xref: /linux/drivers/net/ethernet/sfc/efx_common.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2018 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include "net_driver.h"
12 #include <linux/filter.h>
13 #include <linux/module.h>
14 #include <linux/netdevice.h>
15 #include <net/gre.h>
16 #include "efx_common.h"
17 #include "efx_channels.h"
18 #include "efx.h"
19 #include "mcdi.h"
20 #include "selftest.h"
21 #include "rx_common.h"
22 #include "tx_common.h"
23 #include "nic.h"
24 #include "mcdi_port_common.h"
25 #include "io.h"
26 #include "mcdi_pcol.h"
27 #include "ef100_rep.h"
28 
29 static unsigned int debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
30 			     NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
31 			     NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
32 			     NETIF_MSG_TX_ERR | NETIF_MSG_HW);
33 module_param(debug, uint, 0);
34 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
35 
36 /* This is the time (in jiffies) between invocations of the hardware
37  * monitor.
38  */
39 static unsigned int efx_monitor_interval = 1 * HZ;
40 
41 /* How often and how many times to poll for a reset while waiting for a
42  * BIST that another function started to complete.
43  */
44 #define BIST_WAIT_DELAY_MS	100
45 #define BIST_WAIT_DELAY_COUNT	100
46 
47 /* Default stats update time */
48 #define STATS_PERIOD_MS_DEFAULT 1000
49 
50 static const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
51 static const char *const efx_reset_type_names[] = {
52 	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
53 	[RESET_TYPE_ALL]                = "ALL",
54 	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
55 	[RESET_TYPE_WORLD]              = "WORLD",
56 	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
57 	[RESET_TYPE_DATAPATH]           = "DATAPATH",
58 	[RESET_TYPE_MC_BIST]		= "MC_BIST",
59 	[RESET_TYPE_DISABLE]            = "DISABLE",
60 	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
61 	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
62 	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
63 	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
64 	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
65 	[RESET_TYPE_MCDI_TIMEOUT]	= "MCDI_TIMEOUT (FLR)",
66 };
67 
68 #define RESET_TYPE(type) \
69 	STRING_TABLE_LOOKUP(type, efx_reset_type)
70 
71 /* Loopback mode names (see LOOPBACK_MODE()) */
72 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
73 const char *const efx_loopback_mode_names[] = {
74 	[LOOPBACK_NONE]		= "NONE",
75 	[LOOPBACK_DATA]		= "DATAPATH",
76 	[LOOPBACK_GMAC]		= "GMAC",
77 	[LOOPBACK_XGMII]	= "XGMII",
78 	[LOOPBACK_XGXS]		= "XGXS",
79 	[LOOPBACK_XAUI]		= "XAUI",
80 	[LOOPBACK_GMII]		= "GMII",
81 	[LOOPBACK_SGMII]	= "SGMII",
82 	[LOOPBACK_XGBR]		= "XGBR",
83 	[LOOPBACK_XFI]		= "XFI",
84 	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
85 	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
86 	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
87 	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
88 	[LOOPBACK_GPHY]		= "GPHY",
89 	[LOOPBACK_PHYXS]	= "PHYXS",
90 	[LOOPBACK_PCS]		= "PCS",
91 	[LOOPBACK_PMAPMD]	= "PMA/PMD",
92 	[LOOPBACK_XPORT]	= "XPORT",
93 	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
94 	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
95 	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
96 	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
97 	[LOOPBACK_GMII_WS]	= "GMII_WS",
98 	[LOOPBACK_XFI_WS]	= "XFI_WS",
99 	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
100 	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
101 };
102 
103 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
104  * queued onto this work queue. This is not a per-nic work queue, because
105  * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
106  */
107 static struct workqueue_struct *reset_workqueue;
108 
109 int efx_create_reset_workqueue(void)
110 {
111 	reset_workqueue = create_singlethread_workqueue("sfc_reset");
112 	if (!reset_workqueue) {
113 		printk(KERN_ERR "Failed to create reset workqueue\n");
114 		return -ENOMEM;
115 	}
116 
117 	return 0;
118 }
119 
120 void efx_queue_reset_work(struct efx_nic *efx)
121 {
122 	queue_work(reset_workqueue, &efx->reset_work);
123 }
124 
125 void efx_flush_reset_workqueue(struct efx_nic *efx)
126 {
127 	cancel_work_sync(&efx->reset_work);
128 }
129 
130 void efx_destroy_reset_workqueue(void)
131 {
132 	if (reset_workqueue) {
133 		destroy_workqueue(reset_workqueue);
134 		reset_workqueue = NULL;
135 	}
136 }
137 
138 /* We assume that efx->type->reconfigure_mac will always try to sync RX
139  * filters and therefore needs to read-lock the filter table against freeing
140  */
141 void efx_mac_reconfigure(struct efx_nic *efx, bool mtu_only)
142 {
143 	if (efx->type->reconfigure_mac) {
144 		down_read(&efx->filter_sem);
145 		efx->type->reconfigure_mac(efx, mtu_only);
146 		up_read(&efx->filter_sem);
147 	}
148 }
149 
150 /* Asynchronous work item for changing MAC promiscuity and multicast
151  * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
152  * MAC directly.
153  */
154 static void efx_mac_work(struct work_struct *data)
155 {
156 	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
157 
158 	mutex_lock(&efx->mac_lock);
159 	if (efx->port_enabled)
160 		efx_mac_reconfigure(efx, false);
161 	mutex_unlock(&efx->mac_lock);
162 }
163 
164 int efx_set_mac_address(struct net_device *net_dev, void *data)
165 {
166 	struct efx_nic *efx = efx_netdev_priv(net_dev);
167 	struct sockaddr *addr = data;
168 	u8 *new_addr = addr->sa_data;
169 	u8 old_addr[6];
170 	int rc;
171 
172 	if (!is_valid_ether_addr(new_addr)) {
173 		netif_err(efx, drv, efx->net_dev,
174 			  "invalid ethernet MAC address requested: %pM\n",
175 			  new_addr);
176 		return -EADDRNOTAVAIL;
177 	}
178 
179 	/* save old address */
180 	ether_addr_copy(old_addr, net_dev->dev_addr);
181 	eth_hw_addr_set(net_dev, new_addr);
182 	if (efx->type->set_mac_address) {
183 		rc = efx->type->set_mac_address(efx);
184 		if (rc) {
185 			eth_hw_addr_set(net_dev, old_addr);
186 			return rc;
187 		}
188 	}
189 
190 	/* Reconfigure the MAC */
191 	mutex_lock(&efx->mac_lock);
192 	efx_mac_reconfigure(efx, false);
193 	mutex_unlock(&efx->mac_lock);
194 
195 	return 0;
196 }
197 
198 /* Context: netif_addr_lock held, BHs disabled. */
199 void efx_set_rx_mode(struct net_device *net_dev)
200 {
201 	struct efx_nic *efx = efx_netdev_priv(net_dev);
202 
203 	if (efx->port_enabled)
204 		queue_work(efx->workqueue, &efx->mac_work);
205 	/* Otherwise efx_start_port() will do this */
206 }
207 
208 int efx_set_features(struct net_device *net_dev, netdev_features_t data)
209 {
210 	struct efx_nic *efx = efx_netdev_priv(net_dev);
211 	int rc;
212 
213 	/* If disabling RX n-tuple filtering, clear existing filters */
214 	if (net_dev->features & ~data & NETIF_F_NTUPLE) {
215 		rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
216 		if (rc)
217 			return rc;
218 	}
219 
220 	/* If Rx VLAN filter is changed, update filters via mac_reconfigure.
