialisation
2906  *
2907  * This is called at module load (or hotplug insertion,
2908  * theoretically).  It sets up PCI mappings, resets the NIC,
2909  * sets up and registers the network devices with the kernel and hooks
2910  * the interrupt service routine.  It does not prepare the device for
2911  * transmission; this is left to the first time one of the network
2912  * interfaces is brought up (i.e. ef4_net_open).
2913  */
2914 static int ef4_pci_probe(struct pci_dev *pci_dev,
2915 			 const struct pci_device_id *entry)
2916 {
2917 	struct net_device *net_dev;
2918 	struct ef4_nic *efx;
2919 	int rc;
2920 
2921 	/* Allocate and initialise a struct net_device and struct ef4_nic */
2922 	net_dev = alloc_etherdev_mqs(sizeof(*efx), EF4_MAX_CORE_TX_QUEUES,
2923 				     EF4_MAX_RX_QUEUES);
2924 	if (!net_dev)
2925 		return -ENOMEM;
2926 	efx = netdev_priv(net_dev);
2927 	efx->type = (const struct ef4_nic_type *) entry->driver_data;
2928 	efx->fixed_features |= NETIF_F_HIGHDMA;
2929 
2930 	pci_set_drvdata(pci_dev, efx);
2931 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2932 	rc = ef4_init_struct(efx, pci_dev, net_dev);
2933 	if (rc)
2934 		goto fail1;
2935 
2936 	netif_info(efx, probe, efx->net_dev,
2937 		   "Solarflare NIC detected\n");
2938 
2939 	ef4_probe_vpd_strings(efx);
2940 
2941 	/* Set up basic I/O (BAR mappings etc) */
2942 	rc = ef4_init_io(efx);
2943 	if (rc)
2944 		goto fail2;
2945 
2946 	rc = ef4_pci_probe_main(efx);
2947 	if (rc)
2948 		goto fail3;
2949 
2950 	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2951 			      NETIF_F_RXCSUM);
2952 	/* Mask for features that also apply to VLAN devices */
2953 	net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
2954 				   NETIF_F_HIGHDMA | NETIF_F_RXCSUM);
2955 
2956 	net_dev->hw_features = net_dev->features & ~efx->fixed_features;
2957 
2958 	/* Disable VLAN filtering by default.  It may be enforced if
2959 	 * the feature is fixed (i.e. VLAN filters are required to
2960 	 * receive VLAN tagged packets due to vPort restrictions).
2961 	 */
2962 	net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
2963 	net_dev->features |= efx->fixed_features;
2964 
2965 	rc = ef4_register_netdev(efx);
2966 	if (rc)
2967 		goto fail4;
2968 
2969 	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2970 
2971 	/* Try to create MTDs, but allow this to fail */
2972 	rtnl_lock();
2973 	rc = ef4_mtd_probe(efx);
2974 	rtnl_unlock();
2975 	if (rc && rc != -EPERM)
2976 		netif_warn(efx, probe, efx->net_dev,
2977 			   "failed to create MTDs (%d)\n", rc);
2978 
2979 	rc = pci_enable_pcie_error_reporting(pci_dev);
2980 	if (rc && rc != -EINVAL)
2981 		netif_notice(efx, probe, efx->net_dev,
2982 			     "PCIE error reporting unavailable (%d).\n",
2983 			     rc);
2984 
2985 	return 0;
2986 
2987  fail4:
2988 	ef4_pci_remove_main(efx);
2989  fail3:
2990 	ef4_fini_io(efx);
2991  fail2:
2992 	ef4_fini_struct(efx);
2993  fail1:
2994 	WARN_ON(rc > 0);
2995 	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2996 	free_netdev(net_dev);
2997 	return rc;
2998 }
2999 
3000 static int ef4_pm_freeze(struct device *dev)
3001 {
3002 	struct ef4_nic *efx = dev_get_drvdata(dev);
3003 
3004 	rtnl_lock();
3005 
3006 	if (efx->state != STATE_DISABLED) {
3007 		efx->state = STATE_UNINIT;
3008 
3009 		ef4_device_detach_sync(efx);
