xref: /linux/drivers/net/ethernet/sfc/ef10.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2012-2013 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9 
10 #include "net_driver.h"
11 #include "ef10_regs.h"
12 #include "io.h"
13 #include "mcdi.h"
14 #include "mcdi_pcol.h"
15 #include "nic.h"
16 #include "workarounds.h"
17 #include "selftest.h"
18 #include "ef10_sriov.h"
19 #include <linux/in.h>
20 #include <linux/jhash.h>
21 #include <linux/wait.h>
22 #include <linux/workqueue.h>
23 
24 /* Hardware control for EF10 architecture including 'Huntington'. */
25 
26 #define EFX_EF10_DRVGEN_EV		7
27 enum {
28 	EFX_EF10_TEST = 1,
29 	EFX_EF10_REFILL,
30 };
31 
32 /* The reserved RSS context value */
33 #define EFX_EF10_RSS_CONTEXT_INVALID	0xffffffff
34 /* The maximum size of a shared RSS context */
35 /* TODO: this should really be from the mcdi protocol export */
36 #define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
37 
38 /* The filter table(s) are managed by firmware and we have write-only
39  * access.  When removing filters we must identify them to the
40  * firmware by a 64-bit handle, but this is too wide for Linux kernel
41  * interfaces (32-bit for RX NFC, 16-bit for RFS).  Also, we need to
42  * be able to tell in advance whether a requested insertion will
43  * replace an existing filter.  Therefore we maintain a software hash
44  * table, which should be at least as large as the hardware hash
45  * table.
46  *
47  * Huntington has a single 8K filter table shared between all filter
48  * types and both ports.
49  */
50 #define HUNT_FILTER_TBL_ROWS 8192
51 
52 #define EFX_EF10_FILTER_ID_INVALID 0xffff
53 
54 #define EFX_EF10_FILTER_DEV_UC_MAX	32
55 #define EFX_EF10_FILTER_DEV_MC_MAX	256
56 
57 /* VLAN list entry */
58 struct efx_ef10_vlan {
59 	struct list_head list;
60 	u16 vid;
61 };
62 
63 enum efx_ef10_default_filters {
64 	EFX_EF10_BCAST,
65 	EFX_EF10_UCDEF,
66 	EFX_EF10_MCDEF,
67 	EFX_EF10_VXLAN4_UCDEF,
68 	EFX_EF10_VXLAN4_MCDEF,
69 	EFX_EF10_VXLAN6_UCDEF,
70 	EFX_EF10_VXLAN6_MCDEF,
71 	EFX_EF10_NVGRE4_UCDEF,
72 	EFX_EF10_NVGRE4_MCDEF,
73 	EFX_EF10_NVGRE6_UCDEF,
74 	EFX_EF10_NVGRE6_MCDEF,
75 	EFX_EF10_GENEVE4_UCDEF,
76 	EFX_EF10_GENEVE4_MCDEF,
77 	EFX_EF10_GENEVE6_UCDEF,
78 	EFX_EF10_GENEVE6_MCDEF,
79 
80 	EFX_EF10_NUM_DEFAULT_FILTERS
81 };
82 
83 /* Per-VLAN filters information */
84 struct efx_ef10_filter_vlan {
85 	struct list_head list;
86 	u16 vid;
87 	u16 uc[EFX_EF10_FILTER_DEV_UC_MAX];
88 	u16 mc[EFX_EF10_FILTER_DEV_MC_MAX];
89 	u16 default_filters[EFX_EF10_NUM_DEFAULT_FILTERS];
90 };
91 
92 struct efx_ef10_dev_addr {
93 	u8 addr[ETH_ALEN];
94 };
95 
96 struct efx_ef10_filter_table {
97 /* The MCDI match masks supported by this fw & hw, in order of priority */
98 	u32 rx_match_mcdi_flags[
99 		MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM * 2];
100 	unsigned int rx_match_count;
101 
102 	struct {
103 		unsigned long spec;	/* pointer to spec plus flag bits */
104 /* BUSY flag indicates that an update is in progress.  AUTO_OLD is
105  * used to mark and sweep MAC filters for the device address lists.
106  */
107 #define EFX_EF10_FILTER_FLAG_BUSY	1UL
108 #define EFX_EF10_FILTER_FLAG_AUTO_OLD	2UL
109 #define EFX_EF10_FILTER_FLAGS		3UL
110 		u64 handle;		/* firmware handle */
111 	} *entry;
112 	wait_queue_head_t waitq;
113 /* Shadow of net_device address lists, guarded by mac_lock */
114 	struct efx_ef10_dev_addr dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX];
115 	struct efx_ef10_dev_addr dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
116 	int dev_uc_count;
117 	int dev_mc_count;
118 	bool uc_promisc;
119 	bool mc_promisc;
120 /* Whether in multicast promiscuous mode when last changed */
121 	bool mc_promisc_last;
122 	bool mc_overflow; /* Too many MC addrs; should always imply mc_promisc */
123 	bool vlan_filter;
124 	struct list_head vlan_list;
125 };
126 
127 /* An arbitrary search limit for the software hash table */
128 #define EFX_EF10_FILTER_SEARCH_LIMIT 200
129 
130 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
131 static void efx_ef10_filter_table_remove(struct efx_nic *efx);
132 static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid);
133 static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
134 					      struct efx_ef10_filter_vlan *vlan);
135 static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid);
136 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
137 
138 static u32 efx_ef10_filter_get_unsafe_id(u32 filter_id)
139 {
140 	WARN_ON_ONCE(filter_id == EFX_EF10_FILTER_ID_INVALID);
141 	return filter_id & (HUNT_FILTER_TBL_ROWS - 1);
142 }
143 
144 static unsigned int efx_ef10_filter_get_unsafe_pri(u32 filter_id)
145 {
146 	return filter_id / (HUNT_FILTER_TBL_ROWS * 2);
147 }
148 
149 static u32 efx_ef10_make_filter_id(unsigned int pri, u16 idx)
150 {
151 	return pri * HUNT_FILTER_TBL_ROWS * 2 + idx;
152 }
153 
154 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
155 {
156 	efx_dword_t reg;
157 
158 	efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
159 	return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
160 		EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
161 }
162 
163 /* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
164  * I/O space and BAR 2(&3) for memory.  On SFC9250 (Medford2), there is no I/O
165  * bar; PFs use BAR 0/1 for memory.
166  */
167 static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx)
168 {
169 	switch (efx->pci_dev->device) {
170 	case 0x0b03: /* SFC9250 PF */
171 		return 0;
172 	default:
173 		return 2;
174 	}
175 }
176 
177 /* All VFs use BAR 0/1 for memory */
178 static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx)
179 {
180 	return 0;
181 }
182 
183 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
184 {
185 	int bar;
186 
187 	bar = efx->type->mem_bar(efx);
188 	return resource_size(&efx->pci_dev->resource[bar]);
189 }
190 
191 static bool efx_ef10_is_vf(struct efx_nic *efx)
192 {
193 	return efx->type->is_vf;
194 }
195 
196 static int efx_ef10_get_pf_index(struct efx_nic *efx)
197 {
198 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
199 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
200 	size_t outlen;
201 	int rc;
202 
203 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
204 			  sizeof(outbuf), &outlen);
205 	if (rc)
206 		return rc;
207 	if (outlen < sizeof(outbuf))
208 		return -EIO;
209 
210 	nic_data->pf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_PF);
211 	return 0;
212 }
213 
214 #ifdef CONFIG_SFC_SRIOV
215 static int efx_ef10_get_vf_index(struct efx_nic *efx)
216 {
217 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
218 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
219 	size_t outlen;
220 	int rc;
221 
222 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
223 			  sizeof(outbuf), &outlen);
224 	if (rc)
225 		return rc;
226 	if (outlen < sizeof(outbuf))
227 		return -EIO;
228 
229 	nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
230 	return 0;
231 }
232 #endif
233 
234 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
235 {
236 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN);
237 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
238 	size_t outlen;
239 	int rc;
240 
241 	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
242 
243 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
244 			  outbuf, sizeof(outbuf), &outlen);
245 	if (rc)
246 		return rc;
247 	if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
248 		netif_err(efx, drv, efx->net_dev,
249 			  "unable to read datapath firmware capabilities\n");
250 		return -EIO;
251 	}
252 
253 	nic_data->datapath_caps =
254 		MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
255 
256 	if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
257 		nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
258 				GET_CAPABILITIES_V2_OUT_FLAGS2);
259 		nic_data->piobuf_size = MCDI_WORD(outbuf,
260 				GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
261 	} else {
262 		nic_data->datapath_caps2 = 0;
263 		nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
264 	}
265 
266 	/* record the DPCPU firmware IDs to determine VEB vswitching support.
267 	 */
268 	nic_data->rx_dpcpu_fw_id =
269 		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
270 	nic_data->tx_dpcpu_fw_id =
271 		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
272 
273 	if (!(nic_data->datapath_caps &
274 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
275 		netif_err(efx, probe, efx->net_dev,
276 			  "current firmware does not support an RX prefix\n");
277 		return -ENODEV;
278 	}
279 
280 	if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
281 		u8 vi_window_mode = MCDI_BYTE(outbuf,
282 				GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
283 
284 		switch (vi_window_mode) {
285 		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_8K:
286 			efx->vi_stride = 8192;
287 			break;
288 		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_16K:
289 			efx->vi_stride = 16384;
290 			break;
291 		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_64K:
292 			efx->vi_stride = 65536;
293 			break;
294 		default:
295 			netif_err(efx, probe, efx->net_dev,
296 				  "Unrecognised VI window mode %d\n",
297 				  vi_window_mode);
298 			return -EIO;
299 		}
300 		netif_dbg(efx, probe, efx->net_dev, "vi_stride = %u\n",
301 			  efx->vi_stride);
302 	} else {
303 		/* keep default VI stride */
304 		netif_dbg(efx, probe, efx->net_dev,
305 			  "firmware did not report VI window mode, assuming vi_stride = %u\n",
306 			  efx->vi_stride);
307 	}
308 
309 	if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
310 		efx->num_mac_stats = MCDI_WORD(outbuf,
311 				GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
312 		netif_dbg(efx, probe, efx->net_dev,
313 			  "firmware reports num_mac_stats = %u\n",
314 			  efx->num_mac_stats);
315 	} else {
316 		/* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
317 		netif_dbg(efx, probe, efx->net_dev,
318 			  "firmware did not report num_mac_stats, assuming %u\n",
319 			  efx->num_mac_stats);
320 	}
321 
322 	return 0;
323 }
324 
325 static void efx_ef10_read_licensed_features(struct efx_nic *efx)
326 {
327 	MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN);
328 	MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN);
329 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
330 	size_t outlen;
331 	int rc;
332 
333 	MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP,
334 		       MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE);
335 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf),
336 				outbuf, sizeof(outbuf), &outlen);
337 	if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN))
338 		return;
339 
340 	nic_data->licensed_features = MCDI_QWORD(outbuf,
341 					 LICENSING_V3_OUT_LICENSED_FEATURES);
342 }
343 
344 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
345 {
346 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
347 	int rc;
348 
349 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
350 			  outbuf, sizeof(outbuf), NULL);
351 	if (rc)
352 		return rc;
353 	rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
354 	return rc > 0 ? rc : -ERANGE;
355 }
356 
357 static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
358 {
359 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
360 	unsigned int implemented;
361 	unsigned int enabled;
362 	int rc;
363 
364 	nic_data->workaround_35388 = false;
365 	nic_data->workaround_61265 = false;
366 
367 	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
368 
369 	if (rc == -ENOSYS) {
370 		/* Firmware without GET_WORKAROUNDS - not a problem. */
371 		rc = 0;
372 	} else if (rc == 0) {
373 		/* Bug61265 workaround is always enabled if implemented. */
374 		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
375 			nic_data->workaround_61265 = true;
376 
377 		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
378 			nic_data->workaround_35388 = true;
379 		} else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
380 			/* Workaround is implemented but not enabled.
381 			 * Try to enable it.
382 			 */
383 			rc = efx_mcdi_set_workaround(efx,
384 						     MC_CMD_WORKAROUND_BUG35388,
385 						     true, NULL);
386 			if (rc == 0)
387 				nic_data->workaround_35388 = true;
388 			/* If we failed to set the workaround just carry on. */
389 			rc = 0;
390 		}
391 	}
392 
393 	netif_dbg(efx, probe, efx->net_dev,
394 		  "workaround for bug 35388 is %sabled\n",
395 		  nic_data->workaround_35388 ? "en" : "dis");
396 	netif_dbg(efx, probe, efx->net_dev,
397 		  "workaround for bug 61265 is %sabled\n",
398 		  nic_data->workaround_61265 ? "en" : "dis");
399 
400 	return rc;
401 }
402 
403 static void efx_ef10_process_timer_config(struct efx_nic *efx,
404 					  const efx_dword_t *data)
405 {
406 	unsigned int max_count;
407 
408 	if (EFX_EF10_WORKAROUND_61265(efx)) {
409 		efx->timer_quantum_ns = MCDI_DWORD(data,
410 			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
411 		efx->timer_max_ns = MCDI_DWORD(data,
412 			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
413 	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
414 		efx->timer_quantum_ns = MCDI_DWORD(data,
415 			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
416 		max_count = MCDI_DWORD(data,
417 			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
418 		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
419 	} else {
420 		efx->timer_quantum_ns = MCDI_DWORD(data,
421 			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
422 		max_count = MCDI_DWORD(data,
423 			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
424 		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
425 	}
426 
427 	netif_dbg(efx, probe, efx->net_dev,
428 		  "got timer properties from MC: quantum %u ns; max %u ns\n",
429 		  efx->timer_quantum_ns, efx->timer_max_ns);
430 }
431 
432 static int efx_ef10_get_timer_config(struct efx_nic *efx)
433 {
434 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
435 	int rc;
436 
437 	rc = efx_ef10_get_timer_workarounds(efx);
438 	if (rc)
439 		return rc;
440 
441 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
442 				outbuf, sizeof(outbuf), NULL);
443 
444 	if (rc == 0) {
445 		efx_ef10_process_timer_config(efx, outbuf);
446 	} else if (rc == -ENOSYS || rc == -EPERM) {
447 		/* Not available - fall back to Huntington defaults. */
448 		unsigned int quantum;
449 
450 		rc = efx_ef10_get_sysclk_freq(efx);
451 		if (rc < 0)
452 			return rc;
453 
454 		quantum = 1536000 / rc; /* 1536 cycles */
455 		efx->timer_quantum_ns = quantum;
456 		efx->timer_max_ns = efx->type->timer_period_max * quantum;
457 		rc = 0;
458 	} else {
459 		efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
460 				       MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
461 				       NULL, 0, rc);
462 	}
463 
464 	return rc;
465 }
466 
467 static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
468 {
469 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
470 	size_t outlen;
471 	int rc;
472 
473 	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
474 
475 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
476 			  outbuf, sizeof(outbuf), &outlen);
477 	if (rc)
478 		return rc;
479 	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
480 		return -EIO;
481 
482 	ether_addr_copy(mac_address,
483 			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
484 	return 0;
485 }
486 
487 static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
488 {
489 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
490 	MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
491 	size_t outlen;
492 	int num_addrs, rc;
493 
494 	MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
495 		       EVB_PORT_ID_ASSIGNED);
496 	rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
497 			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
498 
499 	if (rc)
500 		return rc;
501 	if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
502 		return -EIO;
503 
504 	num_addrs = MCDI_DWORD(outbuf,
505 			       VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
506 
507 	WARN_ON(num_addrs != 1);
508 
509 	ether_addr_copy(mac_address,
510 			MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
511 
512 	return 0;
513 }
514 
515 static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
516 					       struct device_attribute *attr,
517 					       char *buf)
518 {
519 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
520 
521 	return sprintf(buf, "%d\n",
522 		       ((efx->mcdi->fn_flags) &
523 			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
524 		       ? 1 : 0);
525 }
526 
527 static ssize_t efx_ef10_show_primary_flag(struct device *dev,
528 					  struct device_attribute *attr,
529 					  char *buf)
530 {
531 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
532 
533 	return sprintf(buf, "%d\n",
534 		       ((efx->mcdi->fn_flags) &
535 			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
536 		       ? 1 : 0);
537 }
538 
539 static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
540 {
541 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
542 	struct efx_ef10_vlan *vlan;
543 
544 	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
545 
546 	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
547 		if (vlan->vid == vid)
548 			return vlan;
549 	}
550 
551 	return NULL;
552 }
553 
554 static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
555 {
556 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
557 	struct efx_ef10_vlan *vlan;
558 	int rc;
559 
560 	mutex_lock(&nic_data->vlan_lock);
561 
562 	vlan = efx_ef10_find_vlan(efx, vid);
563 	if (vlan) {
564 		/* We add VID 0 on init. 8021q adds it on module init
565 		 * for all interfaces with VLAN filtring feature.
566 		 */
567 		if (vid == 0)
568 			goto done_unlock;
569 		netif_warn(efx, drv, efx->net_dev,
570 			   "VLAN %u already added\n", vid);
571 		rc = -EALREADY;
572 		goto fail_exist;
573 	}
574 
575 	rc = -ENOMEM;
576 	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
577 	if (!vlan)
578 		goto fail_alloc;
579 
580 	vlan->vid = vid;
581 
582 	list_add_tail(&vlan->list, &nic_data->vlan_list);
583 
584 	if (efx->filter_state) {
585 		mutex_lock(&efx->mac_lock);
586 		down_write(&efx->filter_sem);
587 		rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
588 		up_write(&efx->filter_sem);
589 		mutex_unlock(&efx->mac_lock);
590 		if (rc)
591 			goto fail_filter_add_vlan;
592 	}
593 
594 done_unlock:
595 	mutex_unlock(&nic_data->vlan_lock);
596 	return 0;
597 
598 fail_filter_add_vlan:
599 	list_del(&vlan->list);
600 	kfree(vlan);
601 fail_alloc:
602 fail_exist:
603 	mutex_unlock(&nic_data->vlan_lock);
604 	return rc;
605 }
606 
607 static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
608 				       struct efx_ef10_vlan *vlan)
609 {
610 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
611 
612 	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
613 
614 	if (efx->filter_state) {
615 		down_write(&efx->filter_sem);
616 		efx_ef10_filter_del_vlan(efx, vlan->vid);
617 		up_write(&efx->filter_sem);
618 	}
619 
620 	list_del(&vlan->list);
621 	kfree(vlan);
622 }
623 
624 static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
625 {
626 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
627 	struct efx_ef10_vlan *vlan;
628 	int rc = 0;
629 
630 	/* 8021q removes VID 0 on module unload for all interfaces
631 	 * with VLAN filtering feature. We need to keep it to receive
632 	 * untagged traffic.
633 	 */
634 	if (vid == 0)
635 		return 0;
636 
637 	mutex_lock(&nic_data->vlan_lock);
638 
639 	vlan = efx_ef10_find_vlan(efx, vid);
640 	if (!vlan) {
641 		netif_err(efx, drv, efx->net_dev,
642 			  "VLAN %u to be deleted not found\n", vid);
643 		rc = -ENOENT;
644 	} else {
645 		efx_ef10_del_vlan_internal(efx, vlan);
646 	}
647 
648 	mutex_unlock(&nic_data->vlan_lock);
649 
650 	return rc;
651 }
652 
653 static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
654 {
655 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
656 	struct efx_ef10_vlan *vlan, *next_vlan;
657 
658 	mutex_lock(&nic_data->vlan_lock);
659 	list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
660 		efx_ef10_del_vlan_internal(efx, vlan);
661 	mutex_unlock(&nic_data->vlan_lock);
662 }
663 
664 static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
665 		   NULL);
666 static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
667 
668 static int efx_ef10_probe(struct efx_nic *efx)
669 {
670 	struct efx_ef10_nic_data *nic_data;
671 	int i, rc;
672 
673 	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
674 	if (!nic_data)
675 		return -ENOMEM;
676 	efx->nic_data = nic_data;
677 
678 	/* we assume later that we can copy from this buffer in dwords */
679 	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
680 
681 	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
682 				  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
683 	if (rc)
684 		goto fail1;
685 
686 	/* Get the MC's warm boot count.  In case it's rebooting right
687 	 * now, be prepared to retry.
688 	 */
689 	i = 0;
690 	for (;;) {
691 		rc = efx_ef10_get_warm_boot_count(efx);
692 		if (rc >= 0)
693 			break;
694 		if (++i == 5)
695 			goto fail2;
696 		ssleep(1);
697 	}
698 	nic_data->warm_boot_count = rc;
699 
700 	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
701 
702 	nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
703 
704 	/* In case we're recovering from a crash (kexec), we want to
705 	 * cancel any outstanding request by the previous user of this
706 	 * function.  We send a special message using the least
707 	 * significant bits of the 'high' (doorbell) register.
708 	 */
709 	_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
710 
711 	rc = efx_mcdi_init(efx);
712 	if (rc)
713 		goto fail2;
714 
715 	mutex_init(&nic_data->udp_tunnels_lock);
716 
717 	/* Reset (most) configuration for this function */
718 	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
719 	if (rc)
720 		goto fail3;
721 
722 	/* Enable event logging */
723 	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
724 	if (rc)
725 		goto fail3;
726 
727 	rc = device_create_file(&efx->pci_dev->dev,
728 				&dev_attr_link_control_flag);
729 	if (rc)
730 		goto fail3;
731 
732 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
733 	if (rc)
734 		goto fail4;
735 
736 	rc = efx_ef10_get_pf_index(efx);
737 	if (rc)
738 		goto fail5;
739 
740 	rc = efx_ef10_init_datapath_caps(efx);
741 	if (rc < 0)
742 		goto fail5;
743 
744 	efx_ef10_read_licensed_features(efx);
745 
746 	/* We can have one VI for each vi_stride-byte region.
747 	 * However, until we use TX option descriptors we need two TX queues
748 	 * per channel.
749 	 */
750 	efx->max_channels = min_t(unsigned int,
751 				  EFX_MAX_CHANNELS,
752 				  efx_ef10_mem_map_size(efx) /
753 				  (efx->vi_stride * EFX_TXQ_TYPES));
754 	efx->max_tx_channels = efx->max_channels;
755 	if (WARN_ON(efx->max_channels == 0)) {
756 		rc = -EIO;
757 		goto fail5;
758 	}
759 
760 	efx->rx_packet_len_offset =
761 		ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
762 
763 	if (nic_data->datapath_caps &
764 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
765 		efx->net_dev->hw_features |= NETIF_F_RXFCS;
766 
767 	rc = efx_mcdi_port_get_number(efx);
768 	if (rc < 0)
769 		goto fail5;
770 	efx->port_num = rc;
771 
772 	rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
773 	if (rc)
774 		goto fail5;
775 
776 	rc = efx_ef10_get_timer_config(efx);
777 	if (rc < 0)
778 		goto fail5;
779 
780 	rc = efx_mcdi_mon_probe(efx);
781 	if (rc && rc != -EPERM)
782 		goto fail5;
783 
784 	efx_ptp_defer_probe_with_channel(efx);
785 
786 #ifdef CONFIG_SFC_SRIOV
787 	if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
788 		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
789 		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
790 
791 		efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
792 	} else
793 #endif
794 		ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
795 
796 	INIT_LIST_HEAD(&nic_data->vlan_list);
797 	mutex_init(&nic_data->vlan_lock);
798 
799 	/* Add unspecified VID to support VLAN filtering being disabled */
800 	rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
801 	if (rc)
802 		goto fail_add_vid_unspec;
803 
804 	/* If VLAN filtering is enabled, we need VID 0 to get untagged
805 	 * traffic.  It is added automatically if 8021q module is loaded,
806 	 * but we can't rely on it since module may be not loaded.
807 	 */
808 	rc = efx_ef10_add_vlan(efx, 0);
809 	if (rc)
810 		goto fail_add_vid_0;
811 
812 	return 0;
813 
814 fail_add_vid_0:
815 	efx_ef10_cleanup_vlans(efx);
816 fail_add_vid_unspec:
817 	mutex_destroy(&nic_data->vlan_lock);
818 	efx_ptp_remove(efx);
819 	efx_mcdi_mon_remove(efx);
820 fail5:
821 	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
822 fail4:
823 	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
824 fail3:
825 	efx_mcdi_detach(efx);
826 
827 	mutex_lock(&nic_data->udp_tunnels_lock);
828 	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
829 	(void)efx_ef10_set_udp_tnl_ports(efx, true);
830 	mutex_unlock(&nic_data->udp_tunnels_lock);
831 	mutex_destroy(&nic_data->udp_tunnels_lock);
832 
833 	efx_mcdi_fini(efx);
834 fail2:
835 	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
836 fail1:
837 	kfree(nic_data);
838 	efx->nic_data = NULL;
839 	return rc;
840 }
841 
842 static int efx_ef10_free_vis(struct efx_nic *efx)
843 {
844 	MCDI_DECLARE_BUF_ERR(outbuf);
845 	size_t outlen;
846 	int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
847 				    outbuf, sizeof(outbuf), &outlen);
848 
849 	/* -EALREADY means nothing to free, so ignore */
850 	if (rc == -EALREADY)
851 		rc = 0;
852 	if (rc)
853 		efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
854 				       rc);
855 	return rc;
856 }
857 
858 #ifdef EFX_USE_PIO
859 
860 static void efx_ef10_free_piobufs(struct efx_nic *efx)
861 {
862 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
863 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
864 	unsigned int i;
865 	int rc;
866 
867 	BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
868 
869 	for (i = 0; i < nic_data->n_piobufs; i++) {
870 		MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
871 			       nic_data->piobuf_handle[i]);
872 		rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
873 				  NULL, 0, NULL);
874 		WARN_ON(rc);
875 	}
876 
877 	nic_data->n_piobufs = 0;
878 }
879 
880 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
881 {
882 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
883 	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
884 	unsigned int i;
885 	size_t outlen;
886 	int rc = 0;
887 
888 	BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
889 
890 	for (i = 0; i < n; i++) {
891 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
892 					outbuf, sizeof(outbuf), &outlen);
893 		if (rc) {
894 			/* Don't display the MC error if we didn't have space
895 			 * for a VF.
896 			 */
897 			if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
898 				efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
899 						       0, outbuf, outlen, rc);
900 			break;
901 		}
902 		if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
903 			rc = -EIO;
904 			break;
905 		}
906 		nic_data->piobuf_handle[i] =
907 			MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
908 		netif_dbg(efx, probe, efx->net_dev,
909 			  "allocated PIO buffer %u handle %x\n", i,
910 			  nic_data->piobuf_handle[i]);
911 	}
912 
913 	nic_data->n_piobufs = i;
914 	if (rc)
915 		efx_ef10_free_piobufs(efx);
916 	return rc;
917 }
918 
919 static int efx_ef10_link_piobufs(struct efx_nic *efx)
920 {
921 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
922 	MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
923 	struct efx_channel *channel;
924 	struct efx_tx_queue *tx_queue;
925 	unsigned int offset, index;
926 	int rc;
927 
928 	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
929 	BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
930 
931 	/* Link a buffer to each VI in the write-combining mapping */
932 	for (index = 0; index < nic_data->n_piobufs; ++index) {
933 		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
934 			       nic_data->piobuf_handle[index]);
935 		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
936 			       nic_data->pio_write_vi_base + index);
937 		rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
938 				  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
939 				  NULL, 0, NULL);
940 		if (rc) {
941 			netif_err(efx, drv, efx->net_dev,
942 				  "failed to link VI %u to PIO buffer %u (%d)\n",
943 				  nic_data->pio_write_vi_base + index, index,
944 				  rc);
945 			goto fail;
946 		}
947 		netif_dbg(efx, probe, efx->net_dev,
948 			  "linked VI %u to PIO buffer %u\n",
949 			  nic_data->pio_write_vi_base + index, index);
950 	}
951 
952 	/* Link a buffer to each TX queue */
953 	efx_for_each_channel(channel, efx) {
954 		/* Extra channels, even those with TXQs (PTP), do not require
955 		 * PIO resources.
956 		 */
957 		if (!channel->type->want_pio)
958 			continue;
959 		efx_for_each_channel_tx_queue(tx_queue, channel) {
960 			/* We assign the PIO buffers to queues in
961 			 * reverse order to allow for the following
962 			 * special case.
963 			 */
964 			offset = ((efx->tx_channel_offset + efx->n_tx_channels -
965 				   tx_queue->channel->channel - 1) *
966 				  efx_piobuf_size);
967 			index = offset / nic_data->piobuf_size;
968 			offset = offset % nic_data->piobuf_size;
969 
970 			/* When the host page size is 4K, the first
971 			 * host page in the WC mapping may be within
972 			 * the same VI page as the last TX queue.  We
973 			 * can only link one buffer to each VI.
