xref: /linux/drivers/net/ethernet/sfc/ef10.c (revision 3381df0954199458fa3993db72fb427f0ed1e43b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2012-2013 Solarflare Communications Inc.
5  */
6 
7 #include "net_driver.h"
8 #include "rx_common.h"
9 #include "ef10_regs.h"
10 #include "io.h"
11 #include "mcdi.h"
12 #include "mcdi_pcol.h"
13 #include "mcdi_port_common.h"
14 #include "mcdi_functions.h"
15 #include "nic.h"
16 #include "mcdi_filters.h"
17 #include "workarounds.h"
18 #include "selftest.h"
19 #include "ef10_sriov.h"
20 #include <linux/in.h>
21 #include <linux/jhash.h>
22 #include <linux/wait.h>
23 #include <linux/workqueue.h>
24 
25 /* Hardware control for EF10 architecture including 'Huntington'. */
26 
27 #define EFX_EF10_DRVGEN_EV		7
28 enum {
29 	EFX_EF10_TEST = 1,
30 	EFX_EF10_REFILL,
31 };
32 
33 /* VLAN list entry */
34 struct efx_ef10_vlan {
35 	struct list_head list;
36 	u16 vid;
37 };
38 
39 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
40 
41 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
42 {
43 	efx_dword_t reg;
44 
45 	efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
46 	return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
47 		EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
48 }
49 
50 /* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
51  * I/O space and BAR 2(&3) for memory.  On SFC9250 (Medford2), there is no I/O
52  * bar; PFs use BAR 0/1 for memory.
53  */
54 static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx)
55 {
56 	switch (efx->pci_dev->device) {
57 	case 0x0b03: /* SFC9250 PF */
58 		return 0;
59 	default:
60 		return 2;
61 	}
62 }
63 
64 /* All VFs use BAR 0/1 for memory */
65 static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx)
66 {
67 	return 0;
68 }
69 
70 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
71 {
72 	int bar;
73 
74 	bar = efx->type->mem_bar(efx);
75 	return resource_size(&efx->pci_dev->resource[bar]);
76 }
77 
78 static bool efx_ef10_is_vf(struct efx_nic *efx)
79 {
80 	return efx->type->is_vf;
81 }
82 
83 #ifdef CONFIG_SFC_SRIOV
84 static int efx_ef10_get_vf_index(struct efx_nic *efx)
85 {
86 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
87 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
88 	size_t outlen;
89 	int rc;
90 
91 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
92 			  sizeof(outbuf), &outlen);
93 	if (rc)
94 		return rc;
95 	if (outlen < sizeof(outbuf))
96 		return -EIO;
97 
98 	nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
99 	return 0;
100 }
101 #endif
102 
103 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
104 {
105 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN);
106 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
107 	size_t outlen;
108 	int rc;
109 
110 	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
111 
112 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
113 			  outbuf, sizeof(outbuf), &outlen);
114 	if (rc)
115 		return rc;
116 	if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
117 		netif_err(efx, drv, efx->net_dev,
118 			  "unable to read datapath firmware capabilities\n");
119 		return -EIO;
120 	}
121 
122 	nic_data->datapath_caps =
123 		MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
124 
125 	if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
126 		nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
127 				GET_CAPABILITIES_V2_OUT_FLAGS2);
128 		nic_data->piobuf_size = MCDI_WORD(outbuf,
129 				GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
130 	} else {
131 		nic_data->datapath_caps2 = 0;
132 		nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
133 	}
134 
135 	/* record the DPCPU firmware IDs to determine VEB vswitching support.
136 	 */
137 	nic_data->rx_dpcpu_fw_id =
138 		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
139 	nic_data->tx_dpcpu_fw_id =
140 		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
141 
142 	if (!(nic_data->datapath_caps &
143 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
144 		netif_err(efx, probe, efx->net_dev,
145 			  "current firmware does not support an RX prefix\n");
146 		return -ENODEV;
147 	}
148 
149 	if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
150 		u8 vi_window_mode = MCDI_BYTE(outbuf,
151 				GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
152 
153 		rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
154 		if (rc)
155 			return rc;
156 	} else {
157 		/* keep default VI stride */
158 		netif_dbg(efx, probe, efx->net_dev,
159 			  "firmware did not report VI window mode, assuming vi_stride = %u\n",
160 			  efx->vi_stride);
161 	}
162 
163 	if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
164 		efx->num_mac_stats = MCDI_WORD(outbuf,
165 				GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
166 		netif_dbg(efx, probe, efx->net_dev,
167 			  "firmware reports num_mac_stats = %u\n",
168 			  efx->num_mac_stats);
169 	} else {
170 		/* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
171 		netif_dbg(efx, probe, efx->net_dev,
172 			  "firmware did not report num_mac_stats, assuming %u\n",
173 			  efx->num_mac_stats);
174 	}
175 
176 	return 0;
177 }
178 
179 static void efx_ef10_read_licensed_features(struct efx_nic *efx)
180 {
181 	MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN);
182 	MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN);
183 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
184 	size_t outlen;
185 	int rc;
186 
187 	MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP,
188 		       MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE);
189 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf),
190 				outbuf, sizeof(outbuf), &outlen);
191 	if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN))
192 		return;
193 
194 	nic_data->licensed_features = MCDI_QWORD(outbuf,
195 					 LICENSING_V3_OUT_LICENSED_FEATURES);
196 }
197 
198 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
199 {
200 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
201 	int rc;
202 
203 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
204 			  outbuf, sizeof(outbuf), NULL);
205 	if (rc)
206 		return rc;
207 	rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
208 	return rc > 0 ? rc : -ERANGE;
209 }
210 
211 static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
212 {
213 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
214 	unsigned int implemented;
215 	unsigned int enabled;
216 	int rc;
217 
218 	nic_data->workaround_35388 = false;
219 	nic_data->workaround_61265 = false;
220 
221 	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
222 
223 	if (rc == -ENOSYS) {
224 		/* Firmware without GET_WORKAROUNDS - not a problem. */
225 		rc = 0;
226 	} else if (rc == 0) {
227 		/* Bug61265 workaround is always enabled if implemented. */
228 		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
229 			nic_data->workaround_61265 = true;
230 
231 		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
232 			nic_data->workaround_35388 = true;
233 		} else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
234 			/* Workaround is implemented but not enabled.
235 			 * Try to enable it.
236 			 */
237 			rc = efx_mcdi_set_workaround(efx,
238 						     MC_CMD_WORKAROUND_BUG35388,
239 						     true, NULL);
240 			if (rc == 0)
241 				nic_data->workaround_35388 = true;
242 			/* If we failed to set the workaround just carry on. */
243 			rc = 0;
244 		}
245 	}
246 
247 	netif_dbg(efx, probe, efx->net_dev,
248 		  "workaround for bug 35388 is %sabled\n",
249 		  nic_data->workaround_35388 ? "en" : "dis");
250 	netif_dbg(efx, probe, efx->net_dev,
251 		  "workaround for bug 61265 is %sabled\n",
252 		  nic_data->workaround_61265 ? "en" : "dis");
253 
254 	return rc;
255 }
256 
257 static void efx_ef10_process_timer_config(struct efx_nic *efx,
258 					  const efx_dword_t *data)
259 {
260 	unsigned int max_count;
261 
262 	if (EFX_EF10_WORKAROUND_61265(efx)) {
263 		efx->timer_quantum_ns = MCDI_DWORD(data,
264 			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
265 		efx->timer_max_ns = MCDI_DWORD(data,
266 			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
267 	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
268 		efx->timer_quantum_ns = MCDI_DWORD(data,
269 			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
270 		max_count = MCDI_DWORD(data,
271 			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
272 		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
273 	} else {
274 		efx->timer_quantum_ns = MCDI_DWORD(data,
275 			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
276 		max_count = MCDI_DWORD(data,
277 			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
278 		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
279 	}
280 
281 	netif_dbg(efx, probe, efx->net_dev,
282 		  "got timer properties from MC: quantum %u ns; max %u ns\n",
283 		  efx->timer_quantum_ns, efx->timer_max_ns);
284 }
285 
286 static int efx_ef10_get_timer_config(struct efx_nic *efx)
287 {
288 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
289 	int rc;
290 
291 	rc = efx_ef10_get_timer_workarounds(efx);
292 	if (rc)
293 		return rc;
294 
295 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
296 				outbuf, sizeof(outbuf), NULL);
297 
298 	if (rc == 0) {
299 		efx_ef10_process_timer_config(efx, outbuf);
300 	} else if (rc == -ENOSYS || rc == -EPERM) {
301 		/* Not available - fall back to Huntington defaults. */
302 		unsigned int quantum;
303 
304 		rc = efx_ef10_get_sysclk_freq(efx);
305 		if (rc < 0)
306 			return rc;
307 
308 		quantum = 1536000 / rc; /* 1536 cycles */
309 		efx->timer_quantum_ns = quantum;
310 		efx->timer_max_ns = efx->type->timer_period_max * quantum;
311 		rc = 0;
312 	} else {
313 		efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
314 				       MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
315 				       NULL, 0, rc);
316 	}
317 
318 	return rc;
319 }
320 
321 static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
322 {
323 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
324 	size_t outlen;
325 	int rc;
326 
327 	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
328 
329 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
330 			  outbuf, sizeof(outbuf), &outlen);
331 	if (rc)
332 		return rc;
333 	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
334 		return -EIO;
335 
336 	ether_addr_copy(mac_address,
337 			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
338 	return 0;
339 }
340 
341 static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
342 {
343 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
344 	MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
345 	size_t outlen;
346 	int num_addrs, rc;
347 
348 	MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
349 		       EVB_PORT_ID_ASSIGNED);
350 	rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
351 			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
352 
353 	if (rc)
354 		return rc;
355 	if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
356 		return -EIO;
357 
358 	num_addrs = MCDI_DWORD(outbuf,
359 			       VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
360 
361 	WARN_ON(num_addrs != 1);
362 
363 	ether_addr_copy(mac_address,
364 			MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
365 
366 	return 0;
367 }
368 
369 static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
370 					       struct device_attribute *attr,
371 					       char *buf)
372 {
373 	struct efx_nic *efx = dev_get_drvdata(dev);
374 
375 	return sprintf(buf, "%d\n",
376 		       ((efx->mcdi->fn_flags) &
377 			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
378 		       ? 1 : 0);
379 }
380 
381 static ssize_t efx_ef10_show_primary_flag(struct device *dev,
382 					  struct device_attribute *attr,
383 					  char *buf)
384 {
385 	struct efx_nic *efx = dev_get_drvdata(dev);
386 
387 	return sprintf(buf, "%d\n",
388 		       ((efx->mcdi->fn_flags) &
389 			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
390 		       ? 1 : 0);
391 }
392 
393 static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
394 {
395 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
396 	struct efx_ef10_vlan *vlan;
397 
398 	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
399 
400 	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
401 		if (vlan->vid == vid)
402 			return vlan;
403 	}
404 
405 	return NULL;
406 }
407 
408 static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
409 {
410 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
411 	struct efx_ef10_vlan *vlan;
412 	int rc;
413 
414 	mutex_lock(&nic_data->vlan_lock);
415 
416 	vlan = efx_ef10_find_vlan(efx, vid);
417 	if (vlan) {
418 		/* We add VID 0 on init. 8021q adds it on module init
419 		 * for all interfaces with VLAN filtring feature.
420 		 */
421 		if (vid == 0)
422 			goto done_unlock;
423 		netif_warn(efx, drv, efx->net_dev,
424 			   "VLAN %u already added\n", vid);
425 		rc = -EALREADY;
426 		goto fail_exist;
427 	}
428 
429 	rc = -ENOMEM;
430 	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
431 	if (!vlan)
432 		goto fail_alloc;
433 
434 	vlan->vid = vid;
435 
436 	list_add_tail(&vlan->list, &nic_data->vlan_list);
437 
438 	if (efx->filter_state) {
439 		mutex_lock(&efx->mac_lock);
440 		down_write(&efx->filter_sem);
441 		rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
442 		up_write(&efx->filter_sem);
443 		mutex_unlock(&efx->mac_lock);
444 		if (rc)
445 			goto fail_filter_add_vlan;
446 	}
447 
448 done_unlock:
449 	mutex_unlock(&nic_data->vlan_lock);
450 	return 0;
451 
452 fail_filter_add_vlan:
453 	list_del(&vlan->list);
454 	kfree(vlan);
455 fail_alloc:
456 fail_exist:
457 	mutex_unlock(&nic_data->vlan_lock);
458 	return rc;
459 }
460 
461 static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
462 				       struct efx_ef10_vlan *vlan)
463 {
464 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
465 
466 	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
467 
468 	if (efx->filter_state) {
469 		down_write(&efx->filter_sem);
470 		efx_mcdi_filter_del_vlan(efx, vlan->vid);
471 		up_write(&efx->filter_sem);
472 	}
473 
474 	list_del(&vlan->list);
475 	kfree(vlan);
476 }
477 
478 static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
479 {
480 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
481 	struct efx_ef10_vlan *vlan;
482 	int rc = 0;
483 
484 	/* 8021q removes VID 0 on module unload for all interfaces
485 	 * with VLAN filtering feature. We need to keep it to receive
486 	 * untagged traffic.
