xref: /linux/drivers/net/ethernet/sfc/ef10.c (revision d8793aca708602c676372b03d6493972457524af)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2012-2013 Solarflare Communications Inc.
5  */
6 
7 #include "net_driver.h"
8 #include "rx_common.h"
9 #include "ef10_regs.h"
10 #include "io.h"
11 #include "mcdi.h"
12 #include "mcdi_pcol.h"
13 #include "mcdi_port.h"
14 #include "mcdi_port_common.h"
15 #include "mcdi_functions.h"
16 #include "nic.h"
17 #include "mcdi_filters.h"
18 #include "workarounds.h"
19 #include "selftest.h"
20 #include "ef10_sriov.h"
21 #include <linux/in.h>
22 #include <linux/jhash.h>
23 #include <linux/wait.h>
24 #include <linux/workqueue.h>
25 #include <net/udp_tunnel.h>
26 
27 /* Hardware control for EF10 architecture including 'Huntington'. */
28 
29 #define EFX_EF10_DRVGEN_EV		7
30 enum {
31 	EFX_EF10_TEST = 1,
32 	EFX_EF10_REFILL,
33 };
34 
35 /* VLAN list entry */
36 struct efx_ef10_vlan {
37 	struct list_head list;
38 	u16 vid;
39 };
40 
41 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
42 static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels;
43 
44 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
45 {
46 	efx_dword_t reg;
47 
48 	efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
49 	return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
50 		EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
51 }
52 
53 /* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
54  * I/O space and BAR 2(&3) for memory.  On SFC9250 (Medford2), there is no I/O
55  * bar; PFs use BAR 0/1 for memory.
56  */
57 static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx)
58 {
59 	switch (efx->pci_dev->device) {
60 	case 0x0b03: /* SFC9250 PF */
61 		return 0;
62 	default:
63 		return 2;
64 	}
65 }
66 
67 /* All VFs use BAR 0/1 for memory */
68 static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx)
69 {
70 	return 0;
71 }
72 
73 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
74 {
75 	int bar;
76 
77 	bar = efx->type->mem_bar(efx);
78 	return resource_size(&efx->pci_dev->resource[bar]);
79 }
80 
81 static bool efx_ef10_is_vf(struct efx_nic *efx)
82 {
83 	return efx->type->is_vf;
84 }
85 
86 #ifdef CONFIG_SFC_SRIOV
87 static int efx_ef10_get_vf_index(struct efx_nic *efx)
88 {
89 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
90 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
91 	size_t outlen;
92 	int rc;
93 
94 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
95 			  sizeof(outbuf), &outlen);
96 	if (rc)
97 		return rc;
98 	if (outlen < sizeof(outbuf))
99 		return -EIO;
100 
101 	nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
102 	return 0;
103 }
104 #endif
105 
106 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
107 {
108 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN);
109 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
110 	size_t outlen;
111 	int rc;
112 
113 	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
114 
115 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
116 			  outbuf, sizeof(outbuf), &outlen);
117 	if (rc)
118 		return rc;
119 	if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
120 		netif_err(efx, drv, efx->net_dev,
121 			  "unable to read datapath firmware capabilities\n");
122 		return -EIO;
123 	}
124 
125 	nic_data->datapath_caps =
126 		MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
127 
128 	if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
129 		nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
130 				GET_CAPABILITIES_V2_OUT_FLAGS2);
131 		nic_data->piobuf_size = MCDI_WORD(outbuf,
132 				GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
133 	} else {
134 		nic_data->datapath_caps2 = 0;
135 		nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
136 	}
137 
138 	/* record the DPCPU firmware IDs to determine VEB vswitching support.
139 	 */
140 	nic_data->rx_dpcpu_fw_id =
141 		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
142 	nic_data->tx_dpcpu_fw_id =
143 		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
144 
145 	if (!(nic_data->datapath_caps &
146 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
147 		netif_err(efx, probe, efx->net_dev,
148 			  "current firmware does not support an RX prefix\n");
149 		return -ENODEV;
150 	}
151 
152 	if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
153 		u8 vi_window_mode = MCDI_BYTE(outbuf,
154 				GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
155 
156 		rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
157 		if (rc)
158 			return rc;
159 	} else {
160 		/* keep default VI stride */
161 		netif_dbg(efx, probe, efx->net_dev,
162 			  "firmware did not report VI window mode, assuming vi_stride = %u\n",
163 			  efx->vi_stride);
164 	}
165 
166 	if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
167 		efx->num_mac_stats = MCDI_WORD(outbuf,
168 				GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
169 		netif_dbg(efx, probe, efx->net_dev,
170 			  "firmware reports num_mac_stats = %u\n",
171 			  efx->num_mac_stats);
172 	} else {
173 		/* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
174 		netif_dbg(efx, probe, efx->net_dev,
175 			  "firmware did not report num_mac_stats, assuming %u\n",
176 			  efx->num_mac_stats);
177 	}
178 
179 	return 0;
180 }
181 
182 static void efx_ef10_read_licensed_features(struct efx_nic *efx)
183 {
184 	MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN);
185 	MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN);
186 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
187 	size_t outlen;
188 	int rc;
189 
190 	MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP,
191 		       MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE);
192 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf),
193 				outbuf, sizeof(outbuf), &outlen);
194 	if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN))
195 		return;
196 
197 	nic_data->licensed_features = MCDI_QWORD(outbuf,
198 					 LICENSING_V3_OUT_LICENSED_FEATURES);
199 }
200 
201 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
202 {
203 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
204 	int rc;
205 
206 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
207 			  outbuf, sizeof(outbuf), NULL);
208 	if (rc)
209 		return rc;
210 	rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
211 	return rc > 0 ? rc : -ERANGE;
212 }
213 
214 static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
215 {
216 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
217 	unsigned int implemented;
218 	unsigned int enabled;
219 	int rc;
220 
221 	nic_data->workaround_35388 = false;
222 	nic_data->workaround_61265 = false;
223 
224 	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
225 
226 	if (rc == -ENOSYS) {
227 		/* Firmware without GET_WORKAROUNDS - not a problem. */
228 		rc = 0;
229 	} else if (rc == 0) {
230 		/* Bug61265 workaround is always enabled if implemented. */
231 		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
232 			nic_data->workaround_61265 = true;
233 
234 		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
235 			nic_data->workaround_35388 = true;
236 		} else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
237 			/* Workaround is implemented but not enabled.
238 			 * Try to enable it.
239 			 */
240 			rc = efx_mcdi_set_workaround(efx,
241 						     MC_CMD_WORKAROUND_BUG35388,
242 						     true, NULL);
243 			if (rc == 0)
244 				nic_data->workaround_35388 = true;
245 			/* If we failed to set the workaround just carry on. */
246 			rc = 0;
247 		}
248 	}
249 
250 	netif_dbg(efx, probe, efx->net_dev,
251 		  "workaround for bug 35388 is %sabled\n",
252 		  nic_data->workaround_35388 ? "en" : "dis");
253 	netif_dbg(efx, probe, efx->net_dev,
254 		  "workaround for bug 61265 is %sabled\n",
255 		  nic_data->workaround_61265 ? "en" : "dis");
256 
257 	return rc;
258 }
259 
260 static void efx_ef10_process_timer_config(struct efx_nic *efx,
261 					  const efx_dword_t *data)
262 {
263 	unsigned int max_count;
264 
265 	if (EFX_EF10_WORKAROUND_61265(efx)) {
266 		efx->timer_quantum_ns = MCDI_DWORD(data,
267 			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
268 		efx->timer_max_ns = MCDI_DWORD(data,
269 			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
270 	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
271 		efx->timer_quantum_ns = MCDI_DWORD(data,
272 			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
273 		max_count = MCDI_DWORD(data,
274 			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
275 		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
276 	} else {
277 		efx->timer_quantum_ns = MCDI_DWORD(data,
278 			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
279 		max_count = MCDI_DWORD(data,
280 			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
281 		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
282 	}
283 
284 	netif_dbg(efx, probe, efx->net_dev,
285 		  "got timer properties from MC: quantum %u ns; max %u ns\n",
286 		  efx->timer_quantum_ns, efx->timer_max_ns);
287 }
288 
289 static int efx_ef10_get_timer_config(struct efx_nic *efx)
290 {
291 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
292 	int rc;
293 
294 	rc = efx_ef10_get_timer_workarounds(efx);
295 	if (rc)
296 		return rc;
297 
298 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
299 				outbuf, sizeof(outbuf), NULL);
300 
301 	if (rc == 0) {
302 		efx_ef10_process_timer_config(efx, outbuf);
303 	} else if (rc == -ENOSYS || rc == -EPERM) {
304 		/* Not available - fall back to Huntington defaults. */
305 		unsigned int quantum;
306 
307 		rc = efx_ef10_get_sysclk_freq(efx);
308 		if (rc < 0)
309 			return rc;
310 
311 		quantum = 1536000 / rc; /* 1536 cycles */
312 		efx->timer_quantum_ns = quantum;
313 		efx->timer_max_ns = efx->type->timer_period_max * quantum;
314 		rc = 0;
315 	} else {
316 		efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
317 				       MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
318 				       NULL, 0, rc);
319 	}
320 
321 	return rc;
322 }
323 
324 static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
325 {
326 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
327 	size_t outlen;
328 	int rc;
329 
330 	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
331 
332 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
333 			  outbuf, sizeof(outbuf), &outlen);
334 	if (rc)
335 		return rc;
336 	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
337 		return -EIO;
338 
339 	ether_addr_copy(mac_address,
340 			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
341 	return 0;
342 }
343 
344 static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
345 {
346 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
347 	MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
348 	size_t outlen;
349 	int num_addrs, rc;
350 
351 	MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
352 		       EVB_PORT_ID_ASSIGNED);
353 	rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
354 			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
355 
356 	if (rc)
357 		return rc;
358 	if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
359 		return -EIO;
360 
361 	num_addrs = MCDI_DWORD(outbuf,
362 			       VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
363 
364 	WARN_ON(num_addrs != 1);
365 
366 	ether_addr_copy(mac_address,
367 			MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
368 
369 	return 0;
370 }
371 
372 static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
373 					       struct device_attribute *attr,
374 					       char *buf)
375 {
376 	struct efx_nic *efx = dev_get_drvdata(dev);
377 
378 	return sprintf(buf, "%d\n",
379 		       ((efx->mcdi->fn_flags) &
380 			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
381 		       ? 1 : 0);
382 }
383 
384 static ssize_t efx_ef10_show_primary_flag(struct device *dev,
385 					  struct device_attribute *attr,
386 					  char *buf)
387 {
388 	struct efx_nic *efx = dev_get_drvdata(dev);
389 
390 	return sprintf(buf, "%d\n",
391 		       ((efx->mcdi->fn_flags) &
392 			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
393 		       ? 1 : 0);
394 }
395 
396 static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
397 {
398 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
399 	struct efx_ef10_vlan *vlan;
400 
401 	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
402 
403 	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
404 		if (vlan->vid == vid)
405 			return vlan;
406 	}
407 
408 	return NULL;
409 }
410 
411 static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
412 {
413 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
414 	struct efx_ef10_vlan *vlan;
415 	int rc;
416 
417 	mutex_lock(&nic_data->vlan_lock);
418 
419 	vlan = efx_ef10_find_vlan(efx, vid);
420 	if (vlan) {
421 		/* We add VID 0 on init. 8021q adds it on module init
422 		 * for all interfaces with VLAN filtring feature.
423 		 */
424 		if (vid == 0)
425 			goto done_unlock;
426 		netif_warn(efx, drv, efx->net_dev,
427 			   "VLAN %u already added\n", vid);
428 		rc = -EALREADY;
429 		goto fail_exist;
430 	}
431 
432 	rc = -ENOMEM;
433 	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
434 	if (!vlan)
435 		goto fail_alloc;
436 
437 	vlan->vid = vid;
438 
439 	list_add_tail(&vlan->list, &nic_data->vlan_list);
440 
441 	if (efx->filter_state) {
442 		mutex_lock(&efx->mac_lock);
443 		down_write(&efx->filter_sem);
444 		rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
445 		up_write(&efx->filter_sem);
446 		mutex_unlock(&efx->mac_lock);
447 		if (rc)
448 			goto fail_filter_add_vlan;
449 	}
450 
451 done_unlock:
452 	mutex_unlock(&nic_data->vlan_lock);
453 	return 0;
454 
455 fail_filter_add_vlan:
456 	list_del(&vlan->list);
457 	kfree(vlan);
458 fail_alloc:
459 fail_exist:
460 	mutex_unlock(&nic_data->vlan_lock);
461 	return rc;
462 }
463 
464 static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
465 				       struct efx_ef10_vlan *vlan)
466 {
467 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
468 
469 	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
470 
471 	if (efx->filter_state) {
472 		down_write(&efx->filter_sem);
473 		efx_mcdi_filter_del_vlan(efx, vlan->vid);
474 		up_write(&efx->filter_sem);
475 	}
476 
477 	list_del(&vlan->list);
478 	kfree(vlan);
479 }
480 
481 static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
482 {
483 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
484 	struct efx_ef10_vlan *vlan;
485 	int rc = 0;
486 
487 	/* 8021q removes VID 0 on module unload for all interfaces
488 	 * with VLAN filtering feature. We need to keep it to receive
489 	 * untagged traffic.
490 	 */
491 	if (vid == 0)
492 		return 0;
493 
494 	mutex_lock(&nic_data->vlan_lock);
495 
496 	vlan = efx_ef10_find_vlan(efx, vid);
497 	if (!vlan) {
498 		netif_err(efx, drv, efx->net_dev,
499 			  "VLAN %u to be deleted not found\n", vid);
500 		rc = -ENOENT;
501 	} else {
502 		efx_ef10_del_vlan_internal(efx, vlan);
503 	}
504 
505 	mutex_unlock(&nic_data->vlan_lock);
506 
507 	return rc;
508 }
509 
510 static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
511 {
512 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
513 	struct efx_ef10_vlan *vlan, *next_vlan;
514 
515 	mutex_lock(&nic_data->vlan_lock);
516 	list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
517 		efx_ef10_del_vlan_internal(efx, vlan);
518 	mutex_unlock(&nic_data->vlan_lock);
519 }
520 
521 static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
522 		   NULL);
523 static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
524 
525 static int efx_ef10_probe(struct efx_nic *efx)
526 {
527 	struct efx_ef10_nic_data *nic_data;
528 	int i, rc;
529 
530 	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
531 	if (!nic_data)
532 		return -ENOMEM;
533 	efx->nic_data = nic_data;
534 
535 	/* we assume later that we can copy from this buffer in dwords */
536 	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
537 
538 	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
539 				  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
540 	if (rc)
541 		goto fail1;
542 
543 	/* Get the MC's warm boot count.  In case it's rebooting right
544 	 * now, be prepared to retry.
545 	 */
546 	i = 0;
547 	for (;;) {
548 		rc = efx_ef10_get_warm_boot_count(efx);
549 		if (rc >= 0)
550 			break;
551 		if (++i == 5)
552 			goto fail2;
553 		ssleep(1);
554 	}
555 	nic_data->warm_boot_count = rc;
556 
557 	/* In case we're recovering from a crash (kexec), we want to
558 	 * cancel any outstanding request by the previous user of this
559 	 * function.  We send a special message using the least
560 	 * significant bits of the 'high' (doorbell) register.
561 	 */
562 	_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
563 
564 	rc = efx_mcdi_init(efx);
565 	if (rc)
566 		goto fail2;
567 
568 	mutex_init(&nic_data->udp_tunnels_lock);
569 	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
570 		nic_data->udp_tunnels[i].type =
571 			TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
572 
573 	/* Reset (most) configuration for this function */
574 	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
575 	if (rc)
576 		goto fail3;
577 
578 	/* Enable event logging */
579 	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
580 	if (rc)
581 		goto fail3;
582 
583 	rc = device_create_file(&efx->pci_dev->dev,
584 				&dev_attr_link_control_flag);
585 	if (rc)
586 		goto fail3;
587 
588 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
589 	if (rc)
590 		goto fail4;
591 
592 	rc = efx_get_pf_index(efx, &nic_data->pf_index);
593 	if (rc)
594 		goto fail5;
595 
596 	rc = efx_ef10_init_datapath_caps(efx);
597 	if (rc < 0)
598 		goto fail5;
599 
600 	efx_ef10_read_licensed_features(efx);
601 
602 	/* We can have one VI for each vi_stride-byte region.
603 	 * However, until we use TX option descriptors we need two TX queues
604 	 * per channel.