221 	 * If rx-fcs is changed, mac_reconfigure updates that too.
222 	 */
223 	if ((net_dev->features ^ data) & (NETIF_F_HW_VLAN_CTAG_FILTER |
224 					  NETIF_F_RXFCS)) {
225 		/* efx_set_rx_mode() will schedule MAC work to update filters
226 		 * when a new features are finally set in net_dev.
227 		 */
228 		efx_set_rx_mode(net_dev);
229 	}
230 
231 	return 0;
232 }
233 
234 /* This ensures that the kernel is kept informed (via
235  * netif_carrier_on/off) of the link status, and also maintains the
236  * link status's stop on the port's TX queue.
237  */
238 void efx_link_status_changed(struct efx_nic *efx)
239 {
240 	struct efx_link_state *link_state = &efx->link_state;
241 
242 	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
243 	 * that no events are triggered between unregister_netdev() and the
244 	 * driver unloading. A more general condition is that NETDEV_CHANGE
245 	 * can only be generated between NETDEV_UP and NETDEV_DOWN
246 	 */
247 	if (!netif_running(efx->net_dev))
248 		return;
249 
250 	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
251 		efx->n_link_state_changes++;
252 
253 		if (link_state->up)
254 			netif_carrier_on(efx->net_dev);
255 		else
256 			netif_carrier_off(efx->net_dev);
257 	}
258 
259 	/* Status message for kernel log */
260 	if (link_state->up)
261 		netif_info(efx, link, efx->net_dev,
262 			   "link up at %uMbps %s-duplex (MTU %d)\n",
263 			   link_state->speed, link_state->fd ? "full" : "half",
264 			   efx->net_dev->mtu);
265 	else
266 		netif_info(efx, link, efx->net_dev, "link down\n");
267 }
268 
269 unsigned int efx_xdp_max_mtu(struct efx_nic *efx)
270 {
271 	/* The maximum MTU that we can fit in a single page, allowing for
272 	 * framing, overhead and XDP headroom + tailroom.
273 	 */
274 	int overhead = EFX_MAX_FRAME_LEN(0) + sizeof(struct efx_rx_page_state) +
275 		       efx->rx_prefix_size + efx->type->rx_buffer_padding +
276 		       efx->rx_ip_align + EFX_XDP_HEADROOM + EFX_XDP_TAILROOM;
277 
278 	return PAGE_SIZE - overhead;
279 }
280 
281 /* Context: process, rtnl_lock() held. */
282 int efx_change_mtu(struct net_device *net_dev, int new_mtu)
283 {
284 	struct efx_nic *efx = efx_netdev_priv(net_dev);
285 	int rc;
286 
287 	rc = efx_check_disabled(efx);
288 	if (rc)
289 		return rc;
290 
291 	if (rtnl_dereference(efx->xdp_prog) &&
292 	    new_mtu > efx_xdp_max_mtu(efx)) {
293 		netif_err(efx, drv, efx->net_dev,
294 			  "Requested MTU of %d too big for XDP (max: %d)\n",
295 			  new_mtu, efx_xdp_max_mtu(efx));
296 		return -EINVAL;
297 	}
298 
299 	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
300 
301 	efx_device_detach_sync(efx);
302 	efx_stop_all(efx);
303 
304 	mutex_lock(&efx->mac_lock);
305 	WRITE_ONCE(net_dev->mtu, new_mtu);
306 	efx_mac_reconfigure(efx, true);
307 	mutex_unlock(&efx->mac_lock);
308 
309 	efx_start_all(efx);
310 	efx_device_attach_if_not_resetting(efx);
311 	return 0;
312 }
313 
314 /**************************************************************************
315  *
316  * Hardware monitor
317  *
318  **************************************************************************/
319 
320 /* Run periodically off the general workqueue */
321 static void efx_monitor(struct work_struct *data)
322 {
323 	struct efx_nic *efx = container_of(data, struct efx_nic,
324 					   monitor_work.work);
325 
326 	netif_vdbg(efx, timer, efx->net_dev,
327 		   "hardware monitor executing on CPU %d\n",
328 		   raw_smp_processor_id());
329 	BUG_ON(efx->type->monitor == NULL);
330 
331 	/* If the mac_lock is already held then it is likely a port
332 	 * reconfiguration is already in place, which will likely do
333 	 * most of the work of monitor() anyway.
334 	 */
335 	if (mutex_trylock(&efx->mac_lock)) {
336 		if (efx->port_enabled && efx->type->monitor)
337 			efx->type->monitor(efx);
338 		mutex_unlock(&efx->mac_lock);
339 	}
340 
341 	efx_start_monitor(efx);
342 }
343 
344 void efx_start_monitor(struct efx_nic *efx)
345 {
346 	if (efx->type->monitor)
347 		queue_delayed_work(efx->workqueue, &efx->monitor_work,
348 				   efx_monitor_interval);
349 }
350 
351 /**************************************************************************
352  *
353  * Event queue processing
354  *
355  *************************************************************************/
356 
357 /* Channels are shutdown and reinitialised whilst the NIC is running
358  * to propagate configuration changes (mtu, checksum offload), or
359  * to clear hardware error conditions
360  */
361 static void efx_start_datapath(struct efx_nic *efx)
362 {
363 	netdev_features_t old_features = efx->net_dev->features;
364 	bool old_rx_scatter = efx->rx_scatter;
365 	size_t rx_buf_len;
366 
367 	/* Calculate the rx buffer allocation parameters required to
368 	 * support the current MTU, including padding for header
369 	 * alignment and overruns.
