1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2018 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include "net_driver.h" 12 #include <linux/module.h> 13 #include <linux/filter.h> 14 #include "efx_channels.h" 15 #include "efx.h" 16 #include "efx_common.h" 17 #include "tx_common.h" 18 #include "rx_common.h" 19 #include "nic.h" 20 #include "sriov.h" 21 #include "workarounds.h" 22 23 /* This is the first interrupt mode to try out of: 24 * 0 => MSI-X 25 * 1 => MSI 26 * 2 => legacy 27 */ 28 unsigned int efx_interrupt_mode = EFX_INT_MODE_MSIX; 29 30 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), 31 * i.e. the number of CPUs among which we may distribute simultaneous 32 * interrupt handling. 33 * 34 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. 35 * The default (0) means to assign an interrupt to each core. 36 */ 37 unsigned int rss_cpus; 38 39 static unsigned int irq_adapt_low_thresh = 8000; 40 module_param(irq_adapt_low_thresh, uint, 0644); 41 MODULE_PARM_DESC(irq_adapt_low_thresh, 42 "Threshold score for reducing IRQ moderation"); 43 44 static unsigned int irq_adapt_high_thresh = 16000; 45 module_param(irq_adapt_high_thresh, uint, 0644); 46 MODULE_PARM_DESC(irq_adapt_high_thresh, 47 "Threshold score for increasing IRQ moderation"); 48 49 static const struct efx_channel_type efx_default_channel_type; 50 51 /************* 52 * INTERRUPTS 53 *************/ 54 55 static unsigned int count_online_cores(struct efx_nic *efx, bool local_node) 56 { 57 cpumask_var_t filter_mask; 58 unsigned int count; 59 int cpu; 60 61 if (unlikely(!zalloc_cpumask_var(&filter_mask, GFP_KERNEL))) { 62 netif_warn(efx, probe, efx->net_dev, 63 "RSS disabled due to allocation failure\n"); 64 return 1; 65 } 66 67 cpumask_copy(filter_mask, cpu_online_mask); 68 if (local_node) 69 cpumask_and(filter_mask, filter_mask, 70 cpumask_of_pcibus(efx->pci_dev->bus)); 71 72 count = 0; 73 for_each_cpu(cpu, filter_mask) { 74 ++count; 75 cpumask_andnot(filter_mask, filter_mask, topology_sibling_cpumask(cpu)); 76 } 77 78 free_cpumask_var(filter_mask); 79 80 return count; 81 } 82 83 static unsigned int efx_wanted_parallelism(struct efx_nic *efx) 84 { 85 unsigned int count; 86 87 if (rss_cpus) { 88 count = rss_cpus; 89 } else { 90 count = count_online_cores(efx, true); 91 92 /* If no online CPUs in local node, fallback to any online CPUs */ 93 if (count == 0) 94 count = count_online_cores(efx, false); 95 } 96 97 if (count > EFX_MAX_RX_QUEUES) { 98 netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn, 99 "Reducing number of rx queues from %u to %u.\n", 100 count, EFX_MAX_RX_QUEUES); 101 count = EFX_MAX_RX_QUEUES; 102 } 103 104 /* If RSS is requested for the PF *and* VFs then we can't write RSS 105 * table entries that are inaccessible to VFs 106 */ 107 #ifdef CONFIG_SFC_SRIOV 108 if (efx->type->sriov_wanted) { 109 if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 && 110 count > efx_vf_size(efx)) { 111 netif_warn(efx, probe, efx->net_dev, 112 "Reducing number of RSS channels from %u to %u for " 113 "VF support. Increase vf-msix-limit to use more " 114 "channels on the PF.\n", 115 count, efx_vf_size(efx)); 116 count = efx_vf_size(efx); 117 } 118 } 119 #endif 120 121 return count; 122 } 123 124 static int efx_allocate_msix_channels(struct efx_nic *efx, 125 unsigned int max_channels, 126 unsigned int extra_channels, 127 unsigned int parallelism) 128 { 129 unsigned int n_channels = parallelism; 130 int vec_count; 131 int tx_per_ev; 132 int n_xdp_tx; 133 int n_xdp_ev; 134 135 if (efx_separate_tx_channels) 136 n_channels *= 2; 137 n_channels += extra_channels; 138 139 /* To allow XDP transmit to happen from arbitrary NAPI contexts 140 * we allocate a TX queue per CPU. We share event queues across 141 * multiple tx queues, assuming tx and ev queues are both 142 * maximum size. 143 */ 144 tx_per_ev = EFX_MAX_EVQ_SIZE / EFX_TXQ_MAX_ENT(efx); 145 tx_per_ev = min(tx_per_ev, EFX_MAX_TXQ_PER_CHANNEL); 146 n_xdp_tx = num_possible_cpus(); 147 n_xdp_ev = DIV_ROUND_UP(n_xdp_tx, tx_per_ev); 148 149 vec_count = pci_msix_vec_count(efx->pci_dev); 150 if (vec_count < 0) 151 return vec_count; 152 153 max_channels = min_t(unsigned int, vec_count, max_channels); 154 155 /* Check resources. 156 * We need a channel per event queue, plus a VI per tx queue. 