605 	 */
606 	efx->tx_queues_per_channel = 2;
607 	efx->max_vis = efx_ef10_mem_map_size(efx) / efx->vi_stride;
608 	if (!efx->max_vis) {
609 		netif_err(efx, drv, efx->net_dev, "error determining max VIs\n");
610 		rc = -EIO;
611 		goto fail5;
612 	}
613 	efx->max_channels = min_t(unsigned int, EFX_MAX_CHANNELS,
614 				  efx->max_vis / efx->tx_queues_per_channel);
615 	efx->max_tx_channels = efx->max_channels;
616 	if (WARN_ON(efx->max_channels == 0)) {
617 		rc = -EIO;
618 		goto fail5;
619 	}
620 
621 	efx->rx_packet_len_offset =
622 		ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
623 
624 	if (nic_data->datapath_caps &
625 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
626 		efx->net_dev->hw_features |= NETIF_F_RXFCS;
627 
628 	rc = efx_mcdi_port_get_number(efx);
629 	if (rc < 0)
630 		goto fail5;
631 	efx->port_num = rc;
632 
633 	rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
634 	if (rc)
635 		goto fail5;
636 
637 	rc = efx_ef10_get_timer_config(efx);
638 	if (rc < 0)
639 		goto fail5;
640 
641 	rc = efx_mcdi_mon_probe(efx);
642 	if (rc && rc != -EPERM)
643 		goto fail5;
644 
645 	efx_ptp_defer_probe_with_channel(efx);
646 
647 #ifdef CONFIG_SFC_SRIOV
648 	if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
649 		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
650 		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
651 
652 		efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
653 	} else
654 #endif
655 		ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
656 
657 	INIT_LIST_HEAD(&nic_data->vlan_list);
658 	mutex_init(&nic_data->vlan_lock);
659 
660 	/* Add unspecified VID to support VLAN filtering being disabled */
661 	rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
662 	if (rc)
663 		goto fail_add_vid_unspec;
664 
665 	/* If VLAN filtering is enabled, we need VID 0 to get untagged
666 	 * traffic.  It is added automatically if 8021q module is loaded,
667 	 * but we can't rely on it since module may be not loaded.
668 	 */
669 	rc = efx_ef10_add_vlan(efx, 0);
670 	if (rc)
671 		goto fail_add_vid_0;
672 
673 	if (nic_data->datapath_caps &
674 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) &&
675 	    efx->mcdi->fn_flags &
676 	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED))
677 		efx->net_dev->udp_tunnel_nic_info = &efx_ef10_udp_tunnels;
678 
679 	return 0;
680 
681 fail_add_vid_0:
682 	efx_ef10_cleanup_vlans(efx);
683 fail_add_vid_unspec:
684 	mutex_destroy(&nic_data->vlan_lock);
685 	efx_ptp_remove(efx);
686 	efx_mcdi_mon_remove(efx);
687 fail5:
688 	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
689 fail4:
690 	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
691 fail3:
692 	efx_mcdi_detach(efx);
693 
694 	mutex_lock(&nic_data->udp_tunnels_lock);
695 	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
696 	(void)efx_ef10_set_udp_tnl_ports(efx, true);
697 	mutex_unlock(&nic_data->udp_tunnels_lock);
698 	mutex_destroy(&nic_data->udp_tunnels_lock);
699 
700 	efx_mcdi_fini(efx);
701 fail2:
702 	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
703 fail1:
704 	kfree(nic_data);
705 	efx->nic_data = NULL;
706 	return rc;
707 }
708 
709 #ifdef EFX_USE_PIO
710 
711 static void efx_ef10_free_piobufs(struct efx_nic *efx)
712 {
713 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
714 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
715 	unsigned int i;
716 	int rc;
717 
718 	BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
719 
720 	for (i = 0; i < nic_data->n_piobufs; i++) {
721 		MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
722 			       nic_data->piobuf_handle[i]);
723 		rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
724 				  NULL, 0, NULL);
725 		WARN_ON(rc);
726 	}
727 
728 	nic_data->n_piobufs = 0;
729 }
730 
731 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
732 {
733 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
734 	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
735 	unsigned int i;
736 	size_t outlen;
737 	int rc = 0;
738 
739 	BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
740 
741 	for (i = 0; i < n; i++) {
742 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
743 					outbuf, sizeof(outbuf), &outlen);
744 		if (rc) {
745 			/* Don't display the MC error if we didn't have space
746 			 * for a VF.
747 			 */
748 			if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
749 				efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
750 						       0, outbuf, outlen, rc);
751 			break;
752 		}
753 		if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
754 			rc = -EIO;
755 			break;
756 		}
757 		nic_data->piobuf_handle[i] =
758 			MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
759 		netif_dbg(efx, probe, efx->net_dev,
760 			  "allocated PIO buffer %u handle %x\n", i,
761 			  nic_data->piobuf_handle[i]);
762 	}
763 
764 	nic_data->n_piobufs = i;
765 	if (rc)
766 		efx_ef10_free_piobufs(efx);
767 	return rc;
768 }
769 
770 static int efx_ef10_link_piobufs(struct efx_nic *efx)
771 {
772 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
773 	MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
774 	struct efx_channel *channel;
775 	struct efx_tx_queue *tx_queue;
776 	unsigned int offset, index;
777 	int rc;
778 
779 	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
780 	BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
781 
782 	/* Link a buffer to each VI in the write-combining mapping */
783 	for (index = 0; index < nic_data->n_piobufs; ++index) {
784 		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
785 			       nic_data->piobuf_handle[index]);
786 		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
787 			       nic_data->pio_write_vi_base + index);
788 		rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
789 				  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
790 				  NULL, 0, NULL);
791 		if (rc) {
792 			netif_err(efx, drv, efx->net_dev,
793 				  "failed to link VI %u to PIO buffer %u (%d)\n",
794 				  nic_data->pio_write_vi_base + index, index,
795 				  rc);
796 			goto fail;
797 		}
798 		netif_dbg(efx, probe, efx->net_dev,
799 			  "linked VI %u to PIO buffer %u\n",
800 			  nic_data->pio_write_vi_base + index, index);
801 	}
802 
803 	/* Link a buffer to each TX queue */
804 	efx_for_each_channel(channel, efx) {
805 		/* Extra channels, even those with TXQs (PTP), do not require
806 		 * PIO resources.
807 		 */
808 		if (!channel->type->want_pio ||
809 		    channel->channel >= efx->xdp_channel_offset)
810 			continue;
811 
812 		efx_for_each_channel_tx_queue(tx_queue, channel) {
813 			/* We assign the PIO buffers to queues in
814 			 * reverse order to allow for the following
815 			 * special case.
816 			 */
817 			offset = ((efx->tx_channel_offset + efx->n_tx_channels -
818 				   tx_queue->channel->channel - 1) *
819 				  efx_piobuf_size);
820 			index = offset / nic_data->piobuf_size;
821 			offset = offset % nic_data->piobuf_size;
822 
823 			/* When the host page size is 4K, the first
824 			 * host page in the WC mapping may be within
825 			 * the same VI page as the last TX queue.  We
826 			 * can only link one buffer to each VI.
827 			 */
828 			if (tx_queue->queue == nic_data->pio_write_vi_base) {
829 				BUG_ON(index != 0);
830 				rc = 0;
831 			} else {
832 				MCDI_SET_DWORD(inbuf,
833 					       LINK_PIOBUF_IN_PIOBUF_HANDLE,
834 					       nic_data->piobuf_handle[index]);
835 				MCDI_SET_DWORD(inbuf,
836 					       LINK_PIOBUF_IN_TXQ_INSTANCE,
837 					       tx_queue->queue);
838 				rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
839 						  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
840 						  NULL, 0, NULL);
841 			}
842 
843 			if (rc) {
844 				/* This is non-fatal; the TX path just
845 				 * won't use PIO for this queue
846 				 */
847 				netif_err(efx, drv, efx->net_dev,
848 					  "failed to link VI %u to PIO buffer %u (%d)\n",
849 					  tx_queue->queue, index, rc);
850 				tx_queue->piobuf = NULL;
851 			} else {
852 				tx_queue->piobuf =
853 					nic_data->pio_write_base +
854 					index * efx->vi_stride + offset;
855 				tx_queue->piobuf_offset = offset;
856 				netif_dbg(efx, probe, efx->net_dev,
857 					  "linked VI %u to PIO buffer %u offset %x addr %p\n",
858 					  tx_queue->queue, index,
859 					  tx_queue->piobuf_offset,
860 					  tx_queue->piobuf);
861 			}
862 		}
863 	}
864 
865 	return 0;
866 
867 fail:
868 	/* inbuf was defined for MC_CMD_LINK_PIOBUF.  We can use the same
869 	 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
870 	 */
871 	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
872 	while (index--) {
873 		MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
874 			       nic_data->pio_write_vi_base + index);
875 		efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
876 			     inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
877 			     NULL, 0, NULL);
878 	}
879 	return rc;
880 }
881 
882 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
883 {
884 	struct efx_channel *channel;
885 	struct efx_tx_queue *tx_queue;
886 
887 	/* All our existing PIO buffers went away */
888 	efx_for_each_channel(channel, efx)
889 		efx_for_each_channel_tx_queue(tx_queue, channel)
890 			tx_queue->piobuf = NULL;
891 }
892 
893 #else /* !EFX_USE_PIO */
894 
895 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
896 {
897 	return n == 0 ? 0 : -ENOBUFS;
898 }
899 
900 static int efx_ef10_link_piobufs(struct efx_nic *efx)
901 {
902 	return 0;
903 }
904 
905 static void efx_ef10_free_piobufs(struct efx_nic *efx)
906 {
907 }
908 
909 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
910 {
911 }
912 
913 #endif /* EFX_USE_PIO */
914 
915 static void efx_ef10_remove(struct efx_nic *efx)
916 {
917 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
918 	int rc;
919 
920 #ifdef CONFIG_SFC_SRIOV
921 	struct efx_ef10_nic_data *nic_data_pf;
922 	struct pci_dev *pci_dev_pf;
923 	struct efx_nic *efx_pf;
924 	struct ef10_vf *vf;
925 
926 	if (efx->pci_dev->is_virtfn) {
927 		pci_dev_pf = efx->pci_dev->physfn;
928 		if (pci_dev_pf) {
929 			efx_pf = pci_get_drvdata(pci_dev_pf);
930 			nic_data_pf = efx_pf->nic_data;
931 			vf = nic_data_pf->vf + nic_data->vf_index;
932 			vf->efx = NULL;
933 		} else
934 			netif_info(efx, drv, efx->net_dev,
935 				   "Could not get the PF id from VF\n");
936 	}
937 #endif
938 
939 	efx_ef10_cleanup_vlans(efx);
940 	mutex_destroy(&nic_data->vlan_lock);
941 
942 	efx_ptp_remove(efx);
943 
944 	efx_mcdi_mon_remove(efx);
945 
946 	efx_mcdi_rx_free_indir_table(efx);
947 
948 	if (nic_data->wc_membase)
949 		iounmap(nic_data->wc_membase);
950 
951 	rc = efx_mcdi_free_vis(efx);
952 	WARN_ON(rc != 0);
953 
954 	if (!nic_data->must_restore_piobufs)
955 		efx_ef10_free_piobufs(efx);
956 
957 	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
958 	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
959 
960 	efx_mcdi_detach(efx);
961 
962 	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
963 	mutex_lock(&nic_data->udp_tunnels_lock);
964 	(void)efx_ef10_set_udp_tnl_ports(efx, true);
965 	mutex_unlock(&nic_data->udp_tunnels_lock);
966 
967 	mutex_destroy(&nic_data->udp_tunnels_lock);
968 
969 	efx_mcdi_fini(efx);
970 	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
971 	kfree(nic_data);
972 }
973 
974 static int efx_ef10_probe_pf(struct efx_nic *efx)
975 {
976 	return efx_ef10_probe(efx);
977 }
978 
979 int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
980 			    u32 *port_flags, u32 *vadaptor_flags,
981 			    unsigned int *vlan_tags)
982 {
983 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
984 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
985 	MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
986 	size_t outlen;
987 	int rc;
988 
989 	if (nic_data->datapath_caps &
990 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
991 		MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
992 			       port_id);
993 
994 		rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
995 				  outbuf, sizeof(outbuf), &outlen);
996 		if (rc)
997 			return rc;
998 
999 		if (outlen < sizeof(outbuf)) {
1000 			rc = -EIO;
1001 			return rc;
1002 		}
1003 	}
1004 
1005 	if (port_flags)
1006 		*port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1007 	if (vadaptor_flags)
1008 		*vadaptor_flags =
1009 			MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1010 	if (vlan_tags)
1011 		*vlan_tags =
1012 			MCDI_DWORD(outbuf,
1013 				   VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1014 
1015 	return 0;
1016 }
1017 
1018 int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1019 {
1020 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1021 
1022 	MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1023 	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1024 			    NULL, 0, NULL);
1025 }
1026 
1027 int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1028 {
1029 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1030 
1031 	MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1032 	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1033 			    NULL, 0, NULL);
1034 }
1035 
1036 int efx_ef10_vport_add_mac(struct efx_nic *efx,
1037 			   unsigned int port_id, u8 *mac)
1038 {
1039 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1040 
1041 	MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1042 	ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1043 
1044 	return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1045 			    sizeof(inbuf), NULL, 0, NULL);
1046 }
1047 
1048 int efx_ef10_vport_del_mac(struct efx_nic *efx,
1049 			   unsigned int port_id, u8 *mac)
1050 {
1051 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1052 
1053 	MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1054 	ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1055 
1056 	return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1057 			    sizeof(inbuf), NULL, 0, NULL);
1058 }
1059 
1060 #ifdef CONFIG_SFC_SRIOV
1061 static int efx_ef10_probe_vf(struct efx_nic *efx)
1062 {
1063 	int rc;
1064 	struct pci_dev *pci_dev_pf;
1065 
1066 	/* If the parent PF has no VF data structure, it doesn't know about this
1067 	 * VF so fail probe.  The VF needs to be re-created.  This can happen
1068 	 * if the PF driver is unloaded while the VF is assigned to a guest.
1069 	 */
1070 	pci_dev_pf = efx->pci_dev->physfn;
1071 	if (pci_dev_pf) {
1072 		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1073 		struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1074 
1075 		if (!nic_data_pf->vf) {
1076 			netif_info(efx, drv, efx->net_dev,
1077 				   "The VF cannot link to its parent PF; "
1078 				   "please destroy and re-create the VF\n");
1079 			return -EBUSY;
1080 		}
1081 	}
1082 
1083 	rc = efx_ef10_probe(efx);
1084 	if (rc)
1085 		return rc;
1086 
1087 	rc = efx_ef10_get_vf_index(efx);
1088 	if (rc)
1089 		goto fail;
1090 
1091 	if (efx->pci_dev->is_virtfn) {
1092 		if (efx->pci_dev->physfn) {
1093 			struct efx_nic *efx_pf =
1094 				pci_get_drvdata(efx->pci_dev->physfn);
1095 			struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1096 			struct efx_ef10_nic_data *nic_data = efx->nic_data;
1097 
1098 			nic_data_p->vf[nic_data->vf_index].efx = efx;
1099 			nic_data_p->vf[nic_data->vf_index].pci_dev =
1100 				efx->pci_dev;
1101 		} else
1102 			netif_info(efx, drv, efx->net_dev,
1103 				   "Could not get the PF id from VF\n");
1104 	}
1105 
1106 	return 0;
1107 
1108 fail:
1109 	efx_ef10_remove(efx);
1110 	return rc;
1111 }
1112 #else
1113 static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1114 {
1115 	return 0;
1116 }
1117 #endif
1118 
1119 static int efx_ef10_alloc_vis(struct efx_nic *efx,
1120 			      unsigned int min_vis, unsigned int max_vis)
1121 {
1122 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1123 
1124 	return efx_mcdi_alloc_vis(efx, min_vis, max_vis, &nic_data->vi_base,
1125 				  &nic_data->n_allocated_vis);
1126 }
1127 
1128 /* Note that the failure path of this function does not free
1129  * resources, as this will be done by efx_ef10_remove().
1130  */
1131 static int efx_ef10_dimension_resources(struct efx_nic *efx)
1132 {
1133 	unsigned int min_vis = max_t(unsigned int, efx->tx_queues_per_channel,
1134 				     efx_separate_tx_channels ? 2 : 1);
1135 	unsigned int channel_vis, pio_write_vi_base, max_vis;
1136 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1137 	unsigned int uc_mem_map_size, wc_mem_map_size;
1138 	void __iomem *membase;
1139 	int rc;
1140 
1141 	channel_vis = max(efx->n_channels,
1142 			  ((efx->n_tx_channels + efx->n_extra_tx_channels) *
1143 			   efx->tx_queues_per_channel) +
1144 			   efx->n_xdp_channels * efx->xdp_tx_per_channel);
1145 	if (efx->max_vis && efx->max_vis < channel_vis) {
1146 		netif_dbg(efx, drv, efx->net_dev,
1147 			  "Reducing channel VIs from %u to %u\n",
1148 			  channel_vis, efx->max_vis);
1149 		channel_vis = efx->max_vis;
1150 	}
1151 
1152 #ifdef EFX_USE_PIO
1153 	/* Try to allocate PIO buffers if wanted and if the full
1154 	 * number of PIO buffers would be sufficient to allocate one
1155 	 * copy-buffer per TX channel.  Failure is non-fatal, as there
1156 	 * are only a small number of PIO buffers shared between all
1157 	 * functions of the controller.
