xref: /linux/drivers/net/ethernet/sfc/efx_channels.c (revision b6459415b384cb829f0b2a4268f211c789f6cf0b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2018 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include "net_driver.h"
12 #include <linux/module.h>
13 #include <linux/filter.h>
14 #include "efx_channels.h"
15 #include "efx.h"
16 #include "efx_common.h"
17 #include "tx_common.h"
18 #include "rx_common.h"
19 #include "nic.h"
20 #include "sriov.h"
21 #include "workarounds.h"
22 
23 /* This is the first interrupt mode to try out of:
24  * 0 => MSI-X
25  * 1 => MSI
26  * 2 => legacy
27  */
28 unsigned int efx_interrupt_mode = EFX_INT_MODE_MSIX;
29 
30 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
31  * i.e. the number of CPUs among which we may distribute simultaneous
32  * interrupt handling.
33  *
34  * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
35  * The default (0) means to assign an interrupt to each core.
36  */
37 unsigned int rss_cpus;
38 
39 static unsigned int irq_adapt_low_thresh = 8000;
40 module_param(irq_adapt_low_thresh, uint, 0644);
41 MODULE_PARM_DESC(irq_adapt_low_thresh,
42 		 "Threshold score for reducing IRQ moderation");
43 
44 static unsigned int irq_adapt_high_thresh = 16000;
45 module_param(irq_adapt_high_thresh, uint, 0644);
46 MODULE_PARM_DESC(irq_adapt_high_thresh,
47 		 "Threshold score for increasing IRQ moderation");
48 
49 /* This is the weight assigned to each of the (per-channel) virtual
50  * NAPI devices.
51  */
52 static int napi_weight = 64;
53 
54 /***************
55  * Housekeeping
56  ***************/
57 
58 int efx_channel_dummy_op_int(struct efx_channel *channel)
59 {
60 	return 0;
61 }
62 
63 void efx_channel_dummy_op_void(struct efx_channel *channel)
64 {
65 }
66 
67 static const struct efx_channel_type efx_default_channel_type = {
68 	.pre_probe		= efx_channel_dummy_op_int,
69 	.post_remove		= efx_channel_dummy_op_void,
70 	.get_name		= efx_get_channel_name,
71 	.copy			= efx_copy_channel,
72 	.want_txqs		= efx_default_channel_want_txqs,
73 	.keep_eventq		= false,
74 	.want_pio		= true,
75 };
76 
77 /*************
78  * INTERRUPTS
79  *************/
80 
81 static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
82 {
83 	cpumask_var_t thread_mask;
84 	unsigned int count;
85 	int cpu;
86 
87 	if (rss_cpus) {
88 		count = rss_cpus;
89 	} else {
90 		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
91 			netif_warn(efx, probe, efx->net_dev,
92 				   "RSS disabled due to allocation failure\n");
93 			return 1;
94 		}
95 
96 		count = 0;
97 		for_each_online_cpu(cpu) {
98 			if (!cpumask_test_cpu(cpu, thread_mask)) {
99 				++count;
100 				cpumask_or(thread_mask, thread_mask,
101 					   topology_sibling_cpumask(cpu));
102 			}
103 		}
104 
105 		free_cpumask_var(thread_mask);
106 	}
107 
108 	if (count > EFX_MAX_RX_QUEUES) {
109 		netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn,
110 			       "Reducing number of rx queues from %u to %u.\n",
111 			       count, EFX_MAX_RX_QUEUES);
112 		count = EFX_MAX_RX_QUEUES;
113 	}
114 
115 	/* If RSS is requested for the PF *and* VFs then we can't write RSS
116 	 * table entries that are inaccessible to VFs
117 	 */
118 #ifdef CONFIG_SFC_SRIOV
119 	if (efx->type->sriov_wanted) {
120 		if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
121 		    count > efx_vf_size(efx)) {
122 			netif_warn(efx, probe, efx->net_dev,
123 				   "Reducing number of RSS channels from %u to %u for "
124 				   "VF support. Increase vf-msix-limit to use more "
125 				   "channels on the PF.\n",
126 				   count, efx_vf_size(efx));
127 			count = efx_vf_size(efx);
128 		}
129 	}
130 #endif
131 
132 	return count;
133 }
134 
135 static int efx_allocate_msix_channels(struct efx_nic *efx,
136 				      unsigned int max_channels,
137 				      unsigned int extra_channels,
138 				      unsigned int parallelism)
139 {
140 	unsigned int n_channels = parallelism;
141 	int vec_count;
142 	int tx_per_ev;
143 	int n_xdp_tx;
144 	int n_xdp_ev;
145 
146 	if (efx_separate_tx_channels)
147 		n_channels *= 2;
148 	n_channels += extra_channels;
149 
150 	/* To allow XDP transmit to happen from arbitrary NAPI contexts
151 	 * we allocate a TX queue per CPU. We share event queues across
152 	 * multiple tx queues, assuming tx and ev queues are both
153 	 * maximum size.
154 	 */
155 	tx_per_ev = EFX_MAX_EVQ_SIZE / EFX_TXQ_MAX_ENT(efx);
156 	tx_per_ev = min(tx_per_ev, EFX_MAX_TXQ_PER_CHANNEL);
157 	n_xdp_tx = num_possible_cpus();
158 	n_xdp_ev = DIV_ROUND_UP(n_xdp_tx, tx_per_ev);
159 
160 	vec_count = pci_msix_vec_count(efx->pci_dev);
161 	if (vec_count < 0)
162 		return vec_count;
163 
164 	max_channels = min_t(unsigned int, vec_count, max_channels);
165 
166 	/* Check resources.
167 	 * We need a channel per event queue, plus a VI per tx queue.
168 	 * This may be more pessimistic than it needs to be.