974 			 */
975 			if (tx_queue->queue == nic_data->pio_write_vi_base) {
976 				BUG_ON(index != 0);
977 				rc = 0;
978 			} else {
979 				MCDI_SET_DWORD(inbuf,
980 					       LINK_PIOBUF_IN_PIOBUF_HANDLE,
981 					       nic_data->piobuf_handle[index]);
982 				MCDI_SET_DWORD(inbuf,
983 					       LINK_PIOBUF_IN_TXQ_INSTANCE,
984 					       tx_queue->queue);
985 				rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
986 						  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
987 						  NULL, 0, NULL);
988 			}
989 
990 			if (rc) {
991 				/* This is non-fatal; the TX path just
992 				 * won't use PIO for this queue
993 				 */
994 				netif_err(efx, drv, efx->net_dev,
995 					  "failed to link VI %u to PIO buffer %u (%d)\n",
996 					  tx_queue->queue, index, rc);
997 				tx_queue->piobuf = NULL;
998 			} else {
999 				tx_queue->piobuf =
1000 					nic_data->pio_write_base +
1001 					index * efx->vi_stride + offset;
1002 				tx_queue->piobuf_offset = offset;
1003 				netif_dbg(efx, probe, efx->net_dev,
1004 					  "linked VI %u to PIO buffer %u offset %x addr %p\n",
1005 					  tx_queue->queue, index,
1006 					  tx_queue->piobuf_offset,
1007 					  tx_queue->piobuf);
1008 			}
1009 		}
1010 	}
1011 
1012 	return 0;
1013 
1014 fail:
1015 	/* inbuf was defined for MC_CMD_LINK_PIOBUF.  We can use the same
1016 	 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
1017 	 */
1018 	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
1019 	while (index--) {
1020 		MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
1021 			       nic_data->pio_write_vi_base + index);
1022 		efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
1023 			     inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
1024 			     NULL, 0, NULL);
1025 	}
1026 	return rc;
1027 }
1028 
1029 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
1030 {
1031 	struct efx_channel *channel;
1032 	struct efx_tx_queue *tx_queue;
1033 
1034 	/* All our existing PIO buffers went away */
1035 	efx_for_each_channel(channel, efx)
1036 		efx_for_each_channel_tx_queue(tx_queue, channel)
1037 			tx_queue->piobuf = NULL;
1038 }
1039 
1040 #else /* !EFX_USE_PIO */
1041 
1042 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
1043 {
1044 	return n == 0 ? 0 : -ENOBUFS;
1045 }
1046 
1047 static int efx_ef10_link_piobufs(struct efx_nic *efx)
1048 {
1049 	return 0;
1050 }
1051 
1052 static void efx_ef10_free_piobufs(struct efx_nic *efx)
1053 {
1054 }
1055 
1056 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
1057 {
1058 }
1059 
1060 #endif /* EFX_USE_PIO */
1061 
1062 static void efx_ef10_remove(struct efx_nic *efx)
1063 {
1064 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1065 	int rc;
1066 
1067 #ifdef CONFIG_SFC_SRIOV
1068 	struct efx_ef10_nic_data *nic_data_pf;
1069 	struct pci_dev *pci_dev_pf;
1070 	struct efx_nic *efx_pf;
1071 	struct ef10_vf *vf;
1072 
1073 	if (efx->pci_dev->is_virtfn) {
1074 		pci_dev_pf = efx->pci_dev->physfn;
1075 		if (pci_dev_pf) {
1076 			efx_pf = pci_get_drvdata(pci_dev_pf);
1077 			nic_data_pf = efx_pf->nic_data;
1078 			vf = nic_data_pf->vf + nic_data->vf_index;
1079 			vf->efx = NULL;
1080 		} else
1081 			netif_info(efx, drv, efx->net_dev,
1082 				   "Could not get the PF id from VF\n");
1083 	}
1084 #endif
1085 
1086 	efx_ef10_cleanup_vlans(efx);
1087 	mutex_destroy(&nic_data->vlan_lock);
1088 
1089 	efx_ptp_remove(efx);
1090 
1091 	efx_mcdi_mon_remove(efx);
1092 
1093 	efx_ef10_rx_free_indir_table(efx);
1094 
1095 	if (nic_data->wc_membase)
1096 		iounmap(nic_data->wc_membase);
1097 
1098 	rc = efx_ef10_free_vis(efx);
1099 	WARN_ON(rc != 0);
1100 
1101 	if (!nic_data->must_restore_piobufs)
1102 		efx_ef10_free_piobufs(efx);
1103 
1104 	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
1105 	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
1106 
1107 	efx_mcdi_detach(efx);
1108 
1109 	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
1110 	mutex_lock(&nic_data->udp_tunnels_lock);
1111 	(void)efx_ef10_set_udp_tnl_ports(efx, true);
1112 	mutex_unlock(&nic_data->udp_tunnels_lock);
1113 
1114 	mutex_destroy(&nic_data->udp_tunnels_lock);
1115 
1116 	efx_mcdi_fini(efx);
1117 	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
1118 	kfree(nic_data);
1119 }
1120 
1121 static int efx_ef10_probe_pf(struct efx_nic *efx)
1122 {
1123 	return efx_ef10_probe(efx);
1124 }
1125 
1126 int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
1127 			    u32 *port_flags, u32 *vadaptor_flags,
1128 			    unsigned int *vlan_tags)
1129 {
1130 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1131 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
1132 	MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
1133 	size_t outlen;
1134 	int rc;
1135 
1136 	if (nic_data->datapath_caps &
1137 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
1138 		MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
1139 			       port_id);
1140 
1141 		rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
1142 				  outbuf, sizeof(outbuf), &outlen);
1143 		if (rc)
1144 			return rc;
1145 
1146 		if (outlen < sizeof(outbuf)) {
1147 			rc = -EIO;
1148 			return rc;
1149 		}
1150 	}
1151 
1152 	if (port_flags)
1153 		*port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1154 	if (vadaptor_flags)
1155 		*vadaptor_flags =
1156 			MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1157 	if (vlan_tags)
1158 		*vlan_tags =
1159 			MCDI_DWORD(outbuf,
1160 				   VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1161 
1162 	return 0;
1163 }
1164 
1165 int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1166 {
1167 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1168 
1169 	MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1170 	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1171 			    NULL, 0, NULL);
1172 }
1173 
1174 int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1175 {
1176 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1177 
1178 	MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1179 	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1180 			    NULL, 0, NULL);
1181 }
1182 
1183 int efx_ef10_vport_add_mac(struct efx_nic *efx,
1184 			   unsigned int port_id, u8 *mac)
1185 {
1186 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1187 
1188 	MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1189 	ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1190 
1191 	return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1192 			    sizeof(inbuf), NULL, 0, NULL);
1193 }
1194 
1195 int efx_ef10_vport_del_mac(struct efx_nic *efx,
1196 			   unsigned int port_id, u8 *mac)
1197 {
1198 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1199 
1200 	MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1201 	ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1202 
1203 	return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1204 			    sizeof(inbuf), NULL, 0, NULL);
1205 }
1206 
1207 #ifdef CONFIG_SFC_SRIOV
1208 static int efx_ef10_probe_vf(struct efx_nic *efx)
1209 {
1210 	int rc;
1211 	struct pci_dev *pci_dev_pf;
1212 
1213 	/* If the parent PF has no VF data structure, it doesn't know about this
1214 	 * VF so fail probe.  The VF needs to be re-created.  This can happen
1215 	 * if the PF driver is unloaded while the VF is assigned to a guest.
1216 	 */
1217 	pci_dev_pf = efx->pci_dev->physfn;
1218 	if (pci_dev_pf) {
1219 		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1220 		struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1221 
1222 		if (!nic_data_pf->vf) {
1223 			netif_info(efx, drv, efx->net_dev,
1224 				   "The VF cannot link to its parent PF; "
1225 				   "please destroy and re-create the VF\n");
1226 			return -EBUSY;
1227 		}
1228 	}
1229 
1230 	rc = efx_ef10_probe(efx);
1231 	if (rc)
1232 		return rc;
1233 
1234 	rc = efx_ef10_get_vf_index(efx);
1235 	if (rc)
1236 		goto fail;
1237 
1238 	if (efx->pci_dev->is_virtfn) {
1239 		if (efx->pci_dev->physfn) {
1240 			struct efx_nic *efx_pf =
1241 				pci_get_drvdata(efx->pci_dev->physfn);
1242 			struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1243 			struct efx_ef10_nic_data *nic_data = efx->nic_data;
1244 
1245 			nic_data_p->vf[nic_data->vf_index].efx = efx;
1246 			nic_data_p->vf[nic_data->vf_index].pci_dev =
1247 				efx->pci_dev;
1248 		} else
1249 			netif_info(efx, drv, efx->net_dev,
1250 				   "Could not get the PF id from VF\n");
1251 	}
1252 
1253 	return 0;
1254 
1255 fail:
1256 	efx_ef10_remove(efx);
1257 	return rc;
1258 }
1259 #else
1260 static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1261 {
1262 	return 0;
1263 }
1264 #endif
1265 
1266 static int efx_ef10_alloc_vis(struct efx_nic *efx,
1267 			      unsigned int min_vis, unsigned int max_vis)
1268 {
1269 	MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
1270 	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
1271 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1272 	size_t outlen;
1273 	int rc;
1274 
1275 	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
1276 	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
1277 	rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
1278 			  outbuf, sizeof(outbuf), &outlen);
1279 	if (rc != 0)
1280 		return rc;
1281 
1282 	if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
1283 		return -EIO;
1284 
1285 	netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
1286 		  MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
1287 
1288 	nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
1289 	nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
1290 	return 0;
1291 }
1292 
1293 /* Note that the failure path of this function does not free
1294  * resources, as this will be done by efx_ef10_remove().
1295  */
1296 static int efx_ef10_dimension_resources(struct efx_nic *efx)
1297 {
1298 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1299 	unsigned int uc_mem_map_size, wc_mem_map_size;
1300 	unsigned int min_vis = max(EFX_TXQ_TYPES,
1301 				   efx_separate_tx_channels ? 2 : 1);
1302 	unsigned int channel_vis, pio_write_vi_base, max_vis;
1303 	void __iomem *membase;
1304 	int rc;
1305 
1306 	channel_vis = max(efx->n_channels,
1307 			  (efx->n_tx_channels + efx->n_extra_tx_channels) *
1308 			  EFX_TXQ_TYPES);
1309 
1310 #ifdef EFX_USE_PIO
1311 	/* Try to allocate PIO buffers if wanted and if the full
1312 	 * number of PIO buffers would be sufficient to allocate one
1313 	 * copy-buffer per TX channel.  Failure is non-fatal, as there
1314 	 * are only a small number of PIO buffers shared between all
1315 	 * functions of the controller.
1316 	 */
1317 	if (efx_piobuf_size != 0 &&
1318 	    nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1319 	    efx->n_tx_channels) {
1320 		unsigned int n_piobufs =
1321 			DIV_ROUND_UP(efx->n_tx_channels,
1322 				     nic_data->piobuf_size / efx_piobuf_size);
1323 
1324 		rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1325 		if (rc == -ENOSPC)
1326 			netif_dbg(efx, probe, efx->net_dev,
1327 				  "out of PIO buffers; cannot allocate more\n");
1328 		else if (rc == -EPERM)
1329 			netif_dbg(efx, probe, efx->net_dev,
1330 				  "not permitted to allocate PIO buffers\n");
1331 		else if (rc)
1332 			netif_err(efx, probe, efx->net_dev,
1333 				  "failed to allocate PIO buffers (%d)\n", rc);
1334 		else
1335 			netif_dbg(efx, probe, efx->net_dev,
1336 				  "allocated %u PIO buffers\n", n_piobufs);
1337 	}
1338 #else
1339 	nic_data->n_piobufs = 0;
1340 #endif
1341 
1342 	/* PIO buffers should be mapped with write-combining enabled,
1343 	 * and we want to make single UC and WC mappings rather than
1344 	 * several of each (in fact that's the only option if host
1345 	 * page size is >4K).  So we may allocate some extra VIs just
1346 	 * for writing PIO buffers through.
1347 	 *
1348 	 * The UC mapping contains (channel_vis - 1) complete VIs and the
1349 	 * first 4K of the next VI.  Then the WC mapping begins with
1350 	 * the remainder of this last VI.
1351 	 */
1352 	uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride +
1353 				     ER_DZ_TX_PIOBUF);
1354 	if (nic_data->n_piobufs) {
1355 		/* pio_write_vi_base rounds down to give the number of complete
1356 		 * VIs inside the UC mapping.
1357 		 */
1358 		pio_write_vi_base = uc_mem_map_size / efx->vi_stride;
1359 		wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1360 					       nic_data->n_piobufs) *
1361 					      efx->vi_stride) -
1362 				   uc_mem_map_size);
1363 		max_vis = pio_write_vi_base + nic_data->n_piobufs;
1364 	} else {
1365 		pio_write_vi_base = 0;
1366 		wc_mem_map_size = 0;
1367 		max_vis = channel_vis;
1368 	}
1369 
1370 	/* In case the last attached driver failed to free VIs, do it now */
1371 	rc = efx_ef10_free_vis(efx);
1372 	if (rc != 0)
1373 		return rc;
1374 
1375 	rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1376 	if (rc != 0)
1377 		return rc;
1378 
1379 	if (nic_data->n_allocated_vis < channel_vis) {
1380 		netif_info(efx, drv, efx->net_dev,
1381 			   "Could not allocate enough VIs to satisfy RSS"
1382 			   " requirements. Performance may not be optimal.\n");
1383 		/* We didn't get the VIs to populate our channels.
1384 		 * We could keep what we got but then we'd have more
1385 		 * interrupts than we need.
1386 		 * Instead calculate new max_channels and restart
1387 		 */
1388 		efx->max_channels = nic_data->n_allocated_vis;
1389 		efx->max_tx_channels =
1390 			nic_data->n_allocated_vis / EFX_TXQ_TYPES;
1391 
1392 		efx_ef10_free_vis(efx);
1393 		return -EAGAIN;
1394 	}
1395 
1396 	/* If we didn't get enough VIs to map all the PIO buffers, free the
1397 	 * PIO buffers
1398 	 */
1399 	if (nic_data->n_piobufs &&
1400 	    nic_data->n_allocated_vis <
1401 	    pio_write_vi_base + nic_data->n_piobufs) {
1402 		netif_dbg(efx, probe, efx->net_dev,
1403 			  "%u VIs are not sufficient to map %u PIO buffers\n",
1404 			  nic_data->n_allocated_vis, nic_data->n_piobufs);
1405 		efx_ef10_free_piobufs(efx);
1406 	}
1407 
1408 	/* Shrink the original UC mapping of the memory BAR */
1409 	membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
1410 	if (!membase) {
1411 		netif_err(efx, probe, efx->net_dev,
1412 			  "could not shrink memory BAR to %x\n",
1413 			  uc_mem_map_size);
1414 		return -ENOMEM;
1415 	}
1416 	iounmap(efx->membase);
1417 	efx->membase = membase;
1418 
1419 	/* Set up the WC mapping if needed */
1420 	if (wc_mem_map_size) {
1421 		nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1422 						  uc_mem_map_size,
1423 						  wc_mem_map_size);
1424 		if (!nic_data->wc_membase) {
1425 			netif_err(efx, probe, efx->net_dev,
1426 				  "could not allocate WC mapping of size %x\n",
1427 				  wc_mem_map_size);
1428 			return -ENOMEM;
1429 		}
1430 		nic_data->pio_write_vi_base = pio_write_vi_base;
1431 		nic_data->pio_write_base =
1432 			nic_data->wc_membase +
1433 			(pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF -
1434 			 uc_mem_map_size);
1435 
1436 		rc = efx_ef10_link_piobufs(efx);
1437 		if (rc)
1438 			efx_ef10_free_piobufs(efx);
1439 	}
1440 
1441 	netif_dbg(efx, probe, efx->net_dev,
1442 		  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1443 		  &efx->membase_phys, efx->membase, uc_mem_map_size,
1444 		  nic_data->wc_membase, wc_mem_map_size);
1445 
1446 	return 0;
1447 }
1448 
1449 static int efx_ef10_init_nic(struct efx_nic *efx)
1450 {
1451 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1452 	int rc;
1453 
1454 	if (nic_data->must_check_datapath_caps) {
1455 		rc = efx_ef10_init_datapath_caps(efx);
1456 		if (rc)
1457 			return rc;
1458 		nic_data->must_check_datapath_caps = false;
1459 	}
1460 
1461 	if (nic_data->must_realloc_vis) {
1462 		/* We cannot let the number of VIs change now */
1463 		rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1464 					nic_data->n_allocated_vis);
1465 		if (rc)
1466 			return rc;
1467 		nic_data->must_realloc_vis = false;
1468 	}
1469 
1470 	if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1471 		rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1472 		if (rc == 0) {
1473 			rc = efx_ef10_link_piobufs(efx);
1474 			if (rc)
1475 				efx_ef10_free_piobufs(efx);
1476 		}
1477 
1478 		/* Log an error on failure, but this is non-fatal.
1479 		 * Permission errors are less important - we've presumably
1480 		 * had the PIO buffer licence removed.
1481 		 */
1482 		if (rc == -EPERM)
1483 			netif_dbg(efx, drv, efx->net_dev,
1484 				  "not permitted to restore PIO buffers\n");
1485 		else if (rc)
1486 			netif_err(efx, drv, efx->net_dev,
1487 				  "failed to restore PIO buffers (%d)\n", rc);
1488 		nic_data->must_restore_piobufs = false;
1489 	}
1490 
1491 	/* don't fail init if RSS setup doesn't work */
1492 	rc = efx->type->rx_push_rss_config(efx, false, efx->rx_indir_table, NULL);
1493 	efx->rss_active = (rc == 0);
1494 
1495 	return 0;
1496 }
1497 
1498 static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
1499 {
1500 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1501 #ifdef CONFIG_SFC_SRIOV
1502 	unsigned int i;
1503 #endif
1504 
1505 	/* All our allocations have been reset */
1506 	nic_data->must_realloc_vis = true;
1507 	nic_data->must_restore_filters = true;
1508 	nic_data->must_restore_piobufs = true;
1509 	efx_ef10_forget_old_piobufs(efx);
1510 	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1511 
1512 	/* Driver-created vswitches and vports must be re-created */
1513 	nic_data->must_probe_vswitching = true;
1514 	nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
1515 #ifdef CONFIG_SFC_SRIOV
1516 	if (nic_data->vf)
1517 		for (i = 0; i < efx->vf_count; i++)
1518 			nic_data->vf[i].vport_id = 0;
1519 #endif
1520 }
1521 
1522 static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1523 {
1524 	if (reason == RESET_TYPE_MC_FAILURE)
1525 		return RESET_TYPE_DATAPATH;
1526 
1527 	return efx_mcdi_map_reset_reason(reason);
1528 }
1529 
1530 static int efx_ef10_map_reset_flags(u32 *flags)
1531 {
1532 	enum {
1533 		EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1534 				   ETH_RESET_SHARED_SHIFT),
1535 		EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1536 				  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1537 				  ETH_RESET_PHY | ETH_RESET_MGMT) <<
1538 				 ETH_RESET_SHARED_SHIFT)
1539 	};
1540 
1541 	/* We assume for now that our PCI function is permitted to
1542 	 * reset everything.
1543 	 */
1544 
1545 	if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1546 		*flags &= ~EF10_RESET_MC;
1547 		return RESET_TYPE_WORLD;
1548 	}
1549 
1550 	if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1551 		*flags &= ~EF10_RESET_PORT;
1552 		return RESET_TYPE_ALL;
1553 	}
1554 
1555 	/* no invisible reset implemented */
1556 
1557 	return -EINVAL;
1558 }
1559 
1560 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1561 {
1562 	int rc = efx_mcdi_reset(efx, reset_type);
1563 
1564 	/* Unprivileged functions return -EPERM, but need to return success
1565 	 * here so that the datapath is brought back up.
1566 	 */
1567 	if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1568 		rc = 0;
1569 
1570 	/* If it was a port reset, trigger reallocation of MC resources.
1571 	 * Note that on an MC reset nothing needs to be done now because we'll
1572 	 * detect the MC reset later and handle it then.
1573 	 * For an FLR, we never get an MC reset event, but the MC has reset all
1574 	 * resources assigned to us, so we have to trigger reallocation now.
1575 	 */
1576 	if ((reset_type == RESET_TYPE_ALL ||
1577 	     reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1578 		efx_ef10_reset_mc_allocations(efx);
1579 	return rc;
1580 }
1581 
1582 #define EF10_DMA_STAT(ext_name, mcdi_name)			\
1583 	[EF10_STAT_ ## ext_name] =				\
1584 	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1585 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name)		\
1586 	[EF10_STAT_ ## int_name] =				\
1587 	{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1588 #define EF10_OTHER_STAT(ext_name)				\
1589 	[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1590 #define GENERIC_SW_STAT(ext_name)				\
1591 	[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1592 
1593 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1594 	EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1595 	EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1596 	EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1597 	EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1598 	EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1599 	EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1600 	EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1601 	EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1602 	EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1603 	EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1604 	EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1605 	EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1606 	EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1607 	EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1608 	EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1609 	EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1610 	EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1611 	EF10_OTHER_STAT(port_rx_good_bytes),
1612 	EF10_OTHER_STAT(port_rx_bad_bytes),
1613 	EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1614 	EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1615 	EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1616 	EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1617 	EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1618 	EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1619 	EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1620 	EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1621 	EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1622 	EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1623 	EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1624 	EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1625 	EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1626 	EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1627 	EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1628 	EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1629 	EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1630 	EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1631 	EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1632 	EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1633 	EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1634 	EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1635 	GENERIC_SW_STAT(rx_nodesc_trunc),
1636 	GENERIC_SW_STAT(rx_noskb_drops),
1637 	EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1638 	EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1639 	EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1640 	EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1641 	EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1642 	EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1643 	EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1644 	EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1645 	EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1646 	EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1647 	EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1648 	EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1649 	EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1650 	EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1651 	EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1652 	EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1653 	EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1654 	EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1655 	EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1656 	EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1657 	EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1658 	EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1659 	EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1660 	EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1661 	EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1662 	EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1663 	EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1664 	EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1665 	EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1666 	EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1667 	EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS),
1668 	EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS),
1669 	EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0),
1670 	EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1),
1671 	EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2),
1672 	EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3),
1673 	EF10_DMA_STAT(ctpio_dmabuf_start, CTPIO_DMABUF_START),
1674 	EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK),
1675 	EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS),
1676 	EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL),
1677 	EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL),
1678 	EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL),
1679 	EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL),
1680 	EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL),
1681 	EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL),
1682 	EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL),
1683 	EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK),
1684 	EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK),
1685 	EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK),
1686 	EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS),
1687 	EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK),
1688 	EF10_DMA_STAT(ctpio_poison, CTPIO_POISON),
1689 	EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE),
1690 };
1691 
1692 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |	\
1693 			       (1ULL << EF10_STAT_port_tx_packets) |	\
1694 			       (1ULL << EF10_STAT_port_tx_pause) |	\
1695 			       (1ULL << EF10_STAT_port_tx_unicast) |	\
1696 			       (1ULL << EF10_STAT_port_tx_multicast) |	\
1697 			       (1ULL << EF10_STAT_port_tx_broadcast) |	\
1698 			       (1ULL << EF10_STAT_port_rx_bytes) |	\
1699 			       (1ULL <<                                 \
1700 				EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1701 			       (1ULL << EF10_STAT_port_rx_good_bytes) |	\
1702 			       (1ULL << EF10_STAT_port_rx_bad_bytes) |	\
1703 			       (1ULL << EF10_STAT_port_rx_packets) |	\
1704 			       (1ULL << EF10_STAT_port_rx_good) |	\
1705 			       (1ULL << EF10_STAT_port_rx_bad) |	\
1706 			       (1ULL << EF10_STAT_port_rx_pause) |	\
1707 			       (1ULL << EF10_STAT_port_rx_control) |	\
1708 			       (1ULL << EF10_STAT_port_rx_unicast) |	\
1709 			       (1ULL << EF10_STAT_port_rx_multicast) |	\
1710 			       (1ULL << EF10_STAT_port_rx_broadcast) |	\
1711 			       (1ULL << EF10_STAT_port_rx_lt64) |	\
1712 			       (1ULL << EF10_STAT_port_rx_64) |		\
1713 			       (1ULL << EF10_STAT_port_rx_65_to_127) |	\
1714 			       (1ULL << EF10_STAT_port_rx_128_to_255) |	\
1715 			       (1ULL << EF10_STAT_port_rx_256_to_511) |	\
1716 			       (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1717 			       (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1718 			       (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1719 			       (1ULL << EF10_STAT_port_rx_gtjumbo) |	\
1720 			       (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1721 			       (1ULL << EF10_STAT_port_rx_overflow) |	\
1722 			       (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1723 			       (1ULL << GENERIC_STAT_rx_nodesc_trunc) |	\
1724 			       (1ULL << GENERIC_STAT_rx_noskb_drops))
1725 
1726 /* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1727  * For a 10G/40G switchable port we do not expose these because they might
1728  * not include all the packets they should.
1729  * On 8000 series NICs these statistics are always provided.
1730  */
1731 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |	\
1732 				 (1ULL << EF10_STAT_port_tx_lt64) |	\
1733 				 (1ULL << EF10_STAT_port_tx_64) |	\
1734 				 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1735 				 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1736 				 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1737 				 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1738 				 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1739 				 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1740 
1741 /* These statistics are only provided by the 40G MAC.  For a 10G/40G
1742  * switchable port we do expose these because the errors will otherwise
1743  * be silent.
1744  */
1745 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1746 				  (1ULL << EF10_STAT_port_rx_length_error))
1747 
1748 /* These statistics are only provided if the firmware supports the
1749  * capability PM_AND_RXDP_COUNTERS.
1750  */
1751 #define HUNT_PM_AND_RXDP_STAT_MASK (					\
1752 	(1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |		\
1753 	(1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |		\
1754 	(1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |		\
1755 	(1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |		\
1756 	(1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |			\
1757 	(1ULL << EF10_STAT_port_rx_pm_discard_qbb) |			\
1758 	(1ULL << EF10_STAT_port_rx_pm_discard_mapping) |		\
1759 	(1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |		\
1760 	(1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |		\
1761 	(1ULL << EF10_STAT_port_rx_dp_streaming_packets) |		\
1762 	(1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |			\
1763 	(1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1764 
1765 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
1766  * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
1767  * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1768  * These bits are in the second u64 of the raw mask.
1769  */
1770 #define EF10_FEC_STAT_MASK (						\
1771 	(1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) |		\
1772 	(1ULL << (EF10_STAT_fec_corrected_errors - 64)) |		\
1773 	(1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) |	\
1774 	(1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) |	\
1775 	(1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) |	\
1776 	(1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
1777 
1778 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
1779  * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
1780  * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1781  * These bits are in the second u64 of the raw mask.
1782  */
1783 #define EF10_CTPIO_STAT_MASK (						\
1784 	(1ULL << (EF10_STAT_ctpio_dmabuf_start - 64)) |			\
1785 	(1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) |		\
1786 	(1ULL << (EF10_STAT_ctpio_long_write_success - 64)) |		\
1787 	(1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) |		\
1788 	(1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) |		\
1789 	(1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) |		\
1790 	(1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) |			\
1791 	(1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) |		\
1792 	(1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) |		\
1793 	(1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) |		\
1794 	(1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) |		\
1795 	(1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) |		\
1796 	(1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) |		\
1797 	(1ULL << (EF10_STAT_ctpio_success - 64)) |			\
1798 	(1ULL << (EF10_STAT_ctpio_fallback - 64)) |			\
1799 	(1ULL << (EF10_STAT_ctpio_poison - 64)) |			\
1800 	(1ULL << (EF10_STAT_ctpio_erase - 64)))
1801 
1802 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1803 {
1804 	u64 raw_mask = HUNT_COMMON_STAT_MASK;
1805 	u32 port_caps = efx_mcdi_phy_get_caps(efx);
1806 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1807 
1808 	if (!(efx->mcdi->fn_flags &
1809 	      1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1810 		return 0;
1811 
1812 	if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1813 		raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1814 		/* 8000 series have everything even at 40G */
1815 		if (nic_data->datapath_caps2 &
1816 		    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1817 			raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1818 	} else {
1819 		raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1820 	}
1821 
1822 	if (nic_data->datapath_caps &
1823 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1824 		raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1825 
1826 	return raw_mask;
1827 }
1828 
1829 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1830 {
1831 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1832 	u64 raw_mask[2];
1833 
1834 	raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1835 
1836 	/* Only show vadaptor stats when EVB capability is present */
1837 	if (nic_data->datapath_caps &
1838 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1839 		raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1840 		raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1;
1841 	} else {
1842 		raw_mask[1] = 0;
1843 	}
1844 	/* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
1845 	if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2)
1846 		raw_mask[1] |= EF10_FEC_STAT_MASK;
1847 
1848 	/* CTPIO stats appear in V3. Only show them on devices that actually
1849 	 * support CTPIO. Although this driver doesn't use CTPIO others might,
1850 	 * and we may be reporting the stats for the underlying port.