1158 	 */
1159 	if (efx_piobuf_size != 0 &&
1160 	    nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1161 	    efx->n_tx_channels) {
1162 		unsigned int n_piobufs =
1163 			DIV_ROUND_UP(efx->n_tx_channels,
1164 				     nic_data->piobuf_size / efx_piobuf_size);
1165 
1166 		rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1167 		if (rc == -ENOSPC)
1168 			netif_dbg(efx, probe, efx->net_dev,
1169 				  "out of PIO buffers; cannot allocate more\n");
1170 		else if (rc == -EPERM)
1171 			netif_dbg(efx, probe, efx->net_dev,
1172 				  "not permitted to allocate PIO buffers\n");
1173 		else if (rc)
1174 			netif_err(efx, probe, efx->net_dev,
1175 				  "failed to allocate PIO buffers (%d)\n", rc);
1176 		else
1177 			netif_dbg(efx, probe, efx->net_dev,
1178 				  "allocated %u PIO buffers\n", n_piobufs);
1179 	}
1180 #else
1181 	nic_data->n_piobufs = 0;
1182 #endif
1183 
1184 	/* PIO buffers should be mapped with write-combining enabled,
1185 	 * and we want to make single UC and WC mappings rather than
1186 	 * several of each (in fact that's the only option if host
1187 	 * page size is >4K).  So we may allocate some extra VIs just
1188 	 * for writing PIO buffers through.
1189 	 *
1190 	 * The UC mapping contains (channel_vis - 1) complete VIs and the
1191 	 * first 4K of the next VI.  Then the WC mapping begins with
1192 	 * the remainder of this last VI.
1193 	 */
1194 	uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride +
1195 				     ER_DZ_TX_PIOBUF);
1196 	if (nic_data->n_piobufs) {
1197 		/* pio_write_vi_base rounds down to give the number of complete
1198 		 * VIs inside the UC mapping.
1199 		 */
1200 		pio_write_vi_base = uc_mem_map_size / efx->vi_stride;
1201 		wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1202 					       nic_data->n_piobufs) *
1203 					      efx->vi_stride) -
1204 				   uc_mem_map_size);
1205 		max_vis = pio_write_vi_base + nic_data->n_piobufs;
1206 	} else {
1207 		pio_write_vi_base = 0;
1208 		wc_mem_map_size = 0;
1209 		max_vis = channel_vis;
1210 	}
1211 
1212 	/* In case the last attached driver failed to free VIs, do it now */
1213 	rc = efx_mcdi_free_vis(efx);
1214 	if (rc != 0)
1215 		return rc;
1216 
1217 	rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1218 	if (rc != 0)
1219 		return rc;
1220 
1221 	if (nic_data->n_allocated_vis < channel_vis) {
1222 		netif_info(efx, drv, efx->net_dev,
1223 			   "Could not allocate enough VIs to satisfy RSS"
1224 			   " requirements. Performance may not be optimal.\n");
1225 		/* We didn't get the VIs to populate our channels.
1226 		 * We could keep what we got but then we'd have more
1227 		 * interrupts than we need.
1228 		 * Instead calculate new max_channels and restart
1229 		 */
1230 		efx->max_channels = nic_data->n_allocated_vis;
1231 		efx->max_tx_channels =
1232 			nic_data->n_allocated_vis / efx->tx_queues_per_channel;
1233 
1234 		efx_mcdi_free_vis(efx);
1235 		return -EAGAIN;
1236 	}
1237 
1238 	/* If we didn't get enough VIs to map all the PIO buffers, free the
1239 	 * PIO buffers
1240 	 */
1241 	if (nic_data->n_piobufs &&
1242 	    nic_data->n_allocated_vis <
1243 	    pio_write_vi_base + nic_data->n_piobufs) {
1244 		netif_dbg(efx, probe, efx->net_dev,
1245 			  "%u VIs are not sufficient to map %u PIO buffers\n",
1246 			  nic_data->n_allocated_vis, nic_data->n_piobufs);
1247 		efx_ef10_free_piobufs(efx);
1248 	}
1249 
1250 	/* Shrink the original UC mapping of the memory BAR */
1251 	membase = ioremap(efx->membase_phys, uc_mem_map_size);
1252 	if (!membase) {
1253 		netif_err(efx, probe, efx->net_dev,
1254 			  "could not shrink memory BAR to %x\n",
1255 			  uc_mem_map_size);
1256 		return -ENOMEM;
1257 	}
1258 	iounmap(efx->membase);
1259 	efx->membase = membase;
1260 
1261 	/* Set up the WC mapping if needed */
1262 	if (wc_mem_map_size) {
1263 		nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1264 						  uc_mem_map_size,
1265 						  wc_mem_map_size);
1266 		if (!nic_data->wc_membase) {
1267 			netif_err(efx, probe, efx->net_dev,
1268 				  "could not allocate WC mapping of size %x\n",
1269 				  wc_mem_map_size);
1270 			return -ENOMEM;
1271 		}
1272 		nic_data->pio_write_vi_base = pio_write_vi_base;
1273 		nic_data->pio_write_base =
1274 			nic_data->wc_membase +
1275 			(pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF -
1276 			 uc_mem_map_size);
1277 
1278 		rc = efx_ef10_link_piobufs(efx);
1279 		if (rc)
1280 			efx_ef10_free_piobufs(efx);
1281 	}
1282 
1283 	netif_dbg(efx, probe, efx->net_dev,
1284 		  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1285 		  &efx->membase_phys, efx->membase, uc_mem_map_size,
1286 		  nic_data->wc_membase, wc_mem_map_size);
1287 
1288 	return 0;
1289 }
1290 
1291 static void efx_ef10_fini_nic(struct efx_nic *efx)
1292 {
1293 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1294 
1295 	kfree(nic_data->mc_stats);
1296 	nic_data->mc_stats = NULL;
1297 }
1298 
1299 static int efx_ef10_init_nic(struct efx_nic *efx)
1300 {
1301 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1302 	int rc;
1303 
1304 	if (nic_data->must_check_datapath_caps) {
1305 		rc = efx_ef10_init_datapath_caps(efx);
1306 		if (rc)
1307 			return rc;
1308 		nic_data->must_check_datapath_caps = false;
1309 	}
1310 
1311 	if (efx->must_realloc_vis) {
1312 		/* We cannot let the number of VIs change now */
1313 		rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1314 					nic_data->n_allocated_vis);
1315 		if (rc)
1316 			return rc;
1317 		efx->must_realloc_vis = false;
1318 	}
1319 
1320 	nic_data->mc_stats = kmalloc(efx->num_mac_stats * sizeof(__le64),
1321 				     GFP_KERNEL);
1322 	if (!nic_data->mc_stats)
1323 		return -ENOMEM;
1324 
1325 	if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1326 		rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1327 		if (rc == 0) {
1328 			rc = efx_ef10_link_piobufs(efx);
1329 			if (rc)
1330 				efx_ef10_free_piobufs(efx);
1331 		}
1332 
1333 		/* Log an error on failure, but this is non-fatal.
1334 		 * Permission errors are less important - we've presumably
1335 		 * had the PIO buffer licence removed.
1336 		 */
1337 		if (rc == -EPERM)
1338 			netif_dbg(efx, drv, efx->net_dev,
1339 				  "not permitted to restore PIO buffers\n");
1340 		else if (rc)
1341 			netif_err(efx, drv, efx->net_dev,
1342 				  "failed to restore PIO buffers (%d)\n", rc);
1343 		nic_data->must_restore_piobufs = false;
1344 	}
1345 
1346 	/* don't fail init if RSS setup doesn't work */
1347 	rc = efx->type->rx_push_rss_config(efx, false,
1348 					   efx->rss_context.rx_indir_table, NULL);
1349 
1350 	return 0;
1351 }
1352 
1353 static void efx_ef10_table_reset_mc_allocations(struct efx_nic *efx)
1354 {
1355 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1356 #ifdef CONFIG_SFC_SRIOV
1357 	unsigned int i;
1358 #endif
1359 
1360 	/* All our allocations have been reset */
1361 	efx->must_realloc_vis = true;
1362 	efx_mcdi_filter_table_reset_mc_allocations(efx);
1363 	nic_data->must_restore_piobufs = true;
1364 	efx_ef10_forget_old_piobufs(efx);
1365 	efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
1366 
1367 	/* Driver-created vswitches and vports must be re-created */
1368 	nic_data->must_probe_vswitching = true;
1369 	efx->vport_id = EVB_PORT_ID_ASSIGNED;
1370 #ifdef CONFIG_SFC_SRIOV
1371 	if (nic_data->vf)
1372 		for (i = 0; i < efx->vf_count; i++)
1373 			nic_data->vf[i].vport_id = 0;
1374 #endif
1375 }
1376 
1377 static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1378 {
1379 	if (reason == RESET_TYPE_MC_FAILURE)
1380 		return RESET_TYPE_DATAPATH;
1381 
1382 	return efx_mcdi_map_reset_reason(reason);
1383 }
1384 
1385 static int efx_ef10_map_reset_flags(u32 *flags)
1386 {
1387 	enum {
1388 		EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1389 				   ETH_RESET_SHARED_SHIFT),
1390 		EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1391 				  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1392 				  ETH_RESET_PHY | ETH_RESET_MGMT) <<
1393 				 ETH_RESET_SHARED_SHIFT)
1394 	};
1395 
1396 	/* We assume for now that our PCI function is permitted to
1397 	 * reset everything.
1398 	 */
1399 
1400 	if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1401 		*flags &= ~EF10_RESET_MC;
1402 		return RESET_TYPE_WORLD;
1403 	}
1404 
1405 	if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1406 		*flags &= ~EF10_RESET_PORT;
1407 		return RESET_TYPE_ALL;
1408 	}
1409 
1410 	/* no invisible reset implemented */
1411 
1412 	return -EINVAL;
1413 }
1414 
1415 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1416 {
1417 	int rc = efx_mcdi_reset(efx, reset_type);
1418 
1419 	/* Unprivileged functions return -EPERM, but need to return success
1420 	 * here so that the datapath is brought back up.
1421 	 */
1422 	if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1423 		rc = 0;
1424 
1425 	/* If it was a port reset, trigger reallocation of MC resources.
1426 	 * Note that on an MC reset nothing needs to be done now because we'll
1427 	 * detect the MC reset later and handle it then.
1428 	 * For an FLR, we never get an MC reset event, but the MC has reset all
1429 	 * resources assigned to us, so we have to trigger reallocation now.
1430 	 */
1431 	if ((reset_type == RESET_TYPE_ALL ||
1432 	     reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1433 		efx_ef10_table_reset_mc_allocations(efx);
1434 	return rc;
1435 }
1436 
1437 #define EF10_DMA_STAT(ext_name, mcdi_name)			\
1438 	[EF10_STAT_ ## ext_name] =				\
1439 	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1440 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name)		\
1441 	[EF10_STAT_ ## int_name] =				\
1442 	{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1443 #define EF10_OTHER_STAT(ext_name)				\
1444 	[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1445 
1446 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1447 	EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1448 	EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1449 	EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1450 	EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1451 	EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1452 	EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1453 	EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1454 	EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1455 	EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1456 	EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1457 	EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1458 	EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1459 	EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1460 	EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1461 	EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1462 	EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1463 	EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1464 	EF10_OTHER_STAT(port_rx_good_bytes),
1465 	EF10_OTHER_STAT(port_rx_bad_bytes),
1466 	EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1467 	EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1468 	EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1469 	EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1470 	EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1471 	EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1472 	EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1473 	EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1474 	EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1475 	EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1476 	EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1477 	EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1478 	EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1479 	EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1480 	EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1481 	EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1482 	EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1483 	EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1484 	EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1485 	EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1486 	EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1487 	EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1488 	EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
1489 	EFX_GENERIC_SW_STAT(rx_noskb_drops),
1490 	EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1491 	EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1492 	EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1493 	EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1494 	EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1495 	EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1496 	EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1497 	EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1498 	EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1499 	EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1500 	EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1501 	EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1502 	EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1503 	EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1504 	EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1505 	EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1506 	EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1507 	EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1508 	EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1509 	EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1510 	EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1511 	EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1512 	EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1513 	EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1514 	EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1515 	EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1516 	EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1517 	EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1518 	EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1519 	EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1520 	EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS),
1521 	EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS),
1522 	EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0),
1523 	EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1),
1524 	EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2),
1525 	EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3),
1526 	EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK),
1527 	EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS),
1528 	EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL),
1529 	EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL),
1530 	EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL),
1531 	EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL),
1532 	EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL),
1533 	EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL),
1534 	EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL),
1535 	EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK),
1536 	EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK),
1537 	EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK),
1538 	EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS),
1539 	EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK),
1540 	EF10_DMA_STAT(ctpio_poison, CTPIO_POISON),
1541 	EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE),
1542 };
1543 
1544 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |	\
1545 			       (1ULL << EF10_STAT_port_tx_packets) |	\
1546 			       (1ULL << EF10_STAT_port_tx_pause) |	\
1547 			       (1ULL << EF10_STAT_port_tx_unicast) |	\
1548 			       (1ULL << EF10_STAT_port_tx_multicast) |	\
1549 			       (1ULL << EF10_STAT_port_tx_broadcast) |	\
1550 			       (1ULL << EF10_STAT_port_rx_bytes) |	\
1551 			       (1ULL <<                                 \
1552 				EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1553 			       (1ULL << EF10_STAT_port_rx_good_bytes) |	\
1554 			       (1ULL << EF10_STAT_port_rx_bad_bytes) |	\
1555 			       (1ULL << EF10_STAT_port_rx_packets) |	\
1556 			       (1ULL << EF10_STAT_port_rx_good) |	\
1557 			       (1ULL << EF10_STAT_port_rx_bad) |	\
1558 			       (1ULL << EF10_STAT_port_rx_pause) |	\
1559 			       (1ULL << EF10_STAT_port_rx_control) |	\
1560 			       (1ULL << EF10_STAT_port_rx_unicast) |	\
1561 			       (1ULL << EF10_STAT_port_rx_multicast) |	\
1562 			       (1ULL << EF10_STAT_port_rx_broadcast) |	\
1563 			       (1ULL << EF10_STAT_port_rx_lt64) |	\
1564 			       (1ULL << EF10_STAT_port_rx_64) |		\
1565 			       (1ULL << EF10_STAT_port_rx_65_to_127) |	\
1566 			       (1ULL << EF10_STAT_port_rx_128_to_255) |	\
1567 			       (1ULL << EF10_STAT_port_rx_256_to_511) |	\
1568 			       (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1569 			       (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1570 			       (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1571 			       (1ULL << EF10_STAT_port_rx_gtjumbo) |	\
1572 			       (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1573 			       (1ULL << EF10_STAT_port_rx_overflow) |	\
1574 			       (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1575 			       (1ULL << GENERIC_STAT_rx_nodesc_trunc) |	\
1576 			       (1ULL << GENERIC_STAT_rx_noskb_drops))
1577 
1578 /* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1579  * For a 10G/40G switchable port we do not expose these because they might
1580  * not include all the packets they should.
1581  * On 8000 series NICs these statistics are always provided.
1582  */
1583 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |	\
1584 				 (1ULL << EF10_STAT_port_tx_lt64) |	\
1585 				 (1ULL << EF10_STAT_port_tx_64) |	\
1586 				 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1587 				 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1588 				 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1589 				 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1590 				 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1591 				 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1592 
1593 /* These statistics are only provided by the 40G MAC.  For a 10G/40G
1594  * switchable port we do expose these because the errors will otherwise
1595  * be silent.
1596  */
1597 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1598 				  (1ULL << EF10_STAT_port_rx_length_error))
1599 
1600 /* These statistics are only provided if the firmware supports the
1601  * capability PM_AND_RXDP_COUNTERS.
1602  */
1603 #define HUNT_PM_AND_RXDP_STAT_MASK (					\
1604 	(1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |		\
1605 	(1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |		\
1606 	(1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |		\
1607 	(1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |		\
1608 	(1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |			\
1609 	(1ULL << EF10_STAT_port_rx_pm_discard_qbb) |			\
1610 	(1ULL << EF10_STAT_port_rx_pm_discard_mapping) |		\
1611 	(1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |		\
1612 	(1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |		\
1613 	(1ULL << EF10_STAT_port_rx_dp_streaming_packets) |		\
1614 	(1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |			\
1615 	(1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1616 
1617 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
1618  * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
1619  * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1620  * These bits are in the second u64 of the raw mask.
1621  */
1622 #define EF10_FEC_STAT_MASK (						\
1623 	(1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) |		\
1624 	(1ULL << (EF10_STAT_fec_corrected_errors - 64)) |		\
1625 	(1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) |	\
1626 	(1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) |	\
1627 	(1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) |	\
1628 	(1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
1629 
1630 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
1631  * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
1632  * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1633  * These bits are in the second u64 of the raw mask.