157 * This may be more pessimistic than it needs to be. 158 */ 159 if (n_channels >= max_channels) { 160 efx->xdp_txq_queues_mode = EFX_XDP_TX_QUEUES_BORROWED; 161 netif_warn(efx, drv, efx->net_dev, 162 "Insufficient resources for %d XDP event queues (%d other channels, max %d)\n", 163 n_xdp_ev, n_channels, max_channels); 164 netif_warn(efx, drv, efx->net_dev, 165 "XDP_TX and XDP_REDIRECT might decrease device's performance\n"); 166 } else if (n_channels + n_xdp_tx > efx->max_vis) { 167 efx->xdp_txq_queues_mode = EFX_XDP_TX_QUEUES_BORROWED; 168 netif_warn(efx, drv, efx->net_dev, 169 "Insufficient resources for %d XDP TX queues (%d other channels, max VIs %d)\n", 170 n_xdp_tx, n_channels, efx->max_vis); 171 netif_warn(efx, drv, efx->net_dev, 172 "XDP_TX and XDP_REDIRECT might decrease device's performance\n"); 173 } else if (n_channels + n_xdp_ev > max_channels) { 174 efx->xdp_txq_queues_mode = EFX_XDP_TX_QUEUES_SHARED; 175 netif_warn(efx, drv, efx->net_dev, 176 "Insufficient resources for %d XDP event queues (%d other channels, max %d)\n", 177 n_xdp_ev, n_channels, max_channels); 178 179 n_xdp_ev = max_channels - n_channels; 180 netif_warn(efx, drv, efx->net_dev, 181 "XDP_TX and XDP_REDIRECT will work with reduced performance (%d cpus/tx_queue)\n", 182 DIV_ROUND_UP(n_xdp_tx, tx_per_ev * n_xdp_ev)); 183 } else { 184 efx->xdp_txq_queues_mode = EFX_XDP_TX_QUEUES_DEDICATED; 185 } 186 187 if (efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_BORROWED) { 188 efx->n_xdp_channels = n_xdp_ev; 189 efx->xdp_tx_per_channel = tx_per_ev; 190 efx->xdp_tx_queue_count = n_xdp_tx; 191 n_channels += n_xdp_ev; 192 netif_dbg(efx, drv, efx->net_dev, 193 "Allocating %d TX and %d event queues for XDP\n", 194 n_xdp_ev * tx_per_ev, n_xdp_ev); 195 } else { 196 efx->n_xdp_channels = 0; 197 efx->xdp_tx_per_channel = 0; 198 efx->xdp_tx_queue_count = n_xdp_tx; 199 } 200 201 if (vec_count < n_channels) { 202 netif_err(efx, drv, efx->net_dev, 203 "WARNING: Insufficient MSI-X vectors available (%d < %u).\n", 204 vec_count, n_channels); 205 netif_err(efx, drv, efx->net_dev, 206 "WARNING: Performance may be reduced.\n"); 207 n_channels = vec_count; 208 } 209 210 n_channels = min(n_channels, max_channels); 211 212 efx->n_channels = n_channels; 213 214 /* Ignore XDP tx channels when creating rx channels. */ 215 n_channels -= efx->n_xdp_channels; 216 217 if (efx_separate_tx_channels) { 218 efx->n_tx_channels = 219 min(max(n_channels / 2, 1U), 220 efx->max_tx_channels); 221 efx->tx_channel_offset = 222 n_channels - efx->n_tx_channels; 223 efx->n_rx_channels = 224 max(n_channels - 225 efx->n_tx_channels, 1U); 226 } else { 227 efx->n_tx_channels = min(n_channels, efx->max_tx_channels); 228 efx->tx_channel_offset = 0; 229 efx->n_rx_channels = n_channels; 230 } 231 232 efx->n_rx_channels = min(efx->n_rx_channels, parallelism); 233 efx->n_tx_channels = min(efx->n_tx_channels, parallelism); 234 235 efx->xdp_channel_offset = n_channels; 236 237 netif_dbg(efx, drv, efx->net_dev, 238 "Allocating %u RX channels\n", 239 efx->n_rx_channels); 240 241 return efx->n_channels; 242 } 243 244 /* Probe the number and type of interrupts we are able to obtain, and 245 * the resulting numbers of channels and RX queues. 246 */ 247 int efx_probe_interrupts(struct efx_nic *efx) 248 { 249 unsigned int extra_channels = 0; 250 unsigned int rss_spread; 251 unsigned int i, j; 252 int rc; 253 254 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) 255 if (efx->extra_channel_type[i]) 256 ++extra_channels; 257 258 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) { 259 unsigned int parallelism = efx_wanted_parallelism(efx); 260 struct msix_entry xentries[EFX_MAX_CHANNELS]; 261 unsigned int n_channels; 262 263 rc = efx_allocate_msix_channels(efx, efx->max_channels, 264 extra_channels, parallelism); 265 if (rc >= 0) { 266 n_channels = rc; 267 for (i = 0; i < n_channels; i++) 268 xentries[i].entry = i; 269 rc = pci_enable_msix_range(efx->pci_dev, xentries, 1, 270 n_channels); 271 } 272 if (rc < 0) { 273 /* Fall back to single channel MSI */ 274 netif_err(efx, drv, efx->net_dev, 275 "could not enable MSI-X\n"); 276 if (efx->type->min_interrupt_mode >= EFX_INT_MODE_MSI) 277 efx->interrupt_mode = EFX_INT_MODE_MSI; 278 else 279 return rc; 280 } else if (rc < n_channels) { 281 netif_err(efx, drv, efx->net_dev, 282 "WARNING: Insufficient MSI-X vectors" 283 " available (%d < %u).\n", rc, n_channels); 284 netif_err(efx, drv, efx->net_dev, 285 "WARNING: Performance may be reduced.\n"); 286 n_channels = rc; 287 } 288 289 if (rc > 0) { 290 for (i = 0; i < efx->n_channels; i++) 291 efx_get_channel(efx, i)->irq = 292 xentries[i].vector; 293 } 294 } 295 296 /* Try single interrupt MSI */ 297 if (efx->interrupt_mode == EFX_INT_MODE_MSI) { 298 efx->n_channels = 1; 299 efx->n_rx_channels = 1; 300 efx->n_tx_channels = 1; 301 efx->tx_channel_offset = 0; 302 efx->n_xdp_channels = 0; 303 efx->xdp_channel_offset = efx->n_channels; 304 efx->xdp_txq_queues_mode = EFX_XDP_TX_QUEUES_BORROWED; 305 rc = pci_enable_msi(efx->pci_dev); 306 if (rc == 0) { 307 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq; 308 } else { 309 netif_err(efx, drv, efx->net_dev, 310 "could not enable MSI\n"); 311 if (efx->type->min_interrupt_mode >= EFX_INT_MODE_LEGACY) 312 efx->interrupt_mode = EFX_INT_MODE_LEGACY; 313 else 314 return rc; 315 } 316 } 317 318 /* Assume legacy interrupts */ 319 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) { 320 efx->n_channels = 1 + (efx_separate_tx_channels ? 