370 	 */
371 	efx->rx_dma_len = (efx->rx_prefix_size +
372 			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
373 			   efx->type->rx_buffer_padding);
374 	rx_buf_len = (sizeof(struct efx_rx_page_state)   + EFX_XDP_HEADROOM +
375 		      efx->rx_ip_align + efx->rx_dma_len + EFX_XDP_TAILROOM);
376 
377 	if (rx_buf_len <= PAGE_SIZE) {
378 		efx->rx_scatter = efx->type->always_rx_scatter;
379 		efx->rx_buffer_order = 0;
380 	} else if (efx->type->can_rx_scatter) {
381 		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
382 		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
383 			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
384 				       EFX_RX_BUF_ALIGNMENT) >
385 			     PAGE_SIZE);
386 		efx->rx_scatter = true;
387 		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
388 		efx->rx_buffer_order = 0;
389 	} else {
390 		efx->rx_scatter = false;
391 		efx->rx_buffer_order = get_order(rx_buf_len);
392 	}
393 
394 	efx_rx_config_page_split(efx);
395 	if (efx->rx_buffer_order)
396 		netif_dbg(efx, drv, efx->net_dev,
397 			  "RX buf len=%u; page order=%u batch=%u\n",
398 			  efx->rx_dma_len, efx->rx_buffer_order,
399 			  efx->rx_pages_per_batch);
400 	else
401 		netif_dbg(efx, drv, efx->net_dev,
402 			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
403 			  efx->rx_dma_len, efx->rx_page_buf_step,
404 			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
405 
406 	/* Restore previously fixed features in hw_features and remove
407 	 * features which are fixed now
408 	 */
409 	efx->net_dev->hw_features |= efx->net_dev->features;
410 	efx->net_dev->hw_features &= ~efx->fixed_features;
411 	efx->net_dev->features |= efx->fixed_features;
412 	if (efx->net_dev->features != old_features)
413 		netdev_features_change(efx->net_dev);
414 
415 	/* RX filters may also have scatter-enabled flags */
416 	if ((efx->rx_scatter != old_rx_scatter) &&
417 	    efx->type->filter_update_rx_scatter)
418 		efx->type->filter_update_rx_scatter(efx);
419 
420 	/* We must keep at least one descriptor in a TX ring empty.
421 	 * We could avoid this when the queue size does not exactly
422 	 * match the hardware ring size, but it's not that important.
423 	 * Therefore we stop the queue when one more skb might fill
424 	 * the ring completely.  We wake it when half way back to
425 	 * empty.
426 	 */
427 	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
428 	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
429 
430 	/* Initialise the channels */
431 	efx_start_channels(efx);
432 
433 	efx_ptp_start_datapath(efx);
434 
435 	if (netif_device_present(efx->net_dev))
436 		netif_tx_wake_all_queues(efx->net_dev);
437 }
438 
439 static void efx_stop_datapath(struct efx_nic *efx)
440 {
441 	EFX_ASSERT_RESET_SERIALISED(efx);
442 	BUG_ON(efx->port_enabled);
443 
444 	efx_ptp_stop_datapath(efx);
445 
446 	efx_stop_channels(efx);
447 }
448 
449 /**************************************************************************
450  *
451  * Port handling
452  *
453  **************************************************************************/
454 
455 /* Equivalent to efx_link_set_advertising with all-zeroes, except does not
456  * force the Autoneg bit on.
457  */
458 void efx_link_clear_advertising(struct efx_nic *efx)
459 {
460 	bitmap_zero(efx->link_advertising, __ETHTOOL_LINK_MODE_MASK_NBITS);
461 	efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
462 }
463 
464 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
465 {
466 	efx->wanted_fc = wanted_fc;
467 	if (efx->link_advertising[0]) {
468 		if (wanted_fc & EFX_FC_RX)
469 			efx->link_advertising[0] |= (ADVERTISED_Pause |
470 						     ADVERTISED_Asym_Pause);
471 		else
472 			efx->link_advertising[0] &= ~(ADVERTISED_Pause |
473 						      ADVERTISED_Asym_Pause);
474 		if (wanted_fc & EFX_FC_TX)
475 			efx->link_advertising[0] ^= ADVERTISED_Asym_Pause;
476 	}
477 }
478 
479 static void efx_start_port(struct efx_nic *efx)
480 {
481 	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
482 	BUG_ON(efx->port_enabled);
483 
484 	mutex_lock(&efx->mac_lock);
485 	efx->port_enabled = true;
486 
487 	/* Ensure MAC ingress/egress is enabled */
488 	efx_mac_reconfigure(efx, false);
489 
490 	mutex_unlock(&efx->mac_lock);
491 }
492 
493 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
494  * and the async self-test, wait for them to finish and prevent them
495  * being scheduled again.  This doesn't cover online resets, which
496  * should only be cancelled when removing the device.
497  */
498 static void efx_stop_port(struct efx_nic *efx)
499 {
500 	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
501 
502 	EFX_ASSERT_RESET_SERIALISED(efx);
503 
504 	mutex_lock(&efx->mac_lock);
505 	efx->port_enabled = false;
506 	mutex_unlock(&efx->mac_lock);
507 
508 	/* Serialise against efx_set_multicast_list() */
509 	netif_addr_lock_bh(efx->net_dev);
510 	netif_addr_unlock_bh(efx->net_dev);
511 
512 	cancel_delayed_work_sync(&efx->monitor_work);
513 	efx_selftest_async_cancel(efx);
514 	cancel_work_sync(&efx->mac_work);
515 }
516 
517 /* If the interface is supposed to be running but is not, start
518  * the hardware and software data path, regular activity for the port
519  * (MAC statistics, link polling, etc.) and schedule the port to be
520  * reconfigured.  Interrupts must already be enabled.  This function
521  * is safe to call multiple times, so long as the NIC is not disabled.
522  * Requires the RTNL lock.