487 	 */
488 	if (vid == 0)
489 		return 0;
490 
491 	mutex_lock(&nic_data->vlan_lock);
492 
493 	vlan = efx_ef10_find_vlan(efx, vid);
494 	if (!vlan) {
495 		netif_err(efx, drv, efx->net_dev,
496 			  "VLAN %u to be deleted not found\n", vid);
497 		rc = -ENOENT;
498 	} else {
499 		efx_ef10_del_vlan_internal(efx, vlan);
500 	}
501 
502 	mutex_unlock(&nic_data->vlan_lock);
503 
504 	return rc;
505 }
506 
507 static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
508 {
509 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
510 	struct efx_ef10_vlan *vlan, *next_vlan;
511 
512 	mutex_lock(&nic_data->vlan_lock);
513 	list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
514 		efx_ef10_del_vlan_internal(efx, vlan);
515 	mutex_unlock(&nic_data->vlan_lock);
516 }
517 
518 static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
519 		   NULL);
520 static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
521 
522 static int efx_ef10_probe(struct efx_nic *efx)
523 {
524 	struct efx_ef10_nic_data *nic_data;
525 	int i, rc;
526 
527 	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
528 	if (!nic_data)
529 		return -ENOMEM;
530 	efx->nic_data = nic_data;
531 
532 	/* we assume later that we can copy from this buffer in dwords */
533 	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
534 
535 	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
536 				  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
537 	if (rc)
538 		goto fail1;
539 
540 	/* Get the MC's warm boot count.  In case it's rebooting right
541 	 * now, be prepared to retry.
542 	 */
543 	i = 0;
544 	for (;;) {
545 		rc = efx_ef10_get_warm_boot_count(efx);
546 		if (rc >= 0)
547 			break;
548 		if (++i == 5)
549 			goto fail2;
550 		ssleep(1);
551 	}
552 	nic_data->warm_boot_count = rc;
553 
554 	efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
555 
556 	nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
557 
558 	/* In case we're recovering from a crash (kexec), we want to
559 	 * cancel any outstanding request by the previous user of this
560 	 * function.  We send a special message using the least
561 	 * significant bits of the 'high' (doorbell) register.
562 	 */
563 	_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
564 
565 	rc = efx_mcdi_init(efx);
566 	if (rc)
567 		goto fail2;
568 
569 	mutex_init(&nic_data->udp_tunnels_lock);
570 
571 	/* Reset (most) configuration for this function */
572 	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
573 	if (rc)
574 		goto fail3;
575 
576 	/* Enable event logging */
577 	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
578 	if (rc)
579 		goto fail3;
580 
581 	rc = device_create_file(&efx->pci_dev->dev,
582 				&dev_attr_link_control_flag);
583 	if (rc)
584 		goto fail3;
585 
586 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
587 	if (rc)
588 		goto fail4;
589 
590 	rc = efx_get_pf_index(efx, &nic_data->pf_index);
591 	if (rc)
592 		goto fail5;
593 
594 	rc = efx_ef10_init_datapath_caps(efx);
595 	if (rc < 0)
596 		goto fail5;
597 
598 	efx_ef10_read_licensed_features(efx);
599 
600 	/* We can have one VI for each vi_stride-byte region.
601 	 * However, until we use TX option descriptors we need two TX queues
602 	 * per channel.
603 	 */
604 	efx->max_channels = min_t(unsigned int,
605 				  EFX_MAX_CHANNELS,
606 				  efx_ef10_mem_map_size(efx) /
607 				  (efx->vi_stride * EFX_TXQ_TYPES));
608 	efx->max_tx_channels = efx->max_channels;
609 	if (WARN_ON(efx->max_channels == 0)) {
610 		rc = -EIO;
611 		goto fail5;
612 	}
613 
614 	efx->rx_packet_len_offset =
615 		ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
616 
617 	if (nic_data->datapath_caps &
618 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
619 		efx->net_dev->hw_features |= NETIF_F_RXFCS;
620 
621 	rc = efx_mcdi_port_get_number(efx);
622 	if (rc < 0)
623 		goto fail5;
624 	efx->port_num = rc;
625 
626 	rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
627 	if (rc)
628 		goto fail5;
629 
630 	rc = efx_ef10_get_timer_config(efx);
631 	if (rc < 0)
632 		goto fail5;
633 
634 	rc = efx_mcdi_mon_probe(efx);
635 	if (rc && rc != -EPERM)
636 		goto fail5;
637 
638 	efx_ptp_defer_probe_with_channel(efx);
639 
640 #ifdef CONFIG_SFC_SRIOV
641 	if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
642 		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
643 		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
644 
645 		efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
646 	} else
647 #endif
648 		ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
649 
650 	INIT_LIST_HEAD(&nic_data->vlan_list);
651 	mutex_init(&nic_data->vlan_lock);
652 
653 	/* Add unspecified VID to support VLAN filtering being disabled */
654 	rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
655 	if (rc)
656 		goto fail_add_vid_unspec;
657 
658 	/* If VLAN filtering is enabled, we need VID 0 to get untagged
659 	 * traffic.  It is added automatically if 8021q module is loaded,
660 	 * but we can't rely on it since module may be not loaded.
661 	 */
662 	rc = efx_ef10_add_vlan(efx, 0);
663 	if (rc)
664 		goto fail_add_vid_0;
665 
666 	return 0;
667 
668 fail_add_vid_0:
669 	efx_ef10_cleanup_vlans(efx);
670 fail_add_vid_unspec:
671 	mutex_destroy(&nic_data->vlan_lock);
672 	efx_ptp_remove(efx);
673 	efx_mcdi_mon_remove(efx);
674 fail5:
675 	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
676 fail4:
677 	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
678 fail3:
679 	efx_mcdi_detach(efx);
680 
681 	mutex_lock(&nic_data->udp_tunnels_lock);
682 	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
683 	(void)efx_ef10_set_udp_tnl_ports(efx, true);
684 	mutex_unlock(&nic_data->udp_tunnels_lock);
685 	mutex_destroy(&nic_data->udp_tunnels_lock);
686 
687 	efx_mcdi_fini(efx);
688 fail2:
689 	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
690 fail1:
691 	kfree(nic_data);
692 	efx->nic_data = NULL;
693 	return rc;
694 }
695 
696 #ifdef EFX_USE_PIO
697 
698 static void efx_ef10_free_piobufs(struct efx_nic *efx)
699 {
700 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
701 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
702 	unsigned int i;
703 	int rc;
704 
705 	BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
706 
707 	for (i = 0; i < nic_data->n_piobufs; i++) {
708 		MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
709 			       nic_data->piobuf_handle[i]);
710 		rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
711 				  NULL, 0, NULL);
712 		WARN_ON(rc);
713 	}
714 
715 	nic_data->n_piobufs = 0;
716 }
717 
718 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
719 {
720 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
721 	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
722 	unsigned int i;
723 	size_t outlen;
724 	int rc = 0;
725 
726 	BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
727 
728 	for (i = 0; i < n; i++) {
729 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
730 					outbuf, sizeof(outbuf), &outlen);
731 		if (rc) {
732 			/* Don't display the MC error if we didn't have space
733 			 * for a VF.
734 			 */
735 			if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
736 				efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
737 						       0, outbuf, outlen, rc);
738 			break;
739 		}
740 		if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
741 			rc = -EIO;
742 			break;
743 		}
744 		nic_data->piobuf_handle[i] =
745 			MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
746 		netif_dbg(efx, probe, efx->net_dev,
747 			  "allocated PIO buffer %u handle %x\n", i,
748 			  nic_data->piobuf_handle[i]);
749 	}
750 
751 	nic_data->n_piobufs = i;
752 	if (rc)
753 		efx_ef10_free_piobufs(efx);
754 	return rc;
755 }
756 
757 static int efx_ef10_link_piobufs(struct efx_nic *efx)
758 {
759 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
760 	MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
761 	struct efx_channel *channel;
762 	struct efx_tx_queue *tx_queue;
763 	unsigned int offset, index;
764 	int rc;
765 
766 	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
767 	BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
768 
769 	/* Link a buffer to each VI in the write-combining mapping */
770 	for (index = 0; index < nic_data->n_piobufs; ++index) {
771 		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
772 			       nic_data->piobuf_handle[index]);
773 		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
774 			       nic_data->pio_write_vi_base + index);
775 		rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
776 				  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
777 				  NULL, 0, NULL);
778 		if (rc) {
779 			netif_err(efx, drv, efx->net_dev,
780 				  "failed to link VI %u to PIO buffer %u (%d)\n",
781 				  nic_data->pio_write_vi_base + index, index,
782 				  rc);
783 			goto fail;
784 		}
785 		netif_dbg(efx, probe, efx->net_dev,
786 			  "linked VI %u to PIO buffer %u\n",
787 			  nic_data->pio_write_vi_base + index, index);
788 	}
789 
790 	/* Link a buffer to each TX queue */
791 	efx_for_each_channel(channel, efx) {
792 		/* Extra channels, even those with TXQs (PTP), do not require
793 		 * PIO resources.
794 		 */
795 		if (!channel->type->want_pio ||
796 		    channel->channel >= efx->xdp_channel_offset)
797 			continue;
798 
799 		efx_for_each_channel_tx_queue(tx_queue, channel) {
800 			/* We assign the PIO buffers to queues in
801 			 * reverse order to allow for the following
802 			 * special case.
803 			 */
804 			offset = ((efx->tx_channel_offset + efx->n_tx_channels -
805 				   tx_queue->channel->channel - 1) *
806 				  efx_piobuf_size);
807 			index = offset / nic_data->piobuf_size;
808 			offset = offset % nic_data->piobuf_size;
809 
810 			/* When the host page size is 4K, the first
811 			 * host page in the WC mapping may be within
812 			 * the same VI page as the last TX queue.  We
813 			 * can only link one buffer to each VI.
814 			 */
815 			if (tx_queue->queue == nic_data->pio_write_vi_base) {
816 				BUG_ON(index != 0);
817 				rc = 0;
818 			} else {
819 				MCDI_SET_DWORD(inbuf,
820 					       LINK_PIOBUF_IN_PIOBUF_HANDLE,
821 					       nic_data->piobuf_handle[index]);
822 				MCDI_SET_DWORD(inbuf,
823 					       LINK_PIOBUF_IN_TXQ_INSTANCE,
824 					       tx_queue->queue);
825 				rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
826 						  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
827 						  NULL, 0, NULL);
828 			}
829 
830 			if (rc) {
831 				/* This is non-fatal; the TX path just
832 				 * won't use PIO for this queue
833 				 */
834 				netif_err(efx, drv, efx->net_dev,
835 					  "failed to link VI %u to PIO buffer %u (%d)\n",
836 					  tx_queue->queue, index, rc);
837 				tx_queue->piobuf = NULL;
838 			} else {
839 				tx_queue->piobuf =
840 					nic_data->pio_write_base +
841 					index * efx->vi_stride + offset;
842 				tx_queue->piobuf_offset = offset;
843 				netif_dbg(efx, probe, efx->net_dev,
844 					  "linked VI %u to PIO buffer %u offset %x addr %p\n",
845 					  tx_queue->queue, index,
846 					  tx_queue->piobuf_offset,
847 					  tx_queue->piobuf);
848 			}
849 		}
850 	}
851 
852 	return 0;
853 
854 fail:
855 	/* inbuf was defined for MC_CMD_LINK_PIOBUF.  We can use the same
856 	 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
857 	 */
858 	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
859 	while (index--) {
860 		MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
861 			       nic_data->pio_write_vi_base + index);
862 		efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
863 			     inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
864 			     NULL, 0, NULL);
865 	}
866 	return rc;
867 }
868 
869 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
870 {
871 	struct efx_channel *channel;
872 	struct efx_tx_queue *tx_queue;
873 
874 	/* All our existing PIO buffers went away */
875 	efx_for_each_channel(channel, efx)
876 		efx_for_each_channel_tx_queue(tx_queue, channel)
877 			tx_queue->piobuf = NULL;
878 }
879 
880 #else /* !EFX_USE_PIO */
881 
882 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
883 {
884 	return n == 0 ? 0 : -ENOBUFS;
885 }
886 
887 static int efx_ef10_link_piobufs(struct efx_nic *efx)
888 {
889 	return 0;
890 }
891 
892 static void efx_ef10_free_piobufs(struct efx_nic *efx)
893 {
894 }
895 
896 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
897 {
898 }
899 
900 #endif /* EFX_USE_PIO */
901 
902 static void efx_ef10_remove(struct efx_nic *efx)
903 {
904 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
905 	int rc;
906 
907 #ifdef CONFIG_SFC_SRIOV
908 	struct efx_ef10_nic_data *nic_data_pf;
909 	struct pci_dev *pci_dev_pf;
910 	struct efx_nic *efx_pf;
911 	struct ef10_vf *vf;
912 
913 	if (efx->pci_dev->is_virtfn) {
914 		pci_dev_pf = efx->pci_dev->physfn;
915 		if (pci_dev_pf) {
916 			efx_pf = pci_get_drvdata(pci_dev_pf);
917 			nic_data_pf = efx_pf->nic_data;
918 			vf = nic_data_pf->vf + nic_data->vf_index;
919 			vf->efx = NULL;
920 		} else
921 			netif_info(efx, drv, efx->net_dev,
922 				   "Could not get the PF id from VF\n");
923 	}
924 #endif
925 
926 	efx_ef10_cleanup_vlans(efx);
927 	mutex_destroy(&nic_data->vlan_lock);
928 
929 	efx_ptp_remove(efx);
930 
931 	efx_mcdi_mon_remove(efx);
932 
933 	efx_mcdi_rx_free_indir_table(efx);
934 
935 	if (nic_data->wc_membase)
936 		iounmap(nic_data->wc_membase);
937 
938 	rc = efx_mcdi_free_vis(efx);
939 	WARN_ON(rc != 0);
940 
941 	if (!nic_data->must_restore_piobufs)
942 		efx_ef10_free_piobufs(efx);
943 
944 	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
945 	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
946 
947 	efx_mcdi_detach(efx);
948 
949 	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
950 	mutex_lock(&nic_data->udp_tunnels_lock);
951 	(void)efx_ef10_set_udp_tnl_ports(efx, true);
952 	mutex_unlock(&nic_data->udp_tunnels_lock);
953 
954 	mutex_destroy(&nic_data->udp_tunnels_lock);
955 
956 	efx_mcdi_fini(efx);
957 	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
958 	kfree(nic_data);
959 }
960 
961 static int efx_ef10_probe_pf(struct efx_nic *efx)
962 {
963 	return efx_ef10_probe(efx);
964 }
965 
966 int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
967 			    u32 *port_flags, u32 *vadaptor_flags,
968 			    unsigned int *vlan_tags)
969 {
970 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
971 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
972 	MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
973 	size_t outlen;
974 	int rc;
975 
976 	if (nic_data->datapath_caps &
977 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
978 		MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
979 			       port_id);
980 
981 		rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
982 				  outbuf, sizeof(outbuf), &outlen);
983 		if (rc)
984 			return rc;
985 
986 		if (outlen < sizeof(outbuf)) {
987 			rc = -EIO;
988 			return rc;
989 		}
990 	}
991 
992 	if (port_flags)
993 		*port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
994 	if (vadaptor_flags)
995 		*vadaptor_flags =
996 			MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
997 	if (vlan_tags)
998 		*vlan_tags =
999 			MCDI_DWORD(outbuf,
1000 				   VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1001 
1002 	return 0;
1003 }
1004 
1005 int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1006 {
1007 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1008 
1009 	MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1010 	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1011 			    NULL, 0, NULL);
1012 }
1013 
1014 int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1015 {
1016 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1017 
1018 	MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1019 	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1020 			    NULL, 0, NULL);
1021 }
1022 
1023 int efx_ef10_vport_add_mac(struct efx_nic *efx,
1024 			   unsigned int port_id, u8 *mac)
1025 {
1026 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1027 
1028 	MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1029 	ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1030 
1031 	return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1032 			    sizeof(inbuf), NULL, 0, NULL);
1033 }
1034 
1035 int efx_ef10_vport_del_mac(struct efx_nic *efx,
1036 			   unsigned int port_id, u8 *mac)
1037 {
1038 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1039 
1040 	MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1041 	ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1042 
1043 	return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1044 			    sizeof(inbuf), NULL, 0, NULL);
1045 }
1046 
1047 #ifdef CONFIG_SFC_SRIOV
1048 static int efx_ef10_probe_vf(struct efx_nic *efx)
1049 {
1050 	int rc;
1051 	struct pci_dev *pci_dev_pf;
1052 
1053 	/* If the parent PF has no VF data structure, it doesn't know about this
1054 	 * VF so fail probe.  The VF needs to be re-created.  This can happen
1055 	 * if the PF driver is unloaded while the VF is assigned to a guest.