1634  */
1635 #define EF10_CTPIO_STAT_MASK (						\
1636 	(1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) |		\
1637 	(1ULL << (EF10_STAT_ctpio_long_write_success - 64)) |		\
1638 	(1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) |		\
1639 	(1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) |		\
1640 	(1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) |		\
1641 	(1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) |			\
1642 	(1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) |		\
1643 	(1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) |		\
1644 	(1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) |		\
1645 	(1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) |		\
1646 	(1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) |		\
1647 	(1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) |		\
1648 	(1ULL << (EF10_STAT_ctpio_success - 64)) |			\
1649 	(1ULL << (EF10_STAT_ctpio_fallback - 64)) |			\
1650 	(1ULL << (EF10_STAT_ctpio_poison - 64)) |			\
1651 	(1ULL << (EF10_STAT_ctpio_erase - 64)))
1652 
1653 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1654 {
1655 	u64 raw_mask = HUNT_COMMON_STAT_MASK;
1656 	u32 port_caps = efx_mcdi_phy_get_caps(efx);
1657 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1658 
1659 	if (!(efx->mcdi->fn_flags &
1660 	      1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1661 		return 0;
1662 
1663 	if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1664 		raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1665 		/* 8000 series have everything even at 40G */
1666 		if (nic_data->datapath_caps2 &
1667 		    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1668 			raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1669 	} else {
1670 		raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1671 	}
1672 
1673 	if (nic_data->datapath_caps &
1674 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1675 		raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1676 
1677 	return raw_mask;
1678 }
1679 
1680 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1681 {
1682 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1683 	u64 raw_mask[2];
1684 
1685 	raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1686 
1687 	/* Only show vadaptor stats when EVB capability is present */
1688 	if (nic_data->datapath_caps &
1689 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1690 		raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1691 		raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1;
1692 	} else {
1693 		raw_mask[1] = 0;
1694 	}
1695 	/* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
1696 	if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2)
1697 		raw_mask[1] |= EF10_FEC_STAT_MASK;
1698 
1699 	/* CTPIO stats appear in V3. Only show them on devices that actually
1700 	 * support CTPIO. Although this driver doesn't use CTPIO others might,
1701 	 * and we may be reporting the stats for the underlying port.
1702 	 */
1703 	if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 &&
1704 	    (nic_data->datapath_caps2 &
1705 	     (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN)))
1706 		raw_mask[1] |= EF10_CTPIO_STAT_MASK;
1707 
1708 #if BITS_PER_LONG == 64
1709 	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1710 	mask[0] = raw_mask[0];
1711 	mask[1] = raw_mask[1];
1712 #else
1713 	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1714 	mask[0] = raw_mask[0] & 0xffffffff;
1715 	mask[1] = raw_mask[0] >> 32;
1716 	mask[2] = raw_mask[1] & 0xffffffff;
1717 #endif
1718 }
1719 
1720 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1721 {
1722 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1723 
1724 	efx_ef10_get_stat_mask(efx, mask);
1725 	return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1726 				      mask, names);
1727 }
1728 
1729 static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1730 					   struct rtnl_link_stats64 *core_stats)
1731 {
1732 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1733 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1734 	u64 *stats = nic_data->stats;
1735 	size_t stats_count = 0, index;
1736 
1737 	efx_ef10_get_stat_mask(efx, mask);
1738 
1739 	if (full_stats) {
1740 		for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1741 			if (efx_ef10_stat_desc[index].name) {
1742 				*full_stats++ = stats[index];
1743 				++stats_count;
1744 			}
1745 		}
1746 	}
1747 
1748 	if (!core_stats)
1749 		return stats_count;
1750 
1751 	if (nic_data->datapath_caps &
1752 			1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1753 		/* Use vadaptor stats. */
1754 		core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1755 					 stats[EF10_STAT_rx_multicast] +
1756 					 stats[EF10_STAT_rx_broadcast];
1757 		core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1758 					 stats[EF10_STAT_tx_multicast] +
1759 					 stats[EF10_STAT_tx_broadcast];
1760 		core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1761 				       stats[EF10_STAT_rx_multicast_bytes] +
1762 				       stats[EF10_STAT_rx_broadcast_bytes];
1763 		core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1764 				       stats[EF10_STAT_tx_multicast_bytes] +
1765 				       stats[EF10_STAT_tx_broadcast_bytes];
1766 		core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1767 					 stats[GENERIC_STAT_rx_noskb_drops];
1768 		core_stats->multicast = stats[EF10_STAT_rx_multicast];
1769 		core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1770 		core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1771 		core_stats->rx_errors = core_stats->rx_crc_errors;
1772 		core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1773 	} else {
1774 		/* Use port stats. */
1775 		core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1776 		core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1777 		core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1778 		core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1779 		core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1780 					 stats[GENERIC_STAT_rx_nodesc_trunc] +
1781 					 stats[GENERIC_STAT_rx_noskb_drops];
1782 		core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1783 		core_stats->rx_length_errors =
1784 				stats[EF10_STAT_port_rx_gtjumbo] +
1785 				stats[EF10_STAT_port_rx_length_error];
1786 		core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1787 		core_stats->rx_frame_errors =
1788 				stats[EF10_STAT_port_rx_align_error];
1789 		core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1790 		core_stats->rx_errors = (core_stats->rx_length_errors +
1791 					 core_stats->rx_crc_errors +
1792 					 core_stats->rx_frame_errors);
1793 	}
1794 
1795 	return stats_count;
1796 }
1797 
1798 static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1799 				       struct rtnl_link_stats64 *core_stats)
1800 {
1801 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1802 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1803 	u64 *stats = nic_data->stats;
1804 
1805 	efx_ef10_get_stat_mask(efx, mask);
1806 
1807 	efx_nic_copy_stats(efx, nic_data->mc_stats);
1808 	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1809 			     mask, stats, nic_data->mc_stats, false);
1810 
1811 	/* Update derived statistics */
1812 	efx_nic_fix_nodesc_drop_stat(efx,
1813 				     &stats[EF10_STAT_port_rx_nodesc_drops]);
1814 	/* MC Firmware reads RX_BYTES and RX_GOOD_BYTES from the MAC.
1815 	 * It then calculates RX_BAD_BYTES and DMAs it to us with RX_BYTES.
1816 	 * We report these as port_rx_ stats. We are not given RX_GOOD_BYTES.
1817 	 * Here we calculate port_rx_good_bytes.
1818 	 */
1819 	stats[EF10_STAT_port_rx_good_bytes] =
1820 		stats[EF10_STAT_port_rx_bytes] -
1821 		stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1822 
1823 	/* The asynchronous reads used to calculate RX_BAD_BYTES in
1824 	 * MC Firmware are done such that we should not see an increase in
1825 	 * RX_BAD_BYTES when a good packet has arrived. Unfortunately this
1826 	 * does mean that the stat can decrease at times. Here we do not
1827 	 * update the stat unless it has increased or has gone to zero
1828 	 * (In the case of the NIC rebooting).
1829 	 * Please see Bug 33781 for a discussion of why things work this way.
1830 	 */
1831 	efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1832 			     stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1833 	efx_update_sw_stats(efx, stats);
1834 
1835 	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1836 }
1837 
1838 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1839 	__must_hold(&efx->stats_lock)
1840 {
1841 	MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1842 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1843 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1844 	__le64 generation_start, generation_end;
1845 	u64 *stats = nic_data->stats;
1846 	u32 dma_len = efx->num_mac_stats * sizeof(u64);
1847 	struct efx_buffer stats_buf;
1848 	__le64 *dma_stats;
1849 	int rc;
1850 
1851 	spin_unlock_bh(&efx->stats_lock);
1852 
1853 	if (in_interrupt()) {
1854 		/* If in atomic context, cannot update stats.  Just update the
1855 		 * software stats and return so the caller can continue.
1856 		 */
1857 		spin_lock_bh(&efx->stats_lock);
1858 		efx_update_sw_stats(efx, stats);
1859 		return 0;
1860 	}
1861 
1862 	efx_ef10_get_stat_mask(efx, mask);
1863 
1864 	rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
1865 	if (rc) {
1866 		spin_lock_bh(&efx->stats_lock);
1867 		return rc;
1868 	}
1869 
1870 	dma_stats = stats_buf.addr;
1871 	dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID;
1872 
1873 	MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1874 	MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1875 			      MAC_STATS_IN_DMA, 1);
1876 	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1877 	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1878 
1879 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1880 				NULL, 0, NULL);
1881 	spin_lock_bh(&efx->stats_lock);
1882 	if (rc) {
1883 		/* Expect ENOENT if DMA queues have not been set up */
1884 		if (rc != -ENOENT || atomic_read(&efx->active_queues))
1885 			efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1886 					       sizeof(inbuf), NULL, 0, rc);
1887 		goto out;
1888 	}
1889 
1890 	generation_end = dma_stats[efx->num_mac_stats - 1];
1891 	if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1892 		WARN_ON_ONCE(1);
1893 		goto out;
1894 	}
1895 	rmb();
1896 	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1897 			     stats, stats_buf.addr, false);
1898 	rmb();
1899 	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1900 	if (generation_end != generation_start) {
1901 		rc = -EAGAIN;
1902 		goto out;
1903 	}
1904 
1905 	efx_update_sw_stats(efx, stats);
1906 out:
1907 	efx_nic_free_buffer(efx, &stats_buf);
1908 	return rc;
1909 }
1910 
1911 static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1912 				       struct rtnl_link_stats64 *core_stats)
1913 {
1914 	if (efx_ef10_try_update_nic_stats_vf(efx))
1915 		return 0;
1916 
1917 	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1918 }
1919 
1920 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1921 {
1922 	struct efx_nic *efx = channel->efx;
1923 	unsigned int mode, usecs;
1924 	efx_dword_t timer_cmd;
1925 
1926 	if (channel->irq_moderation_us) {
1927 		mode = 3;
1928 		usecs = channel->irq_moderation_us;
1929 	} else {
1930 		mode = 0;
1931 		usecs = 0;
1932 	}
1933 
1934 	if (EFX_EF10_WORKAROUND_61265(efx)) {
1935 		MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
1936 		unsigned int ns = usecs * 1000;
1937 
1938 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
1939 			       channel->channel);
1940 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
1941 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
1942 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
1943 
1944 		efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
1945 				   inbuf, sizeof(inbuf), 0, NULL, 0);
1946 	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
1947 		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1948 
1949 		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1950 				     EFE_DD_EVQ_IND_TIMER_FLAGS,
1951 				     ERF_DD_EVQ_IND_TIMER_MODE, mode,
1952 				     ERF_DD_EVQ_IND_TIMER_VAL, ticks);
1953 		efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1954 				channel->channel);
1955 	} else {
1956 		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1957 
1958 		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1959 				     ERF_DZ_TC_TIMER_VAL, ticks,
1960 				     ERF_FZ_TC_TMR_REL_VAL, ticks);
1961 		efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1962 				channel->channel);
1963 	}
1964 }
1965 
1966 static void efx_ef10_get_wol_vf(struct efx_nic *efx,
1967 				struct ethtool_wolinfo *wol) {}
1968 
1969 static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
1970 {
1971 	return -EOPNOTSUPP;
1972 }
1973 
1974 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1975 {
1976 	wol->supported = 0;
1977 	wol->wolopts = 0;
1978 	memset(&wol->sopass, 0, sizeof(wol->sopass));
1979 }
1980 
1981 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1982 {
1983 	if (type != 0)
1984 		return -EINVAL;
1985 	return 0;
1986 }
1987 
1988 static void efx_ef10_mcdi_request(struct efx_nic *efx,
1989 				  const efx_dword_t *hdr, size_t hdr_len,
1990 				  const efx_dword_t *sdu, size_t sdu_len)
1991 {
1992 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1993 	u8 *pdu = nic_data->mcdi_buf.addr;
1994 
1995 	memcpy(pdu, hdr, hdr_len);
1996 	memcpy(pdu + hdr_len, sdu, sdu_len);
1997 	wmb();
1998 
1999 	/* The hardware provides 'low' and 'high' (doorbell) registers
2000 	 * for passing the 64-bit address of an MCDI request to
2001 	 * firmware.  However the dwords are swapped by firmware.  The
2002 	 * least significant bits of the doorbell are then 0 for all
2003 	 * MCDI requests due to alignment.
2004 	 */
2005 	_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
2006 		    ER_DZ_MC_DB_LWRD);
2007 	_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
2008 		    ER_DZ_MC_DB_HWRD);
2009 }
2010 
2011 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
2012 {
2013 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2014 	const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
2015 
2016 	rmb();
2017 	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2018 }
2019 
2020 static void
2021 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2022 			    size_t offset, size_t outlen)
2023 {
2024 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2025 	const u8 *pdu = nic_data->mcdi_buf.addr;
2026 
2027 	memcpy(outbuf, pdu + offset, outlen);
2028 }
2029 
2030 static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2031 {
2032 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2033 
2034 	/* All our allocations have been reset */
2035 	efx_ef10_table_reset_mc_allocations(efx);
2036 
2037 	/* The datapath firmware might have been changed */
2038 	nic_data->must_check_datapath_caps = true;
2039 
2040 	/* MAC statistics have been cleared on the NIC; clear the local
2041 	 * statistic that we update with efx_update_diff_stat().
2042 	 */
2043 	nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2044 }
2045 
2046 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2047 {
2048 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2049 	int rc;
2050 
2051 	rc = efx_ef10_get_warm_boot_count(efx);
2052 	if (rc < 0) {
2053 		/* The firmware is presumably in the process of
2054 		 * rebooting.  However, we are supposed to report each
2055 		 * reboot just once, so we must only do that once we
2056 		 * can read and store the updated warm boot count.
2057 		 */
2058 		return 0;
2059 	}
2060 
2061 	if (rc == nic_data->warm_boot_count)
2062 		return 0;
2063 
2064 	nic_data->warm_boot_count = rc;
2065 	efx_ef10_mcdi_reboot_detected(efx);
2066 
2067 	return -EIO;
2068 }
2069 
2070 /* Handle an MSI interrupt
2071  *
2072  * Handle an MSI hardware interrupt.  This routine schedules event
2073  * queue processing.  No interrupt acknowledgement cycle is necessary.
2074  * Also, we never need to check that the interrupt is for us, since
2075  * MSI interrupts cannot be shared.
2076  */
2077 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2078 {
2079 	struct efx_msi_context *context = dev_id;
2080 	struct efx_nic *efx = context->efx;
2081 
2082 	netif_vdbg(efx, intr, efx->net_dev,
2083 		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2084 
2085 	if (likely(READ_ONCE(efx->irq_soft_enabled))) {
2086 		/* Note test interrupts */
2087 		if (context->index == efx->irq_level)
2088 			efx->last_irq_cpu = raw_smp_processor_id();
2089 
2090 		/* Schedule processing of the channel */
2091 		efx_schedule_channel_irq(efx->channel[context->index]);
2092 	}
2093 
2094 	return IRQ_HANDLED;
2095 }
2096 
2097 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2098 {
2099 	struct efx_nic *efx = dev_id;
2100 	bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
2101 	struct efx_channel *channel;
2102 	efx_dword_t reg;
2103 	u32 queues;
2104 
2105 	/* Read the ISR which also ACKs the interrupts */
2106 	efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
2107 	queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2108 
2109 	if (queues == 0)
2110 		return IRQ_NONE;
2111 
2112 	if (likely(soft_enabled)) {
2113 		/* Note test interrupts */
2114 		if (queues & (1U << efx->irq_level))
2115 			efx->last_irq_cpu = raw_smp_processor_id();
2116 
2117 		efx_for_each_channel(channel, efx) {
2118 			if (queues & 1)
2119 				efx_schedule_channel_irq(channel);
2120 			queues >>= 1;
2121 		}
2122 	}
2123 
2124 	netif_vdbg(efx, intr, efx->net_dev,
2125 		   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2126 		   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2127 
2128 	return IRQ_HANDLED;
2129 }
2130 
2131 static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2132 {
2133 	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2134 
2135 	if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2136 				    NULL) == 0)
2137 		return -ENOTSUPP;
2138 
2139 	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2140 
2141 	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2142 	return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2143 			    inbuf, sizeof(inbuf), NULL, 0, NULL);
2144 }
2145 
2146 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2147 {
2148 	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
2149 				    (tx_queue->ptr_mask + 1) *
2150 				    sizeof(efx_qword_t),
2151 				    GFP_KERNEL);
2152 }
2153 
2154 /* This writes to the TX_DESC_WPTR and also pushes data */
2155 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2156 					 const efx_qword_t *txd)
2157 {
2158 	unsigned int write_ptr;
2159 	efx_oword_t reg;
2160 
2161 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2162 	EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2163 	reg.qword[0] = *txd;
2164 	efx_writeo_page(tx_queue->efx, &reg,
2165 			ER_DZ_TX_DESC_UPD, tx_queue->queue);
2166 }
2167 
2168 /* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2169  */
2170 static int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue,
2171 				struct sk_buff *skb,
2172 				bool *data_mapped)
2173 {
2174 	struct efx_tx_buffer *buffer;
2175 	struct tcphdr *tcp;
2176 	struct iphdr *ip;
2177 
2178 	u16 ipv4_id;
2179 	u32 seqnum;
2180 	u32 mss;
2181 
2182 	EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2183 
2184 	mss = skb_shinfo(skb)->gso_size;
2185 
2186 	if (unlikely(mss < 4)) {
2187 		WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2188 		return -EINVAL;
2189 	}
2190 
2191 	ip = ip_hdr(skb);
2192 	if (ip->version == 4) {
2193 		/* Modify IPv4 header if needed. */
2194 		ip->tot_len = 0;
2195 		ip->check = 0;
2196 		ipv4_id = ntohs(ip->id);
2197 	} else {
2198 		/* Modify IPv6 header if needed. */
2199 		struct ipv6hdr *ipv6 = ipv6_hdr(skb);
2200 
2201 		ipv6->payload_len = 0;
2202 		ipv4_id = 0;
2203 	}
2204 
2205 	tcp = tcp_hdr(skb);
2206 	seqnum = ntohl(tcp->seq);
2207 
2208 	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2209 
2210 	buffer->flags = EFX_TX_BUF_OPTION;
2211 	buffer->len = 0;
2212 	buffer->unmap_len = 0;
2213 	EFX_POPULATE_QWORD_5(buffer->option,
2214 			ESF_DZ_TX_DESC_IS_OPT, 1,
2215 			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2216 			ESF_DZ_TX_TSO_OPTION_TYPE,
2217 			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2218 			ESF_DZ_TX_TSO_IP_ID, ipv4_id,
2219 			ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2220 			);
2221 	++tx_queue->insert_count;
2222 
2223 	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2224 
2225 	buffer->flags = EFX_TX_BUF_OPTION;
2226 	buffer->len = 0;
2227 	buffer->unmap_len = 0;
2228 	EFX_POPULATE_QWORD_4(buffer->option,
2229 			ESF_DZ_TX_DESC_IS_OPT, 1,
2230 			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2231 			ESF_DZ_TX_TSO_OPTION_TYPE,
2232 			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
2233 			ESF_DZ_TX_TSO_TCP_MSS, mss
2234 			);
2235 	++tx_queue->insert_count;
2236 
2237 	return 0;
2238 }
2239 
2240 static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2241 {
2242 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2243 	u32 tso_versions = 0;
2244 
2245 	if (nic_data->datapath_caps &
2246 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2247 		tso_versions |= BIT(1);
2248 	if (nic_data->datapath_caps2 &
2249 	    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2250 		tso_versions |= BIT(2);
2251 	return tso_versions;
2252 }
2253 
2254 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2255 {
2256 	bool csum_offload = tx_queue->label & EFX_TXQ_TYPE_OFFLOAD;
2257 	struct efx_channel *channel = tx_queue->channel;
2258 	struct efx_nic *efx = tx_queue->efx;
2259 	struct efx_ef10_nic_data *nic_data;
2260 	bool tso_v2 = false;
2261 	efx_qword_t *txd;
2262 	int rc;
2263 
2264 	nic_data = efx->nic_data;
2265 
2266 	/* Only attempt to enable TX timestamping if we have the license for it,
2267 	 * otherwise TXQ init will fail
2268 	 */
2269 	if (!(nic_data->licensed_features &
2270 	      (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) {
2271 		tx_queue->timestamping = false;
2272 		/* Disable sync events on this channel. */
2273 		if (efx->type->ptp_set_ts_sync_events)
2274 			efx->type->ptp_set_ts_sync_events(efx, false, false);
2275 	}
2276 
2277 	/* TSOv2 is a limited resource that can only be configured on a limited
2278 	 * number of queues. TSO without checksum offload is not really a thing,
2279 	 * so we only enable it for those queues.