523  */
524 void efx_start_all(struct efx_nic *efx)
525 {
526 	EFX_ASSERT_RESET_SERIALISED(efx);
527 	BUG_ON(efx->state == STATE_DISABLED);
528 
529 	/* Check that it is appropriate to restart the interface. All
530 	 * of these flags are safe to read under just the rtnl lock
531 	 */
532 	if (efx->port_enabled || !netif_running(efx->net_dev) ||
533 	    efx->reset_pending)
534 		return;
535 
536 	efx_start_port(efx);
537 	efx_start_datapath(efx);
538 
539 	/* Start the hardware monitor if there is one */
540 	efx_start_monitor(efx);
541 
542 	efx_selftest_async_start(efx);
543 
544 	/* Link state detection is normally event-driven; we have
545 	 * to poll now because we could have missed a change
546 	 */
547 	mutex_lock(&efx->mac_lock);
548 	if (efx_mcdi_phy_poll(efx))
549 		efx_link_status_changed(efx);
550 	mutex_unlock(&efx->mac_lock);
551 
552 	if (efx->type->start_stats) {
553 		efx->type->start_stats(efx);
554 		efx->type->pull_stats(efx);
555 		spin_lock_bh(&efx->stats_lock);
556 		efx->type->update_stats(efx, NULL, NULL);
557 		spin_unlock_bh(&efx->stats_lock);
558 	}
559 }
560 
561 /* Quiesce the hardware and software data path, and regular activity
562  * for the port without bringing the link down.  Safe to call multiple
563  * times with the NIC in almost any state, but interrupts should be
564  * enabled.  Requires the RTNL lock.
565  */
566 void efx_stop_all(struct efx_nic *efx)
567 {
568 	EFX_ASSERT_RESET_SERIALISED(efx);
569 
570 	/* port_enabled can be read safely under the rtnl lock */
571 	if (!efx->port_enabled)
572 		return;
573 
574 	if (efx->type->update_stats) {
575 		/* update stats before we go down so we can accurately count
576 		 * rx_nodesc_drops
577 		 */
578 		efx->type->pull_stats(efx);
579 		spin_lock_bh(&efx->stats_lock);
580 		efx->type->update_stats(efx, NULL, NULL);
581 		spin_unlock_bh(&efx->stats_lock);
582 		efx->type->stop_stats(efx);
583 	}
584 
585 	efx_stop_port(efx);
586 
587 	/* Stop the kernel transmit interface.  This is only valid if
588 	 * the device is stopped or detached; otherwise the watchdog
589 	 * may fire immediately.
590 	 */
591 	WARN_ON(netif_running(efx->net_dev) &&
592 		netif_device_present(efx->net_dev));
593 	netif_tx_disable(efx->net_dev);
594 
595 	efx_stop_datapath(efx);
596 }
597 
598 /* Context: process, rcu_read_lock or RTNL held, non-blocking. */
599 void efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
600 {
601 	struct efx_nic *efx = efx_netdev_priv(net_dev);
602 
603 	spin_lock_bh(&efx->stats_lock);
604 	efx_nic_update_stats_atomic(efx, NULL, stats);
605 	spin_unlock_bh(&efx->stats_lock);
606 }
607 
608 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
609  * the MAC appropriately. All other PHY configuration changes are pushed
610  * through phy_op->set_settings(), and pushed asynchronously to the MAC
611  * through efx_monitor().
612  *
613  * Callers must hold the mac_lock
614  */
615 int __efx_reconfigure_port(struct efx_nic *efx)
616 {
617 	enum efx_phy_mode phy_mode;
618 	int rc = 0;
619 
620 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
621 
622 	/* Disable PHY transmit in mac level loopbacks */
623 	phy_mode = efx->phy_mode;
624 	if (LOOPBACK_INTERNAL(efx))
625 		efx->phy_mode |= PHY_MODE_TX_DISABLED;
626 	else
627 		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
628 
629 	if (efx->type->reconfigure_port)
630 		rc = efx->type->reconfigure_port(efx);
631 
632 	if (rc)
633 		efx->phy_mode = phy_mode;
634 
635 	return rc;
636 }
637 
638 /**************************************************************************
639  *
640  * Device reset and suspend
641  *
642  **************************************************************************/
643 
644 static void efx_wait_for_bist_end(struct efx_nic *efx)
645 {
646 	int i;
647 
648 	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
649 		if (efx_mcdi_poll_reboot(efx))
650 			goto out;
651 		msleep(BIST_WAIT_DELAY_MS);
652 	}
653 
654 	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
655 out:
656 	/* Either way unset the BIST flag. If we found no reboot we probably
657 	 * won't recover, but we should try.
658 	 */
659 	efx->mc_bist_for_other_fn = false;
660 }
661 
662 /* Try recovery mechanisms.
663  * For now only EEH is supported.
664  * Returns 0 if the recovery mechanisms are unsuccessful.
665  * Returns a non-zero value otherwise.
666  */
667 int efx_try_recovery(struct efx_nic *efx)
668 {
669 #ifdef CONFIG_EEH
670 	/* A PCI error can occur and not be seen by EEH because nothing
671 	 * happens on the PCI bus. In this case the driver may fail and
672 	 * schedule a 'recover or reset', leading to this recovery handler.
673 	 * Manually call the eeh failure check function.
674 	 */
675 	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
676 	if (eeh_dev_check_failure(eehdev)) {
677 		/* The EEH mechanisms will handle the error and reset the
678 		 * device if necessary.
679 		 */
680 		return 1;
681 	}
682 #endif
683 	return 0;
684 }
685 
686 /* Tears down the entire software state and most of the hardware state
687  * before reset.
688  */
689 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
690 {
691 	EFX_ASSERT_RESET_SERIALISED(efx);
692 
693 	if (method == RESET_TYPE_MCDI_TIMEOUT)
694 		efx->type->prepare_flr(efx);
695 
696 	efx_stop_all(efx);
697 	efx_disable_interrupts(efx);
698 
699 	mutex_lock(&efx->mac_lock);
700 	down_write(&efx->filter_sem);
701 	mutex_lock(&efx->net_dev->ethtool->rss_lock);
702 	efx->type->fini(efx);
703 }
704 
705 /* Context: netif_tx_lock held, BHs disabled. */
706 void efx_watchdog(struct net_device *net_dev, unsigned int txqueue)
707 {
708 	struct efx_nic *efx = efx_netdev_priv(net_dev);
709 
710 	netif_err(efx, tx_err, efx->net_dev,
711 		  "TX stuck with port_enabled=%d: resetting channels\n",
712 		  efx->port_enabled);
713 
714 	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
715 }
716 
717 /* This function will always ensure that the locks acquired in
718  * efx_reset_down() are released. A failure return code indicates
719  * that we were unable to reinitialise the hardware, and the
720  * driver should be disabled. If ok is false, then the rx and tx
721  * engines are not restarted, pending a RESET_DISABLE.