169 	 */
170 	if (n_channels >= max_channels) {
171 		efx->xdp_txq_queues_mode = EFX_XDP_TX_QUEUES_BORROWED;
172 		netif_warn(efx, drv, efx->net_dev,
173 			   "Insufficient resources for %d XDP event queues (%d other channels, max %d)\n",
174 			   n_xdp_ev, n_channels, max_channels);
175 		netif_warn(efx, drv, efx->net_dev,
176 			   "XDP_TX and XDP_REDIRECT might decrease device's performance\n");
177 	} else if (n_channels + n_xdp_tx > efx->max_vis) {
178 		efx->xdp_txq_queues_mode = EFX_XDP_TX_QUEUES_BORROWED;
179 		netif_warn(efx, drv, efx->net_dev,
180 			   "Insufficient resources for %d XDP TX queues (%d other channels, max VIs %d)\n",
181 			   n_xdp_tx, n_channels, efx->max_vis);
182 		netif_warn(efx, drv, efx->net_dev,
183 			   "XDP_TX and XDP_REDIRECT might decrease device's performance\n");
184 	} else if (n_channels + n_xdp_ev > max_channels) {
185 		efx->xdp_txq_queues_mode = EFX_XDP_TX_QUEUES_SHARED;
186 		netif_warn(efx, drv, efx->net_dev,
187 			   "Insufficient resources for %d XDP event queues (%d other channels, max %d)\n",
188 			   n_xdp_ev, n_channels, max_channels);
189 
190 		n_xdp_ev = max_channels - n_channels;
191 		netif_warn(efx, drv, efx->net_dev,
192 			   "XDP_TX and XDP_REDIRECT will work with reduced performance (%d cpus/tx_queue)\n",
193 			   DIV_ROUND_UP(n_xdp_tx, tx_per_ev * n_xdp_ev));
194 	} else {
195 		efx->xdp_txq_queues_mode = EFX_XDP_TX_QUEUES_DEDICATED;
196 	}
197 
198 	if (efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_BORROWED) {
199 		efx->n_xdp_channels = n_xdp_ev;
200 		efx->xdp_tx_per_channel = tx_per_ev;
201 		efx->xdp_tx_queue_count = n_xdp_tx;
202 		n_channels += n_xdp_ev;
203 		netif_dbg(efx, drv, efx->net_dev,
204 			  "Allocating %d TX and %d event queues for XDP\n",
205 			  n_xdp_ev * tx_per_ev, n_xdp_ev);
206 	} else {
207 		efx->n_xdp_channels = 0;
208 		efx->xdp_tx_per_channel = 0;
209 		efx->xdp_tx_queue_count = n_xdp_tx;
210 	}
211 
212 	if (vec_count < n_channels) {
213 		netif_err(efx, drv, efx->net_dev,
214 			  "WARNING: Insufficient MSI-X vectors available (%d < %u).\n",
215 			  vec_count, n_channels);
216 		netif_err(efx, drv, efx->net_dev,
217 			  "WARNING: Performance may be reduced.\n");
218 		n_channels = vec_count;
219 	}
220 
221 	n_channels = min(n_channels, max_channels);
222 
223 	efx->n_channels = n_channels;
224 
225 	/* Ignore XDP tx channels when creating rx channels. */
226 	n_channels -= efx->n_xdp_channels;
227 
228 	if (efx_separate_tx_channels) {
229 		efx->n_tx_channels =
230 			min(max(n_channels / 2, 1U),
231 			    efx->max_tx_channels);
232 		efx->tx_channel_offset =
233 			n_channels - efx->n_tx_channels;
234 		efx->n_rx_channels =
235 			max(n_channels -
236 			    efx->n_tx_channels, 1U);
237 	} else {
238 		efx->n_tx_channels = min(n_channels, efx->max_tx_channels);
239 		efx->tx_channel_offset = 0;
240 		efx->n_rx_channels = n_channels;
241 	}
242 
243 	efx->n_rx_channels = min(efx->n_rx_channels, parallelism);
244 	efx->n_tx_channels = min(efx->n_tx_channels, parallelism);
245 
246 	efx->xdp_channel_offset = n_channels;
247 
248 	netif_dbg(efx, drv, efx->net_dev,
249 		  "Allocating %u RX channels\n",
250 		  efx->n_rx_channels);
251 
252 	return efx->n_channels;
253 }
254 
255 /* Probe the number and type of interrupts we are able to obtain, and
256  * the resulting numbers of channels and RX queues.
257  */
258 int efx_probe_interrupts(struct efx_nic *efx)
259 {
260 	unsigned int extra_channels = 0;
261 	unsigned int rss_spread;
262 	unsigned int i, j;
263 	int rc;
264 
265 	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
266 		if (efx->extra_channel_type[i])
267 			++extra_channels;
268 
269 	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
270 		unsigned int parallelism = efx_wanted_parallelism(efx);
271 		struct msix_entry xentries[EFX_MAX_CHANNELS];
272 		unsigned int n_channels;
273 
274 		rc = efx_allocate_msix_channels(efx, efx->max_channels,
275 						extra_channels, parallelism);
276 		if (rc >= 0) {
277 			n_channels = rc;
278 			for (i = 0; i < n_channels; i++)
279 				xentries[i].entry = i;
280 			rc = pci_enable_msix_range(efx->pci_dev, xentries, 1,
281 						   n_channels);
282 		}
283 		if (rc < 0) {
284 			/* Fall back to single channel MSI */
285 			netif_err(efx, drv, efx->net_dev,
286 				  "could not enable MSI-X\n");
287 			if (efx->type->min_interrupt_mode >= EFX_INT_MODE_MSI)