2280 	 * TSOv2 cannot be used with Hardware timestamping, and is never needed
2281 	 * for XDP tx.
2282 	 */
2283 	if (csum_offload && (nic_data->datapath_caps2 &
2284 			(1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN)) &&
2285 	    !tx_queue->timestamping && !tx_queue->xdp_tx) {
2286 		tso_v2 = true;
2287 		netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2288 				channel->channel);
2289 	}
2290 
2291 	rc = efx_mcdi_tx_init(tx_queue, tso_v2);
2292 	if (rc)
2293 		goto fail;
2294 
2295 	/* A previous user of this TX queue might have set us up the
2296 	 * bomb by writing a descriptor to the TX push collector but
2297 	 * not the doorbell.  (Each collector belongs to a port, not a
2298 	 * queue or function, so cannot easily be reset.)  We must
2299 	 * attempt to push a no-op descriptor in its place.
2300 	 */
2301 	tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2302 	tx_queue->insert_count = 1;
2303 	txd = efx_tx_desc(tx_queue, 0);
2304 	EFX_POPULATE_QWORD_5(*txd,
2305 			     ESF_DZ_TX_DESC_IS_OPT, true,
2306 			     ESF_DZ_TX_OPTION_TYPE,
2307 			     ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2308 			     ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2309 			     ESF_DZ_TX_OPTION_IP_CSUM, csum_offload,
2310 			     ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping);
2311 	tx_queue->write_count = 1;
2312 
2313 	if (tso_v2) {
2314 		tx_queue->handle_tso = efx_ef10_tx_tso_desc;
2315 		tx_queue->tso_version = 2;
2316 	} else if (nic_data->datapath_caps &
2317 			(1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
2318 		tx_queue->tso_version = 1;
2319 	}
2320 
2321 	wmb();
2322 	efx_ef10_push_tx_desc(tx_queue, txd);
2323 
2324 	return;
2325 
2326 fail:
2327 	netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2328 		    tx_queue->queue);
2329 }
2330 
2331 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2332 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2333 {
2334 	unsigned int write_ptr;
2335 	efx_dword_t reg;
2336 
2337 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2338 	EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2339 	efx_writed_page(tx_queue->efx, &reg,
2340 			ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2341 }
2342 
2343 #define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2344 
2345 static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2346 					  dma_addr_t dma_addr, unsigned int len)
2347 {
2348 	if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2349 		/* If we need to break across multiple descriptors we should
2350 		 * stop at a page boundary. This assumes the length limit is
2351 		 * greater than the page size.
2352 		 */
2353 		dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2354 
2355 		BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2356 		len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2357 	}
2358 
2359 	return len;
2360 }
2361 
2362 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2363 {
2364 	unsigned int old_write_count = tx_queue->write_count;
2365 	struct efx_tx_buffer *buffer;
2366 	unsigned int write_ptr;
2367 	efx_qword_t *txd;
2368 
2369 	tx_queue->xmit_more_available = false;
2370 	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2371 		return;
2372 
2373 	do {
2374 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2375 		buffer = &tx_queue->buffer[write_ptr];
2376 		txd = efx_tx_desc(tx_queue, write_ptr);
2377 		++tx_queue->write_count;
2378 
2379 		/* Create TX descriptor ring entry */
2380 		if (buffer->flags & EFX_TX_BUF_OPTION) {
2381 			*txd = buffer->option;
2382 			if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2383 				/* PIO descriptor */
2384 				tx_queue->packet_write_count = tx_queue->write_count;
2385 		} else {
2386 			tx_queue->packet_write_count = tx_queue->write_count;
2387 			BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2388 			EFX_POPULATE_QWORD_3(
2389 				*txd,
2390 				ESF_DZ_TX_KER_CONT,
2391 				buffer->flags & EFX_TX_BUF_CONT,
2392 				ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2393 				ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2394 		}
2395 	} while (tx_queue->write_count != tx_queue->insert_count);
2396 
2397 	wmb(); /* Ensure descriptors are written before they are fetched */
2398 
2399 	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2400 		txd = efx_tx_desc(tx_queue,
2401 				  old_write_count & tx_queue->ptr_mask);
2402 		efx_ef10_push_tx_desc(tx_queue, txd);
2403 		++tx_queue->pushes;
2404 	} else {
2405 		efx_ef10_notify_tx_desc(tx_queue);
2406 	}
2407 }
2408 
2409 static int efx_ef10_probe_multicast_chaining(struct efx_nic *efx)
2410 {
2411 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2412 	unsigned int enabled, implemented;
2413 	bool want_workaround_26807;
2414 	int rc;
2415 
2416 	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
2417 	if (rc == -ENOSYS) {
2418 		/* GET_WORKAROUNDS was implemented before this workaround,
2419 		 * thus it must be unavailable in this firmware.
2420 		 */
2421 		nic_data->workaround_26807 = false;
2422 		return 0;
2423 	}
2424 	if (rc)
2425 		return rc;
2426 	want_workaround_26807 =
2427 		implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807;
2428 	nic_data->workaround_26807 =
2429 		!!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
2430 
2431 	if (want_workaround_26807 && !nic_data->workaround_26807) {
2432 		unsigned int flags;
2433 
2434 		rc = efx_mcdi_set_workaround(efx,
2435 					     MC_CMD_WORKAROUND_BUG26807,
2436 					     true, &flags);
2437 		if (!rc) {
2438 			if (flags &
2439 			    1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
2440 				netif_info(efx, drv, efx->net_dev,
2441 					   "other functions on NIC have been reset\n");
2442 
2443 				/* With MCFW v4.6.x and earlier, the
2444 				 * boot count will have incremented,
2445 				 * so re-read the warm_boot_count
2446 				 * value now to ensure this function
2447 				 * doesn't think it has changed next
2448 				 * time it checks.
2449 				 */
2450 				rc = efx_ef10_get_warm_boot_count(efx);
2451 				if (rc >= 0) {
2452 					nic_data->warm_boot_count = rc;
2453 					rc = 0;
2454 				}
2455 			}
2456 			nic_data->workaround_26807 = true;
2457 		} else if (rc == -EPERM) {
2458 			rc = 0;
2459 		}
2460 	}
2461 	return rc;
2462 }
2463 
2464 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
2465 {
2466 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2467 	int rc = efx_ef10_probe_multicast_chaining(efx);
2468 	struct efx_mcdi_filter_vlan *vlan;
2469 
2470 	if (rc)
2471 		return rc;
2472 	rc = efx_mcdi_filter_table_probe(efx, nic_data->workaround_26807);
2473 
2474 	if (rc)
2475 		return rc;
2476 
2477 	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
2478 		rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
2479 		if (rc)
2480 			goto fail_add_vlan;
2481 	}
2482 	return 0;
2483 
2484 fail_add_vlan:
2485 	efx_mcdi_filter_table_remove(efx);
2486 	return rc;
2487 }
2488 
2489 /* This creates an entry in the RX descriptor queue */
2490 static inline void
2491 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2492 {
2493 	struct efx_rx_buffer *rx_buf;
2494 	efx_qword_t *rxd;
2495 
2496 	rxd = efx_rx_desc(rx_queue, index);
2497 	rx_buf = efx_rx_buffer(rx_queue, index);
2498 	EFX_POPULATE_QWORD_2(*rxd,
2499 			     ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2500 			     ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2501 }
2502 
2503 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2504 {
2505 	struct efx_nic *efx = rx_queue->efx;
2506 	unsigned int write_count;
2507 	efx_dword_t reg;
2508 
2509 	/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2510 	write_count = rx_queue->added_count & ~7;
2511 	if (rx_queue->notified_count == write_count)
2512 		return;
2513 
2514 	do
2515 		efx_ef10_build_rx_desc(
2516 			rx_queue,
2517 			rx_queue->notified_count & rx_queue->ptr_mask);
2518 	while (++rx_queue->notified_count != write_count);
2519 
2520 	wmb();
2521 	EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2522 			     write_count & rx_queue->ptr_mask);
2523 	efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
2524 			efx_rx_queue_index(rx_queue));
2525 }
2526 
2527 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2528 
2529 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2530 {
2531 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2532 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2533 	efx_qword_t event;
2534 
2535 	EFX_POPULATE_QWORD_2(event,
2536 			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2537 			     ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2538 
2539 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2540 
2541 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2542 	 * already swapped the data to little-endian order.
2543 	 */
2544 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2545 	       sizeof(efx_qword_t));
2546 
2547 	efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2548 			   inbuf, sizeof(inbuf), 0,
2549 			   efx_ef10_rx_defer_refill_complete, 0);
2550 }
2551 
2552 static void
2553 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2554 				  int rc, efx_dword_t *outbuf,
2555 				  size_t outlen_actual)
2556 {
2557 	/* nothing to do */
2558 }
2559 
2560 static int efx_ef10_ev_init(struct efx_channel *channel)
2561 {
2562 	struct efx_nic *efx = channel->efx;
2563 	struct efx_ef10_nic_data *nic_data;
2564 	bool use_v2, cut_thru;
2565 
2566 	nic_data = efx->nic_data;
2567 	use_v2 = nic_data->datapath_caps2 &
2568 			    1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN;
2569 	cut_thru = !(nic_data->datapath_caps &
2570 			      1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2571 	return efx_mcdi_ev_init(channel, cut_thru, use_v2);
2572 }
2573 
2574 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
2575 					   unsigned int rx_queue_label)
2576 {
2577 	struct efx_nic *efx = rx_queue->efx;
2578 
2579 	netif_info(efx, hw, efx->net_dev,
2580 		   "rx event arrived on queue %d labeled as queue %u\n",
2581 		   efx_rx_queue_index(rx_queue), rx_queue_label);
2582 
2583 	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2584 }
2585 
2586 static void
2587 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
2588 			     unsigned int actual, unsigned int expected)
2589 {
2590 	unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
2591 	struct efx_nic *efx = rx_queue->efx;
2592 
2593 	netif_info(efx, hw, efx->net_dev,
2594 		   "dropped %d events (index=%d expected=%d)\n",
2595 		   dropped, actual, expected);
2596 
2597 	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2598 }
2599 
2600 /* partially received RX was aborted. clean up. */
2601 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
2602 {
2603 	unsigned int rx_desc_ptr;
2604 
2605 	netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
2606 		  "scattered RX aborted (dropping %u buffers)\n",
2607 		  rx_queue->scatter_n);
2608 
2609 	rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
2610 
2611 	efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
2612 		      0, EFX_RX_PKT_DISCARD);
2613 
2614 	rx_queue->removed_count += rx_queue->scatter_n;
2615 	rx_queue->scatter_n = 0;
2616 	rx_queue->scatter_len = 0;
2617 	++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
2618 }
2619 
2620 static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
2621 					   unsigned int n_packets,
2622 					   unsigned int rx_encap_hdr,
2623 					   unsigned int rx_l3_class,
2624 					   unsigned int rx_l4_class,
2625 					   const efx_qword_t *event)
2626 {
2627 	struct efx_nic *efx = channel->efx;
2628 	bool handled = false;
2629 
2630 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
2631 		if (!(efx->net_dev->features & NETIF_F_RXALL)) {
2632 			if (!efx->loopback_selftest)
2633 				channel->n_rx_eth_crc_err += n_packets;
2634 			return EFX_RX_PKT_DISCARD;
2635 		}
2636 		handled = true;
2637 	}
2638 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
2639 		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2640 			     rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2641 			     rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2642 			     rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2643 			     rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2644 			netdev_WARN(efx->net_dev,
2645 				    "invalid class for RX_IPCKSUM_ERR: event="
2646 				    EFX_QWORD_FMT "\n",
2647 				    EFX_QWORD_VAL(*event));
2648 		if (!efx->loopback_selftest)
2649 			*(rx_encap_hdr ?
2650 			  &channel->n_rx_outer_ip_hdr_chksum_err :
2651 			  &channel->n_rx_ip_hdr_chksum_err) += n_packets;
2652 		return 0;
2653 	}
2654 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
2655 		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2656 			     ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2657 			       rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2658 			      (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2659 			       rx_l4_class != ESE_FZ_L4_CLASS_UDP))))
2660 			netdev_WARN(efx->net_dev,
2661 				    "invalid class for RX_TCPUDP_CKSUM_ERR: event="
2662 				    EFX_QWORD_FMT "\n",
2663 				    EFX_QWORD_VAL(*event));
2664 		if (!efx->loopback_selftest)
2665 			*(rx_encap_hdr ?
2666 			  &channel->n_rx_outer_tcp_udp_chksum_err :
2667 			  &channel->n_rx_tcp_udp_chksum_err) += n_packets;
2668 		return 0;
2669 	}
2670 	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
2671 		if (unlikely(!rx_encap_hdr))
2672 			netdev_WARN(efx->net_dev,
2673 				    "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
2674 				    EFX_QWORD_FMT "\n",
2675 				    EFX_QWORD_VAL(*event));
2676 		else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2677 				  rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2678 				  rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2679 				  rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2680 			netdev_WARN(efx->net_dev,
2681 				    "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
2682 				    EFX_QWORD_FMT "\n",
2683 				    EFX_QWORD_VAL(*event));
2684 		if (!efx->loopback_selftest)
2685 			channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
2686 		return 0;
2687 	}
2688 	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
2689 		if (unlikely(!rx_encap_hdr))
2690 			netdev_WARN(efx->net_dev,
2691 				    "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2692 				    EFX_QWORD_FMT "\n",
2693 				    EFX_QWORD_VAL(*event));
2694 		else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2695 				   rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2696 				  (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2697 				   rx_l4_class != ESE_FZ_L4_CLASS_UDP)))
2698 			netdev_WARN(efx->net_dev,
2699 				    "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2700 				    EFX_QWORD_FMT "\n",
2701 				    EFX_QWORD_VAL(*event));
2702 		if (!efx->loopback_selftest)
2703 			channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
2704 		return 0;
2705 	}
2706 
2707 	WARN_ON(!handled); /* No error bits were recognised */
2708 	return 0;
2709 }
2710 
2711 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
2712 				    const efx_qword_t *event)
2713 {
2714 	unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
2715 	unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
2716 	unsigned int n_descs, n_packets, i;
2717 	struct efx_nic *efx = channel->efx;
2718 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2719 	struct efx_rx_queue *rx_queue;
2720 	efx_qword_t errors;
2721 	bool rx_cont;
2722 	u16 flags = 0;
2723 
2724 	if (unlikely(READ_ONCE(efx->reset_pending)))
2725 		return 0;
2726 
2727 	/* Basic packet information */
2728 	rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
2729 	next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
2730 	rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
2731 	rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
2732 	rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS);
2733 	rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
2734 	rx_encap_hdr =
2735 		nic_data->datapath_caps &
2736 			(1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
2737 		EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
2738 		ESE_EZ_ENCAP_HDR_NONE;
2739 
2740 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
2741 		netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
2742 			    EFX_QWORD_FMT "\n",
2743 			    EFX_QWORD_VAL(*event));
2744 
2745 	rx_queue = efx_channel_get_rx_queue(channel);
2746 
2747 	if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
2748 		efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
2749 
2750 	n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
2751 		   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2752 
2753 	if (n_descs != rx_queue->scatter_n + 1) {
2754 		struct efx_ef10_nic_data *nic_data = efx->nic_data;
2755 
2756 		/* detect rx abort */
2757 		if (unlikely(n_descs == rx_queue->scatter_n)) {
2758 			if (rx_queue->scatter_n == 0 || rx_bytes != 0)
2759 				netdev_WARN(efx->net_dev,
2760 					    "invalid RX abort: scatter_n=%u event="
2761 					    EFX_QWORD_FMT "\n",
2762 					    rx_queue->scatter_n,
2763 					    EFX_QWORD_VAL(*event));
2764 			efx_ef10_handle_rx_abort(rx_queue);
2765 			return 0;
2766 		}
2767 
2768 		/* Check that RX completion merging is valid, i.e.