722  */
723 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
724 {
725 	int rc;
726 
727 	EFX_ASSERT_RESET_SERIALISED(efx);
728 
729 	if (method == RESET_TYPE_MCDI_TIMEOUT)
730 		efx->type->finish_flr(efx);
731 
732 	/* Ensure that SRAM is initialised even if we're disabling the device */
733 	rc = efx->type->init(efx);
734 	if (rc) {
735 		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
736 		goto fail;
737 	}
738 
739 	if (!ok)
740 		goto fail;
741 
742 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
743 	    method != RESET_TYPE_DATAPATH) {
744 		rc = efx_mcdi_port_reconfigure(efx);
745 		if (rc && rc != -EPERM)
746 			netif_err(efx, drv, efx->net_dev,
747 				  "could not restore PHY settings\n");
748 	}
749 
750 	rc = efx_enable_interrupts(efx);
751 	if (rc)
752 		goto fail;
753 
754 #ifdef CONFIG_SFC_SRIOV
755 	rc = efx->type->vswitching_restore(efx);
756 	if (rc) /* not fatal; the PF will still work fine */
757 		netif_warn(efx, probe, efx->net_dev,
758 			   "failed to restore vswitching rc=%d;"
759 			   " VFs may not function\n", rc);
760 #endif
761 
762 	if (efx->type->rx_restore_rss_contexts)
763 		efx->type->rx_restore_rss_contexts(efx);
764 	mutex_unlock(&efx->net_dev->ethtool->rss_lock);
765 	efx->type->filter_table_restore(efx);
766 	up_write(&efx->filter_sem);
767 
768 	mutex_unlock(&efx->mac_lock);
769 
770 	efx_start_all(efx);
771 
772 	if (efx->type->udp_tnl_push_ports)
773 		efx->type->udp_tnl_push_ports(efx);
774 
775 	return 0;
776 
777 fail:
778 	efx->port_initialized = false;
779 
780 	mutex_unlock(&efx->net_dev->ethtool->rss_lock);
781 	up_write(&efx->filter_sem);
782 	mutex_unlock(&efx->mac_lock);
783 
784 	return rc;
785 }
786 
787 /* Reset the NIC using the specified method.  Note that the reset may
788  * fail, in which case the card will be left in an unusable state.
789  *
790  * Caller must hold the rtnl_lock.
791  */
792 int efx_reset(struct efx_nic *efx, enum reset_type method)
793 {
794 	int rc, rc2 = 0;
795 	bool disabled;
796 
797 	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
798 		   RESET_TYPE(method));
799 
800 	efx_device_detach_sync(efx);
801 	/* efx_reset_down() grabs locks that prevent recovery on EF100.
802 	 * EF100 reset is handled in the efx_nic_type callback below.
803 	 */
804 	if (efx_nic_rev(efx) != EFX_REV_EF100)
805 		efx_reset_down(efx, method);
806 
807 	rc = efx->type->reset(efx, method);
808 	if (rc) {
809 		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
810 		goto out;
811 	}
812 
813 	/* Clear flags for the scopes we covered.  We assume the NIC and
814 	 * driver are now quiescent so that there is no race here.
815 	 */
816 	if (method < RESET_TYPE_MAX_METHOD)
817 		efx->reset_pending &= -(1 << (method + 1));
818 	else /* it doesn't fit into the well-ordered scope hierarchy */
819 		__clear_bit(method, &efx->reset_pending);
820 
821 	/* Reinitialise bus-mastering, which may have been turned off before
822 	 * the reset was scheduled. This is still appropriate, even in the
823 	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
824 	 * can respond to requests.
825 	 */
826 	pci_set_master(efx->pci_dev);
827 
828 out:
829 	/* Leave device stopped if necessary */
830 	disabled = rc ||
831 		method == RESET_TYPE_DISABLE ||
832 		method == RESET_TYPE_RECOVER_OR_DISABLE;
833 	if (efx_nic_rev(efx) != EFX_REV_EF100)
834 		rc2 = efx_reset_up(efx, method, !disabled);
835 	if (rc2) {
836 		disabled = true;
837 		if (!rc)
838 			rc = rc2;
839 	}
840 
841 	if (disabled) {
842 		dev_close(efx->net_dev);
843 		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
844 		efx->state = STATE_DISABLED;
845 	} else {
846 		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
847 		efx_device_attach_if_not_resetting(efx);
848 	}
849 	return rc;
850 }
851 
852 /* The worker thread exists so that code that cannot sleep can
853  * schedule a reset for later.
854  */
855 static void efx_reset_work(struct work_struct *data)
856 {
857 	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
858 	unsigned long pending;
859 	enum reset_type method;
860 
861 	pending = READ_ONCE(efx->reset_pending);
862 	method = fls(pending) - 1;
863 
864 	if (method == RESET_TYPE_MC_BIST)
865 		efx_wait_for_bist_end(efx);
866 
867 	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
868 	     method == RESET_TYPE_RECOVER_OR_ALL) &&
869 	    efx_try_recovery(efx))
870 		return;
871 
872 	if (!pending)
873 		return;
874 
875 	rtnl_lock();
876 
877 	/* We checked the state in efx_schedule_reset() but it may
878 	 * have changed by now.  Now that we have the RTNL lock,
879 	 * it cannot change again.
880 	 */
881 	if (efx_net_active(efx->state))
882 		(void)efx_reset(efx, method);
883 
884 	rtnl_unlock();
885 }
886 
887 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
888 {
889 	enum reset_type method;
890 
891 	if (efx_recovering(efx->state)) {
892 		netif_dbg(efx, drv, efx->net_dev,
893 			  "recovering: skip scheduling %s reset\n",
894 			  RESET_TYPE(type));
895 		return;
896 	}
897 
898 	switch (type) {
899 	case RESET_TYPE_INVISIBLE:
900 	case RESET_TYPE_ALL:
901 	case RESET_TYPE_RECOVER_OR_ALL:
902 	case RESET_TYPE_WORLD:
903 	case RESET_TYPE_DISABLE:
904 	case RESET_TYPE_RECOVER_OR_DISABLE:
905 	case RESET_TYPE_DATAPATH:
906 	case RESET_TYPE_MC_BIST:
907 	case RESET_TYPE_MCDI_TIMEOUT:
908 		method = type;
909 		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
910 			  RESET_TYPE(method));
911 		break;
912 	default:
913 		method = efx->type->map_reset_reason(type);
914 		netif_dbg(efx, drv, efx->net_dev,
915 			  "scheduling %s reset for %s\n",
916 			  RESET_TYPE(method), RESET_TYPE(type));
917 		break;
918 	}
919 
920 	set_bit(method, &efx->reset_pending);
921 	smp_mb(); /* ensure we change reset_pending before checking state */
922 
923 	/* If we're not READY then just leave the flags set as the cue
924 	 * to abort probing or reschedule the reset later.