288 				efx->interrupt_mode = EFX_INT_MODE_MSI;
289 			else
290 				return rc;
291 		} else if (rc < n_channels) {
292 			netif_err(efx, drv, efx->net_dev,
293 				  "WARNING: Insufficient MSI-X vectors"
294 				  " available (%d < %u).\n", rc, n_channels);
295 			netif_err(efx, drv, efx->net_dev,
296 				  "WARNING: Performance may be reduced.\n");
297 			n_channels = rc;
298 		}
299 
300 		if (rc > 0) {
301 			for (i = 0; i < efx->n_channels; i++)
302 				efx_get_channel(efx, i)->irq =
303 					xentries[i].vector;
304 		}
305 	}
306 
307 	/* Try single interrupt MSI */
308 	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
309 		efx->n_channels = 1;
310 		efx->n_rx_channels = 1;
311 		efx->n_tx_channels = 1;
312 		efx->n_xdp_channels = 0;
313 		efx->xdp_channel_offset = efx->n_channels;
314 		rc = pci_enable_msi(efx->pci_dev);
315 		if (rc == 0) {
316 			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
317 		} else {
318 			netif_err(efx, drv, efx->net_dev,
319 				  "could not enable MSI\n");
320 			if (efx->type->min_interrupt_mode >= EFX_INT_MODE_LEGACY)
321 				efx->interrupt_mode = EFX_INT_MODE_LEGACY;
322 			else
323 				return rc;
324 		}
325 	}
326 
327 	/* Assume legacy interrupts */
328 	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
329 		efx->n_channels = 1 + (efx_separate_tx_channels ? 1 : 0);
330 		efx->n_rx_channels = 1;
331 		efx->n_tx_channels = 1;
332 		efx->n_xdp_channels = 0;
333 		efx->xdp_channel_offset = efx->n_channels;
334 		efx->legacy_irq = efx->pci_dev->irq;
335 	}
336 
337 	/* Assign extra channels if possible, before XDP channels */
338 	efx->n_extra_tx_channels = 0;
339 	j = efx->xdp_channel_offset;
340 	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
341 		if (!efx->extra_channel_type[i])
342 			continue;
343 		if (j <= efx->tx_channel_offset + efx->n_tx_channels) {
344 			efx->extra_channel_type[i]->handle_no_channel(efx);
345 		} else {
346 			--j;
347 			efx_get_channel(efx, j)->type =
348 				efx->extra_channel_type[i];
349 			if (efx_channel_has_tx_queues(efx_get_channel(efx, j)))
350 				efx->n_extra_tx_channels++;
351 		}
352 	}
353 
354 	rss_spread = efx->n_rx_channels;
355 	/* RSS might be usable on VFs even if it is disabled on the PF */
356 #ifdef CONFIG_SFC_SRIOV
357 	if (efx->type->sriov_wanted) {
358 		efx->rss_spread = ((rss_spread > 1 ||
359 				    !efx->type->sriov_wanted(efx)) ?
360 				   rss_spread : efx_vf_size(efx));
361 		return 0;
362 	}
363 #endif
364 	efx->rss_spread = rss_spread;
365 
366 	return 0;
367 }
368 
369 #if defined(CONFIG_SMP)
370 void efx_set_interrupt_affinity(struct efx_nic *efx)
371 {
372 	struct efx_channel *channel;
373 	unsigned int cpu;
374 
375 	efx_for_each_channel(channel, efx) {
376 		cpu = cpumask_local_spread(channel->channel,
377 					   pcibus_to_node(efx->pci_dev->bus));
378 		irq_set_affinity_hint(channel->irq, cpumask_of(cpu));
379 	}
380 }
381 
382 void efx_clear_interrupt_affinity(struct efx_nic *efx)
383 {
384 	struct efx_channel *channel;
385 
386 	efx_for_each_channel(channel, efx)
387 		irq_set_affinity_hint(channel->irq, NULL);
388 }
389 #else
390 void
391 efx_set_interrupt_affinity(struct efx_nic *efx __attribute__ ((unused)))
392 {
393 }
394 
395 void
396 efx_clear_interrupt_affinity(struct efx_nic *efx __attribute__ ((unused)))
397 {
398 }
399 #endif /* CONFIG_SMP */
400 
401 void efx_remove_interrupts(struct efx_nic *efx)
402 {
403 	struct efx_channel *channel;
404 
405 	/* Remove MSI/MSI-X interrupts */
406 	efx_for_each_channel(channel, efx)
407 		channel->irq = 0;
408 	pci_disable_msi(efx->pci_dev);
409 	pci_disable_msix(efx->pci_dev);
410 
411 	/* Remove legacy interrupt */
412 	efx->legacy_irq = 0;
413 }
414 
415 /***************
416  * EVENT QUEUES
417  ***************/
418 
419 /* Create event queue
420  * Event queue memory allocations are done only once.  If the channel
421  * is reset, the memory buffer will be reused; this guards against
422  * errors during channel reset and also simplifies interrupt handling.
423  */
424 int efx_probe_eventq(struct efx_channel *channel)
425 {
426 	struct efx_nic *efx = channel->efx;
427 	unsigned long entries;
428 
429 	netif_dbg(efx, probe, efx->net_dev,
430 		  "chan %d create event queue\n", channel->channel);
431 
432 	/* Build an event queue with room for one event per tx and rx buffer,
433 	 * plus some extra for link state events and MCDI completions.