2769 		 * the current firmware supports it and this is a
2770 		 * non-scattered packet.
2771 		 */
2772 		if (!(nic_data->datapath_caps &
2773 		      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
2774 		    rx_queue->scatter_n != 0 || rx_cont) {
2775 			efx_ef10_handle_rx_bad_lbits(
2776 				rx_queue, next_ptr_lbits,
2777 				(rx_queue->removed_count +
2778 				 rx_queue->scatter_n + 1) &
2779 				((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2780 			return 0;
2781 		}
2782 
2783 		/* Merged completion for multiple non-scattered packets */
2784 		rx_queue->scatter_n = 1;
2785 		rx_queue->scatter_len = 0;
2786 		n_packets = n_descs;
2787 		++channel->n_rx_merge_events;
2788 		channel->n_rx_merge_packets += n_packets;
2789 		flags |= EFX_RX_PKT_PREFIX_LEN;
2790 	} else {
2791 		++rx_queue->scatter_n;
2792 		rx_queue->scatter_len += rx_bytes;
2793 		if (rx_cont)
2794 			return 0;
2795 		n_packets = 1;
2796 	}
2797 
2798 	EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
2799 				     ESF_DZ_RX_IPCKSUM_ERR, 1,
2800 				     ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
2801 				     ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
2802 				     ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
2803 	EFX_AND_QWORD(errors, *event, errors);
2804 	if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
2805 		flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
2806 							 rx_encap_hdr,
2807 							 rx_l3_class, rx_l4_class,
2808 							 event);
2809 	} else {
2810 		bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP ||
2811 			      rx_l4_class == ESE_FZ_L4_CLASS_UDP;
2812 
2813 		switch (rx_encap_hdr) {
2814 		case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
2815 			flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
2816 			if (tcpudp)
2817 				flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
2818 			break;
2819 		case ESE_EZ_ENCAP_HDR_GRE:
2820 		case ESE_EZ_ENCAP_HDR_NONE:
2821 			if (tcpudp)
2822 				flags |= EFX_RX_PKT_CSUMMED;
2823 			break;
2824 		default:
2825 			netdev_WARN(efx->net_dev,
2826 				    "unknown encapsulation type: event="
2827 				    EFX_QWORD_FMT "\n",
2828 				    EFX_QWORD_VAL(*event));
2829 		}
2830 	}
2831 
2832 	if (rx_l4_class == ESE_FZ_L4_CLASS_TCP)
2833 		flags |= EFX_RX_PKT_TCP;
2834 
2835 	channel->irq_mod_score += 2 * n_packets;
2836 
2837 	/* Handle received packet(s) */
2838 	for (i = 0; i < n_packets; i++) {
2839 		efx_rx_packet(rx_queue,
2840 			      rx_queue->removed_count & rx_queue->ptr_mask,
2841 			      rx_queue->scatter_n, rx_queue->scatter_len,
2842 			      flags);
2843 		rx_queue->removed_count += rx_queue->scatter_n;
2844 	}
2845 
2846 	rx_queue->scatter_n = 0;
2847 	rx_queue->scatter_len = 0;
2848 
2849 	return n_packets;
2850 }
2851 
2852 static u32 efx_ef10_extract_event_ts(efx_qword_t *event)
2853 {
2854 	u32 tstamp;
2855 
2856 	tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI);
2857 	tstamp <<= 16;
2858 	tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO);
2859 
2860 	return tstamp;
2861 }
2862 
2863 static void
2864 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
2865 {
2866 	struct efx_nic *efx = channel->efx;
2867 	struct efx_tx_queue *tx_queue;
2868 	unsigned int tx_ev_desc_ptr;
2869 	unsigned int tx_ev_q_label;
2870 	unsigned int tx_ev_type;
2871 	u64 ts_part;
2872 
2873 	if (unlikely(READ_ONCE(efx->reset_pending)))
2874 		return;
2875 
2876 	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
2877 		return;
2878 
2879 	/* Get the transmit queue */
2880 	tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
2881 	tx_queue = efx_channel_get_tx_queue(channel,
2882 					    tx_ev_q_label % EFX_TXQ_TYPES);
2883 
2884 	if (!tx_queue->timestamping) {
2885 		/* Transmit completion */
2886 		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
2887 		efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
2888 		return;
2889 	}
2890 
2891 	/* Transmit timestamps are only available for 8XXX series. They result
2892 	 * in up to three events per packet. These occur in order, and are:
2893 	 *  - the normal completion event (may be omitted)
2894 	 *  - the low part of the timestamp
2895 	 *  - the high part of the timestamp
2896 	 *
2897 	 * It's possible for multiple completion events to appear before the
2898 	 * corresponding timestamps. So we can for example get:
2899 	 *  COMP N
2900 	 *  COMP N+1
2901 	 *  TS_LO N
2902 	 *  TS_HI N
2903 	 *  TS_LO N+1
2904 	 *  TS_HI N+1
2905 	 *
2906 	 * In addition it's also possible for the adjacent completions to be
2907 	 * merged, so we may not see COMP N above. As such, the completion
2908 	 * events are not very useful here.
2909 	 *
2910 	 * Each part of the timestamp is itself split across two 16 bit
2911 	 * fields in the event.
2912 	 */
2913 	tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1);
2914 
2915 	switch (tx_ev_type) {
2916 	case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION:
2917 		/* Ignore this event - see above. */
2918 		break;
2919 
2920 	case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO:
2921 		ts_part = efx_ef10_extract_event_ts(event);
2922 		tx_queue->completed_timestamp_minor = ts_part;
2923 		break;
2924 
2925 	case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI:
2926 		ts_part = efx_ef10_extract_event_ts(event);
2927 		tx_queue->completed_timestamp_major = ts_part;
2928 
2929 		efx_xmit_done_single(tx_queue);
2930 		break;
2931 
2932 	default:
2933 		netif_err(efx, hw, efx->net_dev,
2934 			  "channel %d unknown tx event type %d (data "
2935 			  EFX_QWORD_FMT ")\n",
2936 			  channel->channel, tx_ev_type,
2937 			  EFX_QWORD_VAL(*event));
2938 		break;
2939 	}
2940 }
2941 
2942 static void
2943 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
2944 {
2945 	struct efx_nic *efx = channel->efx;
2946 	int subcode;
2947 
2948 	subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
2949 
2950 	switch (subcode) {
2951 	case ESE_DZ_DRV_TIMER_EV:
2952 	case ESE_DZ_DRV_WAKE_UP_EV:
2953 		break;
2954 	case ESE_DZ_DRV_START_UP_EV:
2955 		/* event queue init complete. ok. */
2956 		break;
2957 	default:
2958 		netif_err(efx, hw, efx->net_dev,
2959 			  "channel %d unknown driver event type %d"
2960 			  " (data " EFX_QWORD_FMT ")\n",
2961 			  channel->channel, subcode,
2962 			  EFX_QWORD_VAL(*event));
2963 
2964 	}
2965 }
2966 
2967 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
2968 						   efx_qword_t *event)
2969 {
2970 	struct efx_nic *efx = channel->efx;
2971 	u32 subcode;
2972 
2973 	subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
2974 
2975 	switch (subcode) {
2976 	case EFX_EF10_TEST:
2977 		channel->event_test_cpu = raw_smp_processor_id();
2978 		break;
2979 	case EFX_EF10_REFILL:
2980 		/* The queue must be empty, so we won't receive any rx
2981 		 * events, so efx_process_channel() won't refill the
2982 		 * queue. Refill it here
2983 		 */
2984 		efx_fast_push_rx_descriptors(&channel->rx_queue, true);
2985 		break;
2986 	default:
2987 		netif_err(efx, hw, efx->net_dev,
2988 			  "channel %d unknown driver event type %u"
2989 			  " (data " EFX_QWORD_FMT ")\n",
2990 			  channel->channel, (unsigned) subcode,
2991 			  EFX_QWORD_VAL(*event));
2992 	}
2993 }
2994 
2995 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
2996 {
2997 	struct efx_nic *efx = channel->efx;
2998 	efx_qword_t event, *p_event;
2999 	unsigned int read_ptr;
3000 	int ev_code;
3001 	int spent = 0;
3002 
3003 	if (quota <= 0)
3004 		return spent;
3005 
3006 	read_ptr = channel->eventq_read_ptr;
3007 
3008 	for (;;) {
3009 		p_event = efx_event(channel, read_ptr);
3010 		event = *p_event;
3011 
3012 		if (!efx_event_present(&event))
3013 			break;
3014 
3015 		EFX_SET_QWORD(*p_event);
3016 
3017 		++read_ptr;
3018 
3019 		ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3020 
3021 		netif_vdbg(efx, drv, efx->net_dev,
3022 			   "processing event on %d " EFX_QWORD_FMT "\n",
3023 			   channel->channel, EFX_QWORD_VAL(event));
3024 
3025 		switch (ev_code) {
3026 		case ESE_DZ_EV_CODE_MCDI_EV:
3027 			efx_mcdi_process_event(channel, &event);
3028 			break;
3029 		case ESE_DZ_EV_CODE_RX_EV:
3030 			spent += efx_ef10_handle_rx_event(channel, &event);
3031 			if (spent >= quota) {
3032 				/* XXX can we split a merged event to
3033 				 * avoid going over-quota?
3034 				 */
3035 				spent = quota;
3036 				goto out;
3037 			}
3038 			break;
3039 		case ESE_DZ_EV_CODE_TX_EV:
3040 			efx_ef10_handle_tx_event(channel, &event);
3041 			break;
3042 		case ESE_DZ_EV_CODE_DRIVER_EV:
3043 			efx_ef10_handle_driver_event(channel, &event);
3044 			if (++spent == quota)
3045 				goto out;
3046 			break;
3047 		case EFX_EF10_DRVGEN_EV:
3048 			efx_ef10_handle_driver_generated_event(channel, &event);
3049 			break;
3050 		default:
3051 			netif_err(efx, hw, efx->net_dev,
3052 				  "channel %d unknown event type %d"
3053 				  " (data " EFX_QWORD_FMT ")\n",
3054 				  channel->channel, ev_code,
3055 				  EFX_QWORD_VAL(event));
3056 		}
3057 	}
3058 
3059 out:
3060 	channel->eventq_read_ptr = read_ptr;
3061 	return spent;
3062 }
3063 
3064 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3065 {
3066 	struct efx_nic *efx = channel->efx;
3067 	efx_dword_t rptr;
3068 
3069 	if (EFX_EF10_WORKAROUND_35388(efx)) {
3070 		BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3071 			     (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3072 		BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3073 			     (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3074 
3075 		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3076 				     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3077 				     ERF_DD_EVQ_IND_RPTR,
3078 				     (channel->eventq_read_ptr &
3079 				      channel->eventq_mask) >>
3080 				     ERF_DD_EVQ_IND_RPTR_WIDTH);
3081 		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3082 				channel->channel);
3083 		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3084 				     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3085 				     ERF_DD_EVQ_IND_RPTR,
3086 				     channel->eventq_read_ptr &
3087 				     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3088 		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3089 				channel->channel);
3090 	} else {
3091 		EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3092 				     channel->eventq_read_ptr &
3093 				     channel->eventq_mask);
3094 		efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3095 	}
3096 }
3097 
3098 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3099 {
3100 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3101 	struct efx_nic *efx = channel->efx;
3102 	efx_qword_t event;
3103 	int rc;
3104 
3105 	EFX_POPULATE_QWORD_2(event,
3106 			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3107 			     ESF_DZ_EV_DATA, EFX_EF10_TEST);
3108 
3109 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3110 
3111 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3112 	 * already swapped the data to little-endian order.
3113 	 */
3114 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3115 	       sizeof(efx_qword_t));
3116 
3117 	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3118 			  NULL, 0, NULL);
3119 	if (rc != 0)
3120 		goto fail;
3121 
3122 	return;
3123 
3124 fail:
3125 	WARN_ON(true);
3126 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3127 }
3128 
3129 static void efx_ef10_prepare_flr(struct efx_nic *efx)
3130 {
3131 	atomic_set(&efx->active_queues, 0);
3132 }
3133 
3134 static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
3135 {
3136 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3137 	u8 mac_old[ETH_ALEN];
3138 	int rc, rc2;
3139 
3140 	/* Only reconfigure a PF-created vport */
3141 	if (is_zero_ether_addr(nic_data->vport_mac))
3142 		return 0;
3143 
3144 	efx_device_detach_sync(efx);
3145 	efx_net_stop(efx->net_dev);
3146 	down_write(&efx->filter_sem);
3147 	efx_mcdi_filter_table_remove(efx);
3148 	up_write(&efx->filter_sem);
3149 
3150 	rc = efx_ef10_vadaptor_free(efx, efx->vport_id);
3151 	if (rc)
3152 		goto restore_filters;
3153 
3154 	ether_addr_copy(mac_old, nic_data->vport_mac);
3155 	rc = efx_ef10_vport_del_mac(efx, efx->vport_id,
3156 				    nic_data->vport_mac);
3157 	if (rc)
3158 		goto restore_vadaptor;
3159 
3160 	rc = efx_ef10_vport_add_mac(efx, efx->vport_id,
3161 				    efx->net_dev->dev_addr);
3162 	if (!rc) {
3163 		ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
3164 	} else {
3165 		rc2 = efx_ef10_vport_add_mac(efx, efx->vport_id, mac_old);
3166 		if (rc2) {
3167 			/* Failed to add original MAC, so clear vport_mac */
3168 			eth_zero_addr(nic_data->vport_mac);
3169 			goto reset_nic;
3170 		}
3171 	}
3172 
3173 restore_vadaptor:
3174 	rc2 = efx_ef10_vadaptor_alloc(efx, efx->vport_id);
3175 	if (rc2)
3176 		goto reset_nic;
3177 restore_filters:
3178 	down_write(&efx->filter_sem);
3179 	rc2 = efx_ef10_filter_table_probe(efx);
3180 	up_write(&efx->filter_sem);
3181 	if (rc2)
3182 		goto reset_nic;
3183 
3184 	rc2 = efx_net_open(efx->net_dev);
3185 	if (rc2)
3186 		goto reset_nic;
3187 
3188 	efx_device_attach_if_not_resetting(efx);
3189 
3190 	return rc;
3191 
3192 reset_nic:
3193 	netif_err(efx, drv, efx->net_dev,
3194 		  "Failed to restore when changing MAC address - scheduling reset\n");
3195 	efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
3196 
3197 	return rc ? rc : rc2;
3198 }
3199 
3200 static int efx_ef10_set_mac_address(struct efx_nic *efx)
3201 {
3202 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
3203 	bool was_enabled = efx->port_enabled;
3204 	int rc;
3205 
3206 	efx_device_detach_sync(efx);
3207 	efx_net_stop(efx->net_dev);
3208 
3209 	mutex_lock(&efx->mac_lock);
3210 	down_write(&efx->filter_sem);
3211 	efx_mcdi_filter_table_remove(efx);
3212 
3213 	ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
3214 			efx->net_dev->dev_addr);
3215 	MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
3216 		       efx->vport_id);
3217 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
3218 				sizeof(inbuf), NULL, 0, NULL);
3219 
3220 	efx_ef10_filter_table_probe(efx);
3221 	up_write(&efx->filter_sem);
3222 	mutex_unlock(&efx->mac_lock);
3223 
3224 	if (was_enabled)
3225 		efx_net_open(efx->net_dev);
3226 	efx_device_attach_if_not_resetting(efx);
3227 
3228 #ifdef CONFIG_SFC_SRIOV
3229 	if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
3230 		struct efx_ef10_nic_data *nic_data = efx->nic_data;
3231 		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
3232 
3233 		if (rc == -EPERM) {
3234 			struct efx_nic *efx_pf;
3235 
3236 			/* Switch to PF and change MAC address on vport */
3237 			efx_pf = pci_get_drvdata(pci_dev_pf);
3238 
3239 			rc = efx_ef10_sriov_set_vf_mac(efx_pf,
3240 						       nic_data->vf_index,
3241 						       efx->net_dev->dev_addr);
3242 		} else if (!rc) {
3243 			struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
3244 			struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
3245 			unsigned int i;
3246 
3247 			/* MAC address successfully changed by VF (with MAC
3248 			 * spoofing) so update the parent PF if possible.