1 : 0); 321 efx->n_rx_channels = 1; 322 efx->n_tx_channels = 1; 323 efx->tx_channel_offset = efx_separate_tx_channels ? 1 : 0; 324 efx->n_xdp_channels = 0; 325 efx->xdp_channel_offset = efx->n_channels; 326 efx->xdp_txq_queues_mode = EFX_XDP_TX_QUEUES_BORROWED; 327 efx->legacy_irq = efx->pci_dev->irq; 328 } 329 330 /* Assign extra channels if possible, before XDP channels */ 331 efx->n_extra_tx_channels = 0; 332 j = efx->xdp_channel_offset; 333 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) { 334 if (!efx->extra_channel_type[i]) 335 continue; 336 if (j <= efx->tx_channel_offset + efx->n_tx_channels) { 337 efx->extra_channel_type[i]->handle_no_channel(efx); 338 } else { 339 --j; 340 efx_get_channel(efx, j)->type = 341 efx->extra_channel_type[i]; 342 if (efx_channel_has_tx_queues(efx_get_channel(efx, j))) 343 efx->n_extra_tx_channels++; 344 } 345 } 346 347 rss_spread = efx->n_rx_channels; 348 /* RSS might be usable on VFs even if it is disabled on the PF */ 349 #ifdef CONFIG_SFC_SRIOV 350 if (efx->type->sriov_wanted) { 351 efx->rss_spread = ((rss_spread > 1 || 352 !efx->type->sriov_wanted(efx)) ? 353 rss_spread : efx_vf_size(efx)); 354 return 0; 355 } 356 #endif 357 efx->rss_spread = rss_spread; 358 359 return 0; 360 } 361 362 #if defined(CONFIG_SMP) 363 void efx_set_interrupt_affinity(struct efx_nic *efx) 364 { 365 const struct cpumask *numa_mask = cpumask_of_pcibus(efx->pci_dev->bus); 366 struct efx_channel *channel; 367 unsigned int cpu; 368 369 /* If no online CPUs in local node, fallback to any online CPU */ 370 if (cpumask_first_and(cpu_online_mask, numa_mask) >= nr_cpu_ids) 371 numa_mask = cpu_online_mask; 372 373 cpu = -1; 374 efx_for_each_channel(channel, efx) { 375 cpu = cpumask_next_and(cpu, cpu_online_mask, numa_mask); 376 if (cpu >= nr_cpu_ids) 377 cpu = cpumask_first_and(cpu_online_mask, numa_mask); 378 irq_set_affinity_hint(channel->irq, cpumask_of(cpu)); 379 } 380 } 381 382 void efx_clear_interrupt_affinity(struct efx_nic *efx) 383 { 384 struct efx_channel *channel; 385 386 efx_for_each_channel(channel, efx) 387 irq_set_affinity_hint(channel->irq, NULL); 388 } 389 #else 390 void 391 efx_set_interrupt_affinity(struct efx_nic *efx __attribute__ ((unused))) 392 { 393 } 394 395 void 396 efx_clear_interrupt_affinity(struct efx_nic *efx __attribute__ ((unused))) 397 { 398 } 399 #endif /* CONFIG_SMP */ 400 401 void efx_remove_interrupts(struct efx_nic *efx) 402 { 403 struct efx_channel *channel; 404 405 /* Remove MSI/MSI-X interrupts */ 406 efx_for_each_channel(channel, efx) 407 channel->irq = 0; 408 pci_disable_msi(efx->pci_dev); 409 pci_disable_msix(efx->pci_dev); 410 411 /* Remove legacy interrupt */ 412 efx->legacy_irq = 0; 413 } 414 415 /*************** 416 * EVENT QUEUES 417 ***************/ 418 419 /* Create event queue 420 * Event queue memory allocations are done only once. If the channel 421 * is reset, the memory buffer will be reused; this guards against 422 * errors during channel reset and also simplifies interrupt handling. 423 */ 424 int efx_probe_eventq(struct efx_channel *channel) 425 { 426 struct efx_nic *efx = channel->efx; 427 unsigned long entries; 428 429 netif_dbg(efx, probe, efx->net_dev, 430 "chan %d create event queue\n", channel->channel); 431 432 /* Build an event queue with room for one event per tx and rx buffer, 433 * plus some extra for link state events and MCDI completions. 434 */ 435 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128); 436 EFX_WARN_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE); 437 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1; 438 439 return efx_nic_probe_eventq(channel); 440 } 441 442 /* Prepare channel's event queue */ 443 int efx_init_eventq(struct efx_channel *channel) 444 { 445 struct efx_nic *efx = channel->efx; 446 int rc; 447 448 EFX_WARN_ON_PARANOID(channel->eventq_init); 449 450 netif_dbg(efx, drv, efx->net_dev, 451 "chan %d init event queue\n", channel->channel); 452 453 rc = efx_nic_init_eventq(channel); 454 if (rc == 0) { 455 efx->type->push_irq_moderation(channel); 456 channel->eventq_read_ptr = 0; 457 channel->eventq_init = true; 458 } 459 return rc; 460 } 461 462 /* Enable event queue processing and NAPI */ 463 void efx_start_eventq(struct efx_channel *channel) 464 { 465 netif_dbg(channel->efx, ifup, channel->efx->net_dev, 466 "chan %d start event queue\n", channel->channel); 467 468 /* Make sure the NAPI handler sees the enabled flag set */ 469 channel->enabled = true; 470 smp_wmb(); 471 472 napi_enable(&channel->napi_str); 473 efx_nic_eventq_read_ack(channel); 474 } 475 476 /* Disable event queue processing and NAPI */ 