434 	 */
435 	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
436 	EFX_WARN_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
437 	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
438 
439 	return efx_nic_probe_eventq(channel);
440 }
441 
442 /* Prepare channel's event queue */
443 int efx_init_eventq(struct efx_channel *channel)
444 {
445 	struct efx_nic *efx = channel->efx;
446 	int rc;
447 
448 	EFX_WARN_ON_PARANOID(channel->eventq_init);
449 
450 	netif_dbg(efx, drv, efx->net_dev,
451 		  "chan %d init event queue\n", channel->channel);
452 
453 	rc = efx_nic_init_eventq(channel);
454 	if (rc == 0) {
455 		efx->type->push_irq_moderation(channel);
456 		channel->eventq_read_ptr = 0;
457 		channel->eventq_init = true;
458 	}
459 	return rc;
460 }
461 
462 /* Enable event queue processing and NAPI */
463 void efx_start_eventq(struct efx_channel *channel)
464 {
465 	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
466 		  "chan %d start event queue\n", channel->channel);
467 
468 	/* Make sure the NAPI handler sees the enabled flag set */
469 	channel->enabled = true;
470 	smp_wmb();
471 
472 	napi_enable(&channel->napi_str);
473 	efx_nic_eventq_read_ack(channel);
474 }
475 
476 /* Disable event queue processing and NAPI */
477 void efx_stop_eventq(struct efx_channel *channel)
478 {
479 	if (!channel->enabled)
480 		return;
481 
482 	napi_disable(&channel->napi_str);
483 	channel->enabled = false;
484 }
485 
486 void efx_fini_eventq(struct efx_channel *channel)
487 {
488 	if (!channel->eventq_init)
489 		return;
490 
491 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
492 		  "chan %d fini event queue\n", channel->channel);
493 
494 	efx_nic_fini_eventq(channel);
495 	channel->eventq_init = false;
496 }
497 
498 void efx_remove_eventq(struct efx_channel *channel)
499 {
500 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
501 		  "chan %d remove event queue\n", channel->channel);
502 
503 	efx_nic_remove_eventq(channel);
504 }
505 
506 /**************************************************************************
507  *
508  * Channel handling
509  *
510  *************************************************************************/
511 
512 #ifdef CONFIG_RFS_ACCEL
513 static void efx_filter_rfs_expire(struct work_struct *data)
514 {
515 	struct delayed_work *dwork = to_delayed_work(data);
516 	struct efx_channel *channel;
517 	unsigned int time, quota;
518 
519 	channel = container_of(dwork, struct efx_channel, filter_work);
520 	time = jiffies - channel->rfs_last_expiry;
521 	quota = channel->rfs_filter_count * time / (30 * HZ);
522 	if (quota >= 20 && __efx_filter_rfs_expire(channel, min(channel->rfs_filter_count, quota)))
523 		channel->rfs_last_expiry += time;
524 	/* Ensure we do more work eventually even if NAPI poll is not happening */
525 	schedule_delayed_work(dwork, 30 * HZ);
526 }
527 #endif
528 
529 /* Allocate and initialise a channel structure. */
530 static struct efx_channel *efx_alloc_channel(struct efx_nic *efx, int i)
531 {
532 	struct efx_rx_queue *rx_queue;
533 	struct efx_tx_queue *tx_queue;
534 	struct efx_channel *channel;
535 	int j;
536 
537 	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
538 	if (!channel)
539 		return NULL;
540 
541 	channel->efx = efx;
542 	channel->channel = i;
543 	channel->type = &efx_default_channel_type;
544 
545 	for (j = 0; j < EFX_MAX_TXQ_PER_CHANNEL; j++) {
546 		tx_queue = &channel->tx_queue[j];
547 		tx_queue->efx = efx;
548 		tx_queue->queue = -1;
549 		tx_queue->label = j;
550 		tx_queue->channel = channel;
551 	}
552 
553 #ifdef CONFIG_RFS_ACCEL
554 	INIT_DELAYED_WORK(&channel->filter_work, efx_filter_rfs_expire);
555 #endif
556 
557 	rx_queue = &channel->rx_queue;
558 	rx_queue->efx = efx;
559 	timer_setup(&rx_queue->slow_fill, efx_rx_slow_fill, 0);
560 
561 	return channel;
562 }
563 
564 int efx_init_channels(struct efx_nic *efx)
565 {
566 	unsigned int i;
567 
568 	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
569 		efx->channel[i] = efx_alloc_channel(efx, i);
570 		if (!efx->channel[i])
571 			return -ENOMEM;
572 		efx->msi_context[i].efx = efx;
573 		efx->msi_context[i].index = i;
574 	}
575 
576 	/* Higher numbered interrupt modes are less capable! */
577 	efx->interrupt_mode = min(efx->type->min_interrupt_mode,
578 				  efx_interrupt_mode);
579 
580 	efx->max_channels = EFX_MAX_CHANNELS;
581 	efx->max_tx_channels = EFX_MAX_CHANNELS;
582 
583 	return 0;
584 }
585 
586 void efx_fini_channels(struct efx_nic *efx)
587 {
588 	unsigned int i;
589 
590 	for (i = 0; i < EFX_MAX_CHANNELS; i++)
591 		if (efx->channel[i]) {
592 			kfree(efx->channel[i]);
593 			efx->channel[i] = NULL;
594 		}
595 }
596 
597 /* Allocate and initialise a channel structure, copying parameters
598  * (but not resources) from an old channel structure.
599  */
600 struct efx_channel *efx_copy_channel(const struct efx_channel *old_channel)
601 {
602 	struct efx_rx_queue *rx_queue;
603 	struct efx_tx_queue *tx_queue;
604 	struct efx_channel *channel;
605 	int j;
606 
607 	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
608 	if (!channel)
609 		return NULL;
610 
611 	*channel = *old_channel;
612 
613 	channel->napi_dev = NULL;
614 	INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
615 	channel->napi_str.napi_id = 0;
616 	channel->napi_str.state = 0;
617 	memset(&channel->eventq, 0, sizeof(channel->eventq));
618 