1056 	 */
1057 	pci_dev_pf = efx->pci_dev->physfn;
1058 	if (pci_dev_pf) {
1059 		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1060 		struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1061 
1062 		if (!nic_data_pf->vf) {
1063 			netif_info(efx, drv, efx->net_dev,
1064 				   "The VF cannot link to its parent PF; "
1065 				   "please destroy and re-create the VF\n");
1066 			return -EBUSY;
1067 		}
1068 	}
1069 
1070 	rc = efx_ef10_probe(efx);
1071 	if (rc)
1072 		return rc;
1073 
1074 	rc = efx_ef10_get_vf_index(efx);
1075 	if (rc)
1076 		goto fail;
1077 
1078 	if (efx->pci_dev->is_virtfn) {
1079 		if (efx->pci_dev->physfn) {
1080 			struct efx_nic *efx_pf =
1081 				pci_get_drvdata(efx->pci_dev->physfn);
1082 			struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1083 			struct efx_ef10_nic_data *nic_data = efx->nic_data;
1084 
1085 			nic_data_p->vf[nic_data->vf_index].efx = efx;
1086 			nic_data_p->vf[nic_data->vf_index].pci_dev =
1087 				efx->pci_dev;
1088 		} else
1089 			netif_info(efx, drv, efx->net_dev,
1090 				   "Could not get the PF id from VF\n");
1091 	}
1092 
1093 	return 0;
1094 
1095 fail:
1096 	efx_ef10_remove(efx);
1097 	return rc;
1098 }
1099 #else
1100 static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1101 {
1102 	return 0;
1103 }
1104 #endif
1105 
1106 static int efx_ef10_alloc_vis(struct efx_nic *efx,
1107 			      unsigned int min_vis, unsigned int max_vis)
1108 {
1109 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1110 
1111 	return efx_mcdi_alloc_vis(efx, min_vis, max_vis, &nic_data->vi_base,
1112 				  &nic_data->n_allocated_vis);
1113 }
1114 
1115 /* Note that the failure path of this function does not free
1116  * resources, as this will be done by efx_ef10_remove().
1117  */
1118 static int efx_ef10_dimension_resources(struct efx_nic *efx)
1119 {
1120 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1121 	unsigned int uc_mem_map_size, wc_mem_map_size;
1122 	unsigned int min_vis = max(EFX_TXQ_TYPES,
1123 				   efx_separate_tx_channels ? 2 : 1);
1124 	unsigned int channel_vis, pio_write_vi_base, max_vis;
1125 	void __iomem *membase;
1126 	int rc;
1127 
1128 	channel_vis = max(efx->n_channels,
1129 			  ((efx->n_tx_channels + efx->n_extra_tx_channels) *
1130 			   EFX_TXQ_TYPES) +
1131 			   efx->n_xdp_channels * efx->xdp_tx_per_channel);
1132 
1133 #ifdef EFX_USE_PIO
1134 	/* Try to allocate PIO buffers if wanted and if the full
1135 	 * number of PIO buffers would be sufficient to allocate one
1136 	 * copy-buffer per TX channel.  Failure is non-fatal, as there
1137 	 * are only a small number of PIO buffers shared between all
1138 	 * functions of the controller.
1139 	 */
1140 	if (efx_piobuf_size != 0 &&
1141 	    nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1142 	    efx->n_tx_channels) {
1143 		unsigned int n_piobufs =
1144 			DIV_ROUND_UP(efx->n_tx_channels,
1145 				     nic_data->piobuf_size / efx_piobuf_size);
1146 
1147 		rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1148 		if (rc == -ENOSPC)
1149 			netif_dbg(efx, probe, efx->net_dev,
1150 				  "out of PIO buffers; cannot allocate more\n");
1151 		else if (rc == -EPERM)
1152 			netif_dbg(efx, probe, efx->net_dev,
1153 				  "not permitted to allocate PIO buffers\n");
1154 		else if (rc)
1155 			netif_err(efx, probe, efx->net_dev,
1156 				  "failed to allocate PIO buffers (%d)\n", rc);
1157 		else
1158 			netif_dbg(efx, probe, efx->net_dev,
1159 				  "allocated %u PIO buffers\n", n_piobufs);
1160 	}
1161 #else
1162 	nic_data->n_piobufs = 0;
1163 #endif
1164 
1165 	/* PIO buffers should be mapped with write-combining enabled,
1166 	 * and we want to make single UC and WC mappings rather than
1167 	 * several of each (in fact that's the only option if host
1168 	 * page size is >4K).  So we may allocate some extra VIs just
1169 	 * for writing PIO buffers through.
1170 	 *
1171 	 * The UC mapping contains (channel_vis - 1) complete VIs and the
1172 	 * first 4K of the next VI.  Then the WC mapping begins with
1173 	 * the remainder of this last VI.
1174 	 */
1175 	uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride +
1176 				     ER_DZ_TX_PIOBUF);
1177 	if (nic_data->n_piobufs) {
1178 		/* pio_write_vi_base rounds down to give the number of complete
1179 		 * VIs inside the UC mapping.
1180 		 */
1181 		pio_write_vi_base = uc_mem_map_size / efx->vi_stride;
1182 		wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1183 					       nic_data->n_piobufs) *
1184 					      efx->vi_stride) -
1185 				   uc_mem_map_size);
1186 		max_vis = pio_write_vi_base + nic_data->n_piobufs;
1187 	} else {
1188 		pio_write_vi_base = 0;
1189 		wc_mem_map_size = 0;
1190 		max_vis = channel_vis;
1191 	}
1192 
1193 	/* In case the last attached driver failed to free VIs, do it now */
1194 	rc = efx_mcdi_free_vis(efx);
1195 	if (rc != 0)
1196 		return rc;
1197 
1198 	rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1199 	if (rc != 0)
1200 		return rc;
1201 
1202 	if (nic_data->n_allocated_vis < channel_vis) {
1203 		netif_info(efx, drv, efx->net_dev,
1204 			   "Could not allocate enough VIs to satisfy RSS"
1205 			   " requirements. Performance may not be optimal.\n");
1206 		/* We didn't get the VIs to populate our channels.
1207 		 * We could keep what we got but then we'd have more
1208 		 * interrupts than we need.
1209 		 * Instead calculate new max_channels and restart
1210 		 */
1211 		efx->max_channels = nic_data->n_allocated_vis;
1212 		efx->max_tx_channels =
1213 			nic_data->n_allocated_vis / EFX_TXQ_TYPES;
1214 
1215 		efx_mcdi_free_vis(efx);
1216 		return -EAGAIN;
1217 	}
1218 
1219 	/* If we didn't get enough VIs to map all the PIO buffers, free the
1220 	 * PIO buffers
1221 	 */
1222 	if (nic_data->n_piobufs &&
1223 	    nic_data->n_allocated_vis <
1224 	    pio_write_vi_base + nic_data->n_piobufs) {
1225 		netif_dbg(efx, probe, efx->net_dev,
1226 			  "%u VIs are not sufficient to map %u PIO buffers\n",
1227 			  nic_data->n_allocated_vis, nic_data->n_piobufs);
1228 		efx_ef10_free_piobufs(efx);
1229 	}
1230 
1231 	/* Shrink the original UC mapping of the memory BAR */
1232 	membase = ioremap(efx->membase_phys, uc_mem_map_size);
1233 	if (!membase) {
1234 		netif_err(efx, probe, efx->net_dev,
1235 			  "could not shrink memory BAR to %x\n",
1236 			  uc_mem_map_size);
1237 		return -ENOMEM;
1238 	}
1239 	iounmap(efx->membase);
1240 	efx->membase = membase;
1241 
1242 	/* Set up the WC mapping if needed */
1243 	if (wc_mem_map_size) {
1244 		nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1245 						  uc_mem_map_size,
1246 						  wc_mem_map_size);
1247 		if (!nic_data->wc_membase) {
1248 			netif_err(efx, probe, efx->net_dev,
1249 				  "could not allocate WC mapping of size %x\n",
1250 				  wc_mem_map_size);
1251 			return -ENOMEM;
1252 		}
1253 		nic_data->pio_write_vi_base = pio_write_vi_base;
1254 		nic_data->pio_write_base =
1255 			nic_data->wc_membase +
1256 			(pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF -
1257 			 uc_mem_map_size);
1258 
1259 		rc = efx_ef10_link_piobufs(efx);
1260 		if (rc)
1261 			efx_ef10_free_piobufs(efx);
1262 	}
1263 
1264 	netif_dbg(efx, probe, efx->net_dev,
1265 		  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1266 		  &efx->membase_phys, efx->membase, uc_mem_map_size,
1267 		  nic_data->wc_membase, wc_mem_map_size);
1268 
1269 	return 0;
1270 }
1271 
1272 static int efx_ef10_init_nic(struct efx_nic *efx)
1273 {
1274 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1275 	int rc;
1276 
1277 	if (nic_data->must_check_datapath_caps) {
1278 		rc = efx_ef10_init_datapath_caps(efx);
1279 		if (rc)
1280 			return rc;
1281 		nic_data->must_check_datapath_caps = false;
1282 	}
1283 
1284 	if (nic_data->must_realloc_vis) {
1285 		/* We cannot let the number of VIs change now */
1286 		rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1287 					nic_data->n_allocated_vis);
1288 		if (rc)
1289 			return rc;
1290 		nic_data->must_realloc_vis = false;
1291 	}
1292 
1293 	if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1294 		rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1295 		if (rc == 0) {
1296 			rc = efx_ef10_link_piobufs(efx);
1297 			if (rc)
1298 				efx_ef10_free_piobufs(efx);
1299 		}
1300 
1301 		/* Log an error on failure, but this is non-fatal.
1302 		 * Permission errors are less important - we've presumably
1303 		 * had the PIO buffer licence removed.
1304 		 */
1305 		if (rc == -EPERM)
1306 			netif_dbg(efx, drv, efx->net_dev,
1307 				  "not permitted to restore PIO buffers\n");
1308 		else if (rc)
1309 			netif_err(efx, drv, efx->net_dev,
1310 				  "failed to restore PIO buffers (%d)\n", rc);
1311 		nic_data->must_restore_piobufs = false;
1312 	}
1313 
1314 	/* don't fail init if RSS setup doesn't work */
1315 	rc = efx->type->rx_push_rss_config(efx, false,
1316 					   efx->rss_context.rx_indir_table, NULL);
1317 
1318 	return 0;
1319 }
1320 
1321 static void efx_ef10_table_reset_mc_allocations(struct efx_nic *efx)
1322 {
1323 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1324 #ifdef CONFIG_SFC_SRIOV
1325 	unsigned int i;
1326 #endif
1327 
1328 	/* All our allocations have been reset */
1329 	nic_data->must_realloc_vis = true;
1330 	nic_data->must_restore_rss_contexts = true;
1331 	nic_data->must_restore_filters = true;
1332 	nic_data->must_restore_piobufs = true;
1333 	efx_ef10_forget_old_piobufs(efx);
1334 	efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
1335 
1336 	/* Driver-created vswitches and vports must be re-created */
1337 	nic_data->must_probe_vswitching = true;
1338 	nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
1339 #ifdef CONFIG_SFC_SRIOV
1340 	if (nic_data->vf)
1341 		for (i = 0; i < efx->vf_count; i++)
1342 			nic_data->vf[i].vport_id = 0;
1343 #endif
1344 }
1345 
1346 static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1347 {
1348 	if (reason == RESET_TYPE_MC_FAILURE)
1349 		return RESET_TYPE_DATAPATH;
1350 
1351 	return efx_mcdi_map_reset_reason(reason);
1352 }
1353 
1354 static int efx_ef10_map_reset_flags(u32 *flags)
1355 {
1356 	enum {
1357 		EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1358 				   ETH_RESET_SHARED_SHIFT),
1359 		EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1360 				  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1361 				  ETH_RESET_PHY | ETH_RESET_MGMT) <<
1362 				 ETH_RESET_SHARED_SHIFT)
1363 	};
1364 
1365 	/* We assume for now that our PCI function is permitted to
1366 	 * reset everything.