925 	 */
926 	if (!efx_net_active(READ_ONCE(efx->state)))
927 		return;
928 
929 	/* efx_process_channel() will no longer read events once a
930 	 * reset is scheduled. So switch back to poll'd MCDI completions.
931 	 */
932 	efx_mcdi_mode_poll(efx);
933 
934 	efx_queue_reset_work(efx);
935 }
936 
937 /**************************************************************************
938  *
939  * Dummy NIC operations
940  *
941  * Can be used for some unimplemented operations
942  * Needed so all function pointers are valid and do not have to be tested
943  * before use
944  *
945  **************************************************************************/
946 int efx_port_dummy_op_int(struct efx_nic *efx)
947 {
948 	return 0;
949 }
950 void efx_port_dummy_op_void(struct efx_nic *efx) {}
951 
952 /**************************************************************************
953  *
954  * Data housekeeping
955  *
956  **************************************************************************/
957 
958 /* This zeroes out and then fills in the invariants in a struct
959  * efx_nic (including all sub-structures).
960  */
961 int efx_init_struct(struct efx_nic *efx, struct pci_dev *pci_dev)
962 {
963 	int rc = -ENOMEM;
964 
965 	/* Initialise common structures */
966 	INIT_LIST_HEAD(&efx->node);
967 	INIT_LIST_HEAD(&efx->secondary_list);
968 	spin_lock_init(&efx->biu_lock);
969 #ifdef CONFIG_SFC_MTD
970 	INIT_LIST_HEAD(&efx->mtd_list);
971 #endif
972 	INIT_WORK(&efx->reset_work, efx_reset_work);
973 	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
974 	efx_selftest_async_init(efx);
975 	efx->pci_dev = pci_dev;
976 	efx->msg_enable = debug;
977 	efx->state = STATE_UNINIT;
978 	strscpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
979 
980 	efx->rx_prefix_size = efx->type->rx_prefix_size;
981 	efx->rx_ip_align =
982 		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
983 	efx->rx_packet_hash_offset =
984 		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
985 	efx->rx_packet_ts_offset =
986 		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
987 	efx->rss_context.priv.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
988 	efx->vport_id = EVB_PORT_ID_ASSIGNED;
989 	spin_lock_init(&efx->stats_lock);
990 	efx->vi_stride = EFX_DEFAULT_VI_STRIDE;
991 	efx->num_mac_stats = MC_CMD_MAC_NSTATS;
992 	BUILD_BUG_ON(MC_CMD_MAC_NSTATS - 1 != MC_CMD_MAC_GENERATION_END);
993 	mutex_init(&efx->mac_lock);
994 	init_rwsem(&efx->filter_sem);
995 #ifdef CONFIG_RFS_ACCEL
996 	mutex_init(&efx->rps_mutex);
997 	spin_lock_init(&efx->rps_hash_lock);
998 	/* Failure to allocate is not fatal, but may degrade ARFS performance */
999 	efx->rps_hash_table = kcalloc(EFX_ARFS_HASH_TABLE_SIZE,
1000 				      sizeof(*efx->rps_hash_table), GFP_KERNEL);
1001 #endif
1002 	spin_lock_init(&efx->vf_reps_lock);
1003 	INIT_LIST_HEAD(&efx->vf_reps);
1004 	INIT_WORK(&efx->mac_work, efx_mac_work);
1005 	init_waitqueue_head(&efx->flush_wq);
1006 
1007 	efx->tx_queues_per_channel = 1;
1008 	efx->rxq_entries = EFX_DEFAULT_DMAQ_SIZE;
1009 	efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1010 
1011 	efx->mem_bar = UINT_MAX;
1012 
1013 	rc = efx_init_channels(efx);
1014 	if (rc)
1015 		goto fail;
1016 
1017 	/* Would be good to use the net_dev name, but we're too early */
1018 	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
1019 		 pci_name(pci_dev));
1020 	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1021 	if (!efx->workqueue) {
1022 		rc = -ENOMEM;
1023 		goto fail;
1024 	}
1025 
1026 	return 0;
1027 
1028 fail:
1029 	efx_fini_struct(efx);
1030 	return rc;
1031 }
1032 
1033 void efx_fini_struct(struct efx_nic *efx)
1034 {
1035 #ifdef CONFIG_RFS_ACCEL
1036 	kfree(efx->rps_hash_table);
1037 #endif
1038 
1039 	efx_fini_channels(efx);
1040 
1041 	kfree(efx->vpd_sn);
1042 
1043 	if (efx->workqueue) {
1044 		destroy_workqueue(efx->workqueue);
1045 		efx->workqueue = NULL;
1046 	}
1047 }
1048 
1049 /* This configures the PCI device to enable I/O and DMA. */
1050 int efx_init_io(struct efx_nic *efx, int bar, dma_addr_t dma_mask,
1051 		unsigned int mem_map_size)
1052 {
1053 	struct pci_dev *pci_dev = efx->pci_dev;
1054 	int rc;
1055 
1056 	efx->mem_bar = UINT_MAX;
1057 	pci_dbg(pci_dev, "initialising I/O bar=%d\n", bar);
1058 
1059 	rc = pci_enable_device(pci_dev);
1060 	if (rc) {
1061 		pci_err(pci_dev, "failed to enable PCI device\n");
1062 		goto fail1;
1063 	}
1064 
1065 	pci_set_master(pci_dev);
1066 
1067 	rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1068 	if (rc) {
1069 		pci_err(efx->pci_dev, "could not find a suitable DMA mask\n");
1070 		goto fail2;
1071 	}
1072 	pci_dbg(efx->pci_dev, "using DMA mask %llx\n", (unsigned long long)dma_mask);
1073 
1074 	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1075 	if (!efx->membase_phys) {
1076 		pci_err(efx->pci_dev,
1077 			"ERROR: No BAR%d mapping from the BIOS. Try pci=realloc on the kernel command line\n",
1078 			bar);
1079 		rc = -ENODEV;
1080 		goto fail3;
1081 	}
1082 