477 void efx_stop_eventq(struct efx_channel *channel) 478 { 479 if (!channel->enabled) 480 return; 481 482 napi_disable(&channel->napi_str); 483 channel->enabled = false; 484 } 485 486 void efx_fini_eventq(struct efx_channel *channel) 487 { 488 if (!channel->eventq_init) 489 return; 490 491 netif_dbg(channel->efx, drv, channel->efx->net_dev, 492 "chan %d fini event queue\n", channel->channel); 493 494 efx_nic_fini_eventq(channel); 495 channel->eventq_init = false; 496 } 497 498 void efx_remove_eventq(struct efx_channel *channel) 499 { 500 netif_dbg(channel->efx, drv, channel->efx->net_dev, 501 "chan %d remove event queue\n", channel->channel); 502 503 efx_nic_remove_eventq(channel); 504 } 505 506 /************************************************************************** 507 * 508 * Channel handling 509 * 510 *************************************************************************/ 511 512 #ifdef CONFIG_RFS_ACCEL 513 static void efx_filter_rfs_expire(struct work_struct *data) 514 { 515 struct delayed_work *dwork = to_delayed_work(data); 516 struct efx_channel *channel; 517 unsigned int time, quota; 518 519 channel = container_of(dwork, struct efx_channel, filter_work); 520 time = jiffies - channel->rfs_last_expiry; 521 quota = channel->rfs_filter_count * time / (30 * HZ); 522 if (quota >= 20 && __efx_filter_rfs_expire(channel, min(channel->rfs_filter_count, quota))) 523 channel->rfs_last_expiry += time; 524 /* Ensure we do more work eventually even if NAPI poll is not happening */ 525 schedule_delayed_work(dwork, 30 * HZ); 526 } 527 #endif 528 529 /* Allocate and initialise a channel structure. */ 530 static struct efx_channel *efx_alloc_channel(struct efx_nic *efx, int i) 531 { 532 struct efx_rx_queue *rx_queue; 533 struct efx_tx_queue *tx_queue; 534 struct efx_channel *channel; 535 int j; 536 537 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 538 if (!channel) 539 return NULL; 540 541 channel->efx = efx; 542 channel->channel = i; 543 channel->type = &efx_default_channel_type; 544 545 for (j = 0; j < EFX_MAX_TXQ_PER_CHANNEL; j++) { 546 tx_queue = &channel->tx_queue[j]; 547 tx_queue->efx = efx; 548 tx_queue->queue = -1; 549 tx_queue->label = j; 550 tx_queue->channel = channel; 551 } 552 553 #ifdef CONFIG_RFS_ACCEL 554 INIT_DELAYED_WORK(&channel->filter_work, efx_filter_rfs_expire); 555 #endif 556 557 rx_queue = &channel->rx_queue; 558 rx_queue->efx = efx; 559 timer_setup(&rx_queue->slow_fill, efx_rx_slow_fill, 0); 560 561 return channel; 562 } 563 564 int efx_init_channels(struct efx_nic *efx) 565 { 566 unsigned int i; 567 568 for (i = 0; i < EFX_MAX_CHANNELS; i++) { 569 efx->channel[i] = efx_alloc_channel(efx, i); 570 if (!efx->channel[i]) 571 return -ENOMEM; 572 efx->msi_context[i].efx = efx; 573 efx->msi_context[i].index = i; 574 } 575 576 /* Higher numbered interrupt modes are less capable! */ 577 efx->interrupt_mode = min(efx->type->min_interrupt_mode, 578 efx_interrupt_mode); 579 580 efx->max_channels = EFX_MAX_CHANNELS; 581 efx->max_tx_channels = EFX_MAX_CHANNELS; 582 583 return 0; 584 } 585 586 void efx_fini_channels(struct efx_nic *efx) 587 { 588 unsigned int i; 589 590 for (i = 0; i < EFX_MAX_CHANNELS; i++) 591 if (efx->channel[i]) { 592 kfree(efx->channel[i]); 593 efx->channel[i] = NULL; 594 } 595 } 596 597 /* Allocate and initialise a channel structure, copying parameters 598 * (but not resources) from an old channel structure. 599 */ 600 struct efx_channel *efx_copy_channel(const struct efx_channel *old_channel) 601 { 602 struct efx_rx_queue *rx_queue; 603 struct efx_tx_queue *tx_queue; 604 struct efx_channel *channel; 605 int j; 606 607 channel = kmalloc(sizeof(*channel), GFP_KERNEL); 608 if (!channel) 609 return NULL; 610 611 *channel = *old_channel; 612 613 channel->napi_dev = NULL; 614 INIT_HLIST_NODE(&channel->napi_str.napi_hash_node); 615 channel->napi_str.napi_id = 0; 616 channel->napi_str.state = 0; 617 memset(&channel->eventq, 0, sizeof(channel->eventq)); 618 619 for (j = 0; j < EFX_MAX_TXQ_PER_CHANNEL; j++) { 620 tx_queue = &channel->tx_queue[j]; 621 if (tx_queue->channel) 622 tx_queue->channel = channel; 623 tx_queue->buffer = NULL; 624 tx_queue->cb_page = NULL; 625 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd)); 626 } 627 628 rx_queue = &channel->rx_queue; 629 rx_queue->buffer = NULL; 630 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd)); 631 timer_setup(&rx_queue->slow_fill, efx_rx_slow_fill, 0); 632 #ifdef CONFIG_RFS_ACCEL 633 INIT_DELAYED_WORK(&channel->filter_work, efx_filter_rfs_expire); 634 #endif 635 636 return channel; 637 } 638 639 static int efx_probe_channel(struct efx_channel *channel) 640 { 641 struct efx_tx_queue *tx_queue; 642 struct efx_rx_queue *rx_queue; 643 int rc; 644 645 netif_dbg(channel->efx, probe, channel->efx->net_dev, 646 "creating channel %d\n", channel->channel); 647 648 rc = channel->type->pre_probe(channel); 649 if (rc) 650 goto fail; 651 652 rc = efx_probe_eventq(channel); 653 if (rc) 654 goto fail; 655 656 efx_for_each_channel_tx_queue(tx_queue, channel) { 657 rc = efx_probe_tx_queue(tx_queue); 658 if (rc) 659 goto fail; 660 } 661 662 efx_for_each_channel_rx_queue(rx_queue, channel) { 663 rc = efx_probe_rx_queue(rx_queue); 664 if (rc) 665 goto fail; 666 } 667 668 channel->rx_list = NULL; 669 670 return 0; 671 672 fail: 673 efx_remove_channel(channel); 674 return rc; 675 } 676 677 static void efx_get_channel_name(struct efx_channel *channel, char *buf, 678 size_t len) 679 { 680 struct efx_nic *efx = channel->efx; 681 const char *type; 682 int number; 683 684 number = channel->channel; 685 686 if (number >= efx->xdp_channel_offset && 687 !WARN_ON_ONCE(!efx->n_xdp_channels)) { 688 type = "-xdp"; 689 number -= efx->xdp_channel_offset; 690 } else if (efx->tx_channel_offset == 0) { 691 type = ""; 692 } else if (number < efx->tx_channel_offset) { 693 type = "-rx"; 694 } else { 695 type = "-tx"; 696 number -= efx->tx_channel_offset; 697 } 698 snprintf(buf, len, "%s%s-%d", efx->name, type, number); 699 } 700 701 void efx_set_channel_names(struct efx_nic *efx) 702 { 703 struct efx_channel *channel; 704 705 efx_for_each_channel(channel, efx) 706 channel->type->get_name(channel, 707 efx->msi_context[channel->channel].name, 708 sizeof(efx->msi_context[0].name)); 709 } 710 711 int efx_probe_channels(struct efx_nic *efx) 712 { 713 struct efx_channel *channel; 714 int rc; 715 716 /* Probe channels in reverse, so that any 'extra' channels 717 * use the start of the buffer table. This allows the traffic 718 * channels to be resized without moving them or wasting the 719 * entries before them. 720 */ 721 efx_for_each_channel_rev(channel, efx) { 722 rc = efx_probe_channel(channel); 723 if (rc) { 724 netif_err(efx, probe, efx->net_dev, 725 "failed to create channel %d\n", 726 channel->channel); 727 goto fail; 728 } 729 } 730 efx_set_channel_names(efx); 731 732 return 0; 733 734 fail: 735 efx_remove_channels(efx); 736 return rc; 737 } 738 739 void efx_remove_channel(struct efx_channel *channel) 740 { 741 struct efx_tx_queue *tx_queue; 742 struct efx_rx_queue *rx_queue; 743 744 netif_dbg(channel->efx, drv, channel->efx->net_dev, 745 "destroy chan %d\n", channel->channel); 746 747 efx_for_each_channel_rx_queue(rx_queue, channel) 748 efx_remove_rx_queue(rx_queue); 749 efx_for_each_channel_tx_queue(tx_queue, channel) 750 efx_remove_tx_queue(tx_queue); 751 efx_remove_eventq(channel); 752 channel->type->post_remove(channel); 753 } 754 755 void efx_remove_channels(struct efx_nic *efx) 756 { 757 struct efx_channel *channel; 758 759 efx_for_each_channel(channel, efx) 760 efx_remove_channel(channel); 761 762 kfree(efx->xdp_tx_queues); 763 } 764 765 static int efx_set_xdp_tx_queue(struct efx_nic *efx, int xdp_queue_number, 766 struct efx_tx_queue *tx_queue) 767 { 768 if (xdp_queue_number >= efx->xdp_tx_queue_count) 769 return -EINVAL; 770 771 netif_dbg(efx, drv, efx->net_dev, 772 "Channel %u TXQ %u is XDP %u, HW %u\n", 773 tx_queue->channel->channel, tx_queue->label, 774 xdp_queue_number, tx_queue->queue); 775 efx->xdp_tx_queues[xdp_queue_number] = tx_queue; 776 return 0; 777 } 778 779 static void efx_set_xdp_channels(struct efx_nic *efx) 780 { 781 struct efx_tx_queue *tx_queue; 782 struct efx_channel *channel; 783 unsigned int next_queue = 0; 784 int xdp_queue_number = 0; 785 int rc; 786 787 /* We need to mark which channels really have RX and TX 788 * queues, and adjust the TX queue numbers if we have separate 789 * RX-only and TX-only channels. 790 */ 791 efx_for_each_channel(channel, efx) { 792 if (channel->channel < efx->tx_channel_offset) 793 continue; 794 795 if (efx_channel_is_xdp_tx(channel)) { 796 efx_for_each_channel_tx_queue(tx_queue, channel) { 797 tx_queue->queue = next_queue++; 798 rc = efx_set_xdp_tx_queue(efx, xdp_queue_number, 799 tx_queue); 800 if (rc == 0) 801 xdp_queue_number++; 802 } 803 } else { 804 efx_for_each_channel_tx_queue(tx_queue, channel) { 805 tx_queue->queue = next_queue++; 806 netif_dbg(efx, drv, efx->net_dev, 807 "Channel %u TXQ %u is HW %u\n", 808 channel->channel, tx_queue->label, 809 tx_queue->queue); 810 } 811 812 /* If XDP is borrowing queues from net stack, it must 813 * use the queue with no csum offload, which is the 814 * first one of the channel 815 * (note: tx_queue_by_type is not initialized yet) 816 */ 817 if (efx->xdp_txq_queues_mode == 818 EFX_XDP_TX_QUEUES_BORROWED) { 819 tx_queue = &channel->tx_queue[0]; 820 rc = efx_set_xdp_tx_queue(efx, xdp_queue_number, 821 tx_queue); 822 if (rc == 0) 823 xdp_queue_number++; 824 } 825 } 826 } 827 WARN_ON(efx->xdp_txq_queues_mode == EFX_XDP_TX_QUEUES_DEDICATED && 828 xdp_queue_number != efx->xdp_tx_queue_count); 829 WARN_ON(efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_DEDICATED && 830 xdp_queue_number > efx->xdp_tx_queue_count); 831 832 /* If we have more CPUs than assigned XDP TX queues, assign the already 833 * existing queues to the exceeding CPUs 834 */ 835 next_queue = 0; 836 while (xdp_queue_number < efx->xdp_tx_queue_count) { 837 tx_queue = efx->xdp_tx_queues[next_queue++]; 838 rc = efx_set_xdp_tx_queue(efx, xdp_queue_number, tx_queue); 839 if (rc == 0) 840 xdp_queue_number++; 841 } 842 } 843 844 int efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries) 845 { 846 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel, 847 *ptp_channel = efx_ptp_channel(efx); 848 struct efx_ptp_data *ptp_data = efx->ptp_data; 849 u32 old_rxq_entries, old_txq_entries; 850 unsigned int i; 851 int rc, rc2; 852 853 rc = efx_check_disabled(efx); 854 if (rc) 855 return rc; 856 857 efx_device_detach_sync(efx); 858 efx_stop_all(efx); 859 efx_soft_disable_interrupts(efx); 860 861 /* Clone channels (where possible) */ 862 memset(other_channel, 0, sizeof(other_channel)); 863 for (i = 0; i < efx->n_channels; i++) { 864 channel = efx->channel[i]; 865 if (channel->type->copy) 866 channel = channel->type->copy(channel); 867 if (!channel) { 868 rc = -ENOMEM; 869 goto out; 870 } 871 other_channel[i] = channel; 872 } 873 874 /* Swap entry counts and channel pointers */ 875 old_rxq_entries = efx->rxq_entries; 876 old_txq_entries = efx->txq_entries; 877 efx->rxq_entries = rxq_entries; 878 efx->txq_entries = txq_entries; 879 for (i = 0; i < efx->n_channels; i++) 880 swap(efx->channel[i], other_channel[i]); 881 882 for (i = 0; i < efx->n_channels; i++) { 883 channel = efx->channel[i]; 884 if (!channel->type->copy) 885 continue; 886 rc = efx_probe_channel(channel); 887 if (rc) 888 goto rollback; 889 efx_init_napi_channel(efx->channel[i]); 890 } 891 892 efx_set_xdp_channels(efx); 893 out: 894 efx->ptp_data = NULL; 895 /* Destroy unused channel structures */ 896 for (i = 0; i < efx->n_channels; i++) { 897 channel = other_channel[i]; 898 if (channel && channel->type->copy) { 899 efx_fini_napi_channel(channel); 900 efx_remove_channel(channel); 901 kfree(channel); 902 } 903 } 904 905 efx->ptp_data = ptp_data; 906 rc2 = efx_soft_enable_interrupts(efx); 907 if (rc2) { 908 rc = rc ? rc : rc2; 909 netif_err(efx, drv, efx->net_dev, 910 "unable to restart interrupts on channel reallocation\n"); 911 efx_schedule_reset(efx, RESET_TYPE_DISABLE); 912 } else { 913 efx_start_all(efx); 914 efx_device_attach_if_not_resetting(efx); 915 } 916 return rc; 917 918 rollback: 919 /* Swap back */ 920 efx->rxq_entries = old_rxq_entries; 921 efx->txq_entries = old_txq_entries; 922 for (i = 0; i < efx->n_channels; i++) 923 swap(efx->channel[i], other_channel[i]); 924 efx_ptp_update_channel(efx, ptp_channel); 925 goto out; 926 } 927 928 int efx_set_channels(struct efx_nic *efx) 929 { 930 struct efx_channel *channel; 931 int rc; 932 933 if (efx->xdp_tx_queue_count) { 934 EFX_WARN_ON_PARANOID(efx->xdp_tx_queues); 935 936 /* Allocate array for XDP TX queue lookup. */ 937 efx->xdp_tx_queues = kcalloc(efx->xdp_tx_queue_count, 938 sizeof(*efx->xdp_tx_queues), 939 GFP_KERNEL); 940 if (!efx->xdp_tx_queues) 941 return -ENOMEM; 942 } 943 944 efx_for_each_channel(channel, efx) { 945 if (channel->channel < efx->n_rx_channels) 946 channel->rx_queue.core_index = channel->channel; 947 else 948 channel->rx_queue.core_index = -1; 949 } 950 951 efx_set_xdp_channels(efx); 952 953 rc = netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels); 954 if (rc) 955 return rc; 956 return netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels); 957 } 958 959 static bool efx_default_channel_want_txqs(struct efx_channel *channel) 960 { 961 return channel->channel - channel->efx->tx_channel_offset < 962 channel->efx->n_tx_channels; 963 } 964 965 /************* 966 * START/STOP 967 *************/ 968 969 int efx_soft_enable_interrupts(struct efx_nic *efx) 970 { 971 struct efx_channel *channel, *end_channel; 972 int rc; 973 974 BUG_ON(efx->state == STATE_DISABLED); 975 976 efx->irq_soft_enabled = true; 977 smp_wmb(); 978 979 efx_for_each_channel(channel, efx) { 980 if (!channel->type->keep_eventq) { 981 rc = efx_init_eventq(channel); 982 if (rc) 983 goto fail; 984 } 985 efx_start_eventq(channel); 986 } 987 988 efx_mcdi_mode_event(efx); 989 990 return 0; 991 fail: 992 end_channel = channel; 993 efx_for_each_channel(channel, efx) { 994 if (channel == end_channel) 995 break; 996 efx_stop_eventq(channel); 997 if (!channel->type->keep_eventq) 998 efx_fini_eventq(channel); 999 } 1000 1001 return rc; 1002 } 1003 1004 void efx_soft_disable_interrupts(struct efx_nic *efx) 1005 { 1006 struct efx_channel *channel; 1007 1008 if (efx->state == STATE_DISABLED) 1009 return; 1010 