1367 	 */
1368 
1369 	if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1370 		*flags &= ~EF10_RESET_MC;
1371 		return RESET_TYPE_WORLD;
1372 	}
1373 
1374 	if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1375 		*flags &= ~EF10_RESET_PORT;
1376 		return RESET_TYPE_ALL;
1377 	}
1378 
1379 	/* no invisible reset implemented */
1380 
1381 	return -EINVAL;
1382 }
1383 
1384 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1385 {
1386 	int rc = efx_mcdi_reset(efx, reset_type);
1387 
1388 	/* Unprivileged functions return -EPERM, but need to return success
1389 	 * here so that the datapath is brought back up.
1390 	 */
1391 	if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1392 		rc = 0;
1393 
1394 	/* If it was a port reset, trigger reallocation of MC resources.
1395 	 * Note that on an MC reset nothing needs to be done now because we'll
1396 	 * detect the MC reset later and handle it then.
1397 	 * For an FLR, we never get an MC reset event, but the MC has reset all
1398 	 * resources assigned to us, so we have to trigger reallocation now.
1399 	 */
1400 	if ((reset_type == RESET_TYPE_ALL ||
1401 	     reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1402 		efx_ef10_table_reset_mc_allocations(efx);
1403 	return rc;
1404 }
1405 
1406 #define EF10_DMA_STAT(ext_name, mcdi_name)			\
1407 	[EF10_STAT_ ## ext_name] =				\
1408 	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1409 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name)		\
1410 	[EF10_STAT_ ## int_name] =				\
1411 	{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1412 #define EF10_OTHER_STAT(ext_name)				\
1413 	[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1414 #define GENERIC_SW_STAT(ext_name)				\
1415 	[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1416 
1417 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1418 	EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1419 	EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1420 	EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1421 	EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1422 	EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1423 	EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1424 	EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1425 	EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1426 	EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1427 	EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1428 	EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1429 	EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1430 	EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1431 	EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1432 	EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1433 	EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1434 	EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1435 	EF10_OTHER_STAT(port_rx_good_bytes),
1436 	EF10_OTHER_STAT(port_rx_bad_bytes),
1437 	EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1438 	EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1439 	EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1440 	EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1441 	EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1442 	EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1443 	EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1444 	EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1445 	EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1446 	EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1447 	EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1448 	EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1449 	EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1450 	EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1451 	EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1452 	EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1453 	EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1454 	EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1455 	EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1456 	EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1457 	EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1458 	EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1459 	GENERIC_SW_STAT(rx_nodesc_trunc),
1460 	GENERIC_SW_STAT(rx_noskb_drops),
1461 	EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1462 	EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1463 	EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1464 	EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1465 	EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1466 	EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1467 	EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1468 	EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1469 	EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1470 	EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1471 	EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1472 	EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1473 	EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1474 	EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1475 	EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1476 	EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1477 	EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1478 	EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1479 	EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1480 	EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1481 	EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1482 	EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1483 	EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1484 	EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1485 	EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1486 	EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1487 	EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1488 	EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1489 	EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1490 	EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1491 	EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS),
1492 	EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS),
1493 	EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0),
1494 	EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1),
1495 	EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2),
1496 	EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3),
1497 	EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK),
1498 	EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS),
1499 	EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL),
1500 	EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL),
1501 	EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL),
1502 	EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL),
1503 	EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL),
1504 	EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL),
1505 	EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL),
1506 	EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK),
1507 	EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK),
1508 	EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK),
1509 	EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS),
1510 	EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK),
1511 	EF10_DMA_STAT(ctpio_poison, CTPIO_POISON),
1512 	EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE),
1513 };
1514 
1515 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |	\
1516 			       (1ULL << EF10_STAT_port_tx_packets) |	\
1517 			       (1ULL << EF10_STAT_port_tx_pause) |	\
1518 			       (1ULL << EF10_STAT_port_tx_unicast) |	\
1519 			       (1ULL << EF10_STAT_port_tx_multicast) |	\
1520 			       (1ULL << EF10_STAT_port_tx_broadcast) |	\
1521 			       (1ULL << EF10_STAT_port_rx_bytes) |	\
1522 			       (1ULL <<                                 \
1523 				EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1524 			       (1ULL << EF10_STAT_port_rx_good_bytes) |	\
1525 			       (1ULL << EF10_STAT_port_rx_bad_bytes) |	\
1526 			       (1ULL << EF10_STAT_port_rx_packets) |	\
1527 			       (1ULL << EF10_STAT_port_rx_good) |	\
1528 			       (1ULL << EF10_STAT_port_rx_bad) |	\
1529 			       (1ULL << EF10_STAT_port_rx_pause) |	\
1530 			       (1ULL << EF10_STAT_port_rx_control) |	\
1531 			       (1ULL << EF10_STAT_port_rx_unicast) |	\
1532 			       (1ULL << EF10_STAT_port_rx_multicast) |	\
1533 			       (1ULL << EF10_STAT_port_rx_broadcast) |	\
1534 			       (1ULL << EF10_STAT_port_rx_lt64) |	\
1535 			       (1ULL << EF10_STAT_port_rx_64) |		\
1536 			       (1ULL << EF10_STAT_port_rx_65_to_127) |	\
1537 			       (1ULL << EF10_STAT_port_rx_128_to_255) |	\
1538 			       (1ULL << EF10_STAT_port_rx_256_to_511) |	\
1539 			       (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1540 			       (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1541 			       (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1542 			       (1ULL << EF10_STAT_port_rx_gtjumbo) |	\
1543 			       (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1544 			       (1ULL << EF10_STAT_port_rx_overflow) |	\
1545 			       (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1546 			       (1ULL << GENERIC_STAT_rx_nodesc_trunc) |	\
1547 			       (1ULL << GENERIC_STAT_rx_noskb_drops))
1548 
1549 /* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1550  * For a 10G/40G switchable port we do not expose these because they might
1551  * not include all the packets they should.
1552  * On 8000 series NICs these statistics are always provided.
1553  */
1554 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |	\
1555 				 (1ULL << EF10_STAT_port_tx_lt64) |	\
1556 				 (1ULL << EF10_STAT_port_tx_64) |	\
1557 				 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1558 				 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1559 				 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1560 				 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1561 				 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1562 				 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1563 
1564 /* These statistics are only provided by the 40G MAC.  For a 10G/40G
1565  * switchable port we do expose these because the errors will otherwise
1566  * be silent.
1567  */
1568 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1569 				  (1ULL << EF10_STAT_port_rx_length_error))
1570 
1571 /* These statistics are only provided if the firmware supports the
1572  * capability PM_AND_RXDP_COUNTERS.
1573  */
1574 #define HUNT_PM_AND_RXDP_STAT_MASK (					\
1575 	(1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |		\
1576 	(1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |		\
1577 	(1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |		\
1578 	(1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |		\
1579 	(1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |			\
1580 	(1ULL << EF10_STAT_port_rx_pm_discard_qbb) |			\
1581 	(1ULL << EF10_STAT_port_rx_pm_discard_mapping) |		\
1582 	(1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |		\
1583 	(1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |		\
1584 	(1ULL << EF10_STAT_port_rx_dp_streaming_packets) |		\
1585 	(1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |			\
1586 	(1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1587 
1588 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
1589  * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
1590  * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1591  * These bits are in the second u64 of the raw mask.
1592  */
1593 #define EF10_FEC_STAT_MASK (						\
1594 	(1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) |		\
1595 	(1ULL << (EF10_STAT_fec_corrected_errors - 64)) |		\
1596 	(1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) |	\
1597 	(1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) |	\
1598 	(1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) |	\
1599 	(1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
1600 
1601 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
1602  * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
1603  * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1604  * These bits are in the second u64 of the raw mask.
1605  */
1606 #define EF10_CTPIO_STAT_MASK (						\
1607 	(1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) |		\
1608 	(1ULL << (EF10_STAT_ctpio_long_write_success - 64)) |		\
1609 	(1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) |		\
1610 	(1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) |		\
1611 	(1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) |		\
1612 	(1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) |			\
1613 	(1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) |		\
1614 	(1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) |		\
1615 	(1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) |		\
1616 	(1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) |		\
1617 	(1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) |		\
1618 	(1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) |		\
1619 	(1ULL << (EF10_STAT_ctpio_success - 64)) |			\
1620 	(1ULL << (EF10_STAT_ctpio_fallback - 64)) |			\
1621 	(1ULL << (EF10_STAT_ctpio_poison - 64)) |			\
1622 	(1ULL << (EF10_STAT_ctpio_erase - 64)))
1623 
1624 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1625 {
1626 	u64 raw_mask = HUNT_COMMON_STAT_MASK;
1627 	u32 port_caps = efx_mcdi_phy_get_caps(efx);
1628 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1629 
1630 	if (!(efx->mcdi->fn_flags &
1631 	      1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1632 		return 0;
1633 
1634 	if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1635 		raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1636 		/* 8000 series have everything even at 40G */
1637 		if (nic_data->datapath_caps2 &
1638 		    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1639 			raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1640 	} else {
1641 		raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1642 	}
1643 
1644 	if (nic_data->datapath_caps &
1645 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1646 		raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1647 
1648 	return raw_mask;
1649 }
1650 
1651 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1652 {
1653 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1654 	u64 raw_mask[2];
1655 
1656 	raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1657 
1658 	/* Only show vadaptor stats when EVB capability is present */
1659 	if (nic_data->datapath_caps &
1660 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1661 		raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1662 		raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1;
1663 	} else {
1664 		raw_mask[1] = 0;
1665 	}
1666 	/* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
1667 	if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2)
1668 		raw_mask[1] |= EF10_FEC_STAT_MASK;
1669 
1670 	/* CTPIO stats appear in V3. Only show them on devices that actually
1671 	 * support CTPIO. Although this driver doesn't use CTPIO others might,
1672 	 * and we may be reporting the stats for the underlying port.
1673 	 */
1674 	if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 &&
1675 	    (nic_data->datapath_caps2 &
1676 	     (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN)))
1677 		raw_mask[1] |= EF10_CTPIO_STAT_MASK;
1678 
1679 #if BITS_PER_LONG == 64
1680 	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1681 	mask[0] = raw_mask[0];
1682 	mask[1] = raw_mask[1];
1683 #else
1684 	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1685 	mask[0] = raw_mask[0] & 0xffffffff;
1686 	mask[1] = raw_mask[0] >> 32;
1687 	mask[2] = raw_mask[1] & 0xffffffff;
1688 #endif
1689 }
1690 
1691 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1692 {
1693 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1694 
1695 	efx_ef10_get_stat_mask(efx, mask);
1696 	return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1697 				      mask, names);
1698 }
1699 
1700 static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1701 					   struct rtnl_link_stats64 *core_stats)
1702 {
1703 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1704 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1705 	u64 *stats = nic_data->stats;
1706 	size_t stats_count = 0, index;
1707 
1708 	efx_ef10_get_stat_mask(efx, mask);
1709 
1710 	if (full_stats) {
1711 		for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1712 			if (efx_ef10_stat_desc[index].name) {
1713 				*full_stats++ = stats[index];
1714 				++stats_count;
1715 			}
1716 		}
1717 	}
1718 
1719 	if (!core_stats)
1720 		return stats_count;
1721 
1722 	if (nic_data->datapath_caps &
1723 			1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1724 		/* Use vadaptor stats. */
1725 		core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1726 					 stats[EF10_STAT_rx_multicast] +
1727 					 stats[EF10_STAT_rx_broadcast];
1728 		core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1729 					 stats[EF10_STAT_tx_multicast] +
1730 					 stats[EF10_STAT_tx_broadcast];
1731 		core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1732 				       stats[EF10_STAT_rx_multicast_bytes] +
1733 				       stats[EF10_STAT_rx_broadcast_bytes];
1734 		core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1735 				       stats[EF10_STAT_tx_multicast_bytes] +
1736 				       stats[EF10_STAT_tx_broadcast_bytes];
1737 		core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1738 					 stats[GENERIC_STAT_rx_noskb_drops];
1739 		core_stats->multicast = stats[EF10_STAT_rx_multicast];
1740 		core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1741 		core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1742 		core_stats->rx_errors = core_stats->rx_crc_errors;
1743 		core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1744 	} else {
1745 		/* Use port stats. */
1746 		core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1747 		core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1748 		core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1749 		core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1750 		core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1751 					 stats[GENERIC_STAT_rx_nodesc_trunc] +
1752 					 stats[GENERIC_STAT_rx_noskb_drops];
1753 		core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1754 		core_stats->rx_length_errors =
1755 				stats[EF10_STAT_port_rx_gtjumbo] +
1756 				stats[EF10_STAT_port_rx_length_error];
1757 		core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1758 		core_stats->rx_frame_errors =
1759 				stats[EF10_STAT_port_rx_align_error];
1760 		core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1761 		core_stats->rx_errors = (core_stats->rx_length_errors +
1762 					 core_stats->rx_crc_errors +
1763 					 core_stats->rx_frame_errors);
1764 	}
1765 
1766 	return stats_count;
1767 }
1768 
1769 static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
1770 {
1771 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1772 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1773 	__le64 generation_start, generation_end;
1774 	u64 *stats = nic_data->stats;
1775 	__le64 *dma_stats;
1776 
1777 	efx_ef10_get_stat_mask(efx, mask);
1778 
1779 	dma_stats = efx->stats_buffer.addr;
1780 
1781 	generation_end = dma_stats[efx->num_mac_stats - 1];
1782 	if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
1783 		return 0;
1784 	rmb();
1785 	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1786 			     stats, efx->stats_buffer.addr, false);
1787 	rmb();
1788 	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1789 	if (generation_end != generation_start)
1790 		return -EAGAIN;
1791 
1792 	/* Update derived statistics */
1793 	efx_nic_fix_nodesc_drop_stat(efx,
1794 				     &stats[EF10_STAT_port_rx_nodesc_drops]);
1795 	stats[EF10_STAT_port_rx_good_bytes] =
1796 		stats[EF10_STAT_port_rx_bytes] -
1797 		stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1798 	efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1799 			     stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1800 	efx_update_sw_stats(efx, stats);
1801 	return 0;
1802 }
1803 
1804 
1805 static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1806 				       struct rtnl_link_stats64 *core_stats)
1807 {
1808 	int retry;
1809 
1810 	/* If we're unlucky enough to read statistics during the DMA, wait
1811 	 * up to 10ms for it to finish (typically takes <500us)
1812 	 */
1813 	for (retry = 0; retry < 100; ++retry) {
1814 		if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
1815 			break;
1816 		udelay(100);
1817 	}
1818 
1819 	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1820 }
1821 
1822 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1823 {
1824 	MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1825 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1826 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1827 	__le64 generation_start, generation_end;
1828 	u64 *stats = nic_data->stats;
1829 	u32 dma_len = efx->num_mac_stats * sizeof(u64);
1830 	struct efx_buffer stats_buf;
1831 	__le64 *dma_stats;
1832 	int rc;
1833 
1834 	spin_unlock_bh(&efx->stats_lock);
1835 
1836 	if (in_interrupt()) {
1837 		/* If in atomic context, cannot update stats.  Just update the
1838 		 * software stats and return so the caller can continue.