1083 	rc = pci_request_region(pci_dev, bar, "sfc");
1084 	if (rc) {
1085 		pci_err(efx->pci_dev,
1086 			"request for memory BAR[%d] failed\n", bar);
1087 		rc = -EIO;
1088 		goto fail3;
1089 	}
1090 	efx->mem_bar = bar;
1091 	efx->membase = ioremap(efx->membase_phys, mem_map_size);
1092 	if (!efx->membase) {
1093 		pci_err(efx->pci_dev,
1094 			"could not map memory BAR[%d] at %llx+%x\n", bar,
1095 			(unsigned long long)efx->membase_phys, mem_map_size);
1096 		rc = -ENOMEM;
1097 		goto fail4;
1098 	}
1099 	pci_dbg(efx->pci_dev,
1100 		"memory BAR[%d] at %llx+%x (virtual %p)\n", bar,
1101 		(unsigned long long)efx->membase_phys, mem_map_size,
1102 		efx->membase);
1103 
1104 	return 0;
1105 
1106 fail4:
1107 	pci_release_region(efx->pci_dev, bar);
1108 fail3:
1109 	efx->membase_phys = 0;
1110 fail2:
1111 	pci_disable_device(efx->pci_dev);
1112 fail1:
1113 	return rc;
1114 }
1115 
1116 void efx_fini_io(struct efx_nic *efx)
1117 {
1118 	pci_dbg(efx->pci_dev, "shutting down I/O\n");
1119 
1120 	if (efx->membase) {
1121 		iounmap(efx->membase);
1122 		efx->membase = NULL;
1123 	}
1124 
1125 	if (efx->membase_phys) {
1126 		pci_release_region(efx->pci_dev, efx->mem_bar);
1127 		efx->membase_phys = 0;
1128 		efx->mem_bar = UINT_MAX;
1129 	}
1130 
1131 	/* Don't disable bus-mastering if VFs are assigned */
1132 	if (!pci_vfs_assigned(efx->pci_dev))
1133 		pci_disable_device(efx->pci_dev);
1134 }
1135 
1136 #ifdef CONFIG_SFC_MCDI_LOGGING
1137 static ssize_t mcdi_logging_show(struct device *dev,
1138 				 struct device_attribute *attr,
1139 				 char *buf)
1140 {
1141 	struct efx_nic *efx = dev_get_drvdata(dev);
1142 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1143 
1144 	return sysfs_emit(buf, "%d\n", mcdi->logging_enabled);
1145 }
1146 
1147 static ssize_t mcdi_logging_store(struct device *dev,
1148 				  struct device_attribute *attr,
1149 				  const char *buf, size_t count)
1150 {
1151 	struct efx_nic *efx = dev_get_drvdata(dev);
1152 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1153 	bool enable = count > 0 && *buf != '0';
1154 
1155 	mcdi->logging_enabled = enable;
1156 	return count;
1157 }
1158 
1159 static DEVICE_ATTR_RW(mcdi_logging);
1160 
1161 void efx_init_mcdi_logging(struct efx_nic *efx)
1162 {
1163 	int rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
1164 
1165 	if (rc) {
1166 		netif_warn(efx, drv, efx->net_dev,
1167 			   "failed to init net dev attributes\n");
1168 	}
1169 }
1170 
1171 void efx_fini_mcdi_logging(struct efx_nic *efx)
1172 {
1173 	device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
1174 }
1175 #endif
1176 
1177 /* A PCI error affecting this device was detected.
1178  * At this point MMIO and DMA may be disabled.
1179  * Stop the software path and request a slot reset.
1180  */
1181 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
1182 					      pci_channel_state_t state)
1183 {
1184 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
1185 	struct efx_nic *efx = pci_get_drvdata(pdev);
1186 
1187 	if (state == pci_channel_io_perm_failure)
1188 		return PCI_ERS_RESULT_DISCONNECT;
1189 
1190 	rtnl_lock();
1191 
1192 	if (efx->state != STATE_DISABLED) {
1193 		efx->state = efx_recover(efx->state);
1194 		efx->reset_pending = 0;
1195 
1196 		efx_device_detach_sync(efx);
1197 
1198 		if (efx_net_active(efx->state)) {
1199 			efx_stop_all(efx);
1200 			efx_disable_interrupts(efx);
1201 		}
1202 
1203 		status = PCI_ERS_RESULT_NEED_RESET;
1204 	} else {
1205 		/* If the interface is disabled we don't want to do anything
1206 		 * with it.
1207 		 */
1208 		status = PCI_ERS_RESULT_RECOVERED;
1209 	}
1210 
1211 	rtnl_unlock();
1212 
1213 	pci_disable_device(pdev);
1214 
1215 	return status;
1216 }
1217 
1218 /* Fake a successful reset, which will be performed later in efx_io_resume. */
1219 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
1220 {
1221 	struct efx_nic *efx = pci_get_drvdata(pdev);
1222 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
1223 
1224 	if (pci_enable_device(pdev)) {
1225 		netif_err(efx, hw, efx->net_dev,
1226 			  "Cannot re-enable PCI device after reset.\n");
1227 		status =  PCI_ERS_RESULT_DISCONNECT;
1228 	}
1229 
1230 	return status;
1231 }
1232 
1233 /* Perform the actual reset and resume I/O operations. */
1234 static void efx_io_resume(struct pci_dev *pdev)
1235 {
1236 	struct efx_nic *efx = pci_get_drvdata(pdev);
1237 	int rc;
1238 
1239 	rtnl_lock();
1240 
1241 	if (efx->state == STATE_DISABLED)
1242 		goto out;
1243 
1244 	rc = efx_reset(efx, RESET_TYPE_ALL);
1245 	if (rc) {
1246 		netif_err(efx, hw, efx->net_dev,
1247 			  "efx_reset failed after PCI error (%d)\n", rc);
1248 	} else {
1249 		efx->state = efx_recovered(efx->state);
1250 		netif_dbg(efx, hw, efx->net_dev,
1251 			  "Done resetting and resuming IO after PCI error.\n");
1252 	}
1253 
1254 out:
1255 	rtnl_unlock();
1256 }
1257 
1258 /* For simplicity and reliability, we always require a slot reset and try to
1259  * reset the hardware when a pci error affecting the device is detected.