1851 	 */
1852 	if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 &&
1853 	    (nic_data->datapath_caps2 &
1854 	     (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN)))
1855 		raw_mask[1] |= EF10_CTPIO_STAT_MASK;
1856 
1857 #if BITS_PER_LONG == 64
1858 	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1859 	mask[0] = raw_mask[0];
1860 	mask[1] = raw_mask[1];
1861 #else
1862 	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1863 	mask[0] = raw_mask[0] & 0xffffffff;
1864 	mask[1] = raw_mask[0] >> 32;
1865 	mask[2] = raw_mask[1] & 0xffffffff;
1866 #endif
1867 }
1868 
1869 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1870 {
1871 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1872 
1873 	efx_ef10_get_stat_mask(efx, mask);
1874 	return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1875 				      mask, names);
1876 }
1877 
1878 static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1879 					   struct rtnl_link_stats64 *core_stats)
1880 {
1881 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1882 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1883 	u64 *stats = nic_data->stats;
1884 	size_t stats_count = 0, index;
1885 
1886 	efx_ef10_get_stat_mask(efx, mask);
1887 
1888 	if (full_stats) {
1889 		for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1890 			if (efx_ef10_stat_desc[index].name) {
1891 				*full_stats++ = stats[index];
1892 				++stats_count;
1893 			}
1894 		}
1895 	}
1896 
1897 	if (!core_stats)
1898 		return stats_count;
1899 
1900 	if (nic_data->datapath_caps &
1901 			1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1902 		/* Use vadaptor stats. */
1903 		core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1904 					 stats[EF10_STAT_rx_multicast] +
1905 					 stats[EF10_STAT_rx_broadcast];
1906 		core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1907 					 stats[EF10_STAT_tx_multicast] +
1908 					 stats[EF10_STAT_tx_broadcast];
1909 		core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1910 				       stats[EF10_STAT_rx_multicast_bytes] +
1911 				       stats[EF10_STAT_rx_broadcast_bytes];
1912 		core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1913 				       stats[EF10_STAT_tx_multicast_bytes] +
1914 				       stats[EF10_STAT_tx_broadcast_bytes];
1915 		core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1916 					 stats[GENERIC_STAT_rx_noskb_drops];
1917 		core_stats->multicast = stats[EF10_STAT_rx_multicast];
1918 		core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1919 		core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1920 		core_stats->rx_errors = core_stats->rx_crc_errors;
1921 		core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1922 	} else {
1923 		/* Use port stats. */
1924 		core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1925 		core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1926 		core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1927 		core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1928 		core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1929 					 stats[GENERIC_STAT_rx_nodesc_trunc] +
1930 					 stats[GENERIC_STAT_rx_noskb_drops];
1931 		core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1932 		core_stats->rx_length_errors =
1933 				stats[EF10_STAT_port_rx_gtjumbo] +
1934 				stats[EF10_STAT_port_rx_length_error];
1935 		core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1936 		core_stats->rx_frame_errors =
1937 				stats[EF10_STAT_port_rx_align_error];
1938 		core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1939 		core_stats->rx_errors = (core_stats->rx_length_errors +
1940 					 core_stats->rx_crc_errors +
1941 					 core_stats->rx_frame_errors);
1942 	}
1943 
1944 	return stats_count;
1945 }
1946 
1947 static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
1948 {
1949 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1950 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1951 	__le64 generation_start, generation_end;
1952 	u64 *stats = nic_data->stats;
1953 	__le64 *dma_stats;
1954 
1955 	efx_ef10_get_stat_mask(efx, mask);
1956 
1957 	dma_stats = efx->stats_buffer.addr;
1958 
1959 	generation_end = dma_stats[efx->num_mac_stats - 1];
1960 	if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
1961 		return 0;
1962 	rmb();
1963 	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1964 			     stats, efx->stats_buffer.addr, false);
1965 	rmb();
1966 	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1967 	if (generation_end != generation_start)
1968 		return -EAGAIN;
1969 
1970 	/* Update derived statistics */
1971 	efx_nic_fix_nodesc_drop_stat(efx,
1972 				     &stats[EF10_STAT_port_rx_nodesc_drops]);
1973 	stats[EF10_STAT_port_rx_good_bytes] =
1974 		stats[EF10_STAT_port_rx_bytes] -
1975 		stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1976 	efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1977 			     stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1978 	efx_update_sw_stats(efx, stats);
1979 	return 0;
1980 }
1981 
1982 
1983 static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1984 				       struct rtnl_link_stats64 *core_stats)
1985 {
1986 	int retry;
1987 
1988 	/* If we're unlucky enough to read statistics during the DMA, wait
1989 	 * up to 10ms for it to finish (typically takes <500us)
1990 	 */
1991 	for (retry = 0; retry < 100; ++retry) {
1992 		if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
1993 			break;
1994 		udelay(100);
1995 	}
1996 
1997 	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1998 }
1999 
2000 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
2001 {
2002 	MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
2003 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2004 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
2005 	__le64 generation_start, generation_end;
2006 	u64 *stats = nic_data->stats;
2007 	u32 dma_len = efx->num_mac_stats * sizeof(u64);
2008 	struct efx_buffer stats_buf;
2009 	__le64 *dma_stats;
2010 	int rc;
2011 
2012 	spin_unlock_bh(&efx->stats_lock);
2013 
2014 	if (in_interrupt()) {
2015 		/* If in atomic context, cannot update stats.  Just update the
2016 		 * software stats and return so the caller can continue.
2017 		 */
2018 		spin_lock_bh(&efx->stats_lock);
2019 		efx_update_sw_stats(efx, stats);
2020 		return 0;
2021 	}
2022 
2023 	efx_ef10_get_stat_mask(efx, mask);
2024 
2025 	rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
2026 	if (rc) {
2027 		spin_lock_bh(&efx->stats_lock);
2028 		return rc;
2029 	}
2030 
2031 	dma_stats = stats_buf.addr;
2032 	dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID;
2033 
2034 	MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
2035 	MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
2036 			      MAC_STATS_IN_DMA, 1);
2037 	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
2038 	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
2039 
2040 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
2041 				NULL, 0, NULL);
2042 	spin_lock_bh(&efx->stats_lock);
2043 	if (rc) {
2044 		/* Expect ENOENT if DMA queues have not been set up */
2045 		if (rc != -ENOENT || atomic_read(&efx->active_queues))
2046 			efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
2047 					       sizeof(inbuf), NULL, 0, rc);
2048 		goto out;
2049 	}
2050 
2051 	generation_end = dma_stats[efx->num_mac_stats - 1];
2052 	if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
2053 		WARN_ON_ONCE(1);
2054 		goto out;
2055 	}
2056 	rmb();
2057 	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
2058 			     stats, stats_buf.addr, false);
2059 	rmb();
2060 	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
2061 	if (generation_end != generation_start) {
2062 		rc = -EAGAIN;
2063 		goto out;
2064 	}
2065 
2066 	efx_update_sw_stats(efx, stats);
2067 out:
2068 	efx_nic_free_buffer(efx, &stats_buf);
2069 	return rc;
2070 }
2071 
2072 static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
2073 				       struct rtnl_link_stats64 *core_stats)
2074 {
2075 	if (efx_ef10_try_update_nic_stats_vf(efx))
2076 		return 0;
2077 
2078 	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
2079 }
2080 
2081 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
2082 {
2083 	struct efx_nic *efx = channel->efx;
2084 	unsigned int mode, usecs;
2085 	efx_dword_t timer_cmd;
2086 
2087 	if (channel->irq_moderation_us) {
2088 		mode = 3;
2089 		usecs = channel->irq_moderation_us;
2090 	} else {
2091 		mode = 0;
2092 		usecs = 0;
2093 	}
2094 
2095 	if (EFX_EF10_WORKAROUND_61265(efx)) {
2096 		MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
2097 		unsigned int ns = usecs * 1000;
2098 
2099 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
2100 			       channel->channel);
2101 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
2102 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
2103 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
2104 
2105 		efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
2106 				   inbuf, sizeof(inbuf), 0, NULL, 0);
2107 	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
2108 		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2109 
2110 		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
2111 				     EFE_DD_EVQ_IND_TIMER_FLAGS,
2112 				     ERF_DD_EVQ_IND_TIMER_MODE, mode,
2113 				     ERF_DD_EVQ_IND_TIMER_VAL, ticks);
2114 		efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
2115 				channel->channel);
2116 	} else {
2117 		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2118 
2119 		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
2120 				     ERF_DZ_TC_TIMER_VAL, ticks,
2121 				     ERF_FZ_TC_TMR_REL_VAL, ticks);
2122 		efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
2123 				channel->channel);
2124 	}
2125 }
2126 
2127 static void efx_ef10_get_wol_vf(struct efx_nic *efx,
2128 				struct ethtool_wolinfo *wol) {}
2129 
2130 static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
2131 {
2132 	return -EOPNOTSUPP;
2133 }
2134 
2135 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2136 {
2137 	wol->supported = 0;
2138 	wol->wolopts = 0;
2139 	memset(&wol->sopass, 0, sizeof(wol->sopass));
2140 }
2141 
2142 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
2143 {
2144 	if (type != 0)
2145 		return -EINVAL;
2146 	return 0;
2147 }
2148 
2149 static void efx_ef10_mcdi_request(struct efx_nic *efx,
2150 				  const efx_dword_t *hdr, size_t hdr_len,
2151 				  const efx_dword_t *sdu, size_t sdu_len)
2152 {
2153 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2154 	u8 *pdu = nic_data->mcdi_buf.addr;
2155 
2156 	memcpy(pdu, hdr, hdr_len);
2157 	memcpy(pdu + hdr_len, sdu, sdu_len);
2158 	wmb();
2159 
2160 	/* The hardware provides 'low' and 'high' (doorbell) registers
2161 	 * for passing the 64-bit address of an MCDI request to
2162 	 * firmware.  However the dwords are swapped by firmware.  The
2163 	 * least significant bits of the doorbell are then 0 for all
2164 	 * MCDI requests due to alignment.
2165 	 */
2166 	_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
2167 		    ER_DZ_MC_DB_LWRD);
2168 	_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
2169 		    ER_DZ_MC_DB_HWRD);
2170 }
2171 
2172 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
2173 {
2174 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2175 	const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
2176 
2177 	rmb();
2178 	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2179 }
2180 
2181 static void
2182 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2183 			    size_t offset, size_t outlen)
2184 {
2185 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2186 	const u8 *pdu = nic_data->mcdi_buf.addr;
2187 
2188 	memcpy(outbuf, pdu + offset, outlen);
2189 }
2190 
2191 static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2192 {
2193 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2194 
2195 	/* All our allocations have been reset */
2196 	efx_ef10_reset_mc_allocations(efx);
2197 
2198 	/* The datapath firmware might have been changed */
2199 	nic_data->must_check_datapath_caps = true;
2200 
2201 	/* MAC statistics have been cleared on the NIC; clear the local
2202 	 * statistic that we update with efx_update_diff_stat().
2203 	 */
2204 	nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2205 }
2206 
2207 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2208 {
2209 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2210 	int rc;
2211 
2212 	rc = efx_ef10_get_warm_boot_count(efx);
2213 	if (rc < 0) {
2214 		/* The firmware is presumably in the process of
2215 		 * rebooting.  However, we are supposed to report each
2216 		 * reboot just once, so we must only do that once we
2217 		 * can read and store the updated warm boot count.
2218 		 */
2219 		return 0;
2220 	}
2221 
2222 	if (rc == nic_data->warm_boot_count)
2223 		return 0;
2224 
2225 	nic_data->warm_boot_count = rc;
2226 	efx_ef10_mcdi_reboot_detected(efx);
2227 
2228 	return -EIO;
2229 }
2230 
2231 /* Handle an MSI interrupt
2232  *
2233  * Handle an MSI hardware interrupt.  This routine schedules event
2234  * queue processing.  No interrupt acknowledgement cycle is necessary.
2235  * Also, we never need to check that the interrupt is for us, since
2236  * MSI interrupts cannot be shared.
2237  */
2238 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2239 {
2240 	struct efx_msi_context *context = dev_id;
2241 	struct efx_nic *efx = context->efx;
2242 
2243 	netif_vdbg(efx, intr, efx->net_dev,
2244 		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2245 
2246 	if (likely(READ_ONCE(efx->irq_soft_enabled))) {
2247 		/* Note test interrupts */
2248 		if (context->index == efx->irq_level)
2249 			efx->last_irq_cpu = raw_smp_processor_id();
2250 
2251 		/* Schedule processing of the channel */
2252 		efx_schedule_channel_irq(efx->channel[context->index]);
2253 	}
2254 
2255 	return IRQ_HANDLED;
2256 }
2257 
2258 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2259 {
2260 	struct efx_nic *efx = dev_id;
2261 	bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
2262 	struct efx_channel *channel;
2263 	efx_dword_t reg;
2264 	u32 queues;
2265 
2266 	/* Read the ISR which also ACKs the interrupts */
2267 	efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
2268 	queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2269 
2270 	if (queues == 0)
2271 		return IRQ_NONE;
2272 
2273 	if (likely(soft_enabled)) {
2274 		/* Note test interrupts */
2275 		if (queues & (1U << efx->irq_level))
2276 			efx->last_irq_cpu = raw_smp_processor_id();
2277 
2278 		efx_for_each_channel(channel, efx) {
2279 			if (queues & 1)
2280 				efx_schedule_channel_irq(channel);
2281 			queues >>= 1;
2282 		}
2283 	}
2284 
2285 	netif_vdbg(efx, intr, efx->net_dev,
2286 		   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2287 		   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2288 
2289 	return IRQ_HANDLED;
2290 }
2291 
2292 static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2293 {
2294 	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2295 
2296 	if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2297 				    NULL) == 0)
2298 		return -ENOTSUPP;
2299 
2300 	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2301 
2302 	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2303 	return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2304 			    inbuf, sizeof(inbuf), NULL, 0, NULL);
2305 }
2306 
2307 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2308 {
2309 	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
2310 				    (tx_queue->ptr_mask + 1) *
2311 				    sizeof(efx_qword_t),
2312 				    GFP_KERNEL);
2313 }
2314 
2315 /* This writes to the TX_DESC_WPTR and also pushes data */
2316 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2317 					 const efx_qword_t *txd)
2318 {
2319 	unsigned int write_ptr;
2320 	efx_oword_t reg;
2321 
2322 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2323 	EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2324 	reg.qword[0] = *txd;
2325 	efx_writeo_page(tx_queue->efx, &reg,
2326 			ER_DZ_TX_DESC_UPD, tx_queue->queue);
2327 }
2328 
2329 /* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2330  */
2331 static int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue,
2332 				struct sk_buff *skb,
2333 				bool *data_mapped)
2334 {
2335 	struct efx_tx_buffer *buffer;
2336 	struct tcphdr *tcp;
2337 	struct iphdr *ip;
2338 
2339 	u16 ipv4_id;
2340 	u32 seqnum;
2341 	u32 mss;
2342 
2343 	EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2344 
2345 	mss = skb_shinfo(skb)->gso_size;
2346 
2347 	if (unlikely(mss < 4)) {
2348 		WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2349 		return -EINVAL;
2350 	}
2351 
2352 	ip = ip_hdr(skb);
2353 	if (ip->version == 4) {
2354 		/* Modify IPv4 header if needed. */
2355 		ip->tot_len = 0;
2356 		ip->check = 0;
2357 		ipv4_id = ntohs(ip->id);
2358 	} else {
2359 		/* Modify IPv6 header if needed. */
2360 		struct ipv6hdr *ipv6 = ipv6_hdr(skb);
2361 
2362 		ipv6->payload_len = 0;
2363 		ipv4_id = 0;
2364 	}
2365 
2366 	tcp = tcp_hdr(skb);
2367 	seqnum = ntohl(tcp->seq);
2368 
2369 	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2370 
2371 	buffer->flags = EFX_TX_BUF_OPTION;
2372 	buffer->len = 0;
2373 	buffer->unmap_len = 0;
2374 	EFX_POPULATE_QWORD_5(buffer->option,
2375 			ESF_DZ_TX_DESC_IS_OPT, 1,
2376 			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2377 			ESF_DZ_TX_TSO_OPTION_TYPE,
2378 			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2379 			ESF_DZ_TX_TSO_IP_ID, ipv4_id,
2380 			ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2381 			);
2382 	++tx_queue->insert_count;
2383 
2384 	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2385 
2386 	buffer->flags = EFX_TX_BUF_OPTION;
2387 	buffer->len = 0;
2388 	buffer->unmap_len = 0;
2389 	EFX_POPULATE_QWORD_4(buffer->option,
2390 			ESF_DZ_TX_DESC_IS_OPT, 1,
2391 			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2392 			ESF_DZ_TX_TSO_OPTION_TYPE,
2393 			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
2394 			ESF_DZ_TX_TSO_TCP_MSS, mss
2395 			);
2396 	++tx_queue->insert_count;
2397 
2398 	return 0;
2399 }
2400 
2401 static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2402 {
2403 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2404 	u32 tso_versions = 0;
2405 
2406 	if (nic_data->datapath_caps &
2407 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2408 		tso_versions |= BIT(1);
2409 	if (nic_data->datapath_caps2 &
2410 	    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2411 		tso_versions |= BIT(2);
2412 	return tso_versions;
2413 }
2414 
2415 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2416 {
2417 	MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2418 						       EFX_BUF_SIZE));
2419 	bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
2420 	size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
2421 	struct efx_channel *channel = tx_queue->channel;
2422 	struct efx_nic *efx = tx_queue->efx;
2423 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2424 	bool tso_v2 = false;
2425 	size_t inlen;
2426 	dma_addr_t dma_addr;
2427 	efx_qword_t *txd;
2428 	int rc;
2429 	int i;
2430 	BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0);
2431 
2432 	/* Only attempt to enable TX timestamping if we have the license for it,
2433 	 * otherwise TXQ init will fail
2434 	 */
2435 	if (!(nic_data->licensed_features &
2436 	      (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) {
2437 		tx_queue->timestamping = false;
2438 		/* Disable sync events on this channel. */
2439 		if (efx->type->ptp_set_ts_sync_events)
2440 			efx->type->ptp_set_ts_sync_events(efx, false, false);
2441 	}
2442 
2443 	/* TSOv2 is a limited resource that can only be configured on a limited
2444 	 * number of queues. TSO without checksum offload is not really a thing,
2445 	 * so we only enable it for those queues.
2446 	 * TSOv2 cannot be used with Hardware timestamping.
2447 	 */
2448 	if (csum_offload && (nic_data->datapath_caps2 &
2449 			(1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN)) &&
2450 	    !tx_queue->timestamping) {
2451 		tso_v2 = true;
2452 		netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2453 				channel->channel);
2454 	}
2455 
2456 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
2457 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
2458 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
2459 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
2460 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
2461 	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id);
2462 
2463 	dma_addr = tx_queue->txd.buf.dma_addr;
2464 
2465 	netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
2466 		  tx_queue->queue, entries, (u64)dma_addr);
2467 
2468 	for (i = 0; i < entries; ++i) {
2469 		MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
2470 		dma_addr += EFX_BUF_SIZE;
2471 	}
2472 
2473 	inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
2474 
2475 	do {
2476 		MCDI_POPULATE_DWORD_4(inbuf, INIT_TXQ_IN_FLAGS,
2477 				/* This flag was removed from mcdi_pcol.h for
2478 				 * the non-_EXT version of INIT_TXQ.  However,
2479 				 * firmware still honours it.
2480 				 */
2481 				INIT_TXQ_EXT_IN_FLAG_TSOV2_EN, tso_v2,
2482 				INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
2483 				INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload,
2484 				INIT_TXQ_EXT_IN_FLAG_TIMESTAMP,
2485 						tx_queue->timestamping);
2486 
2487 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
2488 					NULL, 0, NULL);
2489 		if (rc == -ENOSPC && tso_v2) {
2490 			/* Retry without TSOv2 if we're short on contexts. */
2491 			tso_v2 = false;
2492 			netif_warn(efx, probe, efx->net_dev,
2493 				   "TSOv2 context not available to segment in hardware. TCP performance may be reduced.\n");
2494 		} else if (rc) {
2495 			efx_mcdi_display_error(efx, MC_CMD_INIT_TXQ,
2496 					       MC_CMD_INIT_TXQ_EXT_IN_LEN,
2497 					       NULL, 0, rc);
2498 			goto fail;
2499 		}
2500 	} while (rc);
2501 
2502 	/* A previous user of this TX queue might have set us up the
2503 	 * bomb by writing a descriptor to the TX push collector but
2504 	 * not the doorbell.  (Each collector belongs to a port, not a
2505 	 * queue or function, so cannot easily be reset.)  We must
2506 	 * attempt to push a no-op descriptor in its place.
2507 	 */
2508 	tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2509 	tx_queue->insert_count = 1;
2510 	txd = efx_tx_desc(tx_queue, 0);
2511 	EFX_POPULATE_QWORD_5(*txd,
2512 			     ESF_DZ_TX_DESC_IS_OPT, true,
2513 			     ESF_DZ_TX_OPTION_TYPE,
2514 			     ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2515 			     ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2516 			     ESF_DZ_TX_OPTION_IP_CSUM, csum_offload,
2517 			     ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping);
2518 	tx_queue->write_count = 1;
2519 
2520 	if (tso_v2) {
2521 		tx_queue->handle_tso = efx_ef10_tx_tso_desc;
2522 		tx_queue->tso_version = 2;
2523 	} else if (nic_data->datapath_caps &
2524 			(1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
2525 		tx_queue->tso_version = 1;
2526 	}
2527 
2528 	wmb();
2529 	efx_ef10_push_tx_desc(tx_queue, txd);
2530 
2531 	return;
2532 
2533 fail:
2534 	netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2535 		    tx_queue->queue);
2536 }
2537 
2538 static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
2539 {
2540 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
2541 	MCDI_DECLARE_BUF_ERR(outbuf);
2542 	struct efx_nic *efx = tx_queue->efx;
2543 	size_t outlen;
2544 	int rc;
2545 
2546 	MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
2547 		       tx_queue->queue);
2548 
2549 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
2550 			  outbuf, sizeof(outbuf), &outlen);
2551 
2552 	if (rc && rc != -EALREADY)
2553 		goto fail;
2554 
2555 	return;
2556 
2557 fail:
2558 	efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
2559 			       outbuf, outlen, rc);
2560 }
2561 
2562 static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
2563 {
2564 	efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
2565 }
2566 
2567 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2568 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2569 {
2570 	unsigned int write_ptr;
2571 	efx_dword_t reg;
2572 
2573 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2574 	EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2575 	efx_writed_page(tx_queue->efx, &reg,
2576 			ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2577 }
2578 
2579 #define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2580 
2581 static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2582 					  dma_addr_t dma_addr, unsigned int len)
2583 {
2584 	if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2585 		/* If we need to break across multiple descriptors we should
2586 		 * stop at a page boundary. This assumes the length limit is
2587 		 * greater than the page size.
2588 		 */
2589 		dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2590 
2591 		BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2592 		len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2593 	}
2594 
2595 	return len;
2596 }
2597 
2598 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2599 {
2600 	unsigned int old_write_count = tx_queue->write_count;
2601 	struct efx_tx_buffer *buffer;
2602 	unsigned int write_ptr;
2603 	efx_qword_t *txd;
2604 
2605 	tx_queue->xmit_more_available = false;
2606 	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2607 		return;
2608 
2609 	do {
2610 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2611 		buffer = &tx_queue->buffer[write_ptr];
2612 		txd = efx_tx_desc(tx_queue, write_ptr);
2613 		++tx_queue->write_count;
2614 
2615 		/* Create TX descriptor ring entry */
2616 		if (buffer->flags & EFX_TX_BUF_OPTION) {
2617 			*txd = buffer->option;
2618 			if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2619 				/* PIO descriptor */
2620 				tx_queue->packet_write_count = tx_queue->write_count;
2621 		} else {
2622 			tx_queue->packet_write_count = tx_queue->write_count;
2623 			BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2624 			EFX_POPULATE_QWORD_3(
2625 				*txd,
2626 				ESF_DZ_TX_KER_CONT,
2627 				buffer->flags & EFX_TX_BUF_CONT,
2628 				ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2629 				ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2630 		}
2631 	} while (tx_queue->write_count != tx_queue->insert_count);
2632 
2633 	wmb(); /* Ensure descriptors are written before they are fetched */
2634 
2635 	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2636 		txd = efx_tx_desc(tx_queue,
2637 				  old_write_count & tx_queue->ptr_mask);
2638 		efx_ef10_push_tx_desc(tx_queue, txd);
2639 		++tx_queue->pushes;
2640 	} else {
2641 		efx_ef10_notify_tx_desc(tx_queue);
2642 	}
2643 }
2644 
2645 #define RSS_MODE_HASH_ADDRS	(1 << RSS_MODE_HASH_SRC_ADDR_LBN |\
2646 				 1 << RSS_MODE_HASH_DST_ADDR_LBN)
2647 #define RSS_MODE_HASH_PORTS	(1 << RSS_MODE_HASH_SRC_PORT_LBN |\
2648 				 1 << RSS_MODE_HASH_DST_PORT_LBN)
2649 #define RSS_CONTEXT_FLAGS_DEFAULT	(1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV4_EN_LBN |\
2650 					 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV4_EN_LBN |\
2651 					 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV6_EN_LBN |\
2652 					 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV6_EN_LBN |\
2653 					 (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV4_RSS_MODE_LBN |\
2654 					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN |\
2655 					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV4_RSS_MODE_LBN |\
2656 					 (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV6_RSS_MODE_LBN |\
2657 					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN |\
2658 					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV6_RSS_MODE_LBN)
2659 
2660 static int efx_ef10_get_rss_flags(struct efx_nic *efx, u32 context, u32 *flags)
2661 {
2662 	/* Firmware had a bug (sfc bug 61952) where it would not actually
2663 	 * fill in the flags field in the response to MC_CMD_RSS_CONTEXT_GET_FLAGS.
2664 	 * This meant that it would always contain whatever was previously
2665 	 * in the MCDI buffer.  Fortunately, all firmware versions with
2666 	 * this bug have the same default flags value for a newly-allocated
2667 	 * RSS context, and the only time we want to get the flags is just
2668 	 * after allocating.  Moreover, the response has a 32-bit hole
2669 	 * where the context ID would be in the request, so we can use an
2670 	 * overlength buffer in the request and pre-fill the flags field
2671 	 * with what we believe the default to be.  Thus if the firmware
2672 	 * has the bug, it will leave our pre-filled value in the flags
2673 	 * field of the response, and we will get the right answer.
2674 	 *
2675 	 * However, this does mean that this function should NOT be used if
2676 	 * the RSS context flags might not be their defaults - it is ONLY
2677 	 * reliably correct for a newly-allocated RSS context.
2678 	 */
2679 	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN);
2680 	MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN);
2681 	size_t outlen;
2682 	int rc;
2683 
2684 	/* Check we have a hole for the context ID */
2685 	BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_FLAGS_IN_LEN != MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_FLAGS_OFST);
2686 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_IN_RSS_CONTEXT_ID, context);
2687 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS,
2688 		       RSS_CONTEXT_FLAGS_DEFAULT);
2689 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_FLAGS, inbuf,
2690 			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
2691 	if (rc == 0) {
2692 		if (outlen < MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN)
2693 			rc = -EIO;
2694 		else
2695 			*flags = MCDI_DWORD(outbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS);
2696 	}
2697 	return rc;
2698 }
2699 
2700 /* Attempt to enable 4-tuple UDP hashing on the specified RSS context.
2701  * If we fail, we just leave the RSS context at its default hash settings,
2702  * which is safe but may slightly reduce performance.
2703  * Defaults are 4-tuple for TCP and 2-tuple for UDP and other-IP, so we
2704  * just need to set the UDP ports flags (for both IP versions).
2705  */
2706 static void efx_ef10_set_rss_flags(struct efx_nic *efx, u32 context)
2707 {
2708 	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_LEN);
2709 	u32 flags;
2710 
2711 	BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_SET_FLAGS_OUT_LEN != 0);
2712 
2713 	if (efx_ef10_get_rss_flags(efx, context, &flags) != 0)
2714 		return;
2715 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_RSS_CONTEXT_ID, context);
2716 	flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN;
2717 	flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN;
2718 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_FLAGS, flags);
2719 	if (!efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_FLAGS, inbuf, sizeof(inbuf),
2720 			  NULL, 0, NULL))
2721 		/* Succeeded, so UDP 4-tuple is now enabled */
2722 		efx->rx_hash_udp_4tuple = true;
2723 }
2724 
2725 static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context,
2726 				      bool exclusive, unsigned *context_size)
2727 {
2728 	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
2729 	MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
2730 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2731 	size_t outlen;
2732 	int rc;
2733 	u32 alloc_type = exclusive ?
2734 				MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE :
2735 				MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED;
2736 	unsigned rss_spread = exclusive ?