1839 		 */
1840 		spin_lock_bh(&efx->stats_lock);
1841 		efx_update_sw_stats(efx, stats);
1842 		return 0;
1843 	}
1844 
1845 	efx_ef10_get_stat_mask(efx, mask);
1846 
1847 	rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
1848 	if (rc) {
1849 		spin_lock_bh(&efx->stats_lock);
1850 		return rc;
1851 	}
1852 
1853 	dma_stats = stats_buf.addr;
1854 	dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID;
1855 
1856 	MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1857 	MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1858 			      MAC_STATS_IN_DMA, 1);
1859 	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1860 	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1861 
1862 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1863 				NULL, 0, NULL);
1864 	spin_lock_bh(&efx->stats_lock);
1865 	if (rc) {
1866 		/* Expect ENOENT if DMA queues have not been set up */
1867 		if (rc != -ENOENT || atomic_read(&efx->active_queues))
1868 			efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1869 					       sizeof(inbuf), NULL, 0, rc);
1870 		goto out;
1871 	}
1872 
1873 	generation_end = dma_stats[efx->num_mac_stats - 1];
1874 	if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1875 		WARN_ON_ONCE(1);
1876 		goto out;
1877 	}
1878 	rmb();
1879 	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1880 			     stats, stats_buf.addr, false);
1881 	rmb();
1882 	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1883 	if (generation_end != generation_start) {
1884 		rc = -EAGAIN;
1885 		goto out;
1886 	}
1887 
1888 	efx_update_sw_stats(efx, stats);
1889 out:
1890 	efx_nic_free_buffer(efx, &stats_buf);
1891 	return rc;
1892 }
1893 
1894 static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1895 				       struct rtnl_link_stats64 *core_stats)
1896 {
1897 	if (efx_ef10_try_update_nic_stats_vf(efx))
1898 		return 0;
1899 
1900 	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1901 }
1902 
1903 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1904 {
1905 	struct efx_nic *efx = channel->efx;
1906 	unsigned int mode, usecs;
1907 	efx_dword_t timer_cmd;
1908 
1909 	if (channel->irq_moderation_us) {
1910 		mode = 3;
1911 		usecs = channel->irq_moderation_us;
1912 	} else {
1913 		mode = 0;
1914 		usecs = 0;
1915 	}
1916 
1917 	if (EFX_EF10_WORKAROUND_61265(efx)) {
1918 		MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
1919 		unsigned int ns = usecs * 1000;
1920 
1921 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
1922 			       channel->channel);
1923 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
1924 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
1925 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
1926 
1927 		efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
1928 				   inbuf, sizeof(inbuf), 0, NULL, 0);
1929 	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
1930 		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1931 
1932 		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1933 				     EFE_DD_EVQ_IND_TIMER_FLAGS,
1934 				     ERF_DD_EVQ_IND_TIMER_MODE, mode,
1935 				     ERF_DD_EVQ_IND_TIMER_VAL, ticks);
1936 		efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1937 				channel->channel);
1938 	} else {
1939 		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1940 
1941 		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1942 				     ERF_DZ_TC_TIMER_VAL, ticks,
1943 				     ERF_FZ_TC_TMR_REL_VAL, ticks);
1944 		efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1945 				channel->channel);
1946 	}
1947 }
1948 
1949 static void efx_ef10_get_wol_vf(struct efx_nic *efx,
1950 				struct ethtool_wolinfo *wol) {}
1951 
1952 static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
1953 {
1954 	return -EOPNOTSUPP;
1955 }
1956 
1957 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1958 {
1959 	wol->supported = 0;
1960 	wol->wolopts = 0;
1961 	memset(&wol->sopass, 0, sizeof(wol->sopass));
1962 }
1963 
1964 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1965 {
1966 	if (type != 0)
1967 		return -EINVAL;
1968 	return 0;
1969 }
1970 
1971 static void efx_ef10_mcdi_request(struct efx_nic *efx,
1972 				  const efx_dword_t *hdr, size_t hdr_len,
1973 				  const efx_dword_t *sdu, size_t sdu_len)
1974 {
1975 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1976 	u8 *pdu = nic_data->mcdi_buf.addr;
1977 
1978 	memcpy(pdu, hdr, hdr_len);
1979 	memcpy(pdu + hdr_len, sdu, sdu_len);
1980 	wmb();
1981 
1982 	/* The hardware provides 'low' and 'high' (doorbell) registers
1983 	 * for passing the 64-bit address of an MCDI request to
1984 	 * firmware.  However the dwords are swapped by firmware.  The
1985 	 * least significant bits of the doorbell are then 0 for all
1986 	 * MCDI requests due to alignment.
1987 	 */
1988 	_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
1989 		    ER_DZ_MC_DB_LWRD);
1990 	_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
1991 		    ER_DZ_MC_DB_HWRD);
1992 }
1993 
1994 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
1995 {
1996 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1997 	const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
1998 
1999 	rmb();
2000 	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2001 }
2002 
2003 static void
2004 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2005 			    size_t offset, size_t outlen)
2006 {
2007 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2008 	const u8 *pdu = nic_data->mcdi_buf.addr;
2009 
2010 	memcpy(outbuf, pdu + offset, outlen);
2011 }
2012 
2013 static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2014 {
2015 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2016 
2017 	/* All our allocations have been reset */
2018 	efx_ef10_table_reset_mc_allocations(efx);
2019 
2020 	/* The datapath firmware might have been changed */
2021 	nic_data->must_check_datapath_caps = true;
2022 
2023 	/* MAC statistics have been cleared on the NIC; clear the local
2024 	 * statistic that we update with efx_update_diff_stat().
2025 	 */
2026 	nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2027 }
2028 
2029 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2030 {
2031 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2032 	int rc;
2033 
2034 	rc = efx_ef10_get_warm_boot_count(efx);
2035 	if (rc < 0) {
2036 		/* The firmware is presumably in the process of
2037 		 * rebooting.  However, we are supposed to report each
2038 		 * reboot just once, so we must only do that once we
2039 		 * can read and store the updated warm boot count.
2040 		 */
2041 		return 0;
2042 	}
2043 
2044 	if (rc == nic_data->warm_boot_count)
2045 		return 0;
2046 
2047 	nic_data->warm_boot_count = rc;
2048 	efx_ef10_mcdi_reboot_detected(efx);
2049 
2050 	return -EIO;
2051 }
2052 
2053 /* Handle an MSI interrupt
2054  *
2055  * Handle an MSI hardware interrupt.  This routine schedules event
2056  * queue processing.  No interrupt acknowledgement cycle is necessary.
2057  * Also, we never need to check that the interrupt is for us, since
2058  * MSI interrupts cannot be shared.
2059  */
2060 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2061 {
2062 	struct efx_msi_context *context = dev_id;
2063 	struct efx_nic *efx = context->efx;
2064 
2065 	netif_vdbg(efx, intr, efx->net_dev,
2066 		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2067 
2068 	if (likely(READ_ONCE(efx->irq_soft_enabled))) {
2069 		/* Note test interrupts */
2070 		if (context->index == efx->irq_level)
2071 			efx->last_irq_cpu = raw_smp_processor_id();
2072 
2073 		/* Schedule processing of the channel */
2074 		efx_schedule_channel_irq(efx->channel[context->index]);
2075 	}
2076 
2077 	return IRQ_HANDLED;
2078 }
2079 
2080 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2081 {
2082 	struct efx_nic *efx = dev_id;
2083 	bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
2084 	struct efx_channel *channel;
2085 	efx_dword_t reg;
2086 	u32 queues;
2087 
2088 	/* Read the ISR which also ACKs the interrupts */
2089 	efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
2090 	queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2091 
2092 	if (queues == 0)
2093 		return IRQ_NONE;
2094 
2095 	if (likely(soft_enabled)) {
2096 		/* Note test interrupts */
2097 		if (queues & (1U << efx->irq_level))
2098 			efx->last_irq_cpu = raw_smp_processor_id();
2099 
2100 		efx_for_each_channel(channel, efx) {
2101 			if (queues & 1)
2102 				efx_schedule_channel_irq(channel);
2103 			queues >>= 1;
2104 		}
2105 	}
2106 
2107 	netif_vdbg(efx, intr, efx->net_dev,
2108 		   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2109 		   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2110 
2111 	return IRQ_HANDLED;
2112 }
2113 
2114 static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2115 {
2116 	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2117 
2118 	if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2119 				    NULL) == 0)
2120 		return -ENOTSUPP;
2121 
2122 	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2123 
2124 	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2125 	return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2126 			    inbuf, sizeof(inbuf), NULL, 0, NULL);
2127 }
2128 
2129 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2130 {
2131 	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
2132 				    (tx_queue->ptr_mask + 1) *
2133 				    sizeof(efx_qword_t),
2134 				    GFP_KERNEL);
2135 }
2136 
2137 /* This writes to the TX_DESC_WPTR and also pushes data */
2138 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2139 					 const efx_qword_t *txd)
2140 {
2141 	unsigned int write_ptr;
2142 	efx_oword_t reg;
2143 
2144 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2145 	EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2146 	reg.qword[0] = *txd;
2147 	efx_writeo_page(tx_queue->efx, &reg,
2148 			ER_DZ_TX_DESC_UPD, tx_queue->queue);
2149 }
2150 
2151 /* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2152  */
2153 static int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue,
2154 				struct sk_buff *skb,
2155 				bool *data_mapped)
2156 {
2157 	struct efx_tx_buffer *buffer;
2158 	struct tcphdr *tcp;
2159 	struct iphdr *ip;
2160 
2161 	u16 ipv4_id;
2162 	u32 seqnum;
2163 	u32 mss;
2164 
2165 	EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2166 
2167 	mss = skb_shinfo(skb)->gso_size;
2168 
2169 	if (unlikely(mss < 4)) {
2170 		WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2171 		return -EINVAL;
2172 	}
2173 
2174 	ip = ip_hdr(skb);
2175 	if (ip->version == 4) {
2176 		/* Modify IPv4 header if needed. */
2177 		ip->tot_len = 0;
2178 		ip->check = 0;
2179 		ipv4_id = ntohs(ip->id);
2180 	} else {
2181 		/* Modify IPv6 header if needed. */
2182 		struct ipv6hdr *ipv6 = ipv6_hdr(skb);
2183 
2184 		ipv6->payload_len = 0;
2185 		ipv4_id = 0;
2186 	}
2187 
2188 	tcp = tcp_hdr(skb);
2189 	seqnum = ntohl(tcp->seq);
2190 
2191 	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2192 
2193 	buffer->flags = EFX_TX_BUF_OPTION;
2194 	buffer->len = 0;
2195 	buffer->unmap_len = 0;
2196 	EFX_POPULATE_QWORD_5(buffer->option,
2197 			ESF_DZ_TX_DESC_IS_OPT, 1,
2198 			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2199 			ESF_DZ_TX_TSO_OPTION_TYPE,
2200 			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2201 			ESF_DZ_TX_TSO_IP_ID, ipv4_id,
2202 			ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2203 			);
2204 	++tx_queue->insert_count;
2205 
2206 	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2207 
2208 	buffer->flags = EFX_TX_BUF_OPTION;
2209 	buffer->len = 0;
2210 	buffer->unmap_len = 0;
2211 	EFX_POPULATE_QWORD_4(buffer->option,
2212 			ESF_DZ_TX_DESC_IS_OPT, 1,
2213 			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2214 			ESF_DZ_TX_TSO_OPTION_TYPE,
2215 			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
2216 			ESF_DZ_TX_TSO_TCP_MSS, mss
2217 			);
2218 	++tx_queue->insert_count;
2219 
2220 	return 0;
2221 }
2222 
2223 static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2224 {
2225 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2226 	u32 tso_versions = 0;
2227 
2228 	if (nic_data->datapath_caps &
2229 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2230 		tso_versions |= BIT(1);
2231 	if (nic_data->datapath_caps2 &
2232 	    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2233 		tso_versions |= BIT(2);
2234 	return tso_versions;
2235 }
2236 
2237 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2238 {
2239 	bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
2240 	struct efx_channel *channel = tx_queue->channel;
2241 	struct efx_nic *efx = tx_queue->efx;
2242 	struct efx_ef10_nic_data *nic_data;
2243 	bool tso_v2 = false;
2244 	efx_qword_t *txd;
2245 	int rc;
2246 
2247 	nic_data = efx->nic_data;
2248 
2249 	/* Only attempt to enable TX timestamping if we have the license for it,
2250 	 * otherwise TXQ init will fail
2251 	 */
2252 	if (!(nic_data->licensed_features &
2253 	      (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) {
2254 		tx_queue->timestamping = false;
2255 		/* Disable sync events on this channel. */
2256 		if (efx->type->ptp_set_ts_sync_events)
2257 			efx->type->ptp_set_ts_sync_events(efx, false, false);
2258 	}
2259 
2260 	/* TSOv2 is a limited resource that can only be configured on a limited
2261 	 * number of queues. TSO without checksum offload is not really a thing,
2262 	 * so we only enable it for those queues.