3249 			 */
3250 			for (i = 0; i < efx_pf->vf_count; ++i) {
3251 				struct ef10_vf *vf = nic_data->vf + i;
3252 
3253 				if (vf->efx == efx) {
3254 					ether_addr_copy(vf->mac,
3255 							efx->net_dev->dev_addr);
3256 					return 0;
3257 				}
3258 			}
3259 		}
3260 	} else
3261 #endif
3262 	if (rc == -EPERM) {
3263 		netif_err(efx, drv, efx->net_dev,
3264 			  "Cannot change MAC address; use sfboot to enable"
3265 			  " mac-spoofing on this interface\n");
3266 	} else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
3267 		/* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
3268 		 * fall-back to the method of changing the MAC address on the
3269 		 * vport.  This only applies to PFs because such versions of
3270 		 * MCFW do not support VFs.
3271 		 */
3272 		rc = efx_ef10_vport_set_mac_address(efx);
3273 	} else if (rc) {
3274 		efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
3275 				       sizeof(inbuf), NULL, 0, rc);
3276 	}
3277 
3278 	return rc;
3279 }
3280 
3281 static int efx_ef10_mac_reconfigure(struct efx_nic *efx, bool mtu_only)
3282 {
3283 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
3284 
3285 	efx_mcdi_filter_sync_rx_mode(efx);
3286 
3287 	if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
3288 		return efx_mcdi_set_mtu(efx);
3289 	return efx_mcdi_set_mac(efx);
3290 }
3291 
3292 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
3293 {
3294 	MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
3295 
3296 	MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
3297 	return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
3298 			    NULL, 0, NULL);
3299 }
3300 
3301 /* MC BISTs follow a different poll mechanism to phy BISTs.
3302  * The BIST is done in the poll handler on the MC, and the MCDI command
3303  * will block until the BIST is done.
3304  */
3305 static int efx_ef10_poll_bist(struct efx_nic *efx)
3306 {
3307 	int rc;
3308 	MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
3309 	size_t outlen;
3310 	u32 result;
3311 
3312 	rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
3313 			   outbuf, sizeof(outbuf), &outlen);
3314 	if (rc != 0)
3315 		return rc;
3316 
3317 	if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
3318 		return -EIO;
3319 
3320 	result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
3321 	switch (result) {
3322 	case MC_CMD_POLL_BIST_PASSED:
3323 		netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
3324 		return 0;
3325 	case MC_CMD_POLL_BIST_TIMEOUT:
3326 		netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
3327 		return -EIO;
3328 	case MC_CMD_POLL_BIST_FAILED:
3329 		netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
3330 		return -EIO;
3331 	default:
3332 		netif_err(efx, hw, efx->net_dev,
3333 			  "BIST returned unknown result %u", result);
3334 		return -EIO;
3335 	}
3336 }
3337 
3338 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
3339 {
3340 	int rc;
3341 
3342 	netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
3343 
3344 	rc = efx_ef10_start_bist(efx, bist_type);
3345 	if (rc != 0)
3346 		return rc;
3347 
3348 	return efx_ef10_poll_bist(efx);
3349 }
3350 
3351 static int
3352 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
3353 {
3354 	int rc, rc2;
3355 
3356 	efx_reset_down(efx, RESET_TYPE_WORLD);
3357 
3358 	rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
3359 			  NULL, 0, NULL, 0, NULL);
3360 	if (rc != 0)
3361 		goto out;
3362 
3363 	tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
3364 	tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
3365 
3366 	rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
3367 
3368 out:
3369 	if (rc == -EPERM)
3370 		rc = 0;
3371 	rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
3372 	return rc ? rc : rc2;
3373 }
3374 
3375 #ifdef CONFIG_SFC_MTD
3376 
3377 struct efx_ef10_nvram_type_info {
3378 	u16 type, type_mask;
3379 	u8 port;
3380 	const char *name;
3381 };
3382 
3383 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3384 	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE,	   0,    0, "sfc_mcfw" },
3385 	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
3386 	{ NVRAM_PARTITION_TYPE_EXPANSION_ROM,	   0,    0, "sfc_exp_rom" },
3387 	{ NVRAM_PARTITION_TYPE_STATIC_CONFIG,	   0,    0, "sfc_static_cfg" },
3388 	{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,	   0,    0, "sfc_dynamic_cfg" },
3389 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
3390 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
3391 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
3392 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
3393 	{ NVRAM_PARTITION_TYPE_LICENSE,		   0,    0, "sfc_license" },
3394 	{ NVRAM_PARTITION_TYPE_PHY_MIN,		   0xff, 0, "sfc_phy_fw" },
3395 	{ NVRAM_PARTITION_TYPE_MUM_FIRMWARE,	   0,    0, "sfc_mumfw" },
3396 	{ NVRAM_PARTITION_TYPE_EXPANSION_UEFI,	   0,    0, "sfc_uefi" },
3397 	{ NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS, 0,    0, "sfc_dynamic_cfg_dflt" },
3398 	{ NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS, 0,    0, "sfc_exp_rom_cfg_dflt" },
3399 	{ NVRAM_PARTITION_TYPE_STATUS,		   0,    0, "sfc_status" },
3400 	{ NVRAM_PARTITION_TYPE_BUNDLE,		   0,    0, "sfc_bundle" },
3401 	{ NVRAM_PARTITION_TYPE_BUNDLE_METADATA,	   0,    0, "sfc_bundle_metadata" },
3402 };
3403 #define EF10_NVRAM_PARTITION_COUNT	ARRAY_SIZE(efx_ef10_nvram_types)
3404 
3405 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3406 					struct efx_mcdi_mtd_partition *part,
3407 					unsigned int type,
3408 					unsigned long *found)
3409 {
3410 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3411 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3412 	const struct efx_ef10_nvram_type_info *info;
3413 	size_t size, erase_size, outlen;
3414 	int type_idx = 0;
3415 	bool protected;
3416 	int rc;
3417 
3418 	for (type_idx = 0; ; type_idx++) {
3419 		if (type_idx == EF10_NVRAM_PARTITION_COUNT)
3420 			return -ENODEV;
3421 		info = efx_ef10_nvram_types + type_idx;
3422 		if ((type & ~info->type_mask) == info->type)
3423 			break;
3424 	}
3425 	if (info->port != efx_port_num(efx))
3426 		return -ENODEV;
3427 
3428 	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3429 	if (rc)
3430 		return rc;
3431 	if (protected &&
3432 	    (type != NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS &&
3433 	     type != NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS))
3434 		/* Hide protected partitions that don't provide defaults. */
3435 		return -ENODEV;
3436 
3437 	if (protected)
3438 		/* Protected partitions are read only. */
3439 		erase_size = 0;
3440 
3441 	/* If we've already exposed a partition of this type, hide this
3442 	 * duplicate.  All operations on MTDs are keyed by the type anyway,
3443 	 * so we can't act on the duplicate.
3444 	 */
3445 	if (__test_and_set_bit(type_idx, found))
3446 		return -EEXIST;
3447 
3448 	part->nvram_type = type;
3449 
3450 	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3451 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3452 			  outbuf, sizeof(outbuf), &outlen);
3453 	if (rc)
3454 		return rc;
3455 	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3456 		return -EIO;
3457 	if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3458 	    (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3459 		part->fw_subtype = MCDI_DWORD(outbuf,
3460 					      NVRAM_METADATA_OUT_SUBTYPE);
3461 
3462 	part->common.dev_type_name = "EF10 NVRAM manager";
3463 	part->common.type_name = info->name;
3464 
3465 	part->common.mtd.type = MTD_NORFLASH;
3466 	part->common.mtd.flags = MTD_CAP_NORFLASH;
3467 	part->common.mtd.size = size;
3468 	part->common.mtd.erasesize = erase_size;
3469 	/* sfc_status is read-only */
3470 	if (!erase_size)
3471 		part->common.mtd.flags |= MTD_NO_ERASE;
3472 
3473 	return 0;
3474 }
3475 
3476 static int efx_ef10_mtd_probe(struct efx_nic *efx)
3477 {
3478 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3479 	DECLARE_BITMAP(found, EF10_NVRAM_PARTITION_COUNT) = { 0 };
3480 	struct efx_mcdi_mtd_partition *parts;
3481 	size_t outlen, n_parts_total, i, n_parts;
3482 	unsigned int type;
3483 	int rc;
3484 
3485 	ASSERT_RTNL();
3486 
3487 	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3488 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3489 			  outbuf, sizeof(outbuf), &outlen);
3490 	if (rc)
3491 		return rc;
3492 	if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3493 		return -EIO;
3494 
3495 	n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3496 	if (n_parts_total >
3497 	    MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3498 		return -EIO;
3499 
3500 	parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3501 	if (!parts)
3502 		return -ENOMEM;
3503 
3504 	n_parts = 0;
3505 	for (i = 0; i < n_parts_total; i++) {
3506 		type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3507 					i);
3508 		rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type,
3509 						  found);
3510 		if (rc == -EEXIST || rc == -ENODEV)
3511 			continue;
3512 		if (rc)
3513 			goto fail;
3514 		n_parts++;
3515 	}
3516 
3517 	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3518 fail:
3519 	if (rc)
3520 		kfree(parts);
3521 	return rc;
3522 }
3523 
3524 #endif /* CONFIG_SFC_MTD */
3525 
3526 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3527 {
3528 	_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3529 }
3530 
3531 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
3532 					    u32 host_time) {}
3533 
3534 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
3535 					   bool temp)
3536 {
3537 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
3538 	int rc;
3539 
3540 	if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
3541 	    channel->sync_events_state == SYNC_EVENTS_VALID ||
3542 	    (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
3543 		return 0;
3544 	channel->sync_events_state = SYNC_EVENTS_REQUESTED;
3545 
3546 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
3547 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3548 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
3549 		       channel->channel);
3550 
3551 	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3552 			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3553 
3554 	if (rc != 0)
3555 		channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3556 						    SYNC_EVENTS_DISABLED;
3557 
3558 	return rc;
3559 }
3560 
3561 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
3562 					    bool temp)
3563 {
3564 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
3565 	int rc;
3566 
3567 	if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
3568 	    (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
3569 		return 0;
3570 	if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
3571 		channel->sync_events_state = SYNC_EVENTS_DISABLED;
3572 		return 0;
3573 	}
3574 	channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3575 					    SYNC_EVENTS_DISABLED;
3576 
3577 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
3578 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3579 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
3580 		       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
3581 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
3582 		       channel->channel);
3583 
3584 	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3585 			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3586 
3587 	return rc;
3588 }
3589 
3590 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
3591 					   bool temp)
3592 {
3593 	int (*set)(struct efx_channel *channel, bool temp);
3594 	struct efx_channel *channel;
3595 
3596 	set = en ?
3597 	      efx_ef10_rx_enable_timestamping :
3598 	      efx_ef10_rx_disable_timestamping;
3599 
3600 	channel = efx_ptp_channel(efx);
3601 	if (channel) {
3602 		int rc = set(channel, temp);
3603 		if (en && rc != 0) {
3604 			efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
3605 			return rc;
3606 		}
3607 	}
3608 
3609 	return 0;
3610 }
3611 
3612 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
3613 					 struct hwtstamp_config *init)
3614 {
3615 	return -EOPNOTSUPP;
3616 }
3617 
3618 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
3619 				      struct hwtstamp_config *init)
3620 {
3621 	int rc;
3622 
3623 	switch (init->rx_filter) {
3624 	case HWTSTAMP_FILTER_NONE:
3625 		efx_ef10_ptp_set_ts_sync_events(efx, false, false);
3626 		/* if TX timestamping is still requested then leave PTP on */
3627 		return efx_ptp_change_mode(efx,
3628 					   init->tx_type != HWTSTAMP_TX_OFF, 0);
3629 	case HWTSTAMP_FILTER_ALL:
3630 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3631 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3632 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3633 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3634 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3635 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3636 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3637 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3638 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3639 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3640 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3641 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3642 	case HWTSTAMP_FILTER_NTP_ALL:
3643 		init->rx_filter = HWTSTAMP_FILTER_ALL;
3644 		rc = efx_ptp_change_mode(efx, true, 0);
3645 		if (!rc)
3646 			rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
3647 		if (rc)
3648 			efx_ptp_change_mode(efx, false, 0);
3649 		return rc;
3650 	default:
3651 		return -ERANGE;
3652 	}
3653 }
3654 
3655 static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
3656 				     struct netdev_phys_item_id *ppid)
3657 {
3658 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3659 
3660 	if (!is_valid_ether_addr(nic_data->port_id))
3661 		return -EOPNOTSUPP;
3662 
3663 	ppid->id_len = ETH_ALEN;
3664 	memcpy(ppid->id, nic_data->port_id, ppid->id_len);
3665 
3666 	return 0;
3667 }
3668 
3669 static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3670 {
3671 	if (proto != htons(ETH_P_8021Q))
3672 		return -EINVAL;
3673 
3674 	return efx_ef10_add_vlan(efx, vid);
3675 }
3676 
3677 static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3678 {
3679 	if (proto != htons(ETH_P_8021Q))
3680 		return -EINVAL;
3681 
3682 	return efx_ef10_del_vlan(efx, vid);
3683 }
3684 
3685 /* We rely on the MCDI wiping out our TX rings if it made any changes to the
3686  * ports table, ensuring that any TSO descriptors that were made on a now-
3687  * removed tunnel port will be blown away and won't break things when we try
3688  * to transmit them using the new ports table.
3689  */
3690 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
3691 {
3692 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3693 	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
3694 	MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
3695 	bool will_reset = false;
3696 	size_t num_entries = 0;
3697 	size_t inlen, outlen;
3698 	size_t i;
3699 	int rc;
3700 	efx_dword_t flags_and_num_entries;
3701 
3702 	WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
3703 
3704 	nic_data->udp_tunnels_dirty = false;
3705 
3706 	if (!(nic_data->datapath_caps &
3707 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
3708 		efx_device_attach_if_not_resetting(efx);
3709 		return 0;
3710 	}
3711 
3712 	BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
3713 		     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
3714 
3715 	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
3716 		if (nic_data->udp_tunnels[i].type !=
3717 		    TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID) {
3718 			efx_dword_t entry;
3719 
3720 			EFX_POPULATE_DWORD_2(entry,
3721 				TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
3722 					ntohs(nic_data->udp_tunnels[i].port),
3723 				TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
3724 					nic_data->udp_tunnels[i].type);
3725 			*_MCDI_ARRAY_DWORD(inbuf,
3726 				SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
3727 				num_entries++) = entry;
3728 		}
3729 	}
3730 
3731 	BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
3732 		      MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
3733 		     EFX_WORD_1_LBN);
3734 	BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
3735 		     EFX_WORD_1_WIDTH);
3736 	EFX_POPULATE_DWORD_2(flags_and_num_entries,
3737 			     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
3738 				!!unloading,
3739 			     EFX_WORD_1, num_entries);
3740 	*_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
3741 		flags_and_num_entries;
3742 
3743 	inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
3744 
3745 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
3746 				inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
3747 	if (rc == -EIO) {
3748 		/* Most likely the MC rebooted due to another function also
3749 		 * setting its tunnel port list. Mark the tunnel port list as
3750 		 * dirty, so it will be pushed upon coming up from the reboot.
3751 		 */
3752 		nic_data->udp_tunnels_dirty = true;
3753 		return 0;
3754 	}
3755 
3756 	if (rc) {
3757 		/* expected not available on unprivileged functions */
3758 		if (rc != -EPERM)
3759 			netif_warn(efx, drv, efx->net_dev,
3760 				   "Unable to set UDP tunnel ports; rc=%d.\n", rc);
3761 	} else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
3762 		   (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
3763 		netif_info(efx, drv, efx->net_dev,
3764 			   "Rebooting MC due to UDP tunnel port list change\n");
3765 		will_reset = true;
3766 		if (unloading)
3767 			/* Delay for the MC reset to complete. This will make
3768 			 * unloading other functions a bit smoother. This is a
3769 			 * race, but the other unload will work whichever way
3770 			 * it goes, this just avoids an unnecessary error
3771 			 * message.
3772 			 */
3773 			msleep(100);
3774 	}
3775 	if (!will_reset && !unloading) {
3776 		/* The caller will have detached, relying on the MC reset to
3777 		 * trigger a re-attach.  Since there won't be an MC reset, we
3778 		 * have to do the attach ourselves.
3779 		 */
3780 		efx_device_attach_if_not_resetting(efx);
3781 	}
3782 
3783 	return rc;
3784 }
3785 
3786 static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
3787 {
3788 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3789 	int rc = 0;
3790 
3791 	mutex_lock(&nic_data->udp_tunnels_lock);
3792 	if (nic_data->udp_tunnels_dirty) {
3793 		/* Make sure all TX are stopped while we modify the table, else
3794 		 * we might race against an efx_features_check().