2737 				efx->rss_spread :
2738 				min(rounddown_pow_of_two(efx->rss_spread),
2739 				    EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE);
2740 
2741 	if (!exclusive && rss_spread == 1) {
2742 		*context = EFX_EF10_RSS_CONTEXT_INVALID;
2743 		if (context_size)
2744 			*context_size = 1;
2745 		return 0;
2746 	}
2747 
2748 	if (nic_data->datapath_caps &
2749 	    1 << MC_CMD_GET_CAPABILITIES_OUT_RX_RSS_LIMITED_LBN)
2750 		return -EOPNOTSUPP;
2751 
2752 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
2753 		       nic_data->vport_id);
2754 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, alloc_type);
2755 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, rss_spread);
2756 
2757 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
2758 		outbuf, sizeof(outbuf), &outlen);
2759 	if (rc != 0)
2760 		return rc;
2761 
2762 	if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
2763 		return -EIO;
2764 
2765 	*context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
2766 
2767 	if (context_size)
2768 		*context_size = rss_spread;
2769 
2770 	if (nic_data->datapath_caps &
2771 	    1 << MC_CMD_GET_CAPABILITIES_OUT_ADDITIONAL_RSS_MODES_LBN)
2772 		efx_ef10_set_rss_flags(efx, *context);
2773 
2774 	return 0;
2775 }
2776 
2777 static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
2778 {
2779 	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
2780 	int rc;
2781 
2782 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
2783 		       context);
2784 
2785 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
2786 			    NULL, 0, NULL);
2787 	WARN_ON(rc != 0);
2788 }
2789 
2790 static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context,
2791 				       const u32 *rx_indir_table, const u8 *key)
2792 {
2793 	MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
2794 	MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
2795 	int i, rc;
2796 
2797 	MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
2798 		       context);
2799 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
2800 		     MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
2801 
2802 	/* This iterates over the length of efx->rx_indir_table, but copies
2803 	 * bytes from rx_indir_table.  That's because the latter is a pointer
2804 	 * rather than an array, but should have the same length.
2805 	 * The efx->rx_hash_key loop below is similar.
2806 	 */
2807 	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
2808 		MCDI_PTR(tablebuf,
2809 			 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
2810 				(u8) rx_indir_table[i];
2811 
2812 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
2813 			  sizeof(tablebuf), NULL, 0, NULL);
2814 	if (rc != 0)
2815 		return rc;
2816 
2817 	MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
2818 		       context);
2819 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
2820 		     MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
2821 	for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
2822 		MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] = key[i];
2823 
2824 	return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
2825 			    sizeof(keybuf), NULL, 0, NULL);
2826 }
2827 
2828 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
2829 {
2830 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2831 
2832 	if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2833 		efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
2834 	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
2835 }
2836 
2837 static int efx_ef10_rx_push_shared_rss_config(struct efx_nic *efx,
2838 					      unsigned *context_size)
2839 {
2840 	u32 new_rx_rss_context;
2841 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2842 	int rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
2843 					    false, context_size);
2844 
2845 	if (rc != 0)
2846 		return rc;
2847 
2848 	nic_data->rx_rss_context = new_rx_rss_context;
2849 	nic_data->rx_rss_context_exclusive = false;
2850 	efx_set_default_rx_indir_table(efx);
2851 	return 0;
2852 }
2853 
2854 static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic *efx,
2855 						 const u32 *rx_indir_table,
2856 						 const u8 *key)
2857 {
2858 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2859 	int rc;
2860 	u32 new_rx_rss_context;
2861 
2862 	if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID ||
2863 	    !nic_data->rx_rss_context_exclusive) {
2864 		rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
2865 						true, NULL);
2866 		if (rc == -EOPNOTSUPP)
2867 			return rc;
2868 		else if (rc != 0)
2869 			goto fail1;
2870 	} else {
2871 		new_rx_rss_context = nic_data->rx_rss_context;
2872 	}
2873 
2874 	rc = efx_ef10_populate_rss_table(efx, new_rx_rss_context,
2875 					 rx_indir_table, key);
2876 	if (rc != 0)
2877 		goto fail2;
2878 
2879 	if (nic_data->rx_rss_context != new_rx_rss_context)
2880 		efx_ef10_rx_free_indir_table(efx);
2881 	nic_data->rx_rss_context = new_rx_rss_context;
2882 	nic_data->rx_rss_context_exclusive = true;
2883 	if (rx_indir_table != efx->rx_indir_table)
2884 		memcpy(efx->rx_indir_table, rx_indir_table,
2885 		       sizeof(efx->rx_indir_table));
2886 	if (key != efx->rx_hash_key)
2887 		memcpy(efx->rx_hash_key, key, efx->type->rx_hash_key_size);
2888 
2889 	return 0;
2890 
2891 fail2:
2892 	if (new_rx_rss_context != nic_data->rx_rss_context)
2893 		efx_ef10_free_rss_context(efx, new_rx_rss_context);
2894 fail1:
2895 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2896 	return rc;
2897 }
2898 
2899 static int efx_ef10_rx_pull_rss_config(struct efx_nic *efx)
2900 {
2901 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2902 	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN);
2903 	MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN);
2904 	MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN);
2905 	size_t outlen;
2906 	int rc, i;
2907 
2908 	BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN !=
2909 		     MC_CMD_RSS_CONTEXT_GET_KEY_IN_LEN);
2910 
2911 	if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID)
2912 		return -ENOENT;
2913 
2914 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_TABLE_IN_RSS_CONTEXT_ID,
2915 		       nic_data->rx_rss_context);
2916 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
2917 		     MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE_LEN);
2918 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_TABLE, inbuf, sizeof(inbuf),
2919 			  tablebuf, sizeof(tablebuf), &outlen);
2920 	if (rc != 0)
2921 		return rc;
2922 
2923 	if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN))
2924 		return -EIO;
2925 
2926 	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
2927 		efx->rx_indir_table[i] = MCDI_PTR(tablebuf,
2928 				RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE)[i];
2929 
2930 	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_KEY_IN_RSS_CONTEXT_ID,
2931 		       nic_data->rx_rss_context);
2932 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
2933 		     MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
2934 	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_KEY, inbuf, sizeof(inbuf),
2935 			  keybuf, sizeof(keybuf), &outlen);
2936 	if (rc != 0)
2937 		return rc;
2938 
2939 	if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN))
2940 		return -EIO;
2941 
2942 	for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
2943 		efx->rx_hash_key[i] = MCDI_PTR(
2944 				keybuf, RSS_CONTEXT_GET_KEY_OUT_TOEPLITZ_KEY)[i];
2945 
2946 	return 0;
2947 }
2948 
2949 static int efx_ef10_pf_rx_push_rss_config(struct efx_nic *efx, bool user,
2950 					  const u32 *rx_indir_table,
2951 					  const u8 *key)
2952 {
2953 	int rc;
2954 
2955 	if (efx->rss_spread == 1)
2956 		return 0;
2957 
2958 	if (!key)
2959 		key = efx->rx_hash_key;
2960 
2961 	rc = efx_ef10_rx_push_exclusive_rss_config(efx, rx_indir_table, key);
2962 
2963 	if (rc == -ENOBUFS && !user) {
2964 		unsigned context_size;
2965 		bool mismatch = false;
2966 		size_t i;
2967 
2968 		for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table) && !mismatch;
2969 		     i++)
2970 			mismatch = rx_indir_table[i] !=
2971 				ethtool_rxfh_indir_default(i, efx->rss_spread);
2972 
2973 		rc = efx_ef10_rx_push_shared_rss_config(efx, &context_size);
2974 		if (rc == 0) {
2975 			if (context_size != efx->rss_spread)
2976 				netif_warn(efx, probe, efx->net_dev,
2977 					   "Could not allocate an exclusive RSS"
2978 					   " context; allocated a shared one of"
2979 					   " different size."
2980 					   " Wanted %u, got %u.\n",
2981 					   efx->rss_spread, context_size);
2982 			else if (mismatch)
2983 				netif_warn(efx, probe, efx->net_dev,
2984 					   "Could not allocate an exclusive RSS"
2985 					   " context; allocated a shared one but"
2986 					   " could not apply custom"
2987 					   " indirection.\n");
2988 			else
2989 				netif_info(efx, probe, efx->net_dev,
2990 					   "Could not allocate an exclusive RSS"
2991 					   " context; allocated a shared one.\n");
2992 		}
2993 	}
2994 	return rc;
2995 }
2996 
2997 static int efx_ef10_vf_rx_push_rss_config(struct efx_nic *efx, bool user,
2998 					  const u32 *rx_indir_table
2999 					  __attribute__ ((unused)),
3000 					  const u8 *key
3001 					  __attribute__ ((unused)))
3002 {
3003 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3004 
3005 	if (user)
3006 		return -EOPNOTSUPP;
3007 	if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
3008 		return 0;
3009 	return efx_ef10_rx_push_shared_rss_config(efx, NULL);
3010 }
3011 
3012 static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
3013 {
3014 	return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
3015 				    (rx_queue->ptr_mask + 1) *
3016 				    sizeof(efx_qword_t),
3017 				    GFP_KERNEL);
3018 }
3019 
3020 static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
3021 {
3022 	MCDI_DECLARE_BUF(inbuf,
3023 			 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
3024 						EFX_BUF_SIZE));
3025 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
3026 	size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
3027 	struct efx_nic *efx = rx_queue->efx;
3028 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3029 	size_t inlen;
3030 	dma_addr_t dma_addr;
3031 	int rc;
3032 	int i;
3033 	BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN != 0);
3034 
3035 	rx_queue->scatter_n = 0;
3036 	rx_queue->scatter_len = 0;
3037 
3038 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
3039 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
3040 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
3041 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
3042 		       efx_rx_queue_index(rx_queue));
3043 	MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
3044 			      INIT_RXQ_IN_FLAG_PREFIX, 1,
3045 			      INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
3046 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
3047 	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, nic_data->vport_id);
3048 
3049 	dma_addr = rx_queue->rxd.buf.dma_addr;
3050 
3051 	netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
3052 		  efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
3053 
3054 	for (i = 0; i < entries; ++i) {
3055 		MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
3056 		dma_addr += EFX_BUF_SIZE;
3057 	}
3058 
3059 	inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
3060 
3061 	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
3062 			  NULL, 0, NULL);
3063 	if (rc)
3064 		netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
3065 			    efx_rx_queue_index(rx_queue));
3066 }
3067 
3068 static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
3069 {
3070 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
3071 	MCDI_DECLARE_BUF_ERR(outbuf);
3072 	struct efx_nic *efx = rx_queue->efx;
3073 	size_t outlen;
3074 	int rc;
3075 
3076 	MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
3077 		       efx_rx_queue_index(rx_queue));
3078 
3079 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
3080 			  outbuf, sizeof(outbuf), &outlen);
3081 
3082 	if (rc && rc != -EALREADY)
3083 		goto fail;
3084 
3085 	return;
3086 
3087 fail:
3088 	efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
3089 			       outbuf, outlen, rc);
3090 }
3091 
3092 static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
3093 {
3094 	efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
3095 }
3096 
3097 /* This creates an entry in the RX descriptor queue */
3098 static inline void
3099 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
3100 {
3101 	struct efx_rx_buffer *rx_buf;
3102 	efx_qword_t *rxd;
3103 
3104 	rxd = efx_rx_desc(rx_queue, index);
3105 	rx_buf = efx_rx_buffer(rx_queue, index);
3106 	EFX_POPULATE_QWORD_2(*rxd,
3107 			     ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
3108 			     ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
3109 }
3110 
3111 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
3112 {
3113 	struct efx_nic *efx = rx_queue->efx;
3114 	unsigned int write_count;
3115 	efx_dword_t reg;
3116 
3117 	/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
3118 	write_count = rx_queue->added_count & ~7;
3119 	if (rx_queue->notified_count == write_count)
3120 		return;
3121 
3122 	do
3123 		efx_ef10_build_rx_desc(
3124 			rx_queue,
3125 			rx_queue->notified_count & rx_queue->ptr_mask);
3126 	while (++rx_queue->notified_count != write_count);
3127 
3128 	wmb();
3129 	EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
3130 			     write_count & rx_queue->ptr_mask);
3131 	efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
3132 			efx_rx_queue_index(rx_queue));
3133 }
3134 
3135 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
3136 
3137 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
3138 {
3139 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
3140 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3141 	efx_qword_t event;
3142 
3143 	EFX_POPULATE_QWORD_2(event,
3144 			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3145 			     ESF_DZ_EV_DATA, EFX_EF10_REFILL);
3146 
3147 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3148 
3149 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3150 	 * already swapped the data to little-endian order.
3151 	 */
3152 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3153 	       sizeof(efx_qword_t));
3154 
3155 	efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
3156 			   inbuf, sizeof(inbuf), 0,
3157 			   efx_ef10_rx_defer_refill_complete, 0);
3158 }
3159 
3160 static void
3161 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
3162 				  int rc, efx_dword_t *outbuf,
3163 				  size_t outlen_actual)
3164 {
3165 	/* nothing to do */
3166 }
3167 
3168 static int efx_ef10_ev_probe(struct efx_channel *channel)
3169 {
3170 	return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
3171 				    (channel->eventq_mask + 1) *
3172 				    sizeof(efx_qword_t),
3173 				    GFP_KERNEL);
3174 }
3175 
3176 static void efx_ef10_ev_fini(struct efx_channel *channel)
3177 {
3178 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
3179 	MCDI_DECLARE_BUF_ERR(outbuf);
3180 	struct efx_nic *efx = channel->efx;
3181 	size_t outlen;
3182 	int rc;
3183 
3184 	MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
3185 
3186 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
3187 			  outbuf, sizeof(outbuf), &outlen);
3188 
3189 	if (rc && rc != -EALREADY)
3190 		goto fail;
3191 
3192 	return;
3193 
3194 fail:
3195 	efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
3196 			       outbuf, outlen, rc);
3197 }
3198 
3199 static int efx_ef10_ev_init(struct efx_channel *channel)
3200 {
3201 	MCDI_DECLARE_BUF(inbuf,
3202 			 MC_CMD_INIT_EVQ_V2_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
3203 						   EFX_BUF_SIZE));
3204 	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_V2_OUT_LEN);
3205 	size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
3206 	struct efx_nic *efx = channel->efx;
3207 	struct efx_ef10_nic_data *nic_data;
3208 	size_t inlen, outlen;
3209 	unsigned int enabled, implemented;
3210 	dma_addr_t dma_addr;
3211 	int rc;
3212 	int i;
3213 
3214 	nic_data = efx->nic_data;
3215 
3216 	/* Fill event queue with all ones (i.e. empty events) */
3217 	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
3218 
3219 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
3220 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
3221 	/* INIT_EVQ expects index in vector table, not absolute */
3222 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
3223 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
3224 		       MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
3225 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
3226 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
3227 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
3228 		       MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
3229 	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
3230 
3231 	if (nic_data->datapath_caps2 &
3232 	    1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN) {
3233 		/* Use the new generic approach to specifying event queue
3234 		 * configuration, requesting lower latency or higher throughput.
3235 		 * The options that actually get used appear in the output.
3236 		 */
3237 		MCDI_POPULATE_DWORD_2(inbuf, INIT_EVQ_V2_IN_FLAGS,
3238 				      INIT_EVQ_V2_IN_FLAG_INTERRUPTING, 1,
3239 				      INIT_EVQ_V2_IN_FLAG_TYPE,
3240 				      MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO);
3241 	} else {
3242 		bool cut_thru = !(nic_data->datapath_caps &
3243 			1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
3244 
3245 		MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
3246 				      INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
3247 				      INIT_EVQ_IN_FLAG_RX_MERGE, 1,
3248 				      INIT_EVQ_IN_FLAG_TX_MERGE, 1,
3249 				      INIT_EVQ_IN_FLAG_CUT_THRU, cut_thru);
3250 	}
3251 
3252 	dma_addr = channel->eventq.buf.dma_addr;
3253 	for (i = 0; i < entries; ++i) {
3254 		MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
3255 		dma_addr += EFX_BUF_SIZE;
3256 	}
3257 
3258 	inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
3259 
3260 	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
3261 			  outbuf, sizeof(outbuf), &outlen);
3262 
3263 	if (outlen >= MC_CMD_INIT_EVQ_V2_OUT_LEN)
3264 		netif_dbg(efx, drv, efx->net_dev,
3265 			  "Channel %d using event queue flags %08x\n",
3266 			  channel->channel,
3267 			  MCDI_DWORD(outbuf, INIT_EVQ_V2_OUT_FLAGS));
3268 
3269 	/* IRQ return is ignored */
3270 	if (channel->channel || rc)
3271 		return rc;
3272 
3273 	/* Successfully created event queue on channel 0 */
3274 	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
3275 	if (rc == -ENOSYS) {
3276 		/* GET_WORKAROUNDS was implemented before this workaround,
3277 		 * thus it must be unavailable in this firmware.
3278 		 */
3279 		nic_data->workaround_26807 = false;
3280 		rc = 0;
3281 	} else if (rc) {
3282 		goto fail;
3283 	} else {
3284 		nic_data->workaround_26807 =
3285 			!!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
3286 
3287 		if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 &&
3288 		    !nic_data->workaround_26807) {
3289 			unsigned int flags;
3290 
3291 			rc = efx_mcdi_set_workaround(efx,
3292 						     MC_CMD_WORKAROUND_BUG26807,
3293 						     true, &flags);
3294 
3295 			if (!rc) {
3296 				if (flags &
3297 				    1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
3298 					netif_info(efx, drv, efx->net_dev,
3299 						   "other functions on NIC have been reset\n");
3300 
3301 					/* With MCFW v4.6.x and earlier, the
3302 					 * boot count will have incremented,
3303 					 * so re-read the warm_boot_count
3304 					 * value now to ensure this function
3305 					 * doesn't think it has changed next
3306 					 * time it checks.
3307 					 */
3308 					rc = efx_ef10_get_warm_boot_count(efx);
3309 					if (rc >= 0) {
3310 						nic_data->warm_boot_count = rc;
3311 						rc = 0;
3312 					}
3313 				}
3314 				nic_data->workaround_26807 = true;
3315 			} else if (rc == -EPERM) {
3316 				rc = 0;
3317 			}
3318 		}
3319 	}
3320 
3321 	if (!rc)
3322 		return 0;
3323 
3324 fail:
3325 	efx_ef10_ev_fini(channel);
3326 	return rc;
3327 }
3328 
3329 static void efx_ef10_ev_remove(struct efx_channel *channel)
3330 {
3331 	efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
3332 }
3333 
3334 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
3335 					   unsigned int rx_queue_label)
3336 {
3337 	struct efx_nic *efx = rx_queue->efx;
3338 
3339 	netif_info(efx, hw, efx->net_dev,
3340 		   "rx event arrived on queue %d labeled as queue %u\n",
3341 		   efx_rx_queue_index(rx_queue), rx_queue_label);
3342 
3343 	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
3344 }
3345 
3346 static void
3347 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
3348 			     unsigned int actual, unsigned int expected)
3349 {
3350 	unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
3351 	struct efx_nic *efx = rx_queue->efx;
3352 
3353 	netif_info(efx, hw, efx->net_dev,
3354 		   "dropped %d events (index=%d expected=%d)\n",
3355 		   dropped, actual, expected);
3356 
3357 	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
3358 }
3359 
3360 /* partially received RX was aborted. clean up. */
3361 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
3362 {
3363 	unsigned int rx_desc_ptr;
3364 
3365 	netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
3366 		  "scattered RX aborted (dropping %u buffers)\n",
3367 		  rx_queue->scatter_n);
3368 
3369 	rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
3370 
3371 	efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
3372 		      0, EFX_RX_PKT_DISCARD);
3373 
3374 	rx_queue->removed_count += rx_queue->scatter_n;
3375 	rx_queue->scatter_n = 0;
3376 	rx_queue->scatter_len = 0;
3377 	++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
3378 }
3379 
3380 static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
3381 					   unsigned int n_packets,
3382 					   unsigned int rx_encap_hdr,
3383 					   unsigned int rx_l3_class,
3384 					   unsigned int rx_l4_class,
3385 					   const efx_qword_t *event)
3386 {
3387 	struct efx_nic *efx = channel->efx;
3388 	bool handled = false;
3389 
3390 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
3391 		if (!(efx->net_dev->features & NETIF_F_RXALL)) {
3392 			if (!efx->loopback_selftest)
3393 				channel->n_rx_eth_crc_err += n_packets;
3394 			return EFX_RX_PKT_DISCARD;
3395 		}
3396 		handled = true;
3397 	}
3398 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
3399 		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
3400 			     rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3401 			     rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
3402 			     rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
3403 			     rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
3404 			netdev_WARN(efx->net_dev,
3405 				    "invalid class for RX_IPCKSUM_ERR: event="
3406 				    EFX_QWORD_FMT "\n",
3407 				    EFX_QWORD_VAL(*event));
3408 		if (!efx->loopback_selftest)
3409 			*(rx_encap_hdr ?
3410 			  &channel->n_rx_outer_ip_hdr_chksum_err :
3411 			  &channel->n_rx_ip_hdr_chksum_err) += n_packets;
3412 		return 0;
3413 	}
3414 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
3415 		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
3416 			     ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3417 			       rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
3418 			      (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
3419 			       rx_l4_class != ESE_FZ_L4_CLASS_UDP))))
3420 			netdev_WARN(efx->net_dev,
3421 				    "invalid class for RX_TCPUDP_CKSUM_ERR: event="
3422 				    EFX_QWORD_FMT "\n",
3423 				    EFX_QWORD_VAL(*event));
3424 		if (!efx->loopback_selftest)
3425 			*(rx_encap_hdr ?
3426 			  &channel->n_rx_outer_tcp_udp_chksum_err :
3427 			  &channel->n_rx_tcp_udp_chksum_err) += n_packets;
3428 		return 0;
3429 	}
3430 	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
3431 		if (unlikely(!rx_encap_hdr))
3432 			netdev_WARN(efx->net_dev,
3433 				    "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
3434 				    EFX_QWORD_FMT "\n",
3435 				    EFX_QWORD_VAL(*event));
3436 		else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3437 				  rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
3438 				  rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
3439 				  rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
3440 			netdev_WARN(efx->net_dev,
3441 				    "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
3442 				    EFX_QWORD_FMT "\n",
3443 				    EFX_QWORD_VAL(*event));
3444 		if (!efx->loopback_selftest)
3445 			channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
3446 		return 0;
3447 	}
3448 	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
3449 		if (unlikely(!rx_encap_hdr))
3450 			netdev_WARN(efx->net_dev,
3451 				    "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
3452 				    EFX_QWORD_FMT "\n",
3453 				    EFX_QWORD_VAL(*event));
3454 		else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3455 				   rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
3456 				  (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
3457 				   rx_l4_class != ESE_FZ_L4_CLASS_UDP)))
3458 			netdev_WARN(efx->net_dev,
3459 				    "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
3460 				    EFX_QWORD_FMT "\n",
3461 				    EFX_QWORD_VAL(*event));
3462 		if (!efx->loopback_selftest)
3463 			channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
3464 		return 0;
3465 	}
3466 
3467 	WARN_ON(!handled); /* No error bits were recognised */
3468 	return 0;
3469 }
3470 
3471 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
3472 				    const efx_qword_t *event)
3473 {
3474 	unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
3475 	unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
3476 	unsigned int n_descs, n_packets, i;
3477 	struct efx_nic *efx = channel->efx;
3478 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3479 	struct efx_rx_queue *rx_queue;
3480 	efx_qword_t errors;
3481 	bool rx_cont;
3482 	u16 flags = 0;
3483 
3484 	if (unlikely(READ_ONCE(efx->reset_pending)))
3485 		return 0;
3486 
3487 	/* Basic packet information */
3488 	rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
3489 	next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
3490 	rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
3491 	rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
3492 	rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS);
3493 	rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
3494 	rx_encap_hdr =
3495 		nic_data->datapath_caps &
3496 			(1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
3497 		EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
3498 		ESE_EZ_ENCAP_HDR_NONE;
3499 
3500 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
3501 		netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
3502 			    EFX_QWORD_FMT "\n",
3503 			    EFX_QWORD_VAL(*event));
3504 
3505 	rx_queue = efx_channel_get_rx_queue(channel);
3506 
3507 	if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
3508 		efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
3509 
3510 	n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
3511 		   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
3512 
3513 	if (n_descs != rx_queue->scatter_n + 1) {
3514 		struct efx_ef10_nic_data *nic_data = efx->nic_data;
3515 
3516 		/* detect rx abort */
3517 		if (unlikely(n_descs == rx_queue->scatter_n)) {
3518 			if (rx_queue->scatter_n == 0 || rx_bytes != 0)
3519 				netdev_WARN(efx->net_dev,
3520 					    "invalid RX abort: scatter_n=%u event="
3521 					    EFX_QWORD_FMT "\n",
3522 					    rx_queue->scatter_n,
3523 					    EFX_QWORD_VAL(*event));
3524 			efx_ef10_handle_rx_abort(rx_queue);
3525 			return 0;
3526 		}
3527 
3528 		/* Check that RX completion merging is valid, i.e.
3529 		 * the current firmware supports it and this is a
3530 		 * non-scattered packet.
3531 		 */
3532 		if (!(nic_data->datapath_caps &
3533 		      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
3534 		    rx_queue->scatter_n != 0 || rx_cont) {
3535 			efx_ef10_handle_rx_bad_lbits(
3536 				rx_queue, next_ptr_lbits,
3537 				(rx_queue->removed_count +
3538 				 rx_queue->scatter_n + 1) &
3539 				((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
3540 			return 0;
3541 		}
3542 
3543 		/* Merged completion for multiple non-scattered packets */
3544 		rx_queue->scatter_n = 1;
3545 		rx_queue->scatter_len = 0;
3546 		n_packets = n_descs;
3547 		++channel->n_rx_merge_events;
3548 		channel->n_rx_merge_packets += n_packets;
3549 		flags |= EFX_RX_PKT_PREFIX_LEN;
3550 	} else {
3551 		++rx_queue->scatter_n;
3552 		rx_queue->scatter_len += rx_bytes;
3553 		if (rx_cont)
3554 			return 0;
3555 		n_packets = 1;
3556 	}
3557 
3558 	EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
3559 				     ESF_DZ_RX_IPCKSUM_ERR, 1,
3560 				     ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
3561 				     ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
3562 				     ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
3563 	EFX_AND_QWORD(errors, *event, errors);
3564 	if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
3565 		flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
3566 							 rx_encap_hdr,
3567 							 rx_l3_class, rx_l4_class,
3568 							 event);
3569 	} else {
3570 		bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP ||
3571 			      rx_l4_class == ESE_FZ_L4_CLASS_UDP;
3572 
3573 		switch (rx_encap_hdr) {
3574 		case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
3575 			flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
3576 			if (tcpudp)
3577 				flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
3578 			break;
3579 		case ESE_EZ_ENCAP_HDR_GRE:
3580 		case ESE_EZ_ENCAP_HDR_NONE:
3581 			if (tcpudp)
3582 				flags |= EFX_RX_PKT_CSUMMED;
3583 			break;
3584 		default:
3585 			netdev_WARN(efx->net_dev,
3586 				    "unknown encapsulation type: event="
3587 				    EFX_QWORD_FMT "\n",
3588 				    EFX_QWORD_VAL(*event));
3589 		}
3590 	}
3591 
3592 	if (rx_l4_class == ESE_FZ_L4_CLASS_TCP)
3593 		flags |= EFX_RX_PKT_TCP;
3594 
3595 	channel->irq_mod_score += 2 * n_packets;
3596 
3597 	/* Handle received packet(s) */
3598 	for (i = 0; i < n_packets; i++) {
3599 		efx_rx_packet(rx_queue,
3600 			      rx_queue->removed_count & rx_queue->ptr_mask,
3601 			      rx_queue->scatter_n, rx_queue->scatter_len,
3602 			      flags);
3603 		rx_queue->removed_count += rx_queue->scatter_n;
3604 	}
3605 
3606 	rx_queue->scatter_n = 0;
3607 	rx_queue->scatter_len = 0;
3608 
3609 	return n_packets;
3610 }
3611 
3612 static u32 efx_ef10_extract_event_ts(efx_qword_t *event)
3613 {
3614 	u32 tstamp;
3615 
3616 	tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI);
3617 	tstamp <<= 16;
3618 	tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO);
3619 
3620 	return tstamp;
3621 }
3622 
3623 static void
3624 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
3625 {
3626 	struct efx_nic *efx = channel->efx;
3627 	struct efx_tx_queue *tx_queue;
3628 	unsigned int tx_ev_desc_ptr;
3629 	unsigned int tx_ev_q_label;
3630 	unsigned int tx_ev_type;
3631 	u64 ts_part;
3632 
3633 	if (unlikely(READ_ONCE(efx->reset_pending)))
3634 		return;
3635 
3636 	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
3637 		return;
3638 
3639 	/* Get the transmit queue */
3640 	tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
3641 	tx_queue = efx_channel_get_tx_queue(channel,
3642 					    tx_ev_q_label % EFX_TXQ_TYPES);
3643 
3644 	if (!tx_queue->timestamping) {
3645 		/* Transmit completion */
3646 		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
3647 		efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
3648 		return;
3649 	}
3650 
3651 	/* Transmit timestamps are only available for 8XXX series. They result
3652 	 * in three events per packet. These occur in order, and are:
3653 	 *  - the normal completion event
3654 	 *  - the low part of the timestamp
3655 	 *  - the high part of the timestamp
3656 	 *
3657 	 * Each part of the timestamp is itself split across two 16 bit
3658 	 * fields in the event.
3659 	 */
3660 	tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1);
3661 
3662 	switch (tx_ev_type) {
3663 	case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION:
3664 		/* In case of Queue flush or FLR, we might have received
3665 		 * the previous TX completion event but not the Timestamp
3666 		 * events.