2263 	 * TSOv2 cannot be used with Hardware timestamping, and is never needed
2264 	 * for XDP tx.
2265 	 */
2266 	if (csum_offload && (nic_data->datapath_caps2 &
2267 			(1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN)) &&
2268 	    !tx_queue->timestamping && !tx_queue->xdp_tx) {
2269 		tso_v2 = true;
2270 		netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2271 				channel->channel);
2272 	}
2273 
2274 	rc = efx_mcdi_tx_init(tx_queue, tso_v2);
2275 	if (rc)
2276 		goto fail;
2277 
2278 	/* A previous user of this TX queue might have set us up the
2279 	 * bomb by writing a descriptor to the TX push collector but
2280 	 * not the doorbell.  (Each collector belongs to a port, not a
2281 	 * queue or function, so cannot easily be reset.)  We must
2282 	 * attempt to push a no-op descriptor in its place.
2283 	 */
2284 	tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2285 	tx_queue->insert_count = 1;
2286 	txd = efx_tx_desc(tx_queue, 0);
2287 	EFX_POPULATE_QWORD_5(*txd,
2288 			     ESF_DZ_TX_DESC_IS_OPT, true,
2289 			     ESF_DZ_TX_OPTION_TYPE,
2290 			     ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2291 			     ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2292 			     ESF_DZ_TX_OPTION_IP_CSUM, csum_offload,
2293 			     ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping);
2294 	tx_queue->write_count = 1;
2295 
2296 	if (tso_v2) {
2297 		tx_queue->handle_tso = efx_ef10_tx_tso_desc;
2298 		tx_queue->tso_version = 2;
2299 	} else if (nic_data->datapath_caps &
2300 			(1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
2301 		tx_queue->tso_version = 1;
2302 	}
2303 
2304 	wmb();
2305 	efx_ef10_push_tx_desc(tx_queue, txd);
2306 
2307 	return;
2308 
2309 fail:
2310 	netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2311 		    tx_queue->queue);
2312 }
2313 
2314 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2315 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2316 {
2317 	unsigned int write_ptr;
2318 	efx_dword_t reg;
2319 
2320 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2321 	EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2322 	efx_writed_page(tx_queue->efx, &reg,
2323 			ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2324 }
2325 
2326 #define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2327 
2328 static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2329 					  dma_addr_t dma_addr, unsigned int len)
2330 {
2331 	if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2332 		/* If we need to break across multiple descriptors we should
2333 		 * stop at a page boundary. This assumes the length limit is
2334 		 * greater than the page size.
2335 		 */
2336 		dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2337 
2338 		BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2339 		len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2340 	}
2341 
2342 	return len;
2343 }
2344 
2345 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2346 {
2347 	unsigned int old_write_count = tx_queue->write_count;
2348 	struct efx_tx_buffer *buffer;
2349 	unsigned int write_ptr;
2350 	efx_qword_t *txd;
2351 
2352 	tx_queue->xmit_more_available = false;
2353 	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2354 		return;
2355 
2356 	do {
2357 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2358 		buffer = &tx_queue->buffer[write_ptr];
2359 		txd = efx_tx_desc(tx_queue, write_ptr);
2360 		++tx_queue->write_count;
2361 
2362 		/* Create TX descriptor ring entry */
2363 		if (buffer->flags & EFX_TX_BUF_OPTION) {
2364 			*txd = buffer->option;
2365 			if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2366 				/* PIO descriptor */
2367 				tx_queue->packet_write_count = tx_queue->write_count;
2368 		} else {
2369 			tx_queue->packet_write_count = tx_queue->write_count;
2370 			BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2371 			EFX_POPULATE_QWORD_3(
2372 				*txd,
2373 				ESF_DZ_TX_KER_CONT,
2374 				buffer->flags & EFX_TX_BUF_CONT,
2375 				ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2376 				ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2377 		}
2378 	} while (tx_queue->write_count != tx_queue->insert_count);
2379 
2380 	wmb(); /* Ensure descriptors are written before they are fetched */
2381 
2382 	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2383 		txd = efx_tx_desc(tx_queue,
2384 				  old_write_count & tx_queue->ptr_mask);
2385 		efx_ef10_push_tx_desc(tx_queue, txd);
2386 		++tx_queue->pushes;
2387 	} else {
2388 		efx_ef10_notify_tx_desc(tx_queue);
2389 	}
2390 }
2391 
2392 /* This creates an entry in the RX descriptor queue */
2393 static inline void
2394 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2395 {
2396 	struct efx_rx_buffer *rx_buf;
2397 	efx_qword_t *rxd;
2398 
2399 	rxd = efx_rx_desc(rx_queue, index);
2400 	rx_buf = efx_rx_buffer(rx_queue, index);
2401 	EFX_POPULATE_QWORD_2(*rxd,
2402 			     ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2403 			     ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2404 }
2405 
2406 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2407 {
2408 	struct efx_nic *efx = rx_queue->efx;
2409 	unsigned int write_count;
2410 	efx_dword_t reg;
2411 
2412 	/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2413 	write_count = rx_queue->added_count & ~7;
2414 	if (rx_queue->notified_count == write_count)
2415 		return;
2416 
2417 	do
2418 		efx_ef10_build_rx_desc(
2419 			rx_queue,
2420 			rx_queue->notified_count & rx_queue->ptr_mask);
2421 	while (++rx_queue->notified_count != write_count);
2422 
2423 	wmb();
2424 	EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2425 			     write_count & rx_queue->ptr_mask);
2426 	efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
2427 			efx_rx_queue_index(rx_queue));
2428 }
2429 
2430 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2431 
2432 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2433 {
2434 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2435 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2436 	efx_qword_t event;
2437 
2438 	EFX_POPULATE_QWORD_2(event,
2439 			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2440 			     ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2441 
2442 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2443 
2444 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2445 	 * already swapped the data to little-endian order.
2446 	 */
2447 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2448 	       sizeof(efx_qword_t));
2449 
2450 	efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2451 			   inbuf, sizeof(inbuf), 0,
2452 			   efx_ef10_rx_defer_refill_complete, 0);
2453 }
2454 
2455 static void
2456 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2457 				  int rc, efx_dword_t *outbuf,
2458 				  size_t outlen_actual)
2459 {
2460 	/* nothing to do */
2461 }
2462 
2463 static int efx_ef10_ev_init(struct efx_channel *channel)
2464 {
2465 	struct efx_nic *efx = channel->efx;
2466 	struct efx_ef10_nic_data *nic_data;
2467 	unsigned int enabled, implemented;
2468 	bool use_v2, cut_thru;
2469 	int rc;
2470 
2471 	nic_data = efx->nic_data;
2472 	use_v2 = nic_data->datapath_caps2 &
2473 			    1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN;
2474 	cut_thru = !(nic_data->datapath_caps &
2475 			      1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2476 	rc = efx_mcdi_ev_init(channel, cut_thru, use_v2);
2477 
2478 	/* IRQ return is ignored */
2479 	if (channel->channel || rc)
2480 		return rc;
2481 
2482 	/* Successfully created event queue on channel 0 */
2483 	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
2484 	if (rc == -ENOSYS) {
2485 		/* GET_WORKAROUNDS was implemented before this workaround,
2486 		 * thus it must be unavailable in this firmware.
2487 		 */
2488 		nic_data->workaround_26807 = false;
2489 		rc = 0;
2490 	} else if (rc) {
2491 		goto fail;
2492 	} else {
2493 		nic_data->workaround_26807 =
2494 			!!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
2495 
2496 		if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 &&
2497 		    !nic_data->workaround_26807) {
2498 			unsigned int flags;
2499 
2500 			rc = efx_mcdi_set_workaround(efx,
2501 						     MC_CMD_WORKAROUND_BUG26807,
2502 						     true, &flags);
2503 
2504 			if (!rc) {
2505 				if (flags &
2506 				    1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
2507 					netif_info(efx, drv, efx->net_dev,
2508 						   "other functions on NIC have been reset\n");
2509 
2510 					/* With MCFW v4.6.x and earlier, the
2511 					 * boot count will have incremented,
2512 					 * so re-read the warm_boot_count
2513 					 * value now to ensure this function
2514 					 * doesn't think it has changed next
2515 					 * time it checks.
2516 					 */
2517 					rc = efx_ef10_get_warm_boot_count(efx);
2518 					if (rc >= 0) {
2519 						nic_data->warm_boot_count = rc;
2520 						rc = 0;
2521 					}
2522 				}
2523 				nic_data->workaround_26807 = true;
2524 			} else if (rc == -EPERM) {
2525 				rc = 0;
2526 			}
2527 		}
2528 	}
2529 
2530 	if (!rc)
2531 		return 0;
2532 
2533 fail:
2534 	efx_mcdi_ev_fini(channel);
2535 	return rc;
2536 }
2537 
2538 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
2539 					   unsigned int rx_queue_label)
2540 {
2541 	struct efx_nic *efx = rx_queue->efx;
2542 
2543 	netif_info(efx, hw, efx->net_dev,
2544 		   "rx event arrived on queue %d labeled as queue %u\n",
2545 		   efx_rx_queue_index(rx_queue), rx_queue_label);
2546 
2547 	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2548 }
2549 
2550 static void
2551 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
2552 			     unsigned int actual, unsigned int expected)
2553 {
2554 	unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
2555 	struct efx_nic *efx = rx_queue->efx;
2556 
2557 	netif_info(efx, hw, efx->net_dev,
2558 		   "dropped %d events (index=%d expected=%d)\n",
2559 		   dropped, actual, expected);
2560 
2561 	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2562 }
2563 
2564 /* partially received RX was aborted. clean up. */
2565 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
2566 {
2567 	unsigned int rx_desc_ptr;
2568 
2569 	netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
2570 		  "scattered RX aborted (dropping %u buffers)\n",
2571 		  rx_queue->scatter_n);
2572 
2573 	rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
2574 
2575 	efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
2576 		      0, EFX_RX_PKT_DISCARD);
2577 
2578 	rx_queue->removed_count += rx_queue->scatter_n;
2579 	rx_queue->scatter_n = 0;
2580 	rx_queue->scatter_len = 0;
2581 	++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
2582 }
2583 
2584 static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
2585 					   unsigned int n_packets,
2586 					   unsigned int rx_encap_hdr,
2587 					   unsigned int rx_l3_class,
2588 					   unsigned int rx_l4_class,
2589 					   const efx_qword_t *event)
2590 {
2591 	struct efx_nic *efx = channel->efx;
2592 	bool handled = false;
2593 
2594 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
2595 		if (!(efx->net_dev->features & NETIF_F_RXALL)) {
2596 			if (!efx->loopback_selftest)
2597 				channel->n_rx_eth_crc_err += n_packets;
2598 			return EFX_RX_PKT_DISCARD;
2599 		}
2600 		handled = true;
2601 	}
2602 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
2603 		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2604 			     rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2605 			     rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2606 			     rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2607 			     rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2608 			netdev_WARN(efx->net_dev,
2609 				    "invalid class for RX_IPCKSUM_ERR: event="
2610 				    EFX_QWORD_FMT "\n",
2611 				    EFX_QWORD_VAL(*event));
2612 		if (!efx->loopback_selftest)
2613 			*(rx_encap_hdr ?
2614 			  &channel->n_rx_outer_ip_hdr_chksum_err :
2615 			  &channel->n_rx_ip_hdr_chksum_err) += n_packets;
2616 		return 0;
2617 	}
2618 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
2619 		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2620 			     ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2621 			       rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2622 			      (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2623 			       rx_l4_class != ESE_FZ_L4_CLASS_UDP))))
2624 			netdev_WARN(efx->net_dev,
2625 				    "invalid class for RX_TCPUDP_CKSUM_ERR: event="
2626 				    EFX_QWORD_FMT "\n",
2627 				    EFX_QWORD_VAL(*event));
2628 		if (!efx->loopback_selftest)
2629 			*(rx_encap_hdr ?