1260  * We leave both the link_reset and mmio_enabled callback unimplemented:
1261  * with our request for slot reset the mmio_enabled callback will never be
1262  * called, and the link_reset callback is not used by AER or EEH mechanisms.
1263  */
1264 const struct pci_error_handlers efx_err_handlers = {
1265 	.error_detected = efx_io_error_detected,
1266 	.slot_reset	= efx_io_slot_reset,
1267 	.resume		= efx_io_resume,
1268 };
1269 
1270 /* Determine whether the NIC will be able to handle TX offloads for a given
1271  * encapsulated packet.
1272  */
1273 static bool efx_can_encap_offloads(struct efx_nic *efx, struct sk_buff *skb)
1274 {
1275 	struct gre_base_hdr *greh;
1276 	__be16 dst_port;
1277 	u8 ipproto;
1278 
1279 	/* Does the NIC support encap offloads?
1280 	 * If not, we should never get here, because we shouldn't have
1281 	 * advertised encap offload feature flags in the first place.
1282 	 */
1283 	if (WARN_ON_ONCE(!efx->type->udp_tnl_has_port))
1284 		return false;
1285 
1286 	/* Determine encapsulation protocol in use */
1287 	switch (skb->protocol) {
1288 	case htons(ETH_P_IP):
1289 		ipproto = ip_hdr(skb)->protocol;
1290 		break;
1291 	case htons(ETH_P_IPV6):
1292 		/* If there are extension headers, this will cause us to
1293 		 * think we can't offload something that we maybe could have.
1294 		 */
1295 		ipproto = ipv6_hdr(skb)->nexthdr;
1296 		break;
1297 	default:
1298 		/* Not IP, so can't offload it */
1299 		return false;
1300 	}
1301 	switch (ipproto) {
1302 	case IPPROTO_GRE:
1303 		/* We support NVGRE but not IP over GRE or random gretaps.
1304 		 * Specifically, the NIC will accept GRE as encapsulated if
1305 		 * the inner protocol is Ethernet, but only handle it
1306 		 * correctly if the GRE header is 8 bytes long.  Moreover,
1307 		 * it will not update the Checksum or Sequence Number fields
1308 		 * if they are present.  (The Routing Present flag,
1309 		 * GRE_ROUTING, cannot be set else the header would be more
1310 		 * than 8 bytes long; so we don't have to worry about it.)
1311 		 */
1312 		if (skb->inner_protocol_type != ENCAP_TYPE_ETHER)
1313 			return false;
1314 		if (ntohs(skb->inner_protocol) != ETH_P_TEB)
1315 			return false;
1316 		if (skb_inner_mac_header(skb) - skb_transport_header(skb) != 8)
1317 			return false;
1318 		greh = (struct gre_base_hdr *)skb_transport_header(skb);
1319 		return !(greh->flags & (GRE_CSUM | GRE_SEQ));
1320 	case IPPROTO_UDP:
1321 		/* If the port is registered for a UDP tunnel, we assume the
1322 		 * packet is for that tunnel, and the NIC will handle it as
1323 		 * such.  If not, the NIC won't know what to do with it.
1324 		 */
1325 		dst_port = udp_hdr(skb)->dest;
1326 		return efx->type->udp_tnl_has_port(efx, dst_port);
1327 	default:
1328 		return false;
1329 	}
1330 }
1331 
1332 netdev_features_t efx_features_check(struct sk_buff *skb, struct net_device *dev,
1333 				     netdev_features_t features)
1334 {
1335 	struct efx_nic *efx = efx_netdev_priv(dev);
1336 
1337 	if (skb->encapsulation) {
1338 		if (features & NETIF_F_GSO_MASK)
1339 			/* Hardware can only do TSO with at most 208 bytes
1340 			 * of headers.
1341 			 */
1342 			if (skb_inner_transport_offset(skb) >
1343 			    EFX_TSO2_MAX_HDRLEN)
1344 				features &= ~(NETIF_F_GSO_MASK);
1345 		if (features & (NETIF_F_GSO_MASK | NETIF_F_CSUM_MASK))
1346 			if (!efx_can_encap_offloads(efx, skb))
1347 				features &= ~(NETIF_F_GSO_MASK |
1348 					      NETIF_F_CSUM_MASK);
1349 	}
1350 	return features;
1351 }
1352 
1353 int efx_get_phys_port_id(struct net_device *net_dev,
1354 			 struct netdev_phys_item_id *ppid)
1355 {
1356 	struct efx_nic *efx = efx_netdev_priv(net_dev);
1357 
1358 	if (efx->type->get_phys_port_id)
1359 		return efx->type->get_phys_port_id(efx, ppid);
1360 	else
1361 		return -EOPNOTSUPP;
1362 }
1363 
1364 int efx_get_phys_port_name(struct net_device *net_dev, char *name, size_t len)
1365 {
1366 	struct efx_nic *efx = efx_netdev_priv(net_dev);
1367 
1368 	if (snprintf(name, len, "p%u", efx->port_num) >= len)
1369 		return -EINVAL;
1370 	return 0;
1371 }
1372 
1373 void efx_detach_reps(struct efx_nic *efx)
1374 {
1375 	struct net_device *rep_dev;
1376 	struct efx_rep *efv;
1377 
1378 	ASSERT_RTNL();
1379 	netif_dbg(efx, drv, efx->net_dev, "Detaching VF representors\n");
1380 	list_for_each_entry(efv, &efx->vf_reps, list) {
1381 		rep_dev = efv->net_dev;
1382 		if (!rep_dev)
1383 			continue;
1384 		netif_carrier_off(rep_dev);
1385 		/* See efx_device_detach_sync() */
1386 		netif_tx_lock_bh(rep_dev);
1387 		netif_tx_stop_all_queues(rep_dev);
1388 		netif_tx_unlock_bh(rep_dev);
1389 	}
1390 }
1391 
1392 void efx_attach_reps(struct efx_nic *efx)
1393 {
1394 	struct net_device *rep_dev;
1395 	struct efx_rep *efv;
1396 
1397 	ASSERT_RTNL();
1398 	netif_dbg(efx, drv, efx->net_dev, "Attaching VF representors\n");
1399 	list_for_each_entry(efv, &efx->vf_reps, list) {
1400 		rep_dev = efv->net_dev;
1401 		if (!rep_dev)
1402 			continue;
1403 		netif_tx_wake_all_queues(rep_dev);
1404 		netif_carrier_on(rep_dev);
1405 	}
1406 }
1407