3667 		 */
3668 		if (tx_queue->completed_desc_ptr != tx_queue->ptr_mask)
3669 			efx_xmit_done(tx_queue, tx_queue->completed_desc_ptr);
3670 
3671 		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event,
3672 						 ESF_DZ_TX_DESCR_INDX);
3673 		tx_queue->completed_desc_ptr =
3674 					tx_ev_desc_ptr & tx_queue->ptr_mask;
3675 		break;
3676 
3677 	case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO:
3678 		ts_part = efx_ef10_extract_event_ts(event);
3679 		tx_queue->completed_timestamp_minor = ts_part;
3680 		break;
3681 
3682 	case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI:
3683 		ts_part = efx_ef10_extract_event_ts(event);
3684 		tx_queue->completed_timestamp_major = ts_part;
3685 
3686 		efx_xmit_done(tx_queue, tx_queue->completed_desc_ptr);
3687 		tx_queue->completed_desc_ptr = tx_queue->ptr_mask;
3688 		break;
3689 
3690 	default:
3691 		netif_err(efx, hw, efx->net_dev,
3692 			  "channel %d unknown tx event type %d (data "
3693 			  EFX_QWORD_FMT ")\n",
3694 			  channel->channel, tx_ev_type,
3695 			  EFX_QWORD_VAL(*event));
3696 		break;
3697 	}
3698 }
3699 
3700 static void
3701 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
3702 {
3703 	struct efx_nic *efx = channel->efx;
3704 	int subcode;
3705 
3706 	subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
3707 
3708 	switch (subcode) {
3709 	case ESE_DZ_DRV_TIMER_EV:
3710 	case ESE_DZ_DRV_WAKE_UP_EV:
3711 		break;
3712 	case ESE_DZ_DRV_START_UP_EV:
3713 		/* event queue init complete. ok. */
3714 		break;
3715 	default:
3716 		netif_err(efx, hw, efx->net_dev,
3717 			  "channel %d unknown driver event type %d"
3718 			  " (data " EFX_QWORD_FMT ")\n",
3719 			  channel->channel, subcode,
3720 			  EFX_QWORD_VAL(*event));
3721 
3722 	}
3723 }
3724 
3725 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
3726 						   efx_qword_t *event)
3727 {
3728 	struct efx_nic *efx = channel->efx;
3729 	u32 subcode;
3730 
3731 	subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
3732 
3733 	switch (subcode) {
3734 	case EFX_EF10_TEST:
3735 		channel->event_test_cpu = raw_smp_processor_id();
3736 		break;
3737 	case EFX_EF10_REFILL:
3738 		/* The queue must be empty, so we won't receive any rx
3739 		 * events, so efx_process_channel() won't refill the
3740 		 * queue. Refill it here
3741 		 */
3742 		efx_fast_push_rx_descriptors(&channel->rx_queue, true);
3743 		break;
3744 	default:
3745 		netif_err(efx, hw, efx->net_dev,
3746 			  "channel %d unknown driver event type %u"
3747 			  " (data " EFX_QWORD_FMT ")\n",
3748 			  channel->channel, (unsigned) subcode,
3749 			  EFX_QWORD_VAL(*event));
3750 	}
3751 }
3752 
3753 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
3754 {
3755 	struct efx_nic *efx = channel->efx;
3756 	efx_qword_t event, *p_event;
3757 	unsigned int read_ptr;
3758 	int ev_code;
3759 	int spent = 0;
3760 
3761 	if (quota <= 0)
3762 		return spent;
3763 
3764 	read_ptr = channel->eventq_read_ptr;
3765 
3766 	for (;;) {
3767 		p_event = efx_event(channel, read_ptr);
3768 		event = *p_event;
3769 
3770 		if (!efx_event_present(&event))
3771 			break;
3772 
3773 		EFX_SET_QWORD(*p_event);
3774 
3775 		++read_ptr;
3776 
3777 		ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3778 
3779 		netif_vdbg(efx, drv, efx->net_dev,
3780 			   "processing event on %d " EFX_QWORD_FMT "\n",
3781 			   channel->channel, EFX_QWORD_VAL(event));
3782 
3783 		switch (ev_code) {
3784 		case ESE_DZ_EV_CODE_MCDI_EV:
3785 			efx_mcdi_process_event(channel, &event);
3786 			break;
3787 		case ESE_DZ_EV_CODE_RX_EV:
3788 			spent += efx_ef10_handle_rx_event(channel, &event);
3789 			if (spent >= quota) {
3790 				/* XXX can we split a merged event to
3791 				 * avoid going over-quota?
3792 				 */
3793 				spent = quota;
3794 				goto out;
3795 			}
3796 			break;
3797 		case ESE_DZ_EV_CODE_TX_EV:
3798 			efx_ef10_handle_tx_event(channel, &event);
3799 			break;
3800 		case ESE_DZ_EV_CODE_DRIVER_EV:
3801 			efx_ef10_handle_driver_event(channel, &event);
3802 			if (++spent == quota)
3803 				goto out;
3804 			break;
3805 		case EFX_EF10_DRVGEN_EV:
3806 			efx_ef10_handle_driver_generated_event(channel, &event);
3807 			break;
3808 		default:
3809 			netif_err(efx, hw, efx->net_dev,
3810 				  "channel %d unknown event type %d"
3811 				  " (data " EFX_QWORD_FMT ")\n",
3812 				  channel->channel, ev_code,
3813 				  EFX_QWORD_VAL(event));
3814 		}
3815 	}
3816 
3817 out:
3818 	channel->eventq_read_ptr = read_ptr;
3819 	return spent;
3820 }
3821 
3822 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3823 {
3824 	struct efx_nic *efx = channel->efx;
3825 	efx_dword_t rptr;
3826 
3827 	if (EFX_EF10_WORKAROUND_35388(efx)) {
3828 		BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3829 			     (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3830 		BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3831 			     (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3832 
3833 		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3834 				     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3835 				     ERF_DD_EVQ_IND_RPTR,
3836 				     (channel->eventq_read_ptr &
3837 				      channel->eventq_mask) >>
3838 				     ERF_DD_EVQ_IND_RPTR_WIDTH);
3839 		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3840 				channel->channel);
3841 		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3842 				     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3843 				     ERF_DD_EVQ_IND_RPTR,
3844 				     channel->eventq_read_ptr &
3845 				     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3846 		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3847 				channel->channel);
3848 	} else {
3849 		EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3850 				     channel->eventq_read_ptr &
3851 				     channel->eventq_mask);
3852 		efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3853 	}
3854 }
3855 
3856 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3857 {
3858 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3859 	struct efx_nic *efx = channel->efx;
3860 	efx_qword_t event;
3861 	int rc;
3862 
3863 	EFX_POPULATE_QWORD_2(event,
3864 			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3865 			     ESF_DZ_EV_DATA, EFX_EF10_TEST);
3866 
3867 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3868 
3869 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3870 	 * already swapped the data to little-endian order.
3871 	 */
3872 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3873 	       sizeof(efx_qword_t));
3874 
3875 	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3876 			  NULL, 0, NULL);
3877 	if (rc != 0)
3878 		goto fail;
3879 
3880 	return;
3881 
3882 fail:
3883 	WARN_ON(true);
3884 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3885 }
3886 
3887 void efx_ef10_handle_drain_event(struct efx_nic *efx)
3888 {
3889 	if (atomic_dec_and_test(&efx->active_queues))
3890 		wake_up(&efx->flush_wq);
3891 
3892 	WARN_ON(atomic_read(&efx->active_queues) < 0);
3893 }
3894 
3895 static int efx_ef10_fini_dmaq(struct efx_nic *efx)
3896 {
3897 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3898 	struct efx_channel *channel;
3899 	struct efx_tx_queue *tx_queue;
3900 	struct efx_rx_queue *rx_queue;
3901 	int pending;
3902 
3903 	/* If the MC has just rebooted, the TX/RX queues will have already been
3904 	 * torn down, but efx->active_queues needs to be set to zero.
3905 	 */
3906 	if (nic_data->must_realloc_vis) {
3907 		atomic_set(&efx->active_queues, 0);
3908 		return 0;
3909 	}
3910 
3911 	/* Do not attempt to write to the NIC during EEH recovery */
3912 	if (efx->state != STATE_RECOVERY) {
3913 		efx_for_each_channel(channel, efx) {
3914 			efx_for_each_channel_rx_queue(rx_queue, channel)
3915 				efx_ef10_rx_fini(rx_queue);
3916 			efx_for_each_channel_tx_queue(tx_queue, channel)
3917 				efx_ef10_tx_fini(tx_queue);
3918 		}
3919 
3920 		wait_event_timeout(efx->flush_wq,
3921 				   atomic_read(&efx->active_queues) == 0,
3922 				   msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
3923 		pending = atomic_read(&efx->active_queues);
3924 		if (pending) {
3925 			netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
3926 				  pending);
3927 			return -ETIMEDOUT;
3928 		}
3929 	}
3930 
3931 	return 0;
3932 }
3933 
3934 static void efx_ef10_prepare_flr(struct efx_nic *efx)
3935 {
3936 	atomic_set(&efx->active_queues, 0);
3937 }
3938 
3939 static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
3940 				  const struct efx_filter_spec *right)
3941 {
3942 	if ((left->match_flags ^ right->match_flags) |
3943 	    ((left->flags ^ right->flags) &
3944 	     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
3945 		return false;
3946 
3947 	return memcmp(&left->outer_vid, &right->outer_vid,
3948 		      sizeof(struct efx_filter_spec) -
3949 		      offsetof(struct efx_filter_spec, outer_vid)) == 0;
3950 }
3951 
3952 static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
3953 {
3954 	BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
3955 	return jhash2((const u32 *)&spec->outer_vid,
3956 		      (sizeof(struct efx_filter_spec) -
3957 		       offsetof(struct efx_filter_spec, outer_vid)) / 4,
3958 		      0);
3959 	/* XXX should we randomise the initval? */
3960 }
3961 
3962 /* Decide whether a filter should be exclusive or else should allow
3963  * delivery to additional recipients.  Currently we decide that
3964  * filters for specific local unicast MAC and IP addresses are
3965  * exclusive.
3966  */
3967 static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
3968 {
3969 	if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
3970 	    !is_multicast_ether_addr(spec->loc_mac))
3971 		return true;
3972 
3973 	if ((spec->match_flags &
3974 	     (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
3975 	    (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
3976 		if (spec->ether_type == htons(ETH_P_IP) &&
3977 		    !ipv4_is_multicast(spec->loc_host[0]))
3978 			return true;
3979 		if (spec->ether_type == htons(ETH_P_IPV6) &&
3980 		    ((const u8 *)spec->loc_host)[0] != 0xff)
3981 			return true;
3982 	}
3983 
3984 	return false;
3985 }
3986 
3987 static struct efx_filter_spec *
3988 efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
3989 			   unsigned int filter_idx)
3990 {
3991 	return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
3992 					  ~EFX_EF10_FILTER_FLAGS);
3993 }
3994 
3995 static unsigned int
3996 efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
3997 			   unsigned int filter_idx)
3998 {
3999 	return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
4000 }
4001 
4002 static void
4003 efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
4004 			  unsigned int filter_idx,
4005 			  const struct efx_filter_spec *spec,
4006 			  unsigned int flags)
4007 {
4008 	table->entry[filter_idx].spec =	(unsigned long)spec | flags;
4009 }
4010 
4011 static void
4012 efx_ef10_filter_push_prep_set_match_fields(struct efx_nic *efx,
4013 					   const struct efx_filter_spec *spec,
4014 					   efx_dword_t *inbuf)
4015 {
4016 	enum efx_encap_type encap_type = efx_filter_get_encap_type(spec);
4017 	u32 match_fields = 0, uc_match, mc_match;
4018 
4019 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4020 		       efx_ef10_filter_is_exclusive(spec) ?
4021 		       MC_CMD_FILTER_OP_IN_OP_INSERT :
4022 		       MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
4023 
4024 	/* Convert match flags and values.  Unlike almost
4025 	 * everything else in MCDI, these fields are in
4026 	 * network byte order.
4027 	 */
4028 #define COPY_VALUE(value, mcdi_field)					     \
4029 	do {							     \
4030 		match_fields |=					     \
4031 			1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	     \
4032 			mcdi_field ## _LBN;			     \
4033 		BUILD_BUG_ON(					     \
4034 			MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
4035 			sizeof(value));				     \
4036 		memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ##	mcdi_field), \
4037 		       &value, sizeof(value));			     \
4038 	} while (0)
4039 #define COPY_FIELD(gen_flag, gen_field, mcdi_field)			     \
4040 	if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) {     \
4041 		COPY_VALUE(spec->gen_field, mcdi_field);	     \
4042 	}
4043 	/* Handle encap filters first.  They will always be mismatch
4044 	 * (unknown UC or MC) filters
4045 	 */
4046 	if (encap_type) {
4047 		/* ether_type and outer_ip_proto need to be variables
4048 		 * because COPY_VALUE wants to memcpy them
4049 		 */
4050 		__be16 ether_type =
4051 			htons(encap_type & EFX_ENCAP_FLAG_IPV6 ?
4052 			      ETH_P_IPV6 : ETH_P_IP);
4053 		u8 vni_type = MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_GENEVE;
4054 		u8 outer_ip_proto;
4055 
4056 		switch (encap_type & EFX_ENCAP_TYPES_MASK) {
4057 		case EFX_ENCAP_TYPE_VXLAN:
4058 			vni_type = MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_VXLAN;
4059 			/* fallthrough */
4060 		case EFX_ENCAP_TYPE_GENEVE:
4061 			COPY_VALUE(ether_type, ETHER_TYPE);
4062 			outer_ip_proto = IPPROTO_UDP;
4063 			COPY_VALUE(outer_ip_proto, IP_PROTO);
4064 			/* We always need to set the type field, even
4065 			 * though we're not matching on the TNI.
4066 			 */
4067 			MCDI_POPULATE_DWORD_1(inbuf,
4068 				FILTER_OP_EXT_IN_VNI_OR_VSID,
4069 				FILTER_OP_EXT_IN_VNI_TYPE,
4070 				vni_type);
4071 			break;
4072 		case EFX_ENCAP_TYPE_NVGRE:
4073 			COPY_VALUE(ether_type, ETHER_TYPE);
4074 			outer_ip_proto = IPPROTO_GRE;
4075 			COPY_VALUE(outer_ip_proto, IP_PROTO);
4076 			break;
4077 		default:
4078 			WARN_ON(1);
4079 		}
4080 
4081 		uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN;
4082 		mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN;
4083 	} else {
4084 		uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
4085 		mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN;
4086 	}
4087 
4088 	if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
4089 		match_fields |=
4090 			is_multicast_ether_addr(spec->loc_mac) ?
4091 			1 << mc_match :
4092 			1 << uc_match;
4093 	COPY_FIELD(REM_HOST, rem_host, SRC_IP);
4094 	COPY_FIELD(LOC_HOST, loc_host, DST_IP);
4095 	COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
4096 	COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
4097 	COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
4098 	COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
4099 	COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
4100 	COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
4101 	COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
4102 	COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
4103 #undef COPY_FIELD
4104 #undef COPY_VALUE
4105 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
4106 		       match_fields);
4107 }
4108 
4109 static void efx_ef10_filter_push_prep(struct efx_nic *efx,
4110 				      const struct efx_filter_spec *spec,
4111 				      efx_dword_t *inbuf, u64 handle,
4112 				      bool replacing)
4113 {
4114 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4115 	u32 flags = spec->flags;
4116 
4117 	memset(inbuf, 0, MC_CMD_FILTER_OP_EXT_IN_LEN);
4118 
4119 	/* Remove RSS flag if we don't have an RSS context. */
4120 	if (flags & EFX_FILTER_FLAG_RX_RSS &&
4121 	    spec->rss_context == EFX_FILTER_RSS_CONTEXT_DEFAULT &&
4122 	    nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID)
4123 		flags &= ~EFX_FILTER_FLAG_RX_RSS;
4124 
4125 	if (replacing) {
4126 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4127 			       MC_CMD_FILTER_OP_IN_OP_REPLACE);
4128 		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
4129 	} else {
4130 		efx_ef10_filter_push_prep_set_match_fields(efx, spec, inbuf);
4131 	}
4132 
4133 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, nic_data->vport_id);
4134 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
4135 		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
4136 		       MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
4137 		       MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
4138 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DOMAIN, 0);
4139 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
4140 		       MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
4141 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
4142 		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
4143 		       0 : spec->dmaq_id);
4144 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
4145 		       (flags & EFX_FILTER_FLAG_RX_RSS) ?
4146 		       MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
4147 		       MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
4148 	if (flags & EFX_FILTER_FLAG_RX_RSS)
4149 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
4150 			       spec->rss_context !=
4151 			       EFX_FILTER_RSS_CONTEXT_DEFAULT ?
4152 			       spec->rss_context : nic_data->rx_rss_context);
4153 }
4154 
4155 static int efx_ef10_filter_push(struct efx_nic *efx,
4156 				const struct efx_filter_spec *spec,
4157 				u64 *handle, bool replacing)
4158 {
4159 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
4160 	MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_EXT_OUT_LEN);
4161 	int rc;
4162 
4163 	efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
4164 	rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
4165 			  outbuf, sizeof(outbuf), NULL);
4166 	if (rc == 0)
4167 		*handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
4168 	if (rc == -ENOSPC)
4169 		rc = -EBUSY; /* to match efx_farch_filter_insert() */
4170 	return rc;
4171 }
4172 
4173 static u32 efx_ef10_filter_mcdi_flags_from_spec(const struct efx_filter_spec *spec)
4174 {
4175 	enum efx_encap_type encap_type = efx_filter_get_encap_type(spec);
4176 	unsigned int match_flags = spec->match_flags;
4177 	unsigned int uc_match, mc_match;
4178 	u32 mcdi_flags = 0;
4179 
4180 #define MAP_FILTER_TO_MCDI_FLAG(gen_flag, mcdi_field, encap) {		\
4181 		unsigned int  old_match_flags = match_flags;		\
4182 		match_flags &= ~EFX_FILTER_MATCH_ ## gen_flag;		\
4183 		if (match_flags != old_match_flags)			\
4184 			mcdi_flags |=					\
4185 				(1 << ((encap) ?			\
4186 				       MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_ ## \
4187 				       mcdi_field ## _LBN :		\
4188 				       MC_CMD_FILTER_OP_EXT_IN_MATCH_ ##\
4189 				       mcdi_field ## _LBN));		\
4190 	}
4191 	/* inner or outer based on encap type */
4192 	MAP_FILTER_TO_MCDI_FLAG(REM_HOST, SRC_IP, encap_type);
4193 	MAP_FILTER_TO_MCDI_FLAG(LOC_HOST, DST_IP, encap_type);
4194 	MAP_FILTER_TO_MCDI_FLAG(REM_MAC, SRC_MAC, encap_type);
4195 	MAP_FILTER_TO_MCDI_FLAG(REM_PORT, SRC_PORT, encap_type);
4196 	MAP_FILTER_TO_MCDI_FLAG(LOC_MAC, DST_MAC, encap_type);
4197 	MAP_FILTER_TO_MCDI_FLAG(LOC_PORT, DST_PORT, encap_type);
4198 	MAP_FILTER_TO_MCDI_FLAG(ETHER_TYPE, ETHER_TYPE, encap_type);
4199 	MAP_FILTER_TO_MCDI_FLAG(IP_PROTO, IP_PROTO, encap_type);
4200 	/* always outer */
4201 	MAP_FILTER_TO_MCDI_FLAG(INNER_VID, INNER_VLAN, false);
4202 	MAP_FILTER_TO_MCDI_FLAG(OUTER_VID, OUTER_VLAN, false);
4203 #undef MAP_FILTER_TO_MCDI_FLAG
4204 
4205 	/* special handling for encap type, and mismatch */
4206 	if (encap_type) {
4207 		match_flags &= ~EFX_FILTER_MATCH_ENCAP_TYPE;
4208 		mcdi_flags |=
4209 			(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN);
4210 		mcdi_flags |= (1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN);
4211 
4212 		uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN;
4213 		mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN;
4214 	} else {
4215 		uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
4216 		mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN;
4217 	}
4218 
4219 	if (match_flags & EFX_FILTER_MATCH_LOC_MAC_IG) {
4220 		match_flags &= ~EFX_FILTER_MATCH_LOC_MAC_IG;
4221 		mcdi_flags |=
4222 			is_multicast_ether_addr(spec->loc_mac) ?
4223 			1 << mc_match :
4224 			1 << uc_match;
4225 	}
4226 
4227 	/* Did we map them all? */
4228 	WARN_ON_ONCE(match_flags);
4229 
4230 	return mcdi_flags;
4231 }
4232 
4233 static int efx_ef10_filter_pri(struct efx_ef10_filter_table *table,
4234 			       const struct efx_filter_spec *spec)
4235 {
4236 	u32 mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
4237 	unsigned int match_pri;
4238 
4239 	for (match_pri = 0;
4240 	     match_pri < table->rx_match_count;
4241 	     match_pri++)
4242 		if (table->rx_match_mcdi_flags[match_pri] == mcdi_flags)
4243 			return match_pri;
4244 
4245 	return -EPROTONOSUPPORT;
4246 }
4247 
4248 static s32 efx_ef10_filter_insert(struct efx_nic *efx,
4249 				  struct efx_filter_spec *spec,
4250 				  bool replace_equal)
4251 {
4252 	struct efx_ef10_filter_table *table = efx->filter_state;
4253 	DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
4254 	struct efx_filter_spec *saved_spec;
4255 	unsigned int match_pri, hash;
4256 	unsigned int priv_flags;
4257 	bool replacing = false;
4258 	int ins_index = -1;
4259 	DEFINE_WAIT(wait);
4260 	bool is_mc_recip;
4261 	s32 rc;
4262 
4263 	/* For now, only support RX filters */
4264 	if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
4265 	    EFX_FILTER_FLAG_RX)
4266 		return -EINVAL;
4267 
4268 	rc = efx_ef10_filter_pri(table, spec);
4269 	if (rc < 0)
4270 		return rc;
4271 	match_pri = rc;
4272 
4273 	hash = efx_ef10_filter_hash(spec);
4274 	is_mc_recip = efx_filter_is_mc_recipient(spec);
4275 	if (is_mc_recip)
4276 		bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
4277 
4278 	/* Find any existing filters with the same match tuple or
4279 	 * else a free slot to insert at.  If any of them are busy,
4280 	 * we have to wait and retry.
4281 	 */
4282 	for (;;) {
4283 		unsigned int depth = 1;
4284 		unsigned int i;
4285 
4286 		spin_lock_bh(&efx->filter_lock);
4287 
4288 		for (;;) {
4289 			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4290 			saved_spec = efx_ef10_filter_entry_spec(table, i);
4291 
4292 			if (!saved_spec) {
4293 				if (ins_index < 0)
4294 					ins_index = i;
4295 			} else if (efx_ef10_filter_equal(spec, saved_spec)) {
4296 				if (table->entry[i].spec &
4297 				    EFX_EF10_FILTER_FLAG_BUSY)
4298 					break;
4299 				if (spec->priority < saved_spec->priority &&
4300 				    spec->priority != EFX_FILTER_PRI_AUTO) {
4301 					rc = -EPERM;
4302 					goto out_unlock;
4303 				}
4304 				if (!is_mc_recip) {
4305 					/* This is the only one */
4306 					if (spec->priority ==
4307 					    saved_spec->priority &&
4308 					    !replace_equal) {
4309 						rc = -EEXIST;
4310 						goto out_unlock;
4311 					}
4312 					ins_index = i;
4313 					goto found;
4314 				} else if (spec->priority >
4315 					   saved_spec->priority ||
4316 					   (spec->priority ==
4317 					    saved_spec->priority &&
4318 					    replace_equal)) {
4319 					if (ins_index < 0)
4320 						ins_index = i;
4321 					else
4322 						__set_bit(depth, mc_rem_map);
4323 				}
4324 			}
4325 
4326 			/* Once we reach the maximum search depth, use
4327 			 * the first suitable slot or return -EBUSY if
4328 			 * there was none
4329 			 */
4330 			if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
4331 				if (ins_index < 0) {
4332 					rc = -EBUSY;
4333 					goto out_unlock;
4334 				}
4335 				goto found;
4336 			}
4337 
4338 			++depth;
4339 		}
4340 
4341 		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
4342 		spin_unlock_bh(&efx->filter_lock);
4343 		schedule();
4344 	}
4345 
4346 found:
4347 	/* Create a software table entry if necessary, and mark it
4348 	 * busy.  We might yet fail to insert, but any attempt to
4349 	 * insert a conflicting filter while we're waiting for the
4350 	 * firmware must find the busy entry.
4351 	 */
4352 	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
4353 	if (saved_spec) {
4354 		if (spec->priority == EFX_FILTER_PRI_AUTO &&
4355 		    saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
4356 			/* Just make sure it won't be removed */
4357 			if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
4358 				saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
4359 			table->entry[ins_index].spec &=
4360 				~EFX_EF10_FILTER_FLAG_AUTO_OLD;
4361 			rc = ins_index;
4362 			goto out_unlock;
4363 		}
4364 		replacing = true;
4365 		priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
4366 	} else {
4367 		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
4368 		if (!saved_spec) {
4369 			rc = -ENOMEM;
4370 			goto out_unlock;
4371 		}
4372 		*saved_spec = *spec;
4373 		priv_flags = 0;
4374 	}
4375 	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
4376 				  priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
4377 
4378 	/* Mark lower-priority multicast recipients busy prior to removal */
4379 	if (is_mc_recip) {
4380 		unsigned int depth, i;
4381 
4382 		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
4383 			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4384 			if (test_bit(depth, mc_rem_map))
4385 				table->entry[i].spec |=
4386 					EFX_EF10_FILTER_FLAG_BUSY;
4387 		}
4388 	}
4389 
4390 	spin_unlock_bh(&efx->filter_lock);
4391 
4392 	rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
4393 				  replacing);
4394 
4395 	/* Finalise the software table entry */
4396 	spin_lock_bh(&efx->filter_lock);
4397 	if (rc == 0) {
4398 		if (replacing) {
4399 			/* Update the fields that may differ */
4400 			if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
4401 				saved_spec->flags |=
4402 					EFX_FILTER_FLAG_RX_OVER_AUTO;
4403 			saved_spec->priority = spec->priority;
4404 			saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
4405 			saved_spec->flags |= spec->flags;
4406 			saved_spec->rss_context = spec->rss_context;
4407 			saved_spec->dmaq_id = spec->dmaq_id;
4408 		}
4409 	} else if (!replacing) {
4410 		kfree(saved_spec);
4411 		saved_spec = NULL;
4412 	}
4413 	efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
4414 
4415 	/* Remove and finalise entries for lower-priority multicast
4416 	 * recipients
4417 	 */
4418 	if (is_mc_recip) {
4419 		MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
4420 		unsigned int depth, i;
4421 
4422 		memset(inbuf, 0, sizeof(inbuf));
4423 
4424 		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
4425 			if (!test_bit(depth, mc_rem_map))
4426 				continue;
4427 
4428 			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4429 			saved_spec = efx_ef10_filter_entry_spec(table, i);
4430 			priv_flags = efx_ef10_filter_entry_flags(table, i);
4431 
4432 			if (rc == 0) {
4433 				spin_unlock_bh(&efx->filter_lock);
4434 				MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4435 					       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4436 				MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4437 					       table->entry[i].handle);
4438 				rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
4439 						  inbuf, sizeof(inbuf),
4440 						  NULL, 0, NULL);
4441 				spin_lock_bh(&efx->filter_lock);
4442 			}
4443 
4444 			if (rc == 0) {
4445 				kfree(saved_spec);
4446 				saved_spec = NULL;
4447 				priv_flags = 0;
4448 			} else {
4449 				priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
4450 			}
4451 			efx_ef10_filter_set_entry(table, i, saved_spec,
4452 						  priv_flags);
4453 		}
4454 	}
4455 
4456 	/* If successful, return the inserted filter ID */
4457 	if (rc == 0)
4458 		rc = efx_ef10_make_filter_id(match_pri, ins_index);
4459 
4460 	wake_up_all(&table->waitq);
4461 out_unlock:
4462 	spin_unlock_bh(&efx->filter_lock);
4463 	finish_wait(&table->waitq, &wait);
4464 	return rc;
4465 }
4466 
4467 static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
4468 {
4469 	/* no need to do anything here on EF10 */
4470 }
4471 
4472 /* Remove a filter.
4473  * If !by_index, remove by ID
4474  * If by_index, remove by index
4475  * Filter ID may come from userland and must be range-checked.
4476  */
4477 static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
4478 					   unsigned int priority_mask,
4479 					   u32 filter_id, bool by_index)
4480 {
4481 	unsigned int filter_idx = efx_ef10_filter_get_unsafe_id(filter_id);
4482 	struct efx_ef10_filter_table *table = efx->filter_state;
4483 	MCDI_DECLARE_BUF(inbuf,
4484 			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
4485 			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
4486 	struct efx_filter_spec *spec;
4487 	DEFINE_WAIT(wait);
4488 	int rc;
4489 
4490 	/* Find the software table entry and mark it busy.  Don't
4491 	 * remove it yet; any attempt to update while we're waiting
4492 	 * for the firmware must find the busy entry.