2630 			  &channel->n_rx_outer_tcp_udp_chksum_err :
2631 			  &channel->n_rx_tcp_udp_chksum_err) += n_packets;
2632 		return 0;
2633 	}
2634 	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
2635 		if (unlikely(!rx_encap_hdr))
2636 			netdev_WARN(efx->net_dev,
2637 				    "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
2638 				    EFX_QWORD_FMT "\n",
2639 				    EFX_QWORD_VAL(*event));
2640 		else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2641 				  rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2642 				  rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2643 				  rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2644 			netdev_WARN(efx->net_dev,
2645 				    "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
2646 				    EFX_QWORD_FMT "\n",
2647 				    EFX_QWORD_VAL(*event));
2648 		if (!efx->loopback_selftest)
2649 			channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
2650 		return 0;
2651 	}
2652 	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
2653 		if (unlikely(!rx_encap_hdr))
2654 			netdev_WARN(efx->net_dev,
2655 				    "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2656 				    EFX_QWORD_FMT "\n",
2657 				    EFX_QWORD_VAL(*event));
2658 		else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2659 				   rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2660 				  (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2661 				   rx_l4_class != ESE_FZ_L4_CLASS_UDP)))
2662 			netdev_WARN(efx->net_dev,
2663 				    "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2664 				    EFX_QWORD_FMT "\n",
2665 				    EFX_QWORD_VAL(*event));
2666 		if (!efx->loopback_selftest)
2667 			channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
2668 		return 0;
2669 	}
2670 
2671 	WARN_ON(!handled); /* No error bits were recognised */
2672 	return 0;
2673 }
2674 
2675 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
2676 				    const efx_qword_t *event)
2677 {
2678 	unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
2679 	unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
2680 	unsigned int n_descs, n_packets, i;
2681 	struct efx_nic *efx = channel->efx;
2682 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2683 	struct efx_rx_queue *rx_queue;
2684 	efx_qword_t errors;
2685 	bool rx_cont;
2686 	u16 flags = 0;
2687 
2688 	if (unlikely(READ_ONCE(efx->reset_pending)))
2689 		return 0;
2690 
2691 	/* Basic packet information */
2692 	rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
2693 	next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
2694 	rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
2695 	rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
2696 	rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS);
2697 	rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
2698 	rx_encap_hdr =
2699 		nic_data->datapath_caps &
2700 			(1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
2701 		EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
2702 		ESE_EZ_ENCAP_HDR_NONE;
2703 
2704 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
2705 		netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
2706 			    EFX_QWORD_FMT "\n",
2707 			    EFX_QWORD_VAL(*event));
2708 
2709 	rx_queue = efx_channel_get_rx_queue(channel);
2710 
2711 	if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
2712 		efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
2713 
2714 	n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
2715 		   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2716 
2717 	if (n_descs != rx_queue->scatter_n + 1) {
2718 		struct efx_ef10_nic_data *nic_data = efx->nic_data;
2719 
2720 		/* detect rx abort */
2721 		if (unlikely(n_descs == rx_queue->scatter_n)) {
2722 			if (rx_queue->scatter_n == 0 || rx_bytes != 0)
2723 				netdev_WARN(efx->net_dev,
2724 					    "invalid RX abort: scatter_n=%u event="
2725 					    EFX_QWORD_FMT "\n",
2726 					    rx_queue->scatter_n,
2727 					    EFX_QWORD_VAL(*event));
2728 			efx_ef10_handle_rx_abort(rx_queue);
2729 			return 0;
2730 		}
2731 
2732 		/* Check that RX completion merging is valid, i.e.
2733 		 * the current firmware supports it and this is a
2734 		 * non-scattered packet.
2735 		 */
2736 		if (!(nic_data->datapath_caps &
2737 		      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
2738 		    rx_queue->scatter_n != 0 || rx_cont) {
2739 			efx_ef10_handle_rx_bad_lbits(
2740 				rx_queue, next_ptr_lbits,
2741 				(rx_queue->removed_count +
2742 				 rx_queue->scatter_n + 1) &
2743 				((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2744 			return 0;
2745 		}
2746 
2747 		/* Merged completion for multiple non-scattered packets */
2748 		rx_queue->scatter_n = 1;
2749 		rx_queue->scatter_len = 0;
2750 		n_packets = n_descs;
2751 		++channel->n_rx_merge_events;
2752 		channel->n_rx_merge_packets += n_packets;
2753 		flags |= EFX_RX_PKT_PREFIX_LEN;
2754 	} else {
2755 		++rx_queue->scatter_n;
2756 		rx_queue->scatter_len += rx_bytes;
2757 		if (rx_cont)
2758 			return 0;
2759 		n_packets = 1;
2760 	}
2761 
2762 	EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
2763 				     ESF_DZ_RX_IPCKSUM_ERR, 1,
2764 				     ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
2765 				     ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
2766 				     ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
2767 	EFX_AND_QWORD(errors, *event, errors);
2768 	if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
2769 		flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
2770 							 rx_encap_hdr,
2771 							 rx_l3_class, rx_l4_class,
2772 							 event);
2773 	} else {
2774 		bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP ||
2775 			      rx_l4_class == ESE_FZ_L4_CLASS_UDP;
2776 
2777 		switch (rx_encap_hdr) {
2778 		case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
2779 			flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
2780 			if (tcpudp)
2781 				flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
2782 			break;
2783 		case ESE_EZ_ENCAP_HDR_GRE:
2784 		case ESE_EZ_ENCAP_HDR_NONE:
2785 			if (tcpudp)
2786 				flags |= EFX_RX_PKT_CSUMMED;
2787 			break;
2788 		default:
2789 			netdev_WARN(efx->net_dev,
2790 				    "unknown encapsulation type: event="
2791 				    EFX_QWORD_FMT "\n",
2792 				    EFX_QWORD_VAL(*event));
2793 		}
2794 	}
2795 
2796 	if (rx_l4_class == ESE_FZ_L4_CLASS_TCP)
2797 		flags |= EFX_RX_PKT_TCP;
2798 
2799 	channel->irq_mod_score += 2 * n_packets;
2800 
2801 	/* Handle received packet(s) */
2802 	for (i = 0; i < n_packets; i++) {
2803 		efx_rx_packet(rx_queue,
2804 			      rx_queue->removed_count & rx_queue->ptr_mask,
2805 			      rx_queue->scatter_n, rx_queue->scatter_len,
2806 			      flags);
2807 		rx_queue->removed_count += rx_queue->scatter_n;
2808 	}
2809 
2810 	rx_queue->scatter_n = 0;
2811 	rx_queue->scatter_len = 0;
2812 
2813 	return n_packets;
2814 }
2815 
2816 static u32 efx_ef10_extract_event_ts(efx_qword_t *event)
2817 {
2818 	u32 tstamp;
2819 
2820 	tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI);
2821 	tstamp <<= 16;
2822 	tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO);
2823 
2824 	return tstamp;
2825 }
2826 
2827 static void
2828 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
2829 {
2830 	struct efx_nic *efx = channel->efx;
2831 	struct efx_tx_queue *tx_queue;
2832 	unsigned int tx_ev_desc_ptr;
2833 	unsigned int tx_ev_q_label;
2834 	unsigned int tx_ev_type;
2835 	u64 ts_part;
2836 
2837 	if (unlikely(READ_ONCE(efx->reset_pending)))
2838 		return;
2839 
2840 	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
2841 		return;
2842 
2843 	/* Get the transmit queue */
2844 	tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
2845 	tx_queue = efx_channel_get_tx_queue(channel,
2846 					    tx_ev_q_label % EFX_TXQ_TYPES);
2847 
2848 	if (!tx_queue->timestamping) {
2849 		/* Transmit completion */
2850 		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
2851 		efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
2852 		return;
2853 	}
2854 
2855 	/* Transmit timestamps are only available for 8XXX series. They result
2856 	 * in up to three events per packet. These occur in order, and are:
2857 	 *  - the normal completion event (may be omitted)
2858 	 *  - the low part of the timestamp
2859 	 *  - the high part of the timestamp
2860 	 *
2861 	 * It's possible for multiple completion events to appear before the
2862 	 * corresponding timestamps. So we can for example get:
2863 	 *  COMP N
2864 	 *  COMP N+1
2865 	 *  TS_LO N
2866 	 *  TS_HI N
2867 	 *  TS_LO N+1
2868 	 *  TS_HI N+1
2869 	 *
2870 	 * In addition it's also possible for the adjacent completions to be
2871 	 * merged, so we may not see COMP N above. As such, the completion
2872 	 * events are not very useful here.
2873 	 *
2874 	 * Each part of the timestamp is itself split across two 16 bit
2875 	 * fields in the event.
2876 	 */
2877 	tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1);
2878 
2879 	switch (tx_ev_type) {
2880 	case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION:
2881 		/* Ignore this event - see above. */
2882 		break;
2883 
2884 	case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO:
2885 		ts_part = efx_ef10_extract_event_ts(event);
2886 		tx_queue->completed_timestamp_minor = ts_part;
2887 		break;
2888 
2889 	case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI:
2890 		ts_part = efx_ef10_extract_event_ts(event);
2891 		tx_queue->completed_timestamp_major = ts_part;
2892 
2893 		efx_xmit_done_single(tx_queue);
2894 		break;
2895 
2896 	default:
2897 		netif_err(efx, hw, efx->net_dev,
2898 			  "channel %d unknown tx event type %d (data "
2899 			  EFX_QWORD_FMT ")\n",
2900 			  channel->channel, tx_ev_type,
2901 			  EFX_QWORD_VAL(*event));
2902 		break;
2903 	}
2904 }
2905 
2906 static void
2907 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
2908 {
2909 	struct efx_nic *efx = channel->efx;
2910 	int subcode;
2911 
2912 	subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
2913 
2914 	switch (subcode) {
2915 	case ESE_DZ_DRV_TIMER_EV:
2916 	case ESE_DZ_DRV_WAKE_UP_EV:
2917 		break;
2918 	case ESE_DZ_DRV_START_UP_EV:
2919 		/* event queue init complete. ok. */
2920 		break;
2921 	default:
2922 		netif_err(efx, hw, efx->net_dev,
2923 			  "channel %d unknown driver event type %d"
2924 			  " (data " EFX_QWORD_FMT ")\n",
2925 			  channel->channel, subcode,
2926 			  EFX_QWORD_VAL(*event));
2927 
2928 	}
2929 }
2930 
2931 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
2932 						   efx_qword_t *event)
2933 {
2934 	struct efx_nic *efx = channel->efx;
2935 	u32 subcode;
2936 
2937 	subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
2938 
2939 	switch (subcode) {
2940 	case EFX_EF10_TEST:
2941 		channel->event_test_cpu = raw_smp_processor_id();
2942 		break;
2943 	case EFX_EF10_REFILL:
2944 		/* The queue must be empty, so we won't receive any rx
2945 		 * events, so efx_process_channel() won't refill the
2946 		 * queue. Refill it here
2947 		 */
2948 		efx_fast_push_rx_descriptors(&channel->rx_queue, true);
2949 		break;
2950 	default:
2951 		netif_err(efx, hw, efx->net_dev,
2952 			  "channel %d unknown driver event type %u"
2953 			  " (data " EFX_QWORD_FMT ")\n",
2954 			  channel->channel, (unsigned) subcode,
2955 			  EFX_QWORD_VAL(*event));
2956 	}
2957 }
2958 
2959 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
2960 {
2961 	struct efx_nic *efx = channel->efx;
2962 	efx_qword_t event, *p_event;
2963 	unsigned int read_ptr;
2964 	int ev_code;
2965 	int spent = 0;
2966 
2967 	if (quota <= 0)
2968 		return spent;
2969 
2970 	read_ptr = channel->eventq_read_ptr;
2971 
2972 	for (;;) {
2973 		p_event = efx_event(channel, read_ptr);
2974 		event = *p_event;
2975 
2976 		if (!efx_event_present(&event))
2977 			break;
2978 
2979 		EFX_SET_QWORD(*p_event);
2980 
2981 		++read_ptr;
2982 
2983 		ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
2984 
2985 		netif_vdbg(efx, drv, efx->net_dev,
2986 			   "processing event on %d " EFX_QWORD_FMT "\n",
2987 			   channel->channel, EFX_QWORD_VAL(event));
2988 
2989 		switch (ev_code) {
2990 		case ESE_DZ_EV_CODE_MCDI_EV:
2991 			efx_mcdi_process_event(channel, &event);
2992 			break;
2993 		case ESE_DZ_EV_CODE_RX_EV:
2994 			spent += efx_ef10_handle_rx_event(channel, &event);
2995 			if (spent >= quota) {
2996 				/* XXX can we split a merged event to
2997 				 * avoid going over-quota?
2998 				 */
2999 				spent = quota;
3000 				goto out;
3001 			}
3002 			break;
3003 		case ESE_DZ_EV_CODE_TX_EV:
3004 			efx_ef10_handle_tx_event(channel, &event);
3005 			break;
3006 		case ESE_DZ_EV_CODE_DRIVER_EV:
3007 			efx_ef10_handle_driver_event(channel, &event);
3008 			if (++spent == quota)
3009 				goto out;
3010 			break;
3011 		case EFX_EF10_DRVGEN_EV:
3012 			efx_ef10_handle_driver_generated_event(channel, &event);
3013 			break;
3014 		default:
3015 			netif_err(efx, hw, efx->net_dev,
3016 				  "channel %d unknown event type %d"
3017 				  " (data " EFX_QWORD_FMT ")\n",
3018 				  channel->channel, ev_code,
3019 				  EFX_QWORD_VAL(event));
3020 		}
3021 	}
3022 
3023 out:
3024 	channel->eventq_read_ptr = read_ptr;
3025 	return spent;
3026 }
3027 
3028 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3029 {
3030 	struct efx_nic *efx = channel->efx;
3031 	efx_dword_t rptr;
3032 
3033 	if (EFX_EF10_WORKAROUND_35388(efx)) {
3034 		BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3035 			     (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3036 		BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3037 			     (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3038 
3039 		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3040 				     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3041 				     ERF_DD_EVQ_IND_RPTR,
3042 				     (channel->eventq_read_ptr &
3043 				      channel->eventq_mask) >>
3044 				     ERF_DD_EVQ_IND_RPTR_WIDTH);
3045 		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3046 				channel->channel);
3047 		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3048 				     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3049 				     ERF_DD_EVQ_IND_RPTR,
3050 				     channel->eventq_read_ptr &
3051 				     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3052 		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3053 				channel->channel);
3054 	} else {
3055 		EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3056 				     channel->eventq_read_ptr &
3057 				     channel->eventq_mask);
3058 		efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3059 	}
3060 }
3061 
3062 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3063 {
3064 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3065 	struct efx_nic *efx = channel->efx;
3066 	efx_qword_t event;
3067 	int rc;
3068 
3069 	EFX_POPULATE_QWORD_2(event,
3070 			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3071 			     ESF_DZ_EV_DATA, EFX_EF10_TEST);
3072 
3073 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3074 
3075 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3076 	 * already swapped the data to little-endian order.