619 	for (j = 0; j < EFX_MAX_TXQ_PER_CHANNEL; j++) {
620 		tx_queue = &channel->tx_queue[j];
621 		if (tx_queue->channel)
622 			tx_queue->channel = channel;
623 		tx_queue->buffer = NULL;
624 		tx_queue->cb_page = NULL;
625 		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
626 	}
627 
628 	rx_queue = &channel->rx_queue;
629 	rx_queue->buffer = NULL;
630 	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
631 	timer_setup(&rx_queue->slow_fill, efx_rx_slow_fill, 0);
632 #ifdef CONFIG_RFS_ACCEL
633 	INIT_DELAYED_WORK(&channel->filter_work, efx_filter_rfs_expire);
634 #endif
635 
636 	return channel;
637 }
638 
639 static int efx_probe_channel(struct efx_channel *channel)
640 {
641 	struct efx_tx_queue *tx_queue;
642 	struct efx_rx_queue *rx_queue;
643 	int rc;
644 
645 	netif_dbg(channel->efx, probe, channel->efx->net_dev,
646 		  "creating channel %d\n", channel->channel);
647 
648 	rc = channel->type->pre_probe(channel);
649 	if (rc)
650 		goto fail;
651 
652 	rc = efx_probe_eventq(channel);
653 	if (rc)
654 		goto fail;
655 
656 	efx_for_each_channel_tx_queue(tx_queue, channel) {
657 		rc = efx_probe_tx_queue(tx_queue);
658 		if (rc)
659 			goto fail;
660 	}
661 
662 	efx_for_each_channel_rx_queue(rx_queue, channel) {
663 		rc = efx_probe_rx_queue(rx_queue);
664 		if (rc)
665 			goto fail;
666 	}
667 
668 	channel->rx_list = NULL;
669 
670 	return 0;
671 
672 fail:
673 	efx_remove_channel(channel);
674 	return rc;
675 }
676 
677 void efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
678 {
679 	struct efx_nic *efx = channel->efx;
680 	const char *type;
681 	int number;
682 
683 	number = channel->channel;
684 
685 	if (number >= efx->xdp_channel_offset &&
686 	    !WARN_ON_ONCE(!efx->n_xdp_channels)) {
687 		type = "-xdp";
688 		number -= efx->xdp_channel_offset;
689 	} else if (efx->tx_channel_offset == 0) {
690 		type = "";
691 	} else if (number < efx->tx_channel_offset) {
692 		type = "-rx";
693 	} else {
694 		type = "-tx";
695 		number -= efx->tx_channel_offset;
696 	}
697 	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
698 }
699 
700 void efx_set_channel_names(struct efx_nic *efx)
701 {
702 	struct efx_channel *channel;
703 
704 	efx_for_each_channel(channel, efx)
705 		channel->type->get_name(channel,
706 					efx->msi_context[channel->channel].name,
707 					sizeof(efx->msi_context[0].name));
708 }
709 
710 int efx_probe_channels(struct efx_nic *efx)
711 {
712 	struct efx_channel *channel;
713 	int rc;
714 
715 	/* Restart special buffer allocation */
716 	efx->next_buffer_table = 0;
717 
718 	/* Probe channels in reverse, so that any 'extra' channels
719 	 * use the start of the buffer table. This allows the traffic
720 	 * channels to be resized without moving them or wasting the
721 	 * entries before them.
722 	 */
723 	efx_for_each_channel_rev(channel, efx) {
724 		rc = efx_probe_channel(channel);
725 		if (rc) {
726 			netif_err(efx, probe, efx->net_dev,
727 				  "failed to create channel %d\n",
728 				  channel->channel);
729 			goto fail;
730 		}
731 	}
732 	efx_set_channel_names(efx);
733 
734 	return 0;
735 
736 fail:
737 	efx_remove_channels(efx);
738 	return rc;
739 }
740 
741 void efx_remove_channel(struct efx_channel *channel)
742 {
743 	struct efx_tx_queue *tx_queue;
744 	struct efx_rx_queue *rx_queue;
745 
746 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
747 		  "destroy chan %d\n", channel->channel);
748 
749 	efx_for_each_channel_rx_queue(rx_queue, channel)
750 		efx_remove_rx_queue(rx_queue);
751 	efx_for_each_channel_tx_queue(tx_queue, channel)
752 		efx_remove_tx_queue(tx_queue);
753 	efx_remove_eventq(channel);
754 	channel->type->post_remove(channel);
755 }
756 
757 void efx_remove_channels(struct efx_nic *efx)
758 {
759 	struct efx_channel *channel;
760 
761 	efx_for_each_channel(channel, efx)
762 		efx_remove_channel(channel);
763 
764 	kfree(efx->xdp_tx_queues);
765 }
766 
767 int efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
768 {
769 	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
770 	unsigned int i, next_buffer_table = 0;
771 	u32 old_rxq_entries, old_txq_entries;
772 	int rc, rc2;
773 
774 	rc = efx_check_disabled(efx);
775 	if (rc)
776 		return rc;
777 
778 	/* Not all channels should be reallocated. We must avoid
779 	 * reallocating their buffer table entries.
780 	 */
781 	efx_for_each_channel(channel, efx) {
782 		struct efx_rx_queue *rx_queue;
783 		struct efx_tx_queue *tx_queue;
784 
785 		if (channel->type->copy)
786 			continue;
787 		next_buffer_table = max(next_buffer_table,
788 					channel->eventq.index +
789 					channel->eventq.entries);
790 		efx_for_each_channel_rx_queue(rx_queue, channel)
791 			next_buffer_table = max(next_buffer_table,
792 						rx_queue->rxd.index +
793 						rx_queue->rxd.entries);
794 		efx_for_each_channel_tx_queue(tx_queue, channel)
795 			next_buffer_table = max(next_buffer_table,
796 						tx_queue->txd.index +
797 						tx_queue->txd.entries);
798 	}
799 
800 	efx_device_detach_sync(efx);
801 	efx_stop_all(efx);
802 	efx_soft_disable_interrupts(efx);
803 
804 	/* Clone channels (where possible) */
805 	memset(other_channel, 0, sizeof(other_channel));
806 	for (i = 0; i < efx->n_channels; i++) {
807 		channel = efx->channel[i];
808 		if (channel->type->copy)
809 			channel = channel->type->copy(channel);
810 		if (!channel) {
811 			rc = -ENOMEM;
812 			goto out;
813 		}