4493 	 */
4494 	for (;;) {
4495 		spin_lock_bh(&efx->filter_lock);
4496 		if (!(table->entry[filter_idx].spec &
4497 		      EFX_EF10_FILTER_FLAG_BUSY))
4498 			break;
4499 		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
4500 		spin_unlock_bh(&efx->filter_lock);
4501 		schedule();
4502 	}
4503 
4504 	spec = efx_ef10_filter_entry_spec(table, filter_idx);
4505 	if (!spec ||
4506 	    (!by_index &&
4507 	     efx_ef10_filter_pri(table, spec) !=
4508 	     efx_ef10_filter_get_unsafe_pri(filter_id))) {
4509 		rc = -ENOENT;
4510 		goto out_unlock;
4511 	}
4512 
4513 	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
4514 	    priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
4515 		/* Just remove flags */
4516 		spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
4517 		table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
4518 		rc = 0;
4519 		goto out_unlock;
4520 	}
4521 
4522 	if (!(priority_mask & (1U << spec->priority))) {
4523 		rc = -ENOENT;
4524 		goto out_unlock;
4525 	}
4526 
4527 	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
4528 	spin_unlock_bh(&efx->filter_lock);
4529 
4530 	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
4531 		/* Reset to an automatic filter */
4532 
4533 		struct efx_filter_spec new_spec = *spec;
4534 
4535 		new_spec.priority = EFX_FILTER_PRI_AUTO;
4536 		new_spec.flags = (EFX_FILTER_FLAG_RX |
4537 				  (efx_rss_enabled(efx) ?
4538 				   EFX_FILTER_FLAG_RX_RSS : 0));
4539 		new_spec.dmaq_id = 0;
4540 		new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
4541 		rc = efx_ef10_filter_push(efx, &new_spec,
4542 					  &table->entry[filter_idx].handle,
4543 					  true);
4544 
4545 		spin_lock_bh(&efx->filter_lock);
4546 		if (rc == 0)
4547 			*spec = new_spec;
4548 	} else {
4549 		/* Really remove the filter */
4550 
4551 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4552 			       efx_ef10_filter_is_exclusive(spec) ?
4553 			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
4554 			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4555 		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4556 			       table->entry[filter_idx].handle);
4557 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP,
4558 					inbuf, sizeof(inbuf), NULL, 0, NULL);
4559 
4560 		spin_lock_bh(&efx->filter_lock);
4561 		if ((rc == 0) || (rc == -ENOENT)) {
4562 			/* Filter removed OK or didn't actually exist */
4563 			kfree(spec);
4564 			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4565 		} else {
4566 			efx_mcdi_display_error(efx, MC_CMD_FILTER_OP,
4567 					       MC_CMD_FILTER_OP_EXT_IN_LEN,
4568 					       NULL, 0, rc);
4569 		}
4570 	}
4571 
4572 	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
4573 	wake_up_all(&table->waitq);
4574 out_unlock:
4575 	spin_unlock_bh(&efx->filter_lock);
4576 	finish_wait(&table->waitq, &wait);
4577 	return rc;
4578 }
4579 
4580 static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
4581 				       enum efx_filter_priority priority,
4582 				       u32 filter_id)
4583 {
4584 	return efx_ef10_filter_remove_internal(efx, 1U << priority,
4585 					       filter_id, false);
4586 }
4587 
4588 static void efx_ef10_filter_remove_unsafe(struct efx_nic *efx,
4589 					  enum efx_filter_priority priority,
4590 					  u32 filter_id)
4591 {
4592 	if (filter_id == EFX_EF10_FILTER_ID_INVALID)
4593 		return;
4594 	efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id, true);
4595 }
4596 
4597 static int efx_ef10_filter_get_safe(struct efx_nic *efx,
4598 				    enum efx_filter_priority priority,
4599 				    u32 filter_id, struct efx_filter_spec *spec)
4600 {
4601 	unsigned int filter_idx = efx_ef10_filter_get_unsafe_id(filter_id);
4602 	struct efx_ef10_filter_table *table = efx->filter_state;
4603 	const struct efx_filter_spec *saved_spec;
4604 	int rc;
4605 
4606 	spin_lock_bh(&efx->filter_lock);
4607 	saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
4608 	if (saved_spec && saved_spec->priority == priority &&
4609 	    efx_ef10_filter_pri(table, saved_spec) ==
4610 	    efx_ef10_filter_get_unsafe_pri(filter_id)) {
4611 		*spec = *saved_spec;
4612 		rc = 0;
4613 	} else {
4614 		rc = -ENOENT;
4615 	}
4616 	spin_unlock_bh(&efx->filter_lock);
4617 	return rc;
4618 }
4619 
4620 static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
4621 				     enum efx_filter_priority priority)
4622 {
4623 	unsigned int priority_mask;
4624 	unsigned int i;
4625 	int rc;
4626 
4627 	priority_mask = (((1U << (priority + 1)) - 1) &
4628 			 ~(1U << EFX_FILTER_PRI_AUTO));
4629 
4630 	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
4631 		rc = efx_ef10_filter_remove_internal(efx, priority_mask,
4632 						     i, true);
4633 		if (rc && rc != -ENOENT)
4634 			return rc;
4635 	}
4636 
4637 	return 0;
4638 }
4639 
4640 static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
4641 					 enum efx_filter_priority priority)
4642 {
4643 	struct efx_ef10_filter_table *table = efx->filter_state;
4644 	unsigned int filter_idx;
4645 	s32 count = 0;
4646 
4647 	spin_lock_bh(&efx->filter_lock);
4648 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4649 		if (table->entry[filter_idx].spec &&
4650 		    efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
4651 		    priority)
4652 			++count;
4653 	}
4654 	spin_unlock_bh(&efx->filter_lock);
4655 	return count;
4656 }
4657 
4658 static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
4659 {
4660 	struct efx_ef10_filter_table *table = efx->filter_state;
4661 
4662 	return table->rx_match_count * HUNT_FILTER_TBL_ROWS * 2;
4663 }
4664 
4665 static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
4666 				      enum efx_filter_priority priority,
4667 				      u32 *buf, u32 size)
4668 {
4669 	struct efx_ef10_filter_table *table = efx->filter_state;
4670 	struct efx_filter_spec *spec;
4671 	unsigned int filter_idx;
4672 	s32 count = 0;
4673 
4674 	spin_lock_bh(&efx->filter_lock);
4675 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4676 		spec = efx_ef10_filter_entry_spec(table, filter_idx);
4677 		if (spec && spec->priority == priority) {
4678 			if (count == size) {
4679 				count = -EMSGSIZE;
4680 				break;
4681 			}
4682 			buf[count++] =
4683 				efx_ef10_make_filter_id(
4684 					efx_ef10_filter_pri(table, spec),
4685 					filter_idx);
4686 		}
4687 	}
4688 	spin_unlock_bh(&efx->filter_lock);
4689 	return count;
4690 }
4691 
4692 #ifdef CONFIG_RFS_ACCEL
4693 
4694 static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
4695 
4696 static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
4697 				      struct efx_filter_spec *spec)
4698 {
4699 	struct efx_ef10_filter_table *table = efx->filter_state;
4700 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
4701 	struct efx_filter_spec *saved_spec;
4702 	unsigned int hash, i, depth = 1;
4703 	bool replacing = false;
4704 	int ins_index = -1;
4705 	u64 cookie;
4706 	s32 rc;
4707 
4708 	/* Must be an RX filter without RSS and not for a multicast
4709 	 * destination address (RFS only works for connected sockets).
4710 	 * These restrictions allow us to pass only a tiny amount of
4711 	 * data through to the completion function.
4712 	 */
4713 	EFX_WARN_ON_PARANOID(spec->flags !=
4714 			     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
4715 	EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
4716 	EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
4717 
4718 	hash = efx_ef10_filter_hash(spec);
4719 
4720 	spin_lock_bh(&efx->filter_lock);
4721 
4722 	/* Find any existing filter with the same match tuple or else
4723 	 * a free slot to insert at.  If an existing filter is busy,
4724 	 * we have to give up.
4725 	 */
4726 	for (;;) {
4727 		i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4728 		saved_spec = efx_ef10_filter_entry_spec(table, i);
4729 
4730 		if (!saved_spec) {
4731 			if (ins_index < 0)
4732 				ins_index = i;
4733 		} else if (efx_ef10_filter_equal(spec, saved_spec)) {
4734 			if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
4735 				rc = -EBUSY;
4736 				goto fail_unlock;
4737 			}
4738 			if (spec->priority < saved_spec->priority) {
4739 				rc = -EPERM;
4740 				goto fail_unlock;
4741 			}
4742 			ins_index = i;
4743 			break;
4744 		}
4745 
4746 		/* Once we reach the maximum search depth, use the
4747 		 * first suitable slot or return -EBUSY if there was
4748 		 * none
4749 		 */
4750 		if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
4751 			if (ins_index < 0) {
4752 				rc = -EBUSY;
4753 				goto fail_unlock;
4754 			}
4755 			break;
4756 		}
4757 
4758 		++depth;
4759 	}
4760 
4761 	/* Create a software table entry if necessary, and mark it
4762 	 * busy.  We might yet fail to insert, but any attempt to
4763 	 * insert a conflicting filter while we're waiting for the
4764 	 * firmware must find the busy entry.
4765 	 */
4766 	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
4767 	if (saved_spec) {
4768 		replacing = true;
4769 	} else {
4770 		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
4771 		if (!saved_spec) {
4772 			rc = -ENOMEM;
4773 			goto fail_unlock;
4774 		}
4775 		*saved_spec = *spec;
4776 	}
4777 	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
4778 				  EFX_EF10_FILTER_FLAG_BUSY);
4779 
4780 	spin_unlock_bh(&efx->filter_lock);
4781 
4782 	/* Pack up the variables needed on completion */
4783 	cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
4784 
4785 	efx_ef10_filter_push_prep(efx, spec, inbuf,
4786 				  table->entry[ins_index].handle, replacing);
4787 	efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
4788 			   MC_CMD_FILTER_OP_OUT_LEN,
4789 			   efx_ef10_filter_rfs_insert_complete, cookie);
4790 
4791 	return ins_index;
4792 
4793 fail_unlock:
4794 	spin_unlock_bh(&efx->filter_lock);
4795 	return rc;
4796 }
4797 
4798 static void
4799 efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
4800 				    int rc, efx_dword_t *outbuf,
4801 				    size_t outlen_actual)
4802 {
4803 	struct efx_ef10_filter_table *table = efx->filter_state;
4804 	unsigned int ins_index, dmaq_id;
4805 	struct efx_filter_spec *spec;
4806 	bool replacing;
4807 
4808 	/* Unpack the cookie */
4809 	replacing = cookie >> 31;
4810 	ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
4811 	dmaq_id = cookie & 0xffff;
4812 
4813 	spin_lock_bh(&efx->filter_lock);
4814 	spec = efx_ef10_filter_entry_spec(table, ins_index);
4815 	if (rc == 0) {
4816 		table->entry[ins_index].handle =
4817 			MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
4818 		if (replacing)
4819 			spec->dmaq_id = dmaq_id;
4820 	} else if (!replacing) {
4821 		kfree(spec);
4822 		spec = NULL;
4823 	}
4824 	efx_ef10_filter_set_entry(table, ins_index, spec, 0);
4825 	spin_unlock_bh(&efx->filter_lock);
4826 
4827 	wake_up_all(&table->waitq);
4828 }
4829 
4830 static void
4831 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
4832 				    unsigned long filter_idx,
4833 				    int rc, efx_dword_t *outbuf,
4834 				    size_t outlen_actual);
4835 
4836 static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
4837 					   unsigned int filter_idx)
4838 {
4839 	struct efx_ef10_filter_table *table = efx->filter_state;
4840 	struct efx_filter_spec *spec =
4841 		efx_ef10_filter_entry_spec(table, filter_idx);
4842 	MCDI_DECLARE_BUF(inbuf,
4843 			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
4844 			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
4845 
4846 	if (!spec ||
4847 	    (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
4848 	    spec->priority != EFX_FILTER_PRI_HINT ||
4849 	    !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
4850 				 flow_id, filter_idx))
4851 		return false;
4852 
4853 	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4854 		       MC_CMD_FILTER_OP_IN_OP_REMOVE);
4855 	MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4856 		       table->entry[filter_idx].handle);
4857 	if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
4858 			       efx_ef10_filter_rfs_expire_complete, filter_idx))
4859 		return false;
4860 
4861 	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
4862 	return true;
4863 }
4864 
4865 static void
4866 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
4867 				    unsigned long filter_idx,
4868 				    int rc, efx_dword_t *outbuf,
4869 				    size_t outlen_actual)
4870 {
4871 	struct efx_ef10_filter_table *table = efx->filter_state;
4872 	struct efx_filter_spec *spec =
4873 		efx_ef10_filter_entry_spec(table, filter_idx);
4874 
4875 	spin_lock_bh(&efx->filter_lock);
4876 	if (rc == 0) {
4877 		kfree(spec);
4878 		efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4879 	}
4880 	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
4881 	wake_up_all(&table->waitq);
4882 	spin_unlock_bh(&efx->filter_lock);
4883 }
4884 
4885 #endif /* CONFIG_RFS_ACCEL */
4886 
4887 static int efx_ef10_filter_match_flags_from_mcdi(bool encap, u32 mcdi_flags)
4888 {
4889 	int match_flags = 0;
4890 
4891 #define MAP_FLAG(gen_flag, mcdi_field) do {				\
4892 		u32 old_mcdi_flags = mcdi_flags;			\
4893 		mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ ##	\
4894 				     mcdi_field ## _LBN);		\
4895 		if (mcdi_flags != old_mcdi_flags)			\
4896 			match_flags |= EFX_FILTER_MATCH_ ## gen_flag;	\
4897 	} while (0)
4898 
4899 	if (encap) {
4900 		/* encap filters must specify encap type */
4901 		match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
4902 		/* and imply ethertype and ip proto */
4903 		mcdi_flags &=
4904 			~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN);
4905 		mcdi_flags &=
4906 			~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN);
4907 		/* VLAN tags refer to the outer packet */
4908 		MAP_FLAG(INNER_VID, INNER_VLAN);
4909 		MAP_FLAG(OUTER_VID, OUTER_VLAN);
4910 		/* everything else refers to the inner packet */
4911 		MAP_FLAG(LOC_MAC_IG, IFRM_UNKNOWN_UCAST_DST);
4912 		MAP_FLAG(LOC_MAC_IG, IFRM_UNKNOWN_MCAST_DST);
4913 		MAP_FLAG(REM_HOST, IFRM_SRC_IP);
4914 		MAP_FLAG(LOC_HOST, IFRM_DST_IP);
4915 		MAP_FLAG(REM_MAC, IFRM_SRC_MAC);
4916 		MAP_FLAG(REM_PORT, IFRM_SRC_PORT);
4917 		MAP_FLAG(LOC_MAC, IFRM_DST_MAC);
4918 		MAP_FLAG(LOC_PORT, IFRM_DST_PORT);
4919 		MAP_FLAG(ETHER_TYPE, IFRM_ETHER_TYPE);
4920 		MAP_FLAG(IP_PROTO, IFRM_IP_PROTO);
4921 	} else {
4922 		MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
4923 		MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
4924 		MAP_FLAG(REM_HOST, SRC_IP);
4925 		MAP_FLAG(LOC_HOST, DST_IP);
4926 		MAP_FLAG(REM_MAC, SRC_MAC);
4927 		MAP_FLAG(REM_PORT, SRC_PORT);
4928 		MAP_FLAG(LOC_MAC, DST_MAC);
4929 		MAP_FLAG(LOC_PORT, DST_PORT);
4930 		MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
4931 		MAP_FLAG(INNER_VID, INNER_VLAN);
4932 		MAP_FLAG(OUTER_VID, OUTER_VLAN);
4933 		MAP_FLAG(IP_PROTO, IP_PROTO);
4934 	}
4935 #undef MAP_FLAG
4936 
4937 	/* Did we map them all? */
4938 	if (mcdi_flags)
4939 		return -EINVAL;
4940 
4941 	return match_flags;
4942 }
4943 
4944 static void efx_ef10_filter_cleanup_vlans(struct efx_nic *efx)
4945 {
4946 	struct efx_ef10_filter_table *table = efx->filter_state;
4947 	struct efx_ef10_filter_vlan *vlan, *next_vlan;
4948 
4949 	/* See comment in efx_ef10_filter_table_remove() */
4950 	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4951 		return;
4952 
4953 	if (!table)
4954 		return;
4955 
4956 	list_for_each_entry_safe(vlan, next_vlan, &table->vlan_list, list)
4957 		efx_ef10_filter_del_vlan_internal(efx, vlan);
4958 }
4959 
4960 static bool efx_ef10_filter_match_supported(struct efx_ef10_filter_table *table,
4961 					    bool encap,
4962 					    enum efx_filter_match_flags match_flags)
4963 {
4964 	unsigned int match_pri;
4965 	int mf;
4966 
4967 	for (match_pri = 0;
4968 	     match_pri < table->rx_match_count;
4969 	     match_pri++) {
4970 		mf = efx_ef10_filter_match_flags_from_mcdi(encap,
4971 				table->rx_match_mcdi_flags[match_pri]);
4972 		if (mf == match_flags)
4973 			return true;
4974 	}
4975 
4976 	return false;
4977 }
4978 
4979 static int
4980 efx_ef10_filter_table_probe_matches(struct efx_nic *efx,
4981 				    struct efx_ef10_filter_table *table,
4982 				    bool encap)
4983 {
4984 	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
4985 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
4986 	unsigned int pd_match_pri, pd_match_count;
4987 	size_t outlen;
4988 	int rc;
4989 
4990 	/* Find out which RX filter types are supported, and their priorities */
4991 	MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
4992 		       encap ?
4993 		       MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_ENCAP_RX_MATCHES :
4994 		       MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
4995 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
4996 			  inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
4997 			  &outlen);
4998 	if (rc)
4999 		return rc;
5000 
5001 	pd_match_count = MCDI_VAR_ARRAY_LEN(
5002 		outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
5003 
5004 	for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
5005 		u32 mcdi_flags =
5006 			MCDI_ARRAY_DWORD(
5007 				outbuf,
5008 				GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
5009 				pd_match_pri);
5010 		rc = efx_ef10_filter_match_flags_from_mcdi(encap, mcdi_flags);
5011 		if (rc < 0) {
5012 			netif_dbg(efx, probe, efx->net_dev,
5013 				  "%s: fw flags %#x pri %u not supported in driver\n",
5014 				  __func__, mcdi_flags, pd_match_pri);
5015 		} else {
5016 			netif_dbg(efx, probe, efx->net_dev,
5017 				  "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
5018 				  __func__, mcdi_flags, pd_match_pri,
5019 				  rc, table->rx_match_count);
5020 			table->rx_match_mcdi_flags[table->rx_match_count] = mcdi_flags;
5021 			table->rx_match_count++;
5022 		}
5023 	}
5024 
5025 	return 0;
5026 }
5027 
5028 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
5029 {
5030 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
5031 	struct net_device *net_dev = efx->net_dev;
5032 	struct efx_ef10_filter_table *table;
5033 	struct efx_ef10_vlan *vlan;
5034 	int rc;
5035 
5036 	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5037 		return -EINVAL;
5038 
5039 	if (efx->filter_state) /* already probed */
5040 		return 0;
5041 
5042 	table = kzalloc(sizeof(*table), GFP_KERNEL);
5043 	if (!table)
5044 		return -ENOMEM;
5045 
5046 	table->rx_match_count = 0;
5047 	rc = efx_ef10_filter_table_probe_matches(efx, table, false);
5048 	if (rc)
5049 		goto fail;
5050 	if (nic_data->datapath_caps &
5051 		   (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
5052 		rc = efx_ef10_filter_table_probe_matches(efx, table, true);
5053 	if (rc)
5054 		goto fail;
5055 	if ((efx_supported_features(efx) & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5056 	    !(efx_ef10_filter_match_supported(table, false,
5057 		(EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC)) &&
5058 	      efx_ef10_filter_match_supported(table, false,
5059 		(EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC_IG)))) {
5060 		netif_info(efx, probe, net_dev,
5061 			   "VLAN filters are not supported in this firmware variant\n");
5062 		net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
5063 		efx->fixed_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
5064 		net_dev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
5065 	}
5066 
5067 	table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
5068 	if (!table->entry) {
5069 		rc = -ENOMEM;
5070 		goto fail;
5071 	}
5072 
5073 	table->mc_promisc_last = false;
5074 	table->vlan_filter =
5075 		!!(efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
5076 	INIT_LIST_HEAD(&table->vlan_list);
5077 
5078 	efx->filter_state = table;
5079 	init_waitqueue_head(&table->waitq);
5080 
5081 	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
5082 		rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
5083 		if (rc)
5084 			goto fail_add_vlan;
5085 	}
5086 
5087 	return 0;
5088 
5089 fail_add_vlan:
5090 	efx_ef10_filter_cleanup_vlans(efx);
5091 	efx->filter_state = NULL;
5092 fail:
5093 	kfree(table);
5094 	return rc;
5095 }
5096 
5097 /* Caller must hold efx->filter_sem for read if race against
5098  * efx_ef10_filter_table_remove() is possible
5099  */
5100 static void efx_ef10_filter_table_restore(struct efx_nic *efx)
5101 {
5102 	struct efx_ef10_filter_table *table = efx->filter_state;
5103 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
5104 	unsigned int invalid_filters = 0, failed = 0;
5105 	struct efx_ef10_filter_vlan *vlan;
5106 	struct efx_filter_spec *spec;
5107 	unsigned int filter_idx;
5108 	u32 mcdi_flags;
5109 	int match_pri;
5110 	int rc, i;
5111 
5112 	WARN_ON(!rwsem_is_locked(&efx->filter_sem));
5113 
5114 	if (!nic_data->must_restore_filters)
5115 		return;
5116 
5117 	if (!table)
5118 		return;
5119 
5120 	spin_lock_bh(&efx->filter_lock);
5121 
5122 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
5123 		spec = efx_ef10_filter_entry_spec(table, filter_idx);
5124 		if (!spec)
5125 			continue;
5126 
5127 		mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
5128 		match_pri = 0;
5129 		while (match_pri < table->rx_match_count &&
5130 		       table->rx_match_mcdi_flags[match_pri] != mcdi_flags)
5131 			++match_pri;
5132 		if (match_pri >= table->rx_match_count) {
5133 			invalid_filters++;
5134 			goto not_restored;
5135 		}
5136 		if (spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT &&
5137 		    spec->rss_context != nic_data->rx_rss_context)
5138 			netif_warn(efx, drv, efx->net_dev,
5139 				   "Warning: unable to restore a filter with specific RSS context.\n");
5140 
5141 		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
5142 		spin_unlock_bh(&efx->filter_lock);
5143 
5144 		rc = efx_ef10_filter_push(efx, spec,
5145 					  &table->entry[filter_idx].handle,
5146 					  false);
5147 		if (rc)
5148 			failed++;
5149 		spin_lock_bh(&efx->filter_lock);
5150 
5151 		if (rc) {
5152 not_restored:
5153 			list_for_each_entry(vlan, &table->vlan_list, list)
5154 				for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; ++i)
5155 					if (vlan->default_filters[i] == filter_idx)
5156 						vlan->default_filters[i] =
5157 							EFX_EF10_FILTER_ID_INVALID;
5158 
5159 			kfree(spec);
5160 			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
5161 		} else {
5162 			table->entry[filter_idx].spec &=
5163 				~EFX_EF10_FILTER_FLAG_BUSY;
5164 		}
5165 	}
5166 
5167 	spin_unlock_bh(&efx->filter_lock);
5168 
5169 	/* This can happen validly if the MC's capabilities have changed, so
5170 	 * is not an error.
5171 	 */
5172 	if (invalid_filters)
5173 		netif_dbg(efx, drv, efx->net_dev,
5174 			  "Did not restore %u filters that are now unsupported.\n",
5175 			  invalid_filters);
5176 
5177 	if (failed)
5178 		netif_err(efx, hw, efx->net_dev,
5179 			  "unable to restore %u filters\n", failed);
5180 	else
5181 		nic_data->must_restore_filters = false;
5182 }
5183 
5184 static void efx_ef10_filter_table_remove(struct efx_nic *efx)
5185 {
5186 	struct efx_ef10_filter_table *table = efx->filter_state;
5187 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
5188 	struct efx_filter_spec *spec;
5189 	unsigned int filter_idx;
5190 	int rc;
5191 
5192 	efx_ef10_filter_cleanup_vlans(efx);
5193 	efx->filter_state = NULL;
5194 	/* If we were called without locking, then it's not safe to free
5195 	 * the table as others might be using it.  So we just WARN, leak
5196 	 * the memory, and potentially get an inconsistent filter table
5197 	 * state.
5198 	 * This should never actually happen.
5199 	 */
5200 	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5201 		return;
5202 
5203 	if (!table)
5204 		return;
5205 
5206 	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
5207 		spec = efx_ef10_filter_entry_spec(table, filter_idx);
5208 		if (!spec)
5209 			continue;
5210 
5211 		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
5212 			       efx_ef10_filter_is_exclusive(spec) ?
5213 			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
5214 			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
5215 		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
5216 			       table->entry[filter_idx].handle);
5217 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP, inbuf,
5218 					sizeof(inbuf), NULL, 0, NULL);
5219 		if (rc)
5220 			netif_info(efx, drv, efx->net_dev,
5221 				   "%s: filter %04x remove failed\n",
5222 				   __func__, filter_idx);
5223 		kfree(spec);
5224 	}
5225 
5226 	vfree(table->entry);
5227 	kfree(table);
5228 }
5229 
5230 static void efx_ef10_filter_mark_one_old(struct efx_nic *efx, uint16_t *id)
5231 {
5232 	struct efx_ef10_filter_table *table = efx->filter_state;
5233 	unsigned int filter_idx;
5234 
5235 	if (*id != EFX_EF10_FILTER_ID_INVALID) {
5236 		filter_idx = efx_ef10_filter_get_unsafe_id(*id);
5237 		if (!table->entry[filter_idx].spec)
5238 			netif_dbg(efx, drv, efx->net_dev,
5239 				  "marked null spec old %04x:%04x\n", *id,
5240 				  filter_idx);
5241 		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
5242 		*id = EFX_EF10_FILTER_ID_INVALID;
5243 	}
5244 }
5245 
5246 /* Mark old per-VLAN filters that may need to be removed */
5247 static void _efx_ef10_filter_vlan_mark_old(struct efx_nic *efx,
5248 					   struct efx_ef10_filter_vlan *vlan)
5249 {
5250 	struct efx_ef10_filter_table *table = efx->filter_state;
5251 	unsigned int i;
5252 
5253 	for (i = 0; i < table->dev_uc_count; i++)
5254 		efx_ef10_filter_mark_one_old(efx, &vlan->uc[i]);
5255 	for (i = 0; i < table->dev_mc_count; i++)
5256 		efx_ef10_filter_mark_one_old(efx, &vlan->mc[i]);
5257 	for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5258 		efx_ef10_filter_mark_one_old(efx, &vlan->default_filters[i]);
5259 }
5260 
5261 /* Mark old filters that may need to be removed.