3077 	 */
3078 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3079 	       sizeof(efx_qword_t));
3080 
3081 	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3082 			  NULL, 0, NULL);
3083 	if (rc != 0)
3084 		goto fail;
3085 
3086 	return;
3087 
3088 fail:
3089 	WARN_ON(true);
3090 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3091 }
3092 
3093 void efx_ef10_handle_drain_event(struct efx_nic *efx)
3094 {
3095 	if (atomic_dec_and_test(&efx->active_queues))
3096 		wake_up(&efx->flush_wq);
3097 
3098 	WARN_ON(atomic_read(&efx->active_queues) < 0);
3099 }
3100 
3101 static int efx_ef10_fini_dmaq(struct efx_nic *efx)
3102 {
3103 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3104 	struct efx_channel *channel;
3105 	struct efx_tx_queue *tx_queue;
3106 	struct efx_rx_queue *rx_queue;
3107 	int pending;
3108 
3109 	/* If the MC has just rebooted, the TX/RX queues will have already been
3110 	 * torn down, but efx->active_queues needs to be set to zero.
3111 	 */
3112 	if (nic_data->must_realloc_vis) {
3113 		atomic_set(&efx->active_queues, 0);
3114 		return 0;
3115 	}
3116 
3117 	/* Do not attempt to write to the NIC during EEH recovery */
3118 	if (efx->state != STATE_RECOVERY) {
3119 		efx_for_each_channel(channel, efx) {
3120 			efx_for_each_channel_rx_queue(rx_queue, channel)
3121 				efx_mcdi_rx_fini(rx_queue);
3122 			efx_for_each_channel_tx_queue(tx_queue, channel)
3123 				efx_mcdi_tx_fini(tx_queue);
3124 		}
3125 
3126 		wait_event_timeout(efx->flush_wq,
3127 				   atomic_read(&efx->active_queues) == 0,
3128 				   msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
3129 		pending = atomic_read(&efx->active_queues);
3130 		if (pending) {
3131 			netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
3132 				  pending);
3133 			return -ETIMEDOUT;
3134 		}
3135 	}
3136 
3137 	return 0;
3138 }
3139 
3140 static void efx_ef10_prepare_flr(struct efx_nic *efx)
3141 {
3142 	atomic_set(&efx->active_queues, 0);
3143 }
3144 
3145 static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
3146 {
3147 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3148 	u8 mac_old[ETH_ALEN];
3149 	int rc, rc2;
3150 
3151 	/* Only reconfigure a PF-created vport */
3152 	if (is_zero_ether_addr(nic_data->vport_mac))
3153 		return 0;
3154 
3155 	efx_device_detach_sync(efx);
3156 	efx_net_stop(efx->net_dev);
3157 	down_write(&efx->filter_sem);
3158 	efx_mcdi_filter_table_remove(efx);
3159 	up_write(&efx->filter_sem);
3160 
3161 	rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
3162 	if (rc)
3163 		goto restore_filters;
3164 
3165 	ether_addr_copy(mac_old, nic_data->vport_mac);
3166 	rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
3167 				    nic_data->vport_mac);
3168 	if (rc)
3169 		goto restore_vadaptor;
3170 
3171 	rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
3172 				    efx->net_dev->dev_addr);
3173 	if (!rc) {
3174 		ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
3175 	} else {
3176 		rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
3177 		if (rc2) {
3178 			/* Failed to add original MAC, so clear vport_mac */
3179 			eth_zero_addr(nic_data->vport_mac);
3180 			goto reset_nic;
3181 		}
3182 	}
3183 
3184 restore_vadaptor:
3185 	rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
3186 	if (rc2)
3187 		goto reset_nic;
3188 restore_filters:
3189 	down_write(&efx->filter_sem);
3190 	rc2 = efx_mcdi_filter_table_probe(efx);
3191 	up_write(&efx->filter_sem);
3192 	if (rc2)
3193 		goto reset_nic;
3194 
3195 	rc2 = efx_net_open(efx->net_dev);
3196 	if (rc2)
3197 		goto reset_nic;
3198 
3199 	efx_device_attach_if_not_resetting(efx);
3200 
3201 	return rc;
3202 
3203 reset_nic:
3204 	netif_err(efx, drv, efx->net_dev,
3205 		  "Failed to restore when changing MAC address - scheduling reset\n");
3206 	efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
3207 
3208 	return rc ? rc : rc2;
3209 }
3210 
3211 static int efx_ef10_set_mac_address(struct efx_nic *efx)
3212 {
3213 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
3214 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3215 	bool was_enabled = efx->port_enabled;
3216 	int rc;
3217 
3218 	efx_device_detach_sync(efx);
3219 	efx_net_stop(efx->net_dev);
3220 
3221 	mutex_lock(&efx->mac_lock);
3222 	down_write(&efx->filter_sem);
3223 	efx_mcdi_filter_table_remove(efx);
3224 
3225 	ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
3226 			efx->net_dev->dev_addr);
3227 	MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
3228 		       nic_data->vport_id);
3229 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
3230 				sizeof(inbuf), NULL, 0, NULL);
3231 
3232 	efx_mcdi_filter_table_probe(efx);
3233 	up_write(&efx->filter_sem);
3234 	mutex_unlock(&efx->mac_lock);
3235 
3236 	if (was_enabled)
3237 		efx_net_open(efx->net_dev);
3238 	efx_device_attach_if_not_resetting(efx);
3239 
3240 #ifdef CONFIG_SFC_SRIOV
3241 	if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
3242 		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
3243 
3244 		if (rc == -EPERM) {
3245 			struct efx_nic *efx_pf;
3246 
3247 			/* Switch to PF and change MAC address on vport */
3248 			efx_pf = pci_get_drvdata(pci_dev_pf);
3249 
3250 			rc = efx_ef10_sriov_set_vf_mac(efx_pf,
3251 						       nic_data->vf_index,
3252 						       efx->net_dev->dev_addr);
3253 		} else if (!rc) {
3254 			struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
3255 			struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
3256 			unsigned int i;
3257 
3258 			/* MAC address successfully changed by VF (with MAC
3259 			 * spoofing) so update the parent PF if possible.
3260 			 */
3261 			for (i = 0; i < efx_pf->vf_count; ++i) {
3262 				struct ef10_vf *vf = nic_data->vf + i;
3263 
3264 				if (vf->efx == efx) {
3265 					ether_addr_copy(vf->mac,
3266 							efx->net_dev->dev_addr);
3267 					return 0;
3268 				}
3269 			}
3270 		}
3271 	} else
3272 #endif
3273 	if (rc == -EPERM) {
3274 		netif_err(efx, drv, efx->net_dev,
3275 			  "Cannot change MAC address; use sfboot to enable"
3276 			  " mac-spoofing on this interface\n");
3277 	} else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
3278 		/* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
3279 		 * fall-back to the method of changing the MAC address on the
3280 		 * vport.  This only applies to PFs because such versions of
3281 		 * MCFW do not support VFs.
3282 		 */
3283 		rc = efx_ef10_vport_set_mac_address(efx);
3284 	} else if (rc) {
3285 		efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
3286 				       sizeof(inbuf), NULL, 0, rc);
3287 	}
3288 
3289 	return rc;
3290 }
3291 
3292 static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
3293 {
3294 	efx_mcdi_filter_sync_rx_mode(efx);
3295 
3296 	return efx_mcdi_set_mac(efx);
3297 }
3298 
3299 static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
3300 {
3301 	efx_mcdi_filter_sync_rx_mode(efx);
3302 
3303 	return 0;
3304 }
3305 
3306 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
3307 {
3308 	MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
3309 
3310 	MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
3311 	return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
3312 			    NULL, 0, NULL);
3313 }
3314 
3315 /* MC BISTs follow a different poll mechanism to phy BISTs.
3316  * The BIST is done in the poll handler on the MC, and the MCDI command
3317  * will block until the BIST is done.
3318  */
3319 static int efx_ef10_poll_bist(struct efx_nic *efx)
3320 {
3321 	int rc;
3322 	MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
3323 	size_t outlen;
3324 	u32 result;
3325 
3326 	rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
3327 			   outbuf, sizeof(outbuf), &outlen);
3328 	if (rc != 0)
3329 		return rc;
3330 
3331 	if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
3332 		return -EIO;
3333 
3334 	result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
3335 	switch (result) {
3336 	case MC_CMD_POLL_BIST_PASSED:
3337 		netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
3338 		return 0;
3339 	case MC_CMD_POLL_BIST_TIMEOUT:
3340 		netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
3341 		return -EIO;
3342 	case MC_CMD_POLL_BIST_FAILED:
3343 		netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
3344 		return -EIO;
3345 	default:
3346 		netif_err(efx, hw, efx->net_dev,
3347 			  "BIST returned unknown result %u", result);
3348 		return -EIO;
3349 	}
3350 }
3351 
3352 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
3353 {
3354 	int rc;
3355 
3356 	netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
3357 
3358 	rc = efx_ef10_start_bist(efx, bist_type);
3359 	if (rc != 0)
3360 		return rc;
3361 
3362 	return efx_ef10_poll_bist(efx);
3363 }
3364 
3365 static int
3366 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
3367 {
3368 	int rc, rc2;
3369 
3370 	efx_reset_down(efx, RESET_TYPE_WORLD);
3371 
3372 	rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
3373 			  NULL, 0, NULL, 0, NULL);
3374 	if (rc != 0)
3375 		goto out;
3376 
3377 	tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
3378 	tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
3379 
3380 	rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
3381 
3382 out:
3383 	if (rc == -EPERM)
3384 		rc = 0;
3385 	rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
3386 	return rc ? rc : rc2;
3387 }
3388 
3389 #ifdef CONFIG_SFC_MTD
3390 
3391 struct efx_ef10_nvram_type_info {
3392 	u16 type, type_mask;
3393 	u8 port;
3394 	const char *name;
3395 };
3396 
3397 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3398 	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE,	   0,    0, "sfc_mcfw" },
3399 	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
3400 	{ NVRAM_PARTITION_TYPE_EXPANSION_ROM,	   0,    0, "sfc_exp_rom" },
3401 	{ NVRAM_PARTITION_TYPE_STATIC_CONFIG,	   0,    0, "sfc_static_cfg" },
3402 	{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,	   0,    0, "sfc_dynamic_cfg" },
3403 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
3404 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
3405 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
3406 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
3407 	{ NVRAM_PARTITION_TYPE_LICENSE,		   0,    0, "sfc_license" },
3408 	{ NVRAM_PARTITION_TYPE_PHY_MIN,		   0xff, 0, "sfc_phy_fw" },
3409 	{ NVRAM_PARTITION_TYPE_MUM_FIRMWARE,	   0,    0, "sfc_mumfw" },
3410 	{ NVRAM_PARTITION_TYPE_EXPANSION_UEFI,	   0,    0, "sfc_uefi" },
3411 	{ NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS, 0,    0, "sfc_dynamic_cfg_dflt" },
3412 	{ NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS, 0,    0, "sfc_exp_rom_cfg_dflt" },
3413 	{ NVRAM_PARTITION_TYPE_STATUS,		   0,    0, "sfc_status" },
3414 	{ NVRAM_PARTITION_TYPE_BUNDLE,		   0,    0, "sfc_bundle" },
3415 	{ NVRAM_PARTITION_TYPE_BUNDLE_METADATA,	   0,    0, "sfc_bundle_metadata" },
3416 };
3417 #define EF10_NVRAM_PARTITION_COUNT	ARRAY_SIZE(efx_ef10_nvram_types)
3418 
3419 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3420 					struct efx_mcdi_mtd_partition *part,
3421 					unsigned int type,
3422 					unsigned long *found)
3423 {
3424 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3425 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3426 	const struct efx_ef10_nvram_type_info *info;
3427 	size_t size, erase_size, outlen;
3428 	int type_idx = 0;
3429 	bool protected;
3430 	int rc;
3431 
3432 	for (type_idx = 0; ; type_idx++) {
3433 		if (type_idx == EF10_NVRAM_PARTITION_COUNT)
3434 			return -ENODEV;
3435 		info = efx_ef10_nvram_types + type_idx;
3436 		if ((type & ~info->type_mask) == info->type)
3437 			break;
3438 	}
3439 	if (info->port != efx_port_num(efx))
3440 		return -ENODEV;
3441 
3442 	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3443 	if (rc)
3444 		return rc;
3445 	if (protected &&
3446 	    (type != NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS &&
3447 	     type != NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS))
3448 		/* Hide protected partitions that don't provide defaults. */
3449 		return -ENODEV;
3450 
3451 	if (protected)
3452 		/* Protected partitions are read only. */
3453 		erase_size = 0;
3454 
3455 	/* If we've already exposed a partition of this type, hide this
3456 	 * duplicate.  All operations on MTDs are keyed by the type anyway,
3457 	 * so we can't act on the duplicate.
3458 	 */
3459 	if (__test_and_set_bit(type_idx, found))
3460 		return -EEXIST;
3461 
3462 	part->nvram_type = type;
3463 
3464 	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3465 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3466 			  outbuf, sizeof(outbuf), &outlen);
3467 	if (rc)
3468 		return rc;
3469 	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3470 		return -EIO;
3471 	if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3472 	    (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3473 		part->fw_subtype = MCDI_DWORD(outbuf,
3474 					      NVRAM_METADATA_OUT_SUBTYPE);