3010 
3011 		ef4_stop_all(efx);
3012 		ef4_disable_interrupts(efx);
3013 	}
3014 
3015 	rtnl_unlock();
3016 
3017 	return 0;
3018 }
3019 
3020 static int ef4_pm_thaw(struct device *dev)
3021 {
3022 	int rc;
3023 	struct ef4_nic *efx = dev_get_drvdata(dev);
3024 
3025 	rtnl_lock();
3026 
3027 	if (efx->state != STATE_DISABLED) {
3028 		rc = ef4_enable_interrupts(efx);
3029 		if (rc)
3030 			goto fail;
3031 
3032 		mutex_lock(&efx->mac_lock);
3033 		efx->phy_op->reconfigure(efx);
3034 		mutex_unlock(&efx->mac_lock);
3035 
3036 		ef4_start_all(efx);
3037 
3038 		netif_device_attach(efx->net_dev);
3039 
3040 		efx->state = STATE_READY;
3041 
3042 		efx->type->resume_wol(efx);
3043 	}
3044 
3045 	rtnl_unlock();
3046 
3047 	/* Reschedule any quenched resets scheduled during ef4_pm_freeze() */
3048 	queue_work(reset_workqueue, &efx->reset_work);
3049 
3050 	return 0;
3051 
3052 fail:
3053 	rtnl_unlock();
3054 
3055 	return rc;
3056 }
3057 
3058 static int ef4_pm_poweroff(struct device *dev)
3059 {
3060 	struct pci_dev *pci_dev = to_pci_dev(dev);
3061 	struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3062 
3063 	efx->type->fini(efx);
3064 
3065 	efx->reset_pending = 0;
3066 
3067 	pci_save_state(pci_dev);
3068 	return pci_set_power_state(pci_dev, PCI_D3hot);
3069 }
3070 
3071 /* Used for both resume and restore */
3072 static int ef4_pm_resume(struct device *dev)
3073 {
3074 	struct pci_dev *pci_dev = to_pci_dev(dev);
3075 	struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3076 	int rc;
3077 
3078 	rc = pci_set_power_state(pci_dev, PCI_D0);
3079 	if (rc)
3080 		return rc;
3081 	pci_restore_state(pci_dev);
3082 	rc = pci_enable_device(pci_dev);
3083 	if (rc)
3084 		return rc;
3085 	pci_set_master(efx->pci_dev);
3086 	rc = efx->type->reset(efx, RESET_TYPE_ALL);
3087 	if (rc)
3088 		return rc;
3089 	rc = efx->type->init(efx);
3090 	if (rc)
3091 		return rc;
3092 	rc = ef4_pm_thaw(dev);
3093 	return rc;
3094 }
3095 
3096 static int ef4_pm_suspend(struct device *dev)
3097 {
3098 	int rc;
3099 
3100 	ef4_pm_freeze(dev);
3101 	rc = ef4_pm_poweroff(dev);
3102 	if (rc)
3103 		ef4_pm_resume(dev);
3104 	return rc;
3105 }
3106 
3107 static const struct dev_pm_ops ef4_pm_ops = {
3108 	.suspend	= ef4_pm_suspend,
3109 	.resume		= ef4_pm_resume,
3110 	.freeze		= ef4_pm_freeze,
3111 	.thaw		= ef4_pm_thaw,
3112 	.poweroff	= ef4_pm_poweroff,
3113 	.restore	= ef4_pm_resume,
3114 };
3115 
3116 /* A PCI error affecting this device was detected.
3117  * At this point MMIO and DMA may be disabled.
3118  * Stop the software path and request a slot reset.
3119  */
3120 static pci_ers_result_t ef4_io_error_detected(struct pci_dev *pdev,
3121 					      enum pci_channel_state state)
3122 {
3123 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3124 	struct ef4_nic *efx = pci_get_drvdata(pdev);
3125 
3126 	if (state == pci_channel_io_perm_failure)
3127 		return PCI_ERS_RESULT_DISCONNECT;
3128 
3129 	rtnl_lock();
3130 
3131 	if (efx->state != STATE_DISABLED) {
3132 		efx->state = STATE_RECOVERY;
3133 		efx->reset_pending = 0;
3134 
3135 		ef4_device_detach_sync(efx);
3136 
3137 		ef4_stop_all(efx);
3138 		ef4_disable_interrupts(efx);
3139 
3140 		status = PCI_ERS_RESULT_NEED_RESET;
3141 	} else {
3142 		/* If the interface is disabled we don't want to do anything
3143 		 * with it.