3795 		 */
3796 		efx_device_detach_sync(efx);
3797 		rc = efx_ef10_set_udp_tnl_ports(efx, false);
3798 	}
3799 	mutex_unlock(&nic_data->udp_tunnels_lock);
3800 	return rc;
3801 }
3802 
3803 static int efx_ef10_udp_tnl_set_port(struct net_device *dev,
3804 				     unsigned int table, unsigned int entry,
3805 				     struct udp_tunnel_info *ti)
3806 {
3807 	struct efx_nic *efx = netdev_priv(dev);
3808 	struct efx_ef10_nic_data *nic_data;
3809 	int efx_tunnel_type, rc;
3810 
3811 	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
3812 		efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN;
3813 	else
3814 		efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE;
3815 
3816 	nic_data = efx->nic_data;
3817 	if (!(nic_data->datapath_caps &
3818 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3819 		return -EOPNOTSUPP;
3820 
3821 	mutex_lock(&nic_data->udp_tunnels_lock);
3822 	/* Make sure all TX are stopped while we add to the table, else we
3823 	 * might race against an efx_features_check().
3824 	 */
3825 	efx_device_detach_sync(efx);
3826 	nic_data->udp_tunnels[entry].type = efx_tunnel_type;
3827 	nic_data->udp_tunnels[entry].port = ti->port;
3828 	rc = efx_ef10_set_udp_tnl_ports(efx, false);
3829 	mutex_unlock(&nic_data->udp_tunnels_lock);
3830 
3831 	return rc;
3832 }
3833 
3834 /* Called under the TX lock with the TX queue running, hence no-one can be
3835  * in the middle of updating the UDP tunnels table.  However, they could
3836  * have tried and failed the MCDI, in which case they'll have set the dirty
3837  * flag before dropping their locks.
3838  */
3839 static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
3840 {
3841 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3842 	size_t i;
3843 
3844 	if (!(nic_data->datapath_caps &
3845 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3846 		return false;
3847 
3848 	if (nic_data->udp_tunnels_dirty)
3849 		/* SW table may not match HW state, so just assume we can't
3850 		 * use any UDP tunnel offloads.
3851 		 */
3852 		return false;
3853 
3854 	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
3855 		if (nic_data->udp_tunnels[i].type !=
3856 		    TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID &&
3857 		    nic_data->udp_tunnels[i].port == port)
3858 			return true;
3859 
3860 	return false;
3861 }
3862 
3863 static int efx_ef10_udp_tnl_unset_port(struct net_device *dev,
3864 				       unsigned int table, unsigned int entry,
3865 				       struct udp_tunnel_info *ti)
3866 {
3867 	struct efx_nic *efx = netdev_priv(dev);
3868 	struct efx_ef10_nic_data *nic_data;
3869 	int rc;
3870 
3871 	nic_data = efx->nic_data;
3872 
3873 	mutex_lock(&nic_data->udp_tunnels_lock);
3874 	/* Make sure all TX are stopped while we remove from the table, else we
3875 	 * might race against an efx_features_check().
3876 	 */
3877 	efx_device_detach_sync(efx);
3878 	nic_data->udp_tunnels[entry].type = TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
3879 	nic_data->udp_tunnels[entry].port = 0;
3880 	rc = efx_ef10_set_udp_tnl_ports(efx, false);
3881 	mutex_unlock(&nic_data->udp_tunnels_lock);
3882 
3883 	return rc;
3884 }
3885 
3886 static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels = {
3887 	.set_port	= efx_ef10_udp_tnl_set_port,
3888 	.unset_port	= efx_ef10_udp_tnl_unset_port,
3889 	.flags          = UDP_TUNNEL_NIC_INFO_MAY_SLEEP,
3890 	.tables         = {
3891 		{
3892 			.n_entries = 16,
3893 			.tunnel_types = UDP_TUNNEL_TYPE_VXLAN |
3894 					UDP_TUNNEL_TYPE_GENEVE,
3895 		},
3896 	},
3897 };
3898 
3899 /* EF10 may have multiple datapath firmware variants within a
3900  * single version.  Report which variants are running.
3901  */
3902 static size_t efx_ef10_print_additional_fwver(struct efx_nic *efx, char *buf,
3903 					      size_t len)
3904 {
3905 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3906 
3907 	return scnprintf(buf, len, " rx%x tx%x",
3908 			 nic_data->rx_dpcpu_fw_id,
3909 			 nic_data->tx_dpcpu_fw_id);
3910 }
3911 
3912 static unsigned int ef10_check_caps(const struct efx_nic *efx,
3913 				    u8 flag,
3914 				    u32 offset)
3915 {
3916 	const struct efx_ef10_nic_data *nic_data = efx->nic_data;
3917 
3918 	switch (offset) {
3919 	case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS1_OFST):
3920 		return nic_data->datapath_caps & BIT_ULL(flag);
3921 	case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS2_OFST):
3922 		return nic_data->datapath_caps2 & BIT_ULL(flag);
3923 	default:
3924 		return 0;
3925 	}
3926 }
3927 
3928 #define EF10_OFFLOAD_FEATURES		\
3929 	(NETIF_F_IP_CSUM |		\
3930 	 NETIF_F_HW_VLAN_CTAG_FILTER |	\
3931 	 NETIF_F_IPV6_CSUM |		\
3932 	 NETIF_F_RXHASH |		\
3933 	 NETIF_F_NTUPLE)
3934 
3935 const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
3936 	.is_vf = true,
3937 	.mem_bar = efx_ef10_vf_mem_bar,
3938 	.mem_map_size = efx_ef10_mem_map_size,
3939 	.probe = efx_ef10_probe_vf,
3940 	.remove = efx_ef10_remove,
3941 	.dimension_resources = efx_ef10_dimension_resources,
3942 	.init = efx_ef10_init_nic,
3943 	.fini = efx_ef10_fini_nic,
3944 	.map_reset_reason = efx_ef10_map_reset_reason,
3945 	.map_reset_flags = efx_ef10_map_reset_flags,
3946 	.reset = efx_ef10_reset,
3947 	.probe_port = efx_mcdi_port_probe,
3948 	.remove_port = efx_mcdi_port_remove,
3949 	.fini_dmaq = efx_fini_dmaq,
3950 	.prepare_flr = efx_ef10_prepare_flr,
3951 	.finish_flr = efx_port_dummy_op_void,
3952 	.describe_stats = efx_ef10_describe_stats,
3953 	.update_stats = efx_ef10_update_stats_vf,
3954 	.start_stats = efx_port_dummy_op_void,
3955 	.pull_stats = efx_port_dummy_op_void,
3956 	.stop_stats = efx_port_dummy_op_void,
3957 	.set_id_led = efx_mcdi_set_id_led,
3958 	.push_irq_moderation = efx_ef10_push_irq_moderation,
3959 	.reconfigure_mac = efx_ef10_mac_reconfigure,
3960 	.check_mac_fault = efx_mcdi_mac_check_fault,
3961 	.reconfigure_port = efx_mcdi_port_reconfigure,
3962 	.get_wol = efx_ef10_get_wol_vf,
3963 	.set_wol = efx_ef10_set_wol_vf,
3964 	.resume_wol = efx_port_dummy_op_void,
3965 	.mcdi_request = efx_ef10_mcdi_request,
3966 	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
3967 	.mcdi_read_response = efx_ef10_mcdi_read_response,
3968 	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
3969 	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
3970 	.irq_enable_master = efx_port_dummy_op_void,
3971 	.irq_test_generate = efx_ef10_irq_test_generate,
3972 	.irq_disable_non_ev = efx_port_dummy_op_void,
3973 	.irq_handle_msi = efx_ef10_msi_interrupt,
3974 	.irq_handle_legacy = efx_ef10_legacy_interrupt,
3975 	.tx_probe = efx_ef10_tx_probe,
3976 	.tx_init = efx_ef10_tx_init,
3977 	.tx_remove = efx_mcdi_tx_remove,
3978 	.tx_write = efx_ef10_tx_write,
3979 	.tx_limit_len = efx_ef10_tx_limit_len,
3980 	.rx_push_rss_config = efx_mcdi_vf_rx_push_rss_config,
3981 	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
3982 	.rx_probe = efx_mcdi_rx_probe,
3983 	.rx_init = efx_mcdi_rx_init,
3984 	.rx_remove = efx_mcdi_rx_remove,
3985 	.rx_write = efx_ef10_rx_write,
3986 	.rx_defer_refill = efx_ef10_rx_defer_refill,
3987 	.ev_probe = efx_mcdi_ev_probe,
3988 	.ev_init = efx_ef10_ev_init,
3989 	.ev_fini = efx_mcdi_ev_fini,
3990 	.ev_remove = efx_mcdi_ev_remove,
3991 	.ev_process = efx_ef10_ev_process,
3992 	.ev_read_ack = efx_ef10_ev_read_ack,
3993 	.ev_test_generate = efx_ef10_ev_test_generate,
3994 	.filter_table_probe = efx_ef10_filter_table_probe,
3995 	.filter_table_restore = efx_mcdi_filter_table_restore,
3996 	.filter_table_remove = efx_mcdi_filter_table_remove,
3997 	.filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
3998 	.filter_insert = efx_mcdi_filter_insert,
3999 	.filter_remove_safe = efx_mcdi_filter_remove_safe,
4000 	.filter_get_safe = efx_mcdi_filter_get_safe,
4001 	.filter_clear_rx = efx_mcdi_filter_clear_rx,
4002 	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4003 	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4004 	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4005 #ifdef CONFIG_RFS_ACCEL
4006 	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4007 #endif
4008 #ifdef CONFIG_SFC_MTD
4009 	.mtd_probe = efx_port_dummy_op_int,
4010 #endif
4011 	.ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
4012 	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
4013 	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4014 	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4015 #ifdef CONFIG_SFC_SRIOV
4016 	.vswitching_probe = efx_ef10_vswitching_probe_vf,
4017 	.vswitching_restore = efx_ef10_vswitching_restore_vf,
4018 	.vswitching_remove = efx_ef10_vswitching_remove_vf,
4019 #endif
4020 	.get_mac_address = efx_ef10_get_mac_address_vf,
4021 	.set_mac_address = efx_ef10_set_mac_address,
4022 
4023 	.get_phys_port_id = efx_ef10_get_phys_port_id,
4024 	.revision = EFX_REV_HUNT_A0,
4025 	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4026 	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4027 	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4028 	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4029 	.can_rx_scatter = true,
4030 	.always_rx_scatter = true,
4031 	.min_interrupt_mode = EFX_INT_MODE_MSIX,
4032 	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4033 	.offload_features = EF10_OFFLOAD_FEATURES,
4034 	.mcdi_max_ver = 2,
4035 	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4036 	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4037 			    1 << HWTSTAMP_FILTER_ALL,
4038 	.rx_hash_key_size = 40,
4039 	.check_caps = ef10_check_caps,
4040 	.print_additional_fwver = efx_ef10_print_additional_fwver,
4041 };
4042 
4043 const struct efx_nic_type efx_hunt_a0_nic_type = {
4044 	.is_vf = false,
4045 	.mem_bar = efx_ef10_pf_mem_bar,
4046 	.mem_map_size = efx_ef10_mem_map_size,
4047 	.probe = efx_ef10_probe_pf,
4048 	.remove = efx_ef10_remove,
4049 	.dimension_resources = efx_ef10_dimension_resources,
4050 	.init = efx_ef10_init_nic,
4051 	.fini = efx_ef10_fini_nic,
4052 	.map_reset_reason = efx_ef10_map_reset_reason,
4053 	.map_reset_flags = efx_ef10_map_reset_flags,
4054 	.reset = efx_ef10_reset,
4055 	.probe_port = efx_mcdi_port_probe,
4056 	.remove_port = efx_mcdi_port_remove,
4057 	.fini_dmaq = efx_fini_dmaq,
4058 	.prepare_flr = efx_ef10_prepare_flr,
4059 	.finish_flr = efx_port_dummy_op_void,
4060 	.describe_stats = efx_ef10_describe_stats,
4061 	.update_stats = efx_ef10_update_stats_pf,
4062 	.start_stats = efx_mcdi_mac_start_stats,
4063 	.pull_stats = efx_mcdi_mac_pull_stats,
4064 	.stop_stats = efx_mcdi_mac_stop_stats,
4065 	.set_id_led = efx_mcdi_set_id_led,
4066 	.push_irq_moderation = efx_ef10_push_irq_moderation,
4067 	.reconfigure_mac = efx_ef10_mac_reconfigure,
4068 	.check_mac_fault = efx_mcdi_mac_check_fault,
4069 	.reconfigure_port = efx_mcdi_port_reconfigure,
4070 	.get_wol = efx_ef10_get_wol,
4071 	.set_wol = efx_ef10_set_wol,
4072 	.resume_wol = efx_port_dummy_op_void,
4073 	.test_chip = efx_ef10_test_chip,
4074 	.test_nvram = efx_mcdi_nvram_test_all,
4075 	.mcdi_request = efx_ef10_mcdi_request,
4076 	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
4077 	.mcdi_read_response = efx_ef10_mcdi_read_response,
4078 	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4079 	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4080 	.irq_enable_master = efx_port_dummy_op_void,
4081 	.irq_test_generate = efx_ef10_irq_test_generate,
4082 	.irq_disable_non_ev = efx_port_dummy_op_void,
4083 	.irq_handle_msi = efx_ef10_msi_interrupt,
4084 	.irq_handle_legacy = efx_ef10_legacy_interrupt,
4085 	.tx_probe = efx_ef10_tx_probe,
4086 	.tx_init = efx_ef10_tx_init,
4087 	.tx_remove = efx_mcdi_tx_remove,
4088 	.tx_write = efx_ef10_tx_write,
4089 	.tx_limit_len = efx_ef10_tx_limit_len,
4090 	.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
4091 	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4092 	.rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
4093 	.rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
4094 	.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
4095 	.rx_probe = efx_mcdi_rx_probe,
4096 	.rx_init = efx_mcdi_rx_init,
4097 	.rx_remove = efx_mcdi_rx_remove,
4098 	.rx_write = efx_ef10_rx_write,
4099 	.rx_defer_refill = efx_ef10_rx_defer_refill,
4100 	.ev_probe = efx_mcdi_ev_probe,
4101 	.ev_init = efx_ef10_ev_init,
4102 	.ev_fini = efx_mcdi_ev_fini,
4103 	.ev_remove = efx_mcdi_ev_remove,
4104 	.ev_process = efx_ef10_ev_process,
4105 	.ev_read_ack = efx_ef10_ev_read_ack,
4106 	.ev_test_generate = efx_ef10_ev_test_generate,
4107 	.filter_table_probe = efx_ef10_filter_table_probe,
4108 	.filter_table_restore = efx_mcdi_filter_table_restore,
4109 	.filter_table_remove = efx_mcdi_filter_table_remove,
4110 	.filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4111 	.filter_insert = efx_mcdi_filter_insert,
4112 	.filter_remove_safe = efx_mcdi_filter_remove_safe,
4113 	.filter_get_safe = efx_mcdi_filter_get_safe,
4114 	.filter_clear_rx = efx_mcdi_filter_clear_rx,
4115 	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4116 	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4117 	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4118 #ifdef CONFIG_RFS_ACCEL
4119 	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4120 #endif
4121 #ifdef CONFIG_SFC_MTD
4122 	.mtd_probe = efx_ef10_mtd_probe,
4123 	.mtd_rename = efx_mcdi_mtd_rename,
4124 	.mtd_read = efx_mcdi_mtd_read,
4125 	.mtd_erase = efx_mcdi_mtd_erase,
4126 	.mtd_write = efx_mcdi_mtd_write,
4127 	.mtd_sync = efx_mcdi_mtd_sync,
4128 #endif
4129 	.ptp_write_host_time = efx_ef10_ptp_write_host_time,
4130 	.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
4131 	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
4132 	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4133 	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4134 	.udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
4135 	.udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
4136 #ifdef CONFIG_SFC_SRIOV
4137 	.sriov_configure = efx_ef10_sriov_configure,
4138 	.sriov_init = efx_ef10_sriov_init,
4139 	.sriov_fini = efx_ef10_sriov_fini,
4140 	.sriov_wanted = efx_ef10_sriov_wanted,
4141 	.sriov_reset = efx_ef10_sriov_reset,
4142 	.sriov_flr = efx_ef10_sriov_flr,
4143 	.sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
4144 	.sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
4145 	.sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
4146 	.sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
4147 	.sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
4148 	.vswitching_probe = efx_ef10_vswitching_probe_pf,
4149 	.vswitching_restore = efx_ef10_vswitching_restore_pf,
4150 	.vswitching_remove = efx_ef10_vswitching_remove_pf,
4151 #endif
4152 	.get_mac_address = efx_ef10_get_mac_address_pf,
4153 	.set_mac_address = efx_ef10_set_mac_address,
4154 	.tso_versions = efx_ef10_tso_versions,
4155 
4156 	.get_phys_port_id = efx_ef10_get_phys_port_id,
4157 	.revision = EFX_REV_HUNT_A0,
4158 	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4159 	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4160 	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4161 	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4162 	.can_rx_scatter = true,
4163 	.always_rx_scatter = true,
4164 	.option_descriptors = true,
4165 	.min_interrupt_mode = EFX_INT_MODE_LEGACY,
4166 	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4167 	.offload_features = EF10_OFFLOAD_FEATURES,
4168 	.mcdi_max_ver = 2,
4169 	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4170 	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4171 			    1 << HWTSTAMP_FILTER_ALL,
4172 	.rx_hash_key_size = 40,
4173 	.check_caps = ef10_check_caps,
4174 	.print_additional_fwver = efx_ef10_print_additional_fwver,
4175 };
4176