5262  * Caller must hold efx->filter_sem for read if race against
5263  * efx_ef10_filter_table_remove() is possible
5264  */
5265 static void efx_ef10_filter_mark_old(struct efx_nic *efx)
5266 {
5267 	struct efx_ef10_filter_table *table = efx->filter_state;
5268 	struct efx_ef10_filter_vlan *vlan;
5269 
5270 	spin_lock_bh(&efx->filter_lock);
5271 	list_for_each_entry(vlan, &table->vlan_list, list)
5272 		_efx_ef10_filter_vlan_mark_old(efx, vlan);
5273 	spin_unlock_bh(&efx->filter_lock);
5274 }
5275 
5276 static void efx_ef10_filter_uc_addr_list(struct efx_nic *efx)
5277 {
5278 	struct efx_ef10_filter_table *table = efx->filter_state;
5279 	struct net_device *net_dev = efx->net_dev;
5280 	struct netdev_hw_addr *uc;
5281 	unsigned int i;
5282 
5283 	table->uc_promisc = !!(net_dev->flags & IFF_PROMISC);
5284 	ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
5285 	i = 1;
5286 	netdev_for_each_uc_addr(uc, net_dev) {
5287 		if (i >= EFX_EF10_FILTER_DEV_UC_MAX) {
5288 			table->uc_promisc = true;
5289 			break;
5290 		}
5291 		ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
5292 		i++;
5293 	}
5294 
5295 	table->dev_uc_count = i;
5296 }
5297 
5298 static void efx_ef10_filter_mc_addr_list(struct efx_nic *efx)
5299 {
5300 	struct efx_ef10_filter_table *table = efx->filter_state;
5301 	struct net_device *net_dev = efx->net_dev;
5302 	struct netdev_hw_addr *mc;
5303 	unsigned int i;
5304 
5305 	table->mc_overflow = false;
5306 	table->mc_promisc = !!(net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI));
5307 
5308 	i = 0;
5309 	netdev_for_each_mc_addr(mc, net_dev) {
5310 		if (i >= EFX_EF10_FILTER_DEV_MC_MAX) {
5311 			table->mc_promisc = true;
5312 			table->mc_overflow = true;
5313 			break;
5314 		}
5315 		ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
5316 		i++;
5317 	}
5318 
5319 	table->dev_mc_count = i;
5320 }
5321 
5322 static int efx_ef10_filter_insert_addr_list(struct efx_nic *efx,
5323 					    struct efx_ef10_filter_vlan *vlan,
5324 					    bool multicast, bool rollback)
5325 {
5326 	struct efx_ef10_filter_table *table = efx->filter_state;
5327 	struct efx_ef10_dev_addr *addr_list;
5328 	enum efx_filter_flags filter_flags;
5329 	struct efx_filter_spec spec;
5330 	u8 baddr[ETH_ALEN];
5331 	unsigned int i, j;
5332 	int addr_count;
5333 	u16 *ids;
5334 	int rc;
5335 
5336 	if (multicast) {
5337 		addr_list = table->dev_mc_list;
5338 		addr_count = table->dev_mc_count;
5339 		ids = vlan->mc;
5340 	} else {
5341 		addr_list = table->dev_uc_list;
5342 		addr_count = table->dev_uc_count;
5343 		ids = vlan->uc;
5344 	}
5345 
5346 	filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
5347 
5348 	/* Insert/renew filters */
5349 	for (i = 0; i < addr_count; i++) {
5350 		EFX_WARN_ON_PARANOID(ids[i] != EFX_EF10_FILTER_ID_INVALID);
5351 		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5352 		efx_filter_set_eth_local(&spec, vlan->vid, addr_list[i].addr);
5353 		rc = efx_ef10_filter_insert(efx, &spec, true);
5354 		if (rc < 0) {
5355 			if (rollback) {
5356 				netif_info(efx, drv, efx->net_dev,
5357 					   "efx_ef10_filter_insert failed rc=%d\n",
5358 					   rc);
5359 				/* Fall back to promiscuous */
5360 				for (j = 0; j < i; j++) {
5361 					efx_ef10_filter_remove_unsafe(
5362 						efx, EFX_FILTER_PRI_AUTO,
5363 						ids[j]);
5364 					ids[j] = EFX_EF10_FILTER_ID_INVALID;
5365 				}
5366 				return rc;
5367 			} else {
5368 				/* keep invalid ID, and carry on */
5369 			}
5370 		} else {
5371 			ids[i] = efx_ef10_filter_get_unsafe_id(rc);
5372 		}
5373 	}
5374 
5375 	if (multicast && rollback) {
5376 		/* Also need an Ethernet broadcast filter */
5377 		EFX_WARN_ON_PARANOID(vlan->default_filters[EFX_EF10_BCAST] !=
5378 				     EFX_EF10_FILTER_ID_INVALID);
5379 		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5380 		eth_broadcast_addr(baddr);
5381 		efx_filter_set_eth_local(&spec, vlan->vid, baddr);
5382 		rc = efx_ef10_filter_insert(efx, &spec, true);
5383 		if (rc < 0) {
5384 			netif_warn(efx, drv, efx->net_dev,
5385 				   "Broadcast filter insert failed rc=%d\n", rc);
5386 			/* Fall back to promiscuous */
5387 			for (j = 0; j < i; j++) {
5388 				efx_ef10_filter_remove_unsafe(
5389 					efx, EFX_FILTER_PRI_AUTO,
5390 					ids[j]);
5391 				ids[j] = EFX_EF10_FILTER_ID_INVALID;
5392 			}
5393 			return rc;
5394 		} else {
5395 			vlan->default_filters[EFX_EF10_BCAST] =
5396 				efx_ef10_filter_get_unsafe_id(rc);
5397 		}
5398 	}
5399 
5400 	return 0;
5401 }
5402 
5403 static int efx_ef10_filter_insert_def(struct efx_nic *efx,
5404 				      struct efx_ef10_filter_vlan *vlan,
5405 				      enum efx_encap_type encap_type,
5406 				      bool multicast, bool rollback)
5407 {
5408 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
5409 	enum efx_filter_flags filter_flags;
5410 	struct efx_filter_spec spec;
5411 	u8 baddr[ETH_ALEN];
5412 	int rc;
5413 	u16 *id;
5414 
5415 	filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
5416 
5417 	efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5418 
5419 	if (multicast)
5420 		efx_filter_set_mc_def(&spec);
5421 	else
5422 		efx_filter_set_uc_def(&spec);
5423 
5424 	if (encap_type) {
5425 		if (nic_data->datapath_caps &
5426 		    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
5427 			efx_filter_set_encap_type(&spec, encap_type);
5428 		else
5429 			/* don't insert encap filters on non-supporting
5430 			 * platforms. ID will be left as INVALID.
5431 			 */
5432 			return 0;
5433 	}
5434 
5435 	if (vlan->vid != EFX_FILTER_VID_UNSPEC)
5436 		efx_filter_set_eth_local(&spec, vlan->vid, NULL);
5437 
5438 	rc = efx_ef10_filter_insert(efx, &spec, true);
5439 	if (rc < 0) {
5440 		const char *um = multicast ? "Multicast" : "Unicast";
5441 		const char *encap_name = "";
5442 		const char *encap_ipv = "";
5443 
5444 		if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5445 		    EFX_ENCAP_TYPE_VXLAN)
5446 			encap_name = "VXLAN ";
5447 		else if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5448 			 EFX_ENCAP_TYPE_NVGRE)
5449 			encap_name = "NVGRE ";
5450 		else if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5451 			 EFX_ENCAP_TYPE_GENEVE)
5452 			encap_name = "GENEVE ";
5453 		if (encap_type & EFX_ENCAP_FLAG_IPV6)
5454 			encap_ipv = "IPv6 ";
5455 		else if (encap_type)
5456 			encap_ipv = "IPv4 ";
5457 
5458 		/* unprivileged functions can't insert mismatch filters
5459 		 * for encapsulated or unicast traffic, so downgrade
5460 		 * those warnings to debug.
5461 		 */
5462 		netif_cond_dbg(efx, drv, efx->net_dev,
5463 			       rc == -EPERM && (encap_type || !multicast), warn,
5464 			       "%s%s%s mismatch filter insert failed rc=%d\n",
5465 			       encap_name, encap_ipv, um, rc);
5466 	} else if (multicast) {
5467 		/* mapping from encap types to default filter IDs (multicast) */
5468 		static enum efx_ef10_default_filters map[] = {
5469 			[EFX_ENCAP_TYPE_NONE] = EFX_EF10_MCDEF,
5470 			[EFX_ENCAP_TYPE_VXLAN] = EFX_EF10_VXLAN4_MCDEF,
5471 			[EFX_ENCAP_TYPE_NVGRE] = EFX_EF10_NVGRE4_MCDEF,
5472 			[EFX_ENCAP_TYPE_GENEVE] = EFX_EF10_GENEVE4_MCDEF,
5473 			[EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6] =
5474 				EFX_EF10_VXLAN6_MCDEF,
5475 			[EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6] =
5476 				EFX_EF10_NVGRE6_MCDEF,
5477 			[EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6] =
5478 				EFX_EF10_GENEVE6_MCDEF,
5479 		};
5480 
5481 		/* quick bounds check (BCAST result impossible) */
5482 		BUILD_BUG_ON(EFX_EF10_BCAST != 0);
5483 		if (encap_type >= ARRAY_SIZE(map) || map[encap_type] == 0) {
5484 			WARN_ON(1);
5485 			return -EINVAL;
5486 		}
5487 		/* then follow map */
5488 		id = &vlan->default_filters[map[encap_type]];
5489 
5490 		EFX_WARN_ON_PARANOID(*id != EFX_EF10_FILTER_ID_INVALID);
5491 		*id = efx_ef10_filter_get_unsafe_id(rc);
5492 		if (!nic_data->workaround_26807 && !encap_type) {
5493 			/* Also need an Ethernet broadcast filter */
5494 			efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
5495 					   filter_flags, 0);
5496 			eth_broadcast_addr(baddr);
5497 			efx_filter_set_eth_local(&spec, vlan->vid, baddr);
5498 			rc = efx_ef10_filter_insert(efx, &spec, true);
5499 			if (rc < 0) {
5500 				netif_warn(efx, drv, efx->net_dev,
5501 					   "Broadcast filter insert failed rc=%d\n",
5502 					   rc);
5503 				if (rollback) {
5504 					/* Roll back the mc_def filter */
5505 					efx_ef10_filter_remove_unsafe(
5506 							efx, EFX_FILTER_PRI_AUTO,
5507 							*id);
5508 					*id = EFX_EF10_FILTER_ID_INVALID;
5509 					return rc;
5510 				}
5511 			} else {
5512 				EFX_WARN_ON_PARANOID(
5513 					vlan->default_filters[EFX_EF10_BCAST] !=
5514 					EFX_EF10_FILTER_ID_INVALID);
5515 				vlan->default_filters[EFX_EF10_BCAST] =
5516 					efx_ef10_filter_get_unsafe_id(rc);
5517 			}
5518 		}
5519 		rc = 0;
5520 	} else {
5521 		/* mapping from encap types to default filter IDs (unicast) */
5522 		static enum efx_ef10_default_filters map[] = {
5523 			[EFX_ENCAP_TYPE_NONE] = EFX_EF10_UCDEF,
5524 			[EFX_ENCAP_TYPE_VXLAN] = EFX_EF10_VXLAN4_UCDEF,
5525 			[EFX_ENCAP_TYPE_NVGRE] = EFX_EF10_NVGRE4_UCDEF,
5526 			[EFX_ENCAP_TYPE_GENEVE] = EFX_EF10_GENEVE4_UCDEF,
5527 			[EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6] =
5528 				EFX_EF10_VXLAN6_UCDEF,
5529 			[EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6] =
5530 				EFX_EF10_NVGRE6_UCDEF,
5531 			[EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6] =
5532 				EFX_EF10_GENEVE6_UCDEF,
5533 		};
5534 
5535 		/* quick bounds check (BCAST result impossible) */
5536 		BUILD_BUG_ON(EFX_EF10_BCAST != 0);
5537 		if (encap_type >= ARRAY_SIZE(map) || map[encap_type] == 0) {
5538 			WARN_ON(1);
5539 			return -EINVAL;
5540 		}
5541 		/* then follow map */
5542 		id = &vlan->default_filters[map[encap_type]];
5543 		EFX_WARN_ON_PARANOID(*id != EFX_EF10_FILTER_ID_INVALID);
5544 		*id = rc;
5545 		rc = 0;
5546 	}
5547 	return rc;
5548 }
5549 
5550 /* Remove filters that weren't renewed.  Since nothing else changes the AUTO_OLD
5551  * flag or removes these filters, we don't need to hold the filter_lock while
5552  * scanning for these filters.
5553  */
5554 static void efx_ef10_filter_remove_old(struct efx_nic *efx)
5555 {
5556 	struct efx_ef10_filter_table *table = efx->filter_state;
5557 	int remove_failed = 0;
5558 	int remove_noent = 0;
5559 	int rc;
5560 	int i;
5561 
5562 	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
5563 		if (READ_ONCE(table->entry[i].spec) &
5564 		    EFX_EF10_FILTER_FLAG_AUTO_OLD) {
5565 			rc = efx_ef10_filter_remove_internal(efx,
5566 					1U << EFX_FILTER_PRI_AUTO, i, true);
5567 			if (rc == -ENOENT)
5568 				remove_noent++;
5569 			else if (rc)
5570 				remove_failed++;
5571 		}
5572 	}
5573 
5574 	if (remove_failed)
5575 		netif_info(efx, drv, efx->net_dev,
5576 			   "%s: failed to remove %d filters\n",
5577 			   __func__, remove_failed);
5578 	if (remove_noent)
5579 		netif_info(efx, drv, efx->net_dev,
5580 			   "%s: failed to remove %d non-existent filters\n",
5581 			   __func__, remove_noent);
5582 }
5583 
5584 static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
5585 {
5586 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
5587 	u8 mac_old[ETH_ALEN];
5588 	int rc, rc2;
5589 
5590 	/* Only reconfigure a PF-created vport */
5591 	if (is_zero_ether_addr(nic_data->vport_mac))
5592 		return 0;
5593 
5594 	efx_device_detach_sync(efx);
5595 	efx_net_stop(efx->net_dev);
5596 	down_write(&efx->filter_sem);
5597 	efx_ef10_filter_table_remove(efx);
5598 	up_write(&efx->filter_sem);
5599 
5600 	rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
5601 	if (rc)
5602 		goto restore_filters;
5603 
5604 	ether_addr_copy(mac_old, nic_data->vport_mac);
5605 	rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
5606 				    nic_data->vport_mac);
5607 	if (rc)
5608 		goto restore_vadaptor;
5609 
5610 	rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
5611 				    efx->net_dev->dev_addr);
5612 	if (!rc) {
5613 		ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
5614 	} else {
5615 		rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
5616 		if (rc2) {
5617 			/* Failed to add original MAC, so clear vport_mac */
5618 			eth_zero_addr(nic_data->vport_mac);
5619 			goto reset_nic;
5620 		}
5621 	}
5622 
5623 restore_vadaptor:
5624 	rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
5625 	if (rc2)
5626 		goto reset_nic;
5627 restore_filters:
5628 	down_write(&efx->filter_sem);
5629 	rc2 = efx_ef10_filter_table_probe(efx);
5630 	up_write(&efx->filter_sem);
5631 	if (rc2)
5632 		goto reset_nic;
5633 
5634 	rc2 = efx_net_open(efx->net_dev);
5635 	if (rc2)
5636 		goto reset_nic;
5637 
5638 	efx_device_attach_if_not_resetting(efx);
5639 
5640 	return rc;
5641 
5642 reset_nic:
5643 	netif_err(efx, drv, efx->net_dev,
5644 		  "Failed to restore when changing MAC address - scheduling reset\n");
5645 	efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
5646 
5647 	return rc ? rc : rc2;
5648 }
5649 
5650 /* Caller must hold efx->filter_sem for read if race against
5651  * efx_ef10_filter_table_remove() is possible
5652  */
5653 static void efx_ef10_filter_vlan_sync_rx_mode(struct efx_nic *efx,
5654 					      struct efx_ef10_filter_vlan *vlan)
5655 {
5656 	struct efx_ef10_filter_table *table = efx->filter_state;
5657 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
5658 
5659 	/* Do not install unspecified VID if VLAN filtering is enabled.
5660 	 * Do not install all specified VIDs if VLAN filtering is disabled.
5661 	 */
5662 	if ((vlan->vid == EFX_FILTER_VID_UNSPEC) == table->vlan_filter)
5663 		return;
5664 
5665 	/* Insert/renew unicast filters */
5666 	if (table->uc_promisc) {
5667 		efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NONE,
5668 					   false, false);
5669 		efx_ef10_filter_insert_addr_list(efx, vlan, false, false);
5670 	} else {
5671 		/* If any of the filters failed to insert, fall back to
5672 		 * promiscuous mode - add in the uc_def filter.  But keep
5673 		 * our individual unicast filters.
5674 		 */
5675 		if (efx_ef10_filter_insert_addr_list(efx, vlan, false, false))
5676 			efx_ef10_filter_insert_def(efx, vlan,
5677 						   EFX_ENCAP_TYPE_NONE,
5678 						   false, false);
5679 	}
5680 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN,
5681 				   false, false);
5682 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN |
5683 					      EFX_ENCAP_FLAG_IPV6,
5684 				   false, false);
5685 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE,
5686 				   false, false);
5687 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE |
5688 					      EFX_ENCAP_FLAG_IPV6,
5689 				   false, false);
5690 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE,
5691 				   false, false);
5692 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE |
5693 					      EFX_ENCAP_FLAG_IPV6,
5694 				   false, false);
5695 
5696 	/* Insert/renew multicast filters */
5697 	/* If changing promiscuous state with cascaded multicast filters, remove
5698 	 * old filters first, so that packets are dropped rather than duplicated
5699 	 */
5700 	if (nic_data->workaround_26807 &&
5701 	    table->mc_promisc_last != table->mc_promisc)
5702 		efx_ef10_filter_remove_old(efx);
5703 	if (table->mc_promisc) {
5704 		if (nic_data->workaround_26807) {
5705 			/* If we failed to insert promiscuous filters, rollback
5706 			 * and fall back to individual multicast filters
5707 			 */
5708 			if (efx_ef10_filter_insert_def(efx, vlan,
5709 						       EFX_ENCAP_TYPE_NONE,
5710 						       true, true)) {
5711 				/* Changing promisc state, so remove old filters */
5712 				efx_ef10_filter_remove_old(efx);
5713 				efx_ef10_filter_insert_addr_list(efx, vlan,
5714 								 true, false);
5715 			}
5716 		} else {
5717 			/* If we failed to insert promiscuous filters, don't
5718 			 * rollback.  Regardless, also insert the mc_list,
5719 			 * unless it's incomplete due to overflow
5720 			 */
5721 			efx_ef10_filter_insert_def(efx, vlan,
5722 						   EFX_ENCAP_TYPE_NONE,
5723 						   true, false);
5724 			if (!table->mc_overflow)
5725 				efx_ef10_filter_insert_addr_list(efx, vlan,
5726 								 true, false);
5727 		}
5728 	} else {
5729 		/* If any filters failed to insert, rollback and fall back to
5730 		 * promiscuous mode - mc_def filter and maybe broadcast.  If
5731 		 * that fails, roll back again and insert as many of our
5732 		 * individual multicast filters as we can.
5733 		 */
5734 		if (efx_ef10_filter_insert_addr_list(efx, vlan, true, true)) {
5735 			/* Changing promisc state, so remove old filters */
5736 			if (nic_data->workaround_26807)
5737 				efx_ef10_filter_remove_old(efx);
5738 			if (efx_ef10_filter_insert_def(efx, vlan,
5739 						       EFX_ENCAP_TYPE_NONE,
5740 						       true, true))
5741 				efx_ef10_filter_insert_addr_list(efx, vlan,
5742 								 true, false);
5743 		}
5744 	}
5745 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN,
5746 				   true, false);
5747 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN |
5748 					      EFX_ENCAP_FLAG_IPV6,
5749 				   true, false);
5750 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE,
5751 				   true, false);
5752 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE |
5753 					      EFX_ENCAP_FLAG_IPV6,
5754 				   true, false);
5755 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE,
5756 				   true, false);
5757 	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE |
5758 					      EFX_ENCAP_FLAG_IPV6,
5759 				   true, false);
5760 }
5761 
5762 /* Caller must hold efx->filter_sem for read if race against
5763  * efx_ef10_filter_table_remove() is possible
5764  */
5765 static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
5766 {
5767 	struct efx_ef10_filter_table *table = efx->filter_state;
5768 	struct net_device *net_dev = efx->net_dev;
5769 	struct efx_ef10_filter_vlan *vlan;
5770 	bool vlan_filter;
5771 
5772 	if (!efx_dev_registered(efx))
5773 		return;
5774 
5775 	if (!table)
5776 		return;
5777 
5778 	efx_ef10_filter_mark_old(efx);
5779 
5780 	/* Copy/convert the address lists; add the primary station
5781 	 * address and broadcast address
5782 	 */
5783 	netif_addr_lock_bh(net_dev);
5784 	efx_ef10_filter_uc_addr_list(efx);
5785 	efx_ef10_filter_mc_addr_list(efx);
5786 	netif_addr_unlock_bh(net_dev);
5787 
5788 	/* If VLAN filtering changes, all old filters are finally removed.
5789 	 * Do it in advance to avoid conflicts for unicast untagged and
5790 	 * VLAN 0 tagged filters.
5791 	 */
5792 	vlan_filter = !!(net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
5793 	if (table->vlan_filter != vlan_filter) {
5794 		table->vlan_filter = vlan_filter;
5795 		efx_ef10_filter_remove_old(efx);
5796 	}
5797 
5798 	list_for_each_entry(vlan, &table->vlan_list, list)
5799 		efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
5800 
5801 	efx_ef10_filter_remove_old(efx);
5802 	table->mc_promisc_last = table->mc_promisc;
5803 }
5804 
5805 static struct efx_ef10_filter_vlan *efx_ef10_filter_find_vlan(struct efx_nic *efx, u16 vid)
5806 {
5807 	struct efx_ef10_filter_table *table = efx->filter_state;
5808 	struct efx_ef10_filter_vlan *vlan;
5809 
5810 	WARN_ON(!rwsem_is_locked(&efx->filter_sem));
5811 
5812 	list_for_each_entry(vlan, &table->vlan_list, list) {
5813 		if (vlan->vid == vid)
5814 			return vlan;
5815 	}
5816 
5817 	return NULL;
5818 }
5819 
5820 static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid)
5821 {
5822 	struct efx_ef10_filter_table *table = efx->filter_state;
5823 	struct efx_ef10_filter_vlan *vlan;
5824 	unsigned int i;
5825 
5826 	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5827 		return -EINVAL;
5828 
5829 	vlan = efx_ef10_filter_find_vlan(efx, vid);
5830 	if (WARN_ON(vlan)) {
5831 		netif_err(efx, drv, efx->net_dev,
5832 			  "VLAN %u already added\n", vid);
5833 		return -EALREADY;
5834 	}
5835 
5836 	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
5837 	if (!vlan)
5838 		return -ENOMEM;
5839 
5840 	vlan->vid = vid;
5841 
5842 	for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
5843 		vlan->uc[i] = EFX_EF10_FILTER_ID_INVALID;
5844 	for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
5845 		vlan->mc[i] = EFX_EF10_FILTER_ID_INVALID;
5846 	for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5847 		vlan->default_filters[i] = EFX_EF10_FILTER_ID_INVALID;
5848 
5849 	list_add_tail(&vlan->list, &table->vlan_list);
5850 
5851 	if (efx_dev_registered(efx))
5852 		efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
5853 
5854 	return 0;
5855 }
5856 
5857 static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
5858 					      struct efx_ef10_filter_vlan *vlan)
5859 {
5860 	unsigned int i;
5861 
5862 	/* See comment in efx_ef10_filter_table_remove() */
5863 	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5864 		return;
5865 
5866 	list_del(&vlan->list);
5867 
5868 	for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
5869 		efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5870 					      vlan->uc[i]);
5871 	for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
5872 		efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5873 					      vlan->mc[i]);
5874 	for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5875 		if (vlan->default_filters[i] != EFX_EF10_FILTER_ID_INVALID)
5876 			efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5877 						      vlan->default_filters[i]);
5878 
5879 	kfree(vlan);
5880 }
5881 
5882 static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid)
5883 {
5884 	struct efx_ef10_filter_vlan *vlan;
5885 
5886 	/* See comment in efx_ef10_filter_table_remove() */
5887 	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5888 		return;
5889 
5890 	vlan = efx_ef10_filter_find_vlan(efx, vid);
5891 	if (!vlan) {
5892 		netif_err(efx, drv, efx->net_dev,
5893 			  "VLAN %u not found in filter state\n", vid);
5894 		return;
5895 	}
5896 
5897 	efx_ef10_filter_del_vlan_internal(efx, vlan);
5898 }
5899 
5900 static int efx_ef10_set_mac_address(struct efx_nic *efx)
5901 {
5902 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
5903 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
5904 	bool was_enabled = efx->port_enabled;
5905 	int rc;
5906 
5907 	efx_device_detach_sync(efx);
5908 	efx_net_stop(efx->net_dev);
5909 
5910 	mutex_lock(&efx->mac_lock);
5911 	down_write(&efx->filter_sem);
5912 	efx_ef10_filter_table_remove(efx);
5913 
5914 	ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
5915 			efx->net_dev->dev_addr);
5916 	MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
5917 		       nic_data->vport_id);
5918 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
5919 				sizeof(inbuf), NULL, 0, NULL);
5920 
5921 	efx_ef10_filter_table_probe(efx);
5922 	up_write(&efx->filter_sem);
5923 	mutex_unlock(&efx->mac_lock);
5924 
5925 	if (was_enabled)
5926 		efx_net_open(efx->net_dev);
5927 	efx_device_attach_if_not_resetting(efx);
5928 
5929 #ifdef CONFIG_SFC_SRIOV
5930 	if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
5931 		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
5932 
5933 		if (rc == -EPERM) {
5934 			struct efx_nic *efx_pf;
5935 
5936 			/* Switch to PF and change MAC address on vport */
5937 			efx_pf = pci_get_drvdata(pci_dev_pf);
5938 
5939 			rc = efx_ef10_sriov_set_vf_mac(efx_pf,
5940 						       nic_data->vf_index,
5941 						       efx->net_dev->dev_addr);
5942 		} else if (!rc) {
5943 			struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
5944 			struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
5945 			unsigned int i;
5946 
5947 			/* MAC address successfully changed by VF (with MAC
5948 			 * spoofing) so update the parent PF if possible.
5949 			 */
5950 			for (i = 0; i < efx_pf->vf_count; ++i) {
5951 				struct ef10_vf *vf = nic_data->vf + i;
5952 
5953 				if (vf->efx == efx) {
5954 					ether_addr_copy(vf->mac,
5955 							efx->net_dev->dev_addr);
5956 					return 0;
5957 				}
5958 			}
5959 		}
5960 	} else
5961 #endif
5962 	if (rc == -EPERM) {
5963 		netif_err(efx, drv, efx->net_dev,
5964 			  "Cannot change MAC address; use sfboot to enable"
5965 			  " mac-spoofing on this interface\n");
5966 	} else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
5967 		/* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
5968 		 * fall-back to the method of changing the MAC address on the
5969 		 * vport.  This only applies to PFs because such versions of
5970 		 * MCFW do not support VFs.
5971 		 */
5972 		rc = efx_ef10_vport_set_mac_address(efx);
5973 	} else if (rc) {
5974 		efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
5975 				       sizeof(inbuf), NULL, 0, rc);
5976 	}
5977 
5978 	return rc;
5979 }
5980 
5981 static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
5982 {
5983 	efx_ef10_filter_sync_rx_mode(efx);
5984 
5985 	return efx_mcdi_set_mac(efx);
5986 }
5987 
5988 static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
5989 {
5990 	efx_ef10_filter_sync_rx_mode(efx);
5991 
5992 	return 0;
5993 }
5994 
5995 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
5996 {
5997 	MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
5998 
5999 	MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
6000 	return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
6001 			    NULL, 0, NULL);
6002 }
6003 
6004 /* MC BISTs follow a different poll mechanism to phy BISTs.
6005  * The BIST is done in the poll handler on the MC, and the MCDI command
6006  * will block until the BIST is done.