3144 		 */
3145 		status = PCI_ERS_RESULT_RECOVERED;
3146 	}
3147 
3148 	rtnl_unlock();
3149 
3150 	pci_disable_device(pdev);
3151 
3152 	return status;
3153 }
3154 
3155 /* Fake a successful reset, which will be performed later in ef4_io_resume. */
3156 static pci_ers_result_t ef4_io_slot_reset(struct pci_dev *pdev)
3157 {
3158 	struct ef4_nic *efx = pci_get_drvdata(pdev);
3159 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3160 
3161 	if (pci_enable_device(pdev)) {
3162 		netif_err(efx, hw, efx->net_dev,
3163 			  "Cannot re-enable PCI device after reset.\n");
3164 		status =  PCI_ERS_RESULT_DISCONNECT;
3165 	}
3166 
3167 	return status;
3168 }
3169 
3170 /* Perform the actual reset and resume I/O operations. */
3171 static void ef4_io_resume(struct pci_dev *pdev)
3172 {
3173 	struct ef4_nic *efx = pci_get_drvdata(pdev);
3174 	int rc;
3175 
3176 	rtnl_lock();
3177 
3178 	if (efx->state == STATE_DISABLED)
3179 		goto out;
3180 
3181 	rc = ef4_reset(efx, RESET_TYPE_ALL);
3182 	if (rc) {
3183 		netif_err(efx, hw, efx->net_dev,
3184 			  "ef4_reset failed after PCI error (%d)\n", rc);
3185 	} else {
3186 		efx->state = STATE_READY;
3187 		netif_dbg(efx, hw, efx->net_dev,
3188 			  "Done resetting and resuming IO after PCI error.\n");
3189 	}
3190 
3191 out:
3192 	rtnl_unlock();
3193 }
3194 
3195 /* For simplicity and reliability, we always require a slot reset and try to
3196  * reset the hardware when a pci error affecting the device is detected.
3197  * We leave both the link_reset and mmio_enabled callback unimplemented:
3198  * with our request for slot reset the mmio_enabled callback will never be
3199  * called, and the link_reset callback is not used by AER or EEH mechanisms.
3200  */
3201 static const struct pci_error_handlers ef4_err_handlers = {
3202 	.error_detected = ef4_io_error_detected,
3203 	.slot_reset	= ef4_io_slot_reset,
3204 	.resume		= ef4_io_resume,
3205 };
3206 
3207 static struct pci_driver ef4_pci_driver = {
3208 	.name		= KBUILD_MODNAME,
3209 	.id_table	= ef4_pci_table,
3210 	.probe		= ef4_pci_probe,
3211 	.remove		= ef4_pci_remove,
3212 	.driver.pm	= &ef4_pm_ops,
3213 	.err_handler	= &ef4_err_handlers,
3214 };
3215 
3216 /**************************************************************************
3217  *
3218  * Kernel module interface
3219  *
3220  *************************************************************************/
3221 
3222 module_param(interrupt_mode, uint, 0444);
3223 MODULE_PARM_DESC(interrupt_mode,
3224 		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3225 
3226 static int __init ef4_init_module(void)
3227 {
3228 	int rc;
3229 
3230 	printk(KERN_INFO "Solarflare Falcon driver v" EF4_DRIVER_VERSION "\n");
3231 
3232 	rc = register_netdevice_notifier(&ef4_netdev_notifier);
3233 	if (rc)
3234 		goto err_notifier;
3235 
3236 	reset_workqueue = create_singlethread_workqueue("sfc_reset");
3237 	if (!reset_workqueue) {
3238 		rc = -ENOMEM;
3239 		goto err_reset;
3240 	}
3241 
3242 	rc = pci_register_driver(&ef4_pci_driver);
3243 	if (rc < 0)
3244 		goto err_pci;
3245 
3246 	return 0;
3247 
3248  err_pci:
3249 	destroy_workqueue(reset_workqueue);
3250  err_reset:
3251 	unregister_netdevice_notifier(&ef4_netdev_notifier);
3252  err_notifier:
3253 	return rc;
3254 }
3255 
3256 static void __exit ef4_exit_module(void)
3257 {
3258 	printk(KERN_INFO "Solarflare Falcon driver unloading\n");
3259 
3260 	pci_unregister_driver(&ef4_pci_driver);
3261 	destroy_workqueue(reset_workqueue);
3262 	unregister_netdevice_notifier(&ef4_netdev_notifier);
3263 
3264 }
3265 
3266 module_init(ef4_init_module);
3267 module_exit(ef4_exit_module);
3268 
3269 MODULE_AUTHOR("Solarflare Communications and "
3270 	      "Michael Brown <mbrown@fensystems.co.uk>");
3271 MODULE_DESCRIPTION("Solarflare Falcon network driver");
3272 MODULE_LICENSE("GPL");
3273 MODULE_DEVICE_TABLE(pci, ef4_pci_table);
3274 MODULE_VERSION(EF4_DRIVER_VERSION);
3275