1011 efx_mcdi_mode_poll(efx); 1012 1013 efx->irq_soft_enabled = false; 1014 smp_wmb(); 1015 1016 if (efx->legacy_irq) 1017 synchronize_irq(efx->legacy_irq); 1018 1019 efx_for_each_channel(channel, efx) { 1020 if (channel->irq) 1021 synchronize_irq(channel->irq); 1022 1023 efx_stop_eventq(channel); 1024 if (!channel->type->keep_eventq) 1025 efx_fini_eventq(channel); 1026 } 1027 1028 /* Flush the asynchronous MCDI request queue */ 1029 efx_mcdi_flush_async(efx); 1030 } 1031 1032 int efx_enable_interrupts(struct efx_nic *efx) 1033 { 1034 struct efx_channel *channel, *end_channel; 1035 int rc; 1036 1037 /* TODO: Is this really a bug? */ 1038 BUG_ON(efx->state == STATE_DISABLED); 1039 1040 if (efx->eeh_disabled_legacy_irq) { 1041 enable_irq(efx->legacy_irq); 1042 efx->eeh_disabled_legacy_irq = false; 1043 } 1044 1045 efx->type->irq_enable_master(efx); 1046 1047 efx_for_each_channel(channel, efx) { 1048 if (channel->type->keep_eventq) { 1049 rc = efx_init_eventq(channel); 1050 if (rc) 1051 goto fail; 1052 } 1053 } 1054 1055 rc = efx_soft_enable_interrupts(efx); 1056 if (rc) 1057 goto fail; 1058 1059 return 0; 1060 1061 fail: 1062 end_channel = channel; 1063 efx_for_each_channel(channel, efx) { 1064 if (channel == end_channel) 1065 break; 1066 if (channel->type->keep_eventq) 1067 efx_fini_eventq(channel); 1068 } 1069 1070 efx->type->irq_disable_non_ev(efx); 1071 1072 return rc; 1073 } 1074 1075 void efx_disable_interrupts(struct efx_nic *efx) 1076 { 1077 struct efx_channel *channel; 1078 1079 efx_soft_disable_interrupts(efx); 1080 1081 efx_for_each_channel(channel, efx) { 1082 if (channel->type->keep_eventq) 1083 efx_fini_eventq(channel); 1084 } 1085 1086 efx->type->irq_disable_non_ev(efx); 1087 } 1088 1089 void efx_start_channels(struct efx_nic *efx) 1090 { 1091 struct efx_tx_queue *tx_queue; 1092 struct efx_rx_queue *rx_queue; 1093 struct efx_channel *channel; 1094 1095 efx_for_each_channel_rev(channel, efx) { 1096 if (channel->type->start) 1097 channel->type->start(channel); 1098 efx_for_each_channel_tx_queue(tx_queue, channel) { 1099 efx_init_tx_queue(tx_queue); 1100 atomic_inc(&efx->active_queues); 1101 } 1102 1103 /* reset per-queue stats */ 1104 channel->old_n_rx_hw_drops = efx_get_queue_stat_rx_hw_drops(channel); 1105 channel->old_n_rx_hw_drop_overruns = channel->n_rx_nodesc_trunc; 1106 1107 efx_for_each_channel_rx_queue(rx_queue, channel) { 1108 efx_init_rx_queue(rx_queue); 1109 atomic_inc(&efx->active_queues); 1110 efx_stop_eventq(channel); 1111 efx_fast_push_rx_descriptors(rx_queue, false); 1112 efx_start_eventq(channel); 1113 } 1114 1115 WARN_ON(channel->rx_pkt_n_frags); 1116 } 1117 } 1118 1119 void efx_stop_channels(struct efx_nic *efx) 1120 { 1121 struct efx_tx_queue *tx_queue; 1122 struct efx_rx_queue *rx_queue; 1123 struct efx_channel *channel; 1124 int rc = 0; 1125 1126 /* Stop special channels and RX refill. 1127 * The channel's stop has to be called first, since it might wait 1128 * for a sentinel RX to indicate the channel has fully drained. 1129 */ 1130 efx_for_each_channel(channel, efx) { 1131 if (channel->type->stop) 1132 channel->type->stop(channel); 1133 efx_for_each_channel_rx_queue(rx_queue, channel) 1134 rx_queue->refill_enabled = false; 1135 } 1136 1137 efx_for_each_channel(channel, efx) { 1138 /* RX packet processing is pipelined, so wait for the 1139 * NAPI handler to complete. At least event queue 0 1140 * might be kept active by non-data events, so don't 1141 * use napi_synchronize() but actually disable NAPI 1142 * temporarily. 1143 */ 1144 if (efx_channel_has_rx_queue(channel)) { 1145 efx_stop_eventq(channel); 1146 efx_start_eventq(channel); 1147 } 1148 } 1149 1150 if (efx->type->fini_dmaq) 1151 rc = efx->type->fini_dmaq(efx); 1152 1153 if (rc) { 1154 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n"); 1155 } else { 1156 netif_dbg(efx, drv, efx->net_dev, 1157 "successfully flushed all queues\n"); 1158 } 1159 1160 efx_for_each_channel(channel, efx) { 1161 efx_for_each_channel_rx_queue(rx_queue, channel) 1162 efx_fini_rx_queue(rx_queue); 1163 efx_for_each_channel_tx_queue(tx_queue, channel) 1164 efx_fini_tx_queue(tx_queue); 1165 } 1166 } 1167 1168 /************************************************************************** 1169 * 1170 * NAPI interface 1171 * 1172 *************************************************************************/ 1173 1174 /* Process channel's event queue 1175 * 1176 * This function is responsible for processing the event queue of a 1177 * single channel. The caller must guarantee that this function will 1178 * never be concurrently called more than once on the same channel, 1179 * though different channels may be being processed concurrently. 