6007  */
6008 static int efx_ef10_poll_bist(struct efx_nic *efx)
6009 {
6010 	int rc;
6011 	MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
6012 	size_t outlen;
6013 	u32 result;
6014 
6015 	rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
6016 			   outbuf, sizeof(outbuf), &outlen);
6017 	if (rc != 0)
6018 		return rc;
6019 
6020 	if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
6021 		return -EIO;
6022 
6023 	result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
6024 	switch (result) {
6025 	case MC_CMD_POLL_BIST_PASSED:
6026 		netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
6027 		return 0;
6028 	case MC_CMD_POLL_BIST_TIMEOUT:
6029 		netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
6030 		return -EIO;
6031 	case MC_CMD_POLL_BIST_FAILED:
6032 		netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
6033 		return -EIO;
6034 	default:
6035 		netif_err(efx, hw, efx->net_dev,
6036 			  "BIST returned unknown result %u", result);
6037 		return -EIO;
6038 	}
6039 }
6040 
6041 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
6042 {
6043 	int rc;
6044 
6045 	netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
6046 
6047 	rc = efx_ef10_start_bist(efx, bist_type);
6048 	if (rc != 0)
6049 		return rc;
6050 
6051 	return efx_ef10_poll_bist(efx);
6052 }
6053 
6054 static int
6055 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
6056 {
6057 	int rc, rc2;
6058 
6059 	efx_reset_down(efx, RESET_TYPE_WORLD);
6060 
6061 	rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
6062 			  NULL, 0, NULL, 0, NULL);
6063 	if (rc != 0)
6064 		goto out;
6065 
6066 	tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
6067 	tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
6068 
6069 	rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
6070 
6071 out:
6072 	if (rc == -EPERM)
6073 		rc = 0;
6074 	rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
6075 	return rc ? rc : rc2;
6076 }
6077 
6078 #ifdef CONFIG_SFC_MTD
6079 
6080 struct efx_ef10_nvram_type_info {
6081 	u16 type, type_mask;
6082 	u8 port;
6083 	const char *name;
6084 };
6085 
6086 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
6087 	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE,	   0,    0, "sfc_mcfw" },
6088 	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
6089 	{ NVRAM_PARTITION_TYPE_EXPANSION_ROM,	   0,    0, "sfc_exp_rom" },
6090 	{ NVRAM_PARTITION_TYPE_STATIC_CONFIG,	   0,    0, "sfc_static_cfg" },
6091 	{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,	   0,    0, "sfc_dynamic_cfg" },
6092 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
6093 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
6094 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
6095 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
6096 	{ NVRAM_PARTITION_TYPE_LICENSE,		   0,    0, "sfc_license" },
6097 	{ NVRAM_PARTITION_TYPE_PHY_MIN,		   0xff, 0, "sfc_phy_fw" },
6098 };
6099 
6100 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
6101 					struct efx_mcdi_mtd_partition *part,
6102 					unsigned int type)
6103 {
6104 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
6105 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
6106 	const struct efx_ef10_nvram_type_info *info;
6107 	size_t size, erase_size, outlen;
6108 	bool protected;
6109 	int rc;
6110 
6111 	for (info = efx_ef10_nvram_types; ; info++) {
6112 		if (info ==
6113 		    efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
6114 			return -ENODEV;
6115 		if ((type & ~info->type_mask) == info->type)
6116 			break;
6117 	}
6118 	if (info->port != efx_port_num(efx))
6119 		return -ENODEV;
6120 
6121 	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
6122 	if (rc)
6123 		return rc;
6124 	if (protected)
6125 		return -ENODEV; /* hide it */
6126 
6127 	part->nvram_type = type;
6128 
6129 	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
6130 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
6131 			  outbuf, sizeof(outbuf), &outlen);
6132 	if (rc)
6133 		return rc;
6134 	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
6135 		return -EIO;
6136 	if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
6137 	    (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
6138 		part->fw_subtype = MCDI_DWORD(outbuf,
6139 					      NVRAM_METADATA_OUT_SUBTYPE);
6140 
6141 	part->common.dev_type_name = "EF10 NVRAM manager";
6142 	part->common.type_name = info->name;
6143 
6144 	part->common.mtd.type = MTD_NORFLASH;
6145 	part->common.mtd.flags = MTD_CAP_NORFLASH;
6146 	part->common.mtd.size = size;
6147 	part->common.mtd.erasesize = erase_size;
6148 
6149 	return 0;
6150 }
6151 
6152 static int efx_ef10_mtd_probe(struct efx_nic *efx)
6153 {
6154 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
6155 	struct efx_mcdi_mtd_partition *parts;
6156 	size_t outlen, n_parts_total, i, n_parts;
6157 	unsigned int type;
6158 	int rc;
6159 
6160 	ASSERT_RTNL();
6161 
6162 	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
6163 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
6164 			  outbuf, sizeof(outbuf), &outlen);
6165 	if (rc)
6166 		return rc;
6167 	if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
6168 		return -EIO;
6169 
6170 	n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
6171 	if (n_parts_total >
6172 	    MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
6173 		return -EIO;
6174 
6175 	parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
6176 	if (!parts)
6177 		return -ENOMEM;
6178 
6179 	n_parts = 0;
6180 	for (i = 0; i < n_parts_total; i++) {
6181 		type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
6182 					i);
6183 		rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
6184 		if (rc == 0)
6185 			n_parts++;
6186 		else if (rc != -ENODEV)
6187 			goto fail;
6188 	}
6189 
6190 	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
6191 fail:
6192 	if (rc)
6193 		kfree(parts);
6194 	return rc;
6195 }
6196 
6197 #endif /* CONFIG_SFC_MTD */
6198 
6199 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
6200 {
6201 	_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
6202 }
6203 
6204 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
6205 					    u32 host_time) {}
6206 
6207 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
6208 					   bool temp)
6209 {
6210 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
6211 	int rc;
6212 
6213 	if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
6214 	    channel->sync_events_state == SYNC_EVENTS_VALID ||
6215 	    (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
6216 		return 0;
6217 	channel->sync_events_state = SYNC_EVENTS_REQUESTED;
6218 
6219 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
6220 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
6221 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
6222 		       channel->channel);
6223 
6224 	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
6225 			  inbuf, sizeof(inbuf), NULL, 0, NULL);
6226 
6227 	if (rc != 0)
6228 		channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
6229 						    SYNC_EVENTS_DISABLED;
6230 
6231 	return rc;
6232 }
6233 
6234 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
6235 					    bool temp)
6236 {
6237 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
6238 	int rc;
6239 
6240 	if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
6241 	    (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
6242 		return 0;
6243 	if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
6244 		channel->sync_events_state = SYNC_EVENTS_DISABLED;
6245 		return 0;
6246 	}
6247 	channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
6248 					    SYNC_EVENTS_DISABLED;
6249 
6250 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
6251 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
6252 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
6253 		       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
6254 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
6255 		       channel->channel);
6256 
6257 	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
6258 			  inbuf, sizeof(inbuf), NULL, 0, NULL);
6259 
6260 	return rc;
6261 }
6262 
6263 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
6264 					   bool temp)
6265 {
6266 	int (*set)(struct efx_channel *channel, bool temp);
6267 	struct efx_channel *channel;
6268 
6269 	set = en ?
6270 	      efx_ef10_rx_enable_timestamping :
6271 	      efx_ef10_rx_disable_timestamping;
6272 
6273 	channel = efx_ptp_channel(efx);
6274 	if (channel) {
6275 		int rc = set(channel, temp);
6276 		if (en && rc != 0) {
6277 			efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
6278 			return rc;
6279 		}
6280 	}
6281 
6282 	return 0;
6283 }
6284 
6285 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
6286 					 struct hwtstamp_config *init)
6287 {
6288 	return -EOPNOTSUPP;
6289 }
6290 
6291 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
6292 				      struct hwtstamp_config *init)
6293 {
6294 	int rc;
6295 
6296 	switch (init->rx_filter) {
6297 	case HWTSTAMP_FILTER_NONE:
6298 		efx_ef10_ptp_set_ts_sync_events(efx, false, false);
6299 		/* if TX timestamping is still requested then leave PTP on */
6300 		return efx_ptp_change_mode(efx,
6301 					   init->tx_type != HWTSTAMP_TX_OFF, 0);
6302 	case HWTSTAMP_FILTER_ALL:
6303 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6304 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
6305 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
6306 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6307 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6308 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6309 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6310 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6311 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6312 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
6313 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6314 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6315 	case HWTSTAMP_FILTER_NTP_ALL:
6316 		init->rx_filter = HWTSTAMP_FILTER_ALL;
6317 		rc = efx_ptp_change_mode(efx, true, 0);
6318 		if (!rc)
6319 			rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
6320 		if (rc)
6321 			efx_ptp_change_mode(efx, false, 0);
6322 		return rc;
6323 	default:
6324 		return -ERANGE;
6325 	}
6326 }
6327 
6328 static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
6329 				     struct netdev_phys_item_id *ppid)
6330 {
6331 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6332 
6333 	if (!is_valid_ether_addr(nic_data->port_id))
6334 		return -EOPNOTSUPP;
6335 
6336 	ppid->id_len = ETH_ALEN;
6337 	memcpy(ppid->id, nic_data->port_id, ppid->id_len);
6338 
6339 	return 0;
6340 }
6341 
6342 static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
6343 {
6344 	if (proto != htons(ETH_P_8021Q))
6345 		return -EINVAL;
6346 
6347 	return efx_ef10_add_vlan(efx, vid);
6348 }
6349 
6350 static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
6351 {
6352 	if (proto != htons(ETH_P_8021Q))
6353 		return -EINVAL;
6354 
6355 	return efx_ef10_del_vlan(efx, vid);
6356 }
6357 
6358 /* We rely on the MCDI wiping out our TX rings if it made any changes to the
6359  * ports table, ensuring that any TSO descriptors that were made on a now-
6360  * removed tunnel port will be blown away and won't break things when we try
6361  * to transmit them using the new ports table.
6362  */
6363 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
6364 {
6365 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6366 	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
6367 	MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
6368 	bool will_reset = false;
6369 	size_t num_entries = 0;
6370 	size_t inlen, outlen;
6371 	size_t i;
6372 	int rc;
6373 	efx_dword_t flags_and_num_entries;
6374 
6375 	WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
6376 
6377 	nic_data->udp_tunnels_dirty = false;
6378 
6379 	if (!(nic_data->datapath_caps &
6380 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
6381 		efx_device_attach_if_not_resetting(efx);
6382 		return 0;
6383 	}
6384 
6385 	BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
6386 		     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
6387 
6388 	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
6389 		if (nic_data->udp_tunnels[i].count &&
6390 		    nic_data->udp_tunnels[i].port) {
6391 			efx_dword_t entry;
6392 
6393 			EFX_POPULATE_DWORD_2(entry,
6394 				TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
6395 					ntohs(nic_data->udp_tunnels[i].port),
6396 				TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
6397 					nic_data->udp_tunnels[i].type);
6398 			*_MCDI_ARRAY_DWORD(inbuf,
6399 				SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
6400 				num_entries++) = entry;
6401 		}
6402 	}
6403 
6404 	BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
6405 		      MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
6406 		     EFX_WORD_1_LBN);
6407 	BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
6408 		     EFX_WORD_1_WIDTH);
6409 	EFX_POPULATE_DWORD_2(flags_and_num_entries,
6410 			     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
6411 				!!unloading,
6412 			     EFX_WORD_1, num_entries);
6413 	*_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
6414 		flags_and_num_entries;
6415 
6416 	inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
6417 
6418 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
6419 				inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
6420 	if (rc == -EIO) {
6421 		/* Most likely the MC rebooted due to another function also
6422 		 * setting its tunnel port list. Mark the tunnel port list as
6423 		 * dirty, so it will be pushed upon coming up from the reboot.
6424 		 */
6425 		nic_data->udp_tunnels_dirty = true;
6426 		return 0;
6427 	}
6428 
6429 	if (rc) {
6430 		/* expected not available on unprivileged functions */
6431 		if (rc != -EPERM)
6432 			netif_warn(efx, drv, efx->net_dev,
6433 				   "Unable to set UDP tunnel ports; rc=%d.\n", rc);
6434 	} else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
6435 		   (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
6436 		netif_info(efx, drv, efx->net_dev,
6437 			   "Rebooting MC due to UDP tunnel port list change\n");
6438 		will_reset = true;
6439 		if (unloading)
6440 			/* Delay for the MC reset to complete. This will make
6441 			 * unloading other functions a bit smoother. This is a
6442 			 * race, but the other unload will work whichever way
6443 			 * it goes, this just avoids an unnecessary error
6444 			 * message.
6445 			 */
6446 			msleep(100);
6447 	}
6448 	if (!will_reset && !unloading) {
6449 		/* The caller will have detached, relying on the MC reset to
6450 		 * trigger a re-attach.  Since there won't be an MC reset, we
6451 		 * have to do the attach ourselves.
6452 		 */
6453 		efx_device_attach_if_not_resetting(efx);
6454 	}
6455 
6456 	return rc;
6457 }
6458 
6459 static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
6460 {
6461 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6462 	int rc = 0;
6463 
6464 	mutex_lock(&nic_data->udp_tunnels_lock);
6465 	if (nic_data->udp_tunnels_dirty) {
6466 		/* Make sure all TX are stopped while we modify the table, else
6467 		 * we might race against an efx_features_check().
6468 		 */
6469 		efx_device_detach_sync(efx);
6470 		rc = efx_ef10_set_udp_tnl_ports(efx, false);
6471 	}
6472 	mutex_unlock(&nic_data->udp_tunnels_lock);
6473 	return rc;
6474 }
6475 
6476 static struct efx_udp_tunnel *__efx_ef10_udp_tnl_lookup_port(struct efx_nic *efx,
6477 							     __be16 port)
6478 {
6479 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6480 	size_t i;
6481 
6482 	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
6483 		if (!nic_data->udp_tunnels[i].count)
6484 			continue;
6485 		if (nic_data->udp_tunnels[i].port == port)
6486 			return &nic_data->udp_tunnels[i];
6487 	}
6488 	return NULL;
6489 }
6490 
6491 static int efx_ef10_udp_tnl_add_port(struct efx_nic *efx,
6492 				     struct efx_udp_tunnel tnl)
6493 {
6494 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6495 	struct efx_udp_tunnel *match;
6496 	char typebuf[8];
6497 	size_t i;
6498 	int rc;
6499 
6500 	if (!(nic_data->datapath_caps &
6501 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6502 		return 0;
6503 
6504 	efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
6505 	netif_dbg(efx, drv, efx->net_dev, "Adding UDP tunnel (%s) port %d\n",
6506 		  typebuf, ntohs(tnl.port));
6507 
6508 	mutex_lock(&nic_data->udp_tunnels_lock);
6509 	/* Make sure all TX are stopped while we add to the table, else we
6510 	 * might race against an efx_features_check().
6511 	 */
6512 	efx_device_detach_sync(efx);
6513 
6514 	match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
6515 	if (match != NULL) {
6516 		if (match->type == tnl.type) {
6517 			netif_dbg(efx, drv, efx->net_dev,
6518 				  "Referencing existing tunnel entry\n");
6519 			match->count++;
6520 			/* No need to cause an MCDI update */
6521 			rc = 0;
6522 			goto unlock_out;
6523 		}
6524 		efx_get_udp_tunnel_type_name(match->type,
6525 					     typebuf, sizeof(typebuf));
6526 		netif_dbg(efx, drv, efx->net_dev,
6527 			  "UDP port %d is already in use by %s\n",
6528 			  ntohs(tnl.port), typebuf);
6529 		rc = -EEXIST;
6530 		goto unlock_out;
6531 	}
6532 
6533 	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
6534 		if (!nic_data->udp_tunnels[i].count) {
6535 			nic_data->udp_tunnels[i] = tnl;
6536 			nic_data->udp_tunnels[i].count = 1;
6537 			rc = efx_ef10_set_udp_tnl_ports(efx, false);
6538 			goto unlock_out;
6539 		}
6540 
6541 	netif_dbg(efx, drv, efx->net_dev,
6542 		  "Unable to add UDP tunnel (%s) port %d; insufficient resources.\n",
6543 		  typebuf, ntohs(tnl.port));
6544 
6545 	rc = -ENOMEM;
6546 
6547 unlock_out:
6548 	mutex_unlock(&nic_data->udp_tunnels_lock);
6549 	return rc;
6550 }
6551 
6552 /* Called under the TX lock with the TX queue running, hence no-one can be
6553  * in the middle of updating the UDP tunnels table.  However, they could
6554  * have tried and failed the MCDI, in which case they'll have set the dirty
6555  * flag before dropping their locks.
6556  */
6557 static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
6558 {
6559 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6560 
6561 	if (!(nic_data->datapath_caps &
6562 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6563 		return false;
6564 
6565 	if (nic_data->udp_tunnels_dirty)
6566 		/* SW table may not match HW state, so just assume we can't
6567 		 * use any UDP tunnel offloads.
6568 		 */
6569 		return false;
6570 
6571 	return __efx_ef10_udp_tnl_lookup_port(efx, port) != NULL;
6572 }
6573 
6574 static int efx_ef10_udp_tnl_del_port(struct efx_nic *efx,
6575 				     struct efx_udp_tunnel tnl)
6576 {
6577 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6578 	struct efx_udp_tunnel *match;
6579 	char typebuf[8];
6580 	int rc;
6581 
6582 	if (!(nic_data->datapath_caps &
6583 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6584 		return 0;
6585 
6586 	efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
6587 	netif_dbg(efx, drv, efx->net_dev, "Removing UDP tunnel (%s) port %d\n",
6588 		  typebuf, ntohs(tnl.port));
6589 
6590 	mutex_lock(&nic_data->udp_tunnels_lock);
6591 	/* Make sure all TX are stopped while we remove from the table, else we
6592 	 * might race against an efx_features_check().
6593 	 */
6594 	efx_device_detach_sync(efx);
6595 
6596 	match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
6597 	if (match != NULL) {
6598 		if (match->type == tnl.type) {
6599 			if (--match->count) {
6600 				/* Port is still in use, so nothing to do */
6601 				netif_dbg(efx, drv, efx->net_dev,
6602 					  "UDP tunnel port %d remains active\n",
6603 					  ntohs(tnl.port));
6604 				rc = 0;
6605 				goto out_unlock;
6606 			}
6607 			rc = efx_ef10_set_udp_tnl_ports(efx, false);
6608 			goto out_unlock;
6609 		}
6610 		efx_get_udp_tunnel_type_name(match->type,
6611 					     typebuf, sizeof(typebuf));
6612 		netif_warn(efx, drv, efx->net_dev,
6613 			   "UDP port %d is actually in use by %s, not removing\n",
6614 			   ntohs(tnl.port), typebuf);
6615 	}
6616 	rc = -ENOENT;
6617 
6618 out_unlock:
6619 	mutex_unlock(&nic_data->udp_tunnels_lock);
6620 	return rc;
6621 }
6622 
6623 #define EF10_OFFLOAD_FEATURES		\
6624 	(NETIF_F_IP_CSUM |		\
6625 	 NETIF_F_HW_VLAN_CTAG_FILTER |	\
6626 	 NETIF_F_IPV6_CSUM |		\
6627 	 NETIF_F_RXHASH |		\
6628 	 NETIF_F_NTUPLE)
6629 
6630 const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
6631 	.is_vf = true,
6632 	.mem_bar = efx_ef10_vf_mem_bar,
6633 	.mem_map_size = efx_ef10_mem_map_size,
6634 	.probe = efx_ef10_probe_vf,
6635 	.remove = efx_ef10_remove,
6636 	.dimension_resources = efx_ef10_dimension_resources,
6637 	.init = efx_ef10_init_nic,
6638 	.fini = efx_port_dummy_op_void,
6639 	.map_reset_reason = efx_ef10_map_reset_reason,
6640 	.map_reset_flags = efx_ef10_map_reset_flags,
6641 	.reset = efx_ef10_reset,
6642 	.probe_port = efx_mcdi_port_probe,
6643 	.remove_port = efx_mcdi_port_remove,
6644 	.fini_dmaq = efx_ef10_fini_dmaq,
6645 	.prepare_flr = efx_ef10_prepare_flr,
6646 	.finish_flr = efx_port_dummy_op_void,
6647 	.describe_stats = efx_ef10_describe_stats,
6648 	.update_stats = efx_ef10_update_stats_vf,
6649 	.start_stats = efx_port_dummy_op_void,
6650 	.pull_stats = efx_port_dummy_op_void,
6651 	.stop_stats = efx_port_dummy_op_void,
6652 	.set_id_led = efx_mcdi_set_id_led,
6653 	.push_irq_moderation = efx_ef10_push_irq_moderation,
6654 	.reconfigure_mac = efx_ef10_mac_reconfigure_vf,
6655 	.check_mac_fault = efx_mcdi_mac_check_fault,
6656 	.reconfigure_port = efx_mcdi_port_reconfigure,
6657 	.get_wol = efx_ef10_get_wol_vf,
6658 	.set_wol = efx_ef10_set_wol_vf,
6659 	.resume_wol = efx_port_dummy_op_void,
6660 	.mcdi_request = efx_ef10_mcdi_request,
6661 	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
6662 	.mcdi_read_response = efx_ef10_mcdi_read_response,
6663 	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
6664 	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
6665 	.irq_enable_master = efx_port_dummy_op_void,
6666 	.irq_test_generate = efx_ef10_irq_test_generate,
6667 	.irq_disable_non_ev = efx_port_dummy_op_void,
6668 	.irq_handle_msi = efx_ef10_msi_interrupt,
6669 	.irq_handle_legacy = efx_ef10_legacy_interrupt,
6670 	.tx_probe = efx_ef10_tx_probe,
6671 	.tx_init = efx_ef10_tx_init,
6672 	.tx_remove = efx_ef10_tx_remove,
6673 	.tx_write = efx_ef10_tx_write,
6674 	.tx_limit_len = efx_ef10_tx_limit_len,
6675 	.rx_push_rss_config = efx_ef10_vf_rx_push_rss_config,
6676 	.rx_pull_rss_config = efx_ef10_rx_pull_rss_config,
6677 	.rx_probe = efx_ef10_rx_probe,
6678 	.rx_init = efx_ef10_rx_init,
6679 	.rx_remove = efx_ef10_rx_remove,
6680 	.rx_write = efx_ef10_rx_write,
6681 	.rx_defer_refill = efx_ef10_rx_defer_refill,
6682 	.ev_probe = efx_ef10_ev_probe,
6683 	.ev_init = efx_ef10_ev_init,
6684 	.ev_fini = efx_ef10_ev_fini,
6685 	.ev_remove = efx_ef10_ev_remove,
6686 	.ev_process = efx_ef10_ev_process,
6687 	.ev_read_ack = efx_ef10_ev_read_ack,
6688 	.ev_test_generate = efx_ef10_ev_test_generate,
6689 	.filter_table_probe = efx_ef10_filter_table_probe,
6690 	.filter_table_restore = efx_ef10_filter_table_restore,
6691 	.filter_table_remove = efx_ef10_filter_table_remove,
6692 	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
6693 	.filter_insert = efx_ef10_filter_insert,
6694 	.filter_remove_safe = efx_ef10_filter_remove_safe,
6695 	.filter_get_safe = efx_ef10_filter_get_safe,
6696 	.filter_clear_rx = efx_ef10_filter_clear_rx,
6697 	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
6698 	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
6699 	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
6700 #ifdef CONFIG_RFS_ACCEL
6701 	.filter_rfs_insert = efx_ef10_filter_rfs_insert,
6702 	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
6703 #endif
6704 #ifdef CONFIG_SFC_MTD
6705 	.mtd_probe = efx_port_dummy_op_int,
6706 #endif
6707 	.ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
6708 	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
6709 	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
6710 	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
6711 #ifdef CONFIG_SFC_SRIOV
6712 	.vswitching_probe = efx_ef10_vswitching_probe_vf,
6713 	.vswitching_restore = efx_ef10_vswitching_restore_vf,
6714 	.vswitching_remove = efx_ef10_vswitching_remove_vf,
6715 #endif
6716 	.get_mac_address = efx_ef10_get_mac_address_vf,
6717 	.set_mac_address = efx_ef10_set_mac_address,
6718 
6719 	.get_phys_port_id = efx_ef10_get_phys_port_id,
6720 	.revision = EFX_REV_HUNT_A0,
6721 	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
6722 	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
6723 	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
6724 	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
6725 	.can_rx_scatter = true,
6726 	.always_rx_scatter = true,
6727 	.min_interrupt_mode = EFX_INT_MODE_MSIX,
6728 	.max_interrupt_mode = EFX_INT_MODE_MSIX,
6729 	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
6730 	.offload_features = EF10_OFFLOAD_FEATURES,
6731 	.mcdi_max_ver = 2,
6732 	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
6733 	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
6734 			    1 << HWTSTAMP_FILTER_ALL,
6735 	.rx_hash_key_size = 40,
6736 };
6737 
6738 const struct efx_nic_type efx_hunt_a0_nic_type = {
6739 	.is_vf = false,
6740 	.mem_bar = efx_ef10_pf_mem_bar,
6741 	.mem_map_size = efx_ef10_mem_map_size,
6742 	.probe = efx_ef10_probe_pf,
6743 	.remove = efx_ef10_remove,
6744 	.dimension_resources = efx_ef10_dimension_resources,
6745 	.init = efx_ef10_init_nic,
6746 	.fini = efx_port_dummy_op_void,
6747 	.map_reset_reason = efx_ef10_map_reset_reason,
6748 	.map_reset_flags = efx_ef10_map_reset_flags,
6749 	.reset = efx_ef10_reset,
6750 	.probe_port = efx_mcdi_port_probe,
6751 	.remove_port = efx_mcdi_port_remove,
6752 	.fini_dmaq = efx_ef10_fini_dmaq,
6753 	.prepare_flr = efx_ef10_prepare_flr,
6754 	.finish_flr = efx_port_dummy_op_void,
6755 	.describe_stats = efx_ef10_describe_stats,
6756 	.update_stats = efx_ef10_update_stats_pf,
6757 	.start_stats = efx_mcdi_mac_start_stats,
6758 	.pull_stats = efx_mcdi_mac_pull_stats,
6759 	.stop_stats = efx_mcdi_mac_stop_stats,
6760 	.set_id_led = efx_mcdi_set_id_led,
6761 	.push_irq_moderation = efx_ef10_push_irq_moderation,
6762 	.reconfigure_mac = efx_ef10_mac_reconfigure,
6763 	.check_mac_fault = efx_mcdi_mac_check_fault,
6764 	.reconfigure_port = efx_mcdi_port_reconfigure,
6765 	.get_wol = efx_ef10_get_wol,
6766 	.set_wol = efx_ef10_set_wol,
6767 	.resume_wol = efx_port_dummy_op_void,
6768 	.test_chip = efx_ef10_test_chip,
6769 	.test_nvram = efx_mcdi_nvram_test_all,
6770 	.mcdi_request = efx_ef10_mcdi_request,
6771 	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
6772 	.mcdi_read_response = efx_ef10_mcdi_read_response,
6773 	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
6774 	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
6775 	.irq_enable_master = efx_port_dummy_op_void,
6776 	.irq_test_generate = efx_ef10_irq_test_generate,
6777 	.irq_disable_non_ev = efx_port_dummy_op_void,
6778 	.irq_handle_msi = efx_ef10_msi_interrupt,
6779 	.irq_handle_legacy = efx_ef10_legacy_interrupt,
6780 	.tx_probe = efx_ef10_tx_probe,
6781 	.tx_init = efx_ef10_tx_init,
6782 	.tx_remove = efx_ef10_tx_remove,
6783 	.tx_write = efx_ef10_tx_write,
6784 	.tx_limit_len = efx_ef10_tx_limit_len,
6785 	.rx_push_rss_config = efx_ef10_pf_rx_push_rss_config,
6786 	.rx_pull_rss_config = efx_ef10_rx_pull_rss_config,
6787 	.rx_probe = efx_ef10_rx_probe,
6788 	.rx_init = efx_ef10_rx_init,
6789 	.rx_remove = efx_ef10_rx_remove,
6790 	.rx_write = efx_ef10_rx_write,
6791 	.rx_defer_refill = efx_ef10_rx_defer_refill,
6792 	.ev_probe = efx_ef10_ev_probe,
6793 	.ev_init = efx_ef10_ev_init,
6794 	.ev_fini = efx_ef10_ev_fini,
6795 	.ev_remove = efx_ef10_ev_remove,
6796 	.ev_process = efx_ef10_ev_process,
6797 	.ev_read_ack = efx_ef10_ev_read_ack,
6798 	.ev_test_generate = efx_ef10_ev_test_generate,
6799 	.filter_table_probe = efx_ef10_filter_table_probe,
6800 	.filter_table_restore = efx_ef10_filter_table_restore,
6801 	.filter_table_remove = efx_ef10_filter_table_remove,
6802 	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
6803 	.filter_insert = efx_ef10_filter_insert,
6804 	.filter_remove_safe = efx_ef10_filter_remove_safe,
6805 	.filter_get_safe = efx_ef10_filter_get_safe,
6806 	.filter_clear_rx = efx_ef10_filter_clear_rx,
6807 	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
6808 	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
6809 	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
6810 #ifdef CONFIG_RFS_ACCEL
6811 	.filter_rfs_insert = efx_ef10_filter_rfs_insert,
6812 	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
6813 #endif
6814 #ifdef CONFIG_SFC_MTD
6815 	.mtd_probe = efx_ef10_mtd_probe,
6816 	.mtd_rename = efx_mcdi_mtd_rename,
6817 	.mtd_read = efx_mcdi_mtd_read,
6818 	.mtd_erase = efx_mcdi_mtd_erase,
6819 	.mtd_write = efx_mcdi_mtd_write,
6820 	.mtd_sync = efx_mcdi_mtd_sync,
6821 #endif
6822 	.ptp_write_host_time = efx_ef10_ptp_write_host_time,
6823 	.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
6824 	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
6825 	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
6826 	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
6827 	.udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
6828 	.udp_tnl_add_port = efx_ef10_udp_tnl_add_port,
6829 	.udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
6830 	.udp_tnl_del_port = efx_ef10_udp_tnl_del_port,
6831 #ifdef CONFIG_SFC_SRIOV
6832 	.sriov_configure = efx_ef10_sriov_configure,
6833 	.sriov_init = efx_ef10_sriov_init,
6834 	.sriov_fini = efx_ef10_sriov_fini,
6835 	.sriov_wanted = efx_ef10_sriov_wanted,
6836 	.sriov_reset = efx_ef10_sriov_reset,
6837 	.sriov_flr = efx_ef10_sriov_flr,
6838 	.sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
6839 	.sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
6840 	.sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
6841 	.sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
6842 	.sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
6843 	.vswitching_probe = efx_ef10_vswitching_probe_pf,
6844 	.vswitching_restore = efx_ef10_vswitching_restore_pf,
6845 	.vswitching_remove = efx_ef10_vswitching_remove_pf,
6846 #endif
6847 	.get_mac_address = efx_ef10_get_mac_address_pf,
6848 	.set_mac_address = efx_ef10_set_mac_address,
6849 	.tso_versions = efx_ef10_tso_versions,
6850 
6851 	.get_phys_port_id = efx_ef10_get_phys_port_id,
6852 	.revision = EFX_REV_HUNT_A0,
6853 	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
6854 	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
6855 	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
6856 	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
6857 	.can_rx_scatter = true,
6858 	.always_rx_scatter = true,
6859 	.option_descriptors = true,
6860 	.min_interrupt_mode = EFX_INT_MODE_LEGACY,
6861 	.max_interrupt_mode = EFX_INT_MODE_MSIX,
6862 	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
6863 	.offload_features = EF10_OFFLOAD_FEATURES,
6864 	.mcdi_max_ver = 2,
6865 	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
6866 	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
6867 			    1 << HWTSTAMP_FILTER_ALL,
6868 	.rx_hash_key_size = 40,
6869 };
6870