814 		other_channel[i] = channel;
815 	}
816 
817 	/* Swap entry counts and channel pointers */
818 	old_rxq_entries = efx->rxq_entries;
819 	old_txq_entries = efx->txq_entries;
820 	efx->rxq_entries = rxq_entries;
821 	efx->txq_entries = txq_entries;
822 	for (i = 0; i < efx->n_channels; i++) {
823 		channel = efx->channel[i];
824 		efx->channel[i] = other_channel[i];
825 		other_channel[i] = channel;
826 	}
827 
828 	/* Restart buffer table allocation */
829 	efx->next_buffer_table = next_buffer_table;
830 
831 	for (i = 0; i < efx->n_channels; i++) {
832 		channel = efx->channel[i];
833 		if (!channel->type->copy)
834 			continue;
835 		rc = efx_probe_channel(channel);
836 		if (rc)
837 			goto rollback;
838 		efx_init_napi_channel(efx->channel[i]);
839 	}
840 
841 out:
842 	/* Destroy unused channel structures */
843 	for (i = 0; i < efx->n_channels; i++) {
844 		channel = other_channel[i];
845 		if (channel && channel->type->copy) {
846 			efx_fini_napi_channel(channel);
847 			efx_remove_channel(channel);
848 			kfree(channel);
849 		}
850 	}
851 
852 	rc2 = efx_soft_enable_interrupts(efx);
853 	if (rc2) {
854 		rc = rc ? rc : rc2;
855 		netif_err(efx, drv, efx->net_dev,
856 			  "unable to restart interrupts on channel reallocation\n");
857 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
858 	} else {
859 		efx_start_all(efx);
860 		efx_device_attach_if_not_resetting(efx);
861 	}
862 	return rc;
863 
864 rollback:
865 	/* Swap back */
866 	efx->rxq_entries = old_rxq_entries;
867 	efx->txq_entries = old_txq_entries;
868 	for (i = 0; i < efx->n_channels; i++) {
869 		channel = efx->channel[i];
870 		efx->channel[i] = other_channel[i];
871 		other_channel[i] = channel;
872 	}
873 	goto out;
874 }
875 
876 static inline int
877 efx_set_xdp_tx_queue(struct efx_nic *efx, int xdp_queue_number,
878 		     struct efx_tx_queue *tx_queue)
879 {
880 	if (xdp_queue_number >= efx->xdp_tx_queue_count)
881 		return -EINVAL;
882 
883 	netif_dbg(efx, drv, efx->net_dev, "Channel %u TXQ %u is XDP %u, HW %u\n",
884 		  tx_queue->channel->channel, tx_queue->label,
885 		  xdp_queue_number, tx_queue->queue);
886 	efx->xdp_tx_queues[xdp_queue_number] = tx_queue;
887 	return 0;
888 }
889 
890 int efx_set_channels(struct efx_nic *efx)
891 {
892 	struct efx_tx_queue *tx_queue;
893 	struct efx_channel *channel;
894 	unsigned int next_queue = 0;
895 	int xdp_queue_number;
896 	int rc;
897 
898 	efx->tx_channel_offset =
899 		efx_separate_tx_channels ?
900 		efx->n_channels - efx->n_tx_channels : 0;
901 
902 	if (efx->xdp_tx_queue_count) {
903 		EFX_WARN_ON_PARANOID(efx->xdp_tx_queues);
904 
905 		/* Allocate array for XDP TX queue lookup. */
906 		efx->xdp_tx_queues = kcalloc(efx->xdp_tx_queue_count,
907 					     sizeof(*efx->xdp_tx_queues),
908 					     GFP_KERNEL);
909 		if (!efx->xdp_tx_queues)
910 			return -ENOMEM;
911 	}
912 
913 	/* We need to mark which channels really have RX and TX
914 	 * queues, and adjust the TX queue numbers if we have separate
915 	 * RX-only and TX-only channels.
916 	 */
917 	xdp_queue_number = 0;
918 	efx_for_each_channel(channel, efx) {
919 		if (channel->channel < efx->n_rx_channels)
920 			channel->rx_queue.core_index = channel->channel;
921 		else
922 			channel->rx_queue.core_index = -1;
923 
924 		if (channel->channel >= efx->tx_channel_offset) {
925 			if (efx_channel_is_xdp_tx(channel)) {
926 				efx_for_each_channel_tx_queue(tx_queue, channel) {
927 					tx_queue->queue = next_queue++;
928 					rc = efx_set_xdp_tx_queue(efx, xdp_queue_number, tx_queue);
929 					if (rc == 0)
930 						xdp_queue_number++;
931 				}
932 			} else {
933 				efx_for_each_channel_tx_queue(tx_queue, channel) {
934 					tx_queue->queue = next_queue++;
935 					netif_dbg(efx, drv, efx->net_dev, "Channel %u TXQ %u is HW %u\n",
936 						  channel->channel, tx_queue->label,
937 						  tx_queue->queue);
938 				}
939 
940 				/* If XDP is borrowing queues from net stack, it must use the queue
941 				 * with no csum offload, which is the first one of the channel
942 				 * (note: channel->tx_queue_by_type is not initialized yet)
943 				 */
944 				if (efx->xdp_txq_queues_mode == EFX_XDP_TX_QUEUES_BORROWED) {
945 					tx_queue = &channel->tx_queue[0];
946 					rc = efx_set_xdp_tx_queue(efx, xdp_queue_number, tx_queue);
947 					if (rc == 0)
948 						xdp_queue_number++;
949 				}
950 			}
951 		}
952 	}
953 	WARN_ON(efx->xdp_txq_queues_mode == EFX_XDP_TX_QUEUES_DEDICATED &&
954 		xdp_queue_number != efx->xdp_tx_queue_count);
955 	WARN_ON(efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_DEDICATED &&
956 		xdp_queue_number > efx->xdp_tx_queue_count);
957 
958 	/* If we have more CPUs than assigned XDP TX queues, assign the already
959 	 * existing queues to the exceeding CPUs
960 	 */
961 	next_queue = 0;
962 	while (xdp_queue_number < efx->xdp_tx_queue_count) {
963 		tx_queue = efx->xdp_tx_queues[next_queue++];
964 		rc = efx_set_xdp_tx_queue(efx, xdp_queue_number, tx_queue);
965 		if (rc == 0)
966 			xdp_queue_number++;
967 	}
968 
969 	rc = netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
970 	if (rc)
971 		return rc;
972 	return netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
973 }
974 
975 bool efx_default_channel_want_txqs(struct efx_channel *channel)
976 {
977 	return channel->channel - channel->efx->tx_channel_offset <
978 		channel->efx->n_tx_channels;
979 }
980 
981 /*************
982  * START/STOP
983  *************/
984 
985 int efx_soft_enable_interrupts(struct efx_nic *efx)
986 {
987 	struct efx_channel *channel, *end_channel;
988 	int rc;
989 
990 	BUG_ON(efx->state == STATE_DISABLED);
991 
992 	efx->irq_soft_enabled = true;
993 	smp_wmb();
994 
995 	efx_for_each_channel(channel, efx) {
996 		if (!channel->type->keep_eventq) {
997 			rc = efx_init_eventq(channel);
998 			if (rc)
999 				goto fail;
1000 		}
1001 		efx_start_eventq(channel);
1002 	}
1003 
1004 	efx_mcdi_mode_event(efx);
1005 
1006 	return 0;
1007 fail:
1008 	end_channel = channel;
1009 	efx_for_each_channel(channel, efx) {
1010 		if (channel == end_channel)
1011 			break;
1012 		efx_stop_eventq(channel);
1013 		if (!channel->type->keep_eventq)
1014 			efx_fini_eventq(channel);
1015 	}
1016 
1017 	return rc;
1018 }
1019 
1020 void efx_soft_disable_interrupts(struct efx_nic *efx)
1021 {
1022 	struct efx_channel *channel;
1023 
1024 	if (efx->state == STATE_DISABLED)
1025 		return;
1026 
1027 	efx_mcdi_mode_poll(efx);
1028 
1029 	efx->irq_soft_enabled = false;
1030 	smp_wmb();
1031 
1032 	if (efx->legacy_irq)
1033 		synchronize_irq(efx->legacy_irq);
1034 
1035 	efx_for_each_channel(channel, efx) {
1036 		if (channel->irq)
1037 			synchronize_irq(channel->irq);
1038 
1039 		efx_stop_eventq(channel);
1040 		if (!channel->type->keep_eventq)
1041 			efx_fini_eventq(channel);
1042 	}
1043 
1044 	/* Flush the asynchronous MCDI request queue */
1045 	efx_mcdi_flush_async(efx);
1046 }
1047 
1048 int efx_enable_interrupts(struct efx_nic *efx)
1049 {
1050 	struct efx_channel *channel, *end_channel;
1051 	int rc;
1052 
1053 	/* TODO: Is this really a bug? */
1054 	BUG_ON(efx->state == STATE_DISABLED);
1055 
1056 	if (efx->eeh_disabled_legacy_irq) {
1057 		enable_irq(efx->legacy_irq);
1058 		efx->eeh_disabled_legacy_irq = false;
1059 	}
1060 
1061 	efx->type->irq_enable_master(efx);
1062 
1063 	efx_for_each_channel(channel, efx) {
1064 		if (channel->type->keep_eventq) {
1065 			rc = efx_init_eventq(channel);
1066 			if (rc)
1067 				goto fail;
1068 		}
1069 	}
1070 
1071 	rc = efx_soft_enable_interrupts(efx);
1072 	if (rc)
1073 		goto fail;
1074 
1075 	return 0;
1076 
1077 fail:
1078 	end_channel = channel;
1079 	efx_for_each_channel(channel, efx) {
1080 		if (channel == end_channel)
1081 			break;
1082 		if (channel->type->keep_eventq)
1083 			efx_fini_eventq(channel);
1084 	}
1085 
1086 	efx->type->irq_disable_non_ev(efx);
1087 
1088 	return rc;
1089 }
1090 
1091 void efx_disable_interrupts(struct efx_nic *efx)
1092 {
1093 	struct efx_channel *channel;
1094 
1095 	efx_soft_disable_interrupts(efx);
1096 
1097 	efx_for_each_channel(channel, efx) {
1098 		if (channel->type->keep_eventq)
1099 			efx_fini_eventq(channel);
1100 	}
1101 
1102 	efx->type->irq_disable_non_ev(efx);
1103 }
1104 
1105 void efx_start_channels(struct efx_nic *efx)
1106 {
1107 	struct efx_tx_queue *tx_queue;
1108 	struct efx_rx_queue *rx_queue;
1109 	struct efx_channel *channel;
1110 
1111 	efx_for_each_channel(channel, efx) {
1112 		efx_for_each_channel_tx_queue(tx_queue, channel) {
1113 			efx_init_tx_queue(tx_queue);
1114 			atomic_inc(&efx->active_queues);
1115 		}
1116 
1117 		efx_for_each_channel_rx_queue(rx_queue, channel) {
1118 			efx_init_rx_queue(rx_queue);
1119 			atomic_inc(&efx->active_queues);
1120 			efx_stop_eventq(channel);
1121 			efx_fast_push_rx_descriptors(rx_queue, false);
1122 			efx_start_eventq(channel);
1123 		}
1124 
1125 		WARN_ON(channel->rx_pkt_n_frags);
1126 	}
1127 }
1128 
1129 void efx_stop_channels(struct efx_nic *efx)
1130 {
1131 	struct efx_tx_queue *tx_queue;
1132 	struct efx_rx_queue *rx_queue;
1133 	struct efx_channel *channel;
1134 	int rc = 0;
1135 
1136 	/* Stop RX refill */
1137 	efx_for_each_channel(channel, efx) {
1138 		efx_for_each_channel_rx_queue(rx_queue, channel)
1139 			rx_queue->refill_enabled = false;
1140 	}
1141 
1142 	efx_for_each_channel(channel, efx) {
1143 		/* RX packet processing is pipelined, so wait for the
1144 		 * NAPI handler to complete.  At least event queue 0
1145 		 * might be kept active by non-data events, so don't
1146 		 * use napi_synchronize() but actually disable NAPI
1147 		 * temporarily.
1148 		 */
1149 		if (efx_channel_has_rx_queue(channel)) {
1150 			efx_stop_eventq(channel);
1151 			efx_start_eventq(channel);
1152 		}
1153 	}
1154 
1155 	if (efx->type->fini_dmaq)
1156 		rc = efx->type->fini_dmaq(efx);
1157 
1158 	if (rc) {
1159 		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
1160 	} else {
1161 		netif_dbg(efx, drv, efx->net_dev,
1162 			  "successfully flushed all queues\n");
1163 	}
1164 
1165 	efx_for_each_channel(channel, efx) {
1166 		efx_for_each_channel_rx_queue(rx_queue, channel)
1167 			efx_fini_rx_queue(rx_queue);
1168 		efx_for_each_channel_tx_queue(tx_queue, channel)
1169 			efx_fini_tx_queue(tx_queue);
1170 	}
1171 }
1172 
1173 /**************************************************************************
1174  *
1175  * NAPI interface
1176  *
1177  *************************************************************************/
1178 
1179 /* Process channel's event queue
1180  *
1181  * This function is responsible for processing the event queue of a
1182  * single channel.  The caller must guarantee that this function will
1183  * never be concurrently called more than once on the same channel,
1184  * though different channels may be being processed concurrently.
1185  */
1186 static int efx_process_channel(struct efx_channel *channel, int budget)
1187 {
1188 	struct efx_tx_queue *tx_queue;
1189 	struct list_head rx_list;
1190 	int spent;
1191 
1192 	if (unlikely(!channel->enabled))
1193 		return 0;
1194 
1195 	/* Prepare the batch receive list */
1196 	EFX_WARN_ON_PARANOID(channel->rx_list != NULL);
1197 	INIT_LIST_HEAD(&rx_list);
1198 	channel->rx_list = &rx_list;
1199 
1200 	efx_for_each_channel_tx_queue(tx_queue, channel) {
1201 		tx_queue->pkts_compl = 0;
1202 		tx_queue->bytes_compl = 0;
1203 	}
1204 
1205 	spent = efx_nic_process_eventq(channel, budget);
1206 	if (spent && efx_channel_has_rx_queue(channel)) {
1207 		struct efx_rx_queue *rx_queue =
1208 			efx_channel_get_rx_queue(channel);
1209 
1210 		efx_rx_flush_packet(channel);
1211 		efx_fast_push_rx_descriptors(rx_queue, true);
1212 	}
1213 
1214 	/* Update BQL */
1215 	efx_for_each_channel_tx_queue(tx_queue, channel) {
1216 		if (tx_queue->bytes_compl) {
1217 			netdev_tx_completed_queue(tx_queue->core_txq,
1218 						  tx_queue->pkts_compl,
1219 						  tx_queue->bytes_compl);
1220 		}
1221 	}
1222 
1223 	/* Receive any packets we queued up */
1224 	netif_receive_skb_list(channel->rx_list);
1225 	channel->rx_list = NULL;
1226 
1227 	return spent;
1228 }
1229 
1230 static void efx_update_irq_mod(struct efx_nic *efx, struct efx_channel *channel)
1231 {
1232 	int step = efx->irq_mod_step_us;
1233 
1234 	if (channel->irq_mod_score < irq_adapt_low_thresh) {
1235 		if (channel->irq_moderation_us > step) {
1236 			channel->irq_moderation_us -= step;
1237 			efx->type->push_irq_moderation(channel);
1238 		}
1239 	} else if (channel->irq_mod_score > irq_adapt_high_thresh) {
1240 		if (channel->irq_moderation_us <
1241 		    efx->irq_rx_moderation_us) {
1242 			channel->irq_moderation_us += step;
1243 			efx->type->push_irq_moderation(channel);
1244 		}
1245 	}
1246 
1247 	channel->irq_count = 0;
1248 	channel->irq_mod_score = 0;
1249 }
1250 
1251 /* NAPI poll handler
1252  *
1253  * NAPI guarantees serialisation of polls of the same device, which
1254  * provides the guarantee required by efx_process_channel().
1255  */
1256 static int efx_poll(struct napi_struct *napi, int budget)
1257 {
1258 	struct efx_channel *channel =
1259 		container_of(napi, struct efx_channel, napi_str);
1260 	struct efx_nic *efx = channel->efx;
1261 #ifdef CONFIG_RFS_ACCEL
1262 	unsigned int time;
1263 #endif
1264 	int spent;
1265 
1266 	netif_vdbg(efx, intr, efx->net_dev,
1267 		   "channel %d NAPI poll executing on CPU %d\n",
1268 		   channel->channel, raw_smp_processor_id());
1269 
1270 	spent = efx_process_channel(channel, budget);
1271 
1272 	xdp_do_flush_map();
1273 
1274 	if (spent < budget) {
1275 		if (efx_channel_has_rx_queue(channel) &&
1276 		    efx->irq_rx_adaptive &&
1277 		    unlikely(++channel->irq_count == 1000)) {
1278 			efx_update_irq_mod(efx, channel);
1279 		}
1280 
1281 #ifdef CONFIG_RFS_ACCEL
1282 		/* Perhaps expire some ARFS filters */
1283 		time = jiffies - channel->rfs_last_expiry;
1284 		/* Would our quota be >= 20? */
1285 		if (channel->rfs_filter_count * time >= 600 * HZ)
1286 			mod_delayed_work(system_wq, &channel->filter_work, 0);
1287 #endif
1288 
1289 		/* There is no race here; although napi_disable() will
1290 		 * only wait for napi_complete(), this isn't a problem
1291 		 * since efx_nic_eventq_read_ack() will have no effect if
1292 		 * interrupts have already been disabled.
1293 		 */
1294 		if (napi_complete_done(napi, spent))
1295 			efx_nic_eventq_read_ack(channel);
1296 	}
1297 
1298 	return spent;
1299 }
1300 
1301 void efx_init_napi_channel(struct efx_channel *channel)
1302 {
1303 	struct efx_nic *efx = channel->efx;
1304 
1305 	channel->napi_dev = efx->net_dev;
1306 	netif_napi_add(channel->napi_dev, &channel->napi_str,
1307 		       efx_poll, napi_weight);
1308 }
1309 
1310 void efx_init_napi(struct efx_nic *efx)
1311 {
1312 	struct efx_channel *channel;
1313 
1314 	efx_for_each_channel(channel, efx)
1315 		efx_init_napi_channel(channel);
1316 }
1317 
1318 void efx_fini_napi_channel(struct efx_channel *channel)
1319 {
1320 	if (channel->napi_dev)
1321 		netif_napi_del(&channel->napi_str);
1322 
1323 	channel->napi_dev = NULL;
1324 }
1325 
1326 void efx_fini_napi(struct efx_nic *efx)
1327 {
1328 	struct efx_channel *channel;
1329 
1330 	efx_for_each_channel(channel, efx)
1331 		efx_fini_napi_channel(channel);
1332 }
1333