1180 */ 1181 static int efx_process_channel(struct efx_channel *channel, int budget) 1182 { 1183 struct efx_tx_queue *tx_queue; 1184 struct list_head rx_list; 1185 int spent; 1186 1187 if (unlikely(!channel->enabled)) 1188 return 0; 1189 1190 /* Prepare the batch receive list */ 1191 EFX_WARN_ON_PARANOID(channel->rx_list != NULL); 1192 INIT_LIST_HEAD(&rx_list); 1193 channel->rx_list = &rx_list; 1194 1195 efx_for_each_channel_tx_queue(tx_queue, channel) { 1196 tx_queue->pkts_compl = 0; 1197 tx_queue->bytes_compl = 0; 1198 } 1199 1200 spent = efx_nic_process_eventq(channel, budget); 1201 if (spent && efx_channel_has_rx_queue(channel)) { 1202 struct efx_rx_queue *rx_queue = 1203 efx_channel_get_rx_queue(channel); 1204 1205 efx_rx_flush_packet(channel); 1206 efx_fast_push_rx_descriptors(rx_queue, true); 1207 } 1208 1209 /* Update BQL */ 1210 efx_for_each_channel_tx_queue(tx_queue, channel) { 1211 if (tx_queue->bytes_compl) { 1212 netdev_tx_completed_queue(tx_queue->core_txq, 1213 tx_queue->pkts_compl, 1214 tx_queue->bytes_compl); 1215 } 1216 tx_queue->complete_packets += tx_queue->pkts_compl; 1217 tx_queue->complete_bytes += tx_queue->bytes_compl; 1218 } 1219 1220 /* Receive any packets we queued up */ 1221 netif_receive_skb_list(channel->rx_list); 1222 channel->rx_list = NULL; 1223 1224 return spent; 1225 } 1226 1227 static void efx_update_irq_mod(struct efx_nic *efx, struct efx_channel *channel) 1228 { 1229 int step = efx->irq_mod_step_us; 1230 1231 if (channel->irq_mod_score < irq_adapt_low_thresh) { 1232 if (channel->irq_moderation_us > step) { 1233 channel->irq_moderation_us -= step; 1234 efx->type->push_irq_moderation(channel); 1235 } 1236 } else if (channel->irq_mod_score > irq_adapt_high_thresh) { 1237 if (channel->irq_moderation_us < 1238 efx->irq_rx_moderation_us) { 1239 channel->irq_moderation_us += step; 1240 efx->type->push_irq_moderation(channel); 1241 } 1242 } 1243 1244 channel->irq_count = 0; 1245 channel->irq_mod_score = 0; 1246 } 1247 1248 /* NAPI poll handler 1249 * 1250 * NAPI guarantees serialisation of polls of the same device, which 1251 * provides the guarantee required by efx_process_channel(). 1252 */ 1253 static int efx_poll(struct napi_struct *napi, int budget) 1254 { 1255 struct efx_channel *channel = 1256 container_of(napi, struct efx_channel, napi_str); 1257 struct efx_nic *efx = channel->efx; 1258 #ifdef CONFIG_RFS_ACCEL 1259 unsigned int time; 1260 #endif 1261 int spent; 1262 1263 netif_vdbg(efx, intr, efx->net_dev, 1264 "channel %d NAPI poll executing on CPU %d\n", 1265 channel->channel, raw_smp_processor_id()); 1266 1267 spent = efx_process_channel(channel, budget); 1268 1269 if (budget) 1270 xdp_do_flush(); 1271 1272 if (spent < budget) { 1273 if (efx_channel_has_rx_queue(channel) && 1274 efx->irq_rx_adaptive && 1275 unlikely(++channel->irq_count == 1000)) { 1276 efx_update_irq_mod(efx, channel); 1277 } 1278 1279 #ifdef CONFIG_RFS_ACCEL 1280 /* Perhaps expire some ARFS filters */ 1281 time = jiffies - channel->rfs_last_expiry; 1282 /* Would our quota be >= 20? */ 1283 if (channel->rfs_filter_count * time >= 600 * HZ) 1284 mod_delayed_work(system_wq, &channel->filter_work, 0); 1285 #endif 1286 1287 /* There is no race here; although napi_disable() will 1288 * only wait for napi_complete(), this isn't a problem 1289 * since efx_nic_eventq_read_ack() will have no effect if 1290 * interrupts have already been disabled. 1291 */ 1292 if (napi_complete_done(napi, spent)) 1293 efx_nic_eventq_read_ack(channel); 1294 } 1295 1296 return spent; 1297 } 1298 1299 void efx_init_napi_channel(struct efx_channel *channel) 1300 { 1301 struct efx_nic *efx = channel->efx; 1302 1303 channel->napi_dev = efx->net_dev; 1304 netif_napi_add(channel->napi_dev, &channel->napi_str, efx_poll); 1305 } 1306 1307 void efx_init_napi(struct efx_nic *efx) 1308 { 1309 struct efx_channel *channel; 1310 1311 efx_for_each_channel(channel, efx) 1312 efx_init_napi_channel(channel); 1313 } 1314 1315 void efx_fini_napi_channel(struct efx_channel *channel) 1316 { 1317 if (channel->napi_dev) 1318 netif_napi_del(&channel->napi_str); 1319 1320 channel->napi_dev = NULL; 1321 } 1322 1323 void efx_fini_napi(struct efx_nic *efx) 1324 { 1325 struct efx_channel *channel; 1326 1327 efx_for_each_channel(channel, efx) 1328 efx_fini_napi_channel(channel); 1329 } 1330 1331 /*************** 1332 * Housekeeping 1333 ***************/ 1334 1335 static int efx_channel_dummy_op_int(struct efx_channel *channel) 1336 { 1337 return 0; 1338 } 1339 1340 void efx_channel_dummy_op_void(struct efx_channel *channel) 1341 { 1342 } 1343 1344 static const struct efx_channel_type efx_default_channel_type = { 1345 .pre_probe = efx_channel_dummy_op_int, 1346 .post_remove = efx_channel_dummy_op_void, 1347 .get_name = efx_get_channel_name, 1348 .copy = efx_copy_channel, 1349 .want_txqs = efx_default_channel_want_txqs, 1350 .keep_eventq = false, 1351 .want_pio = true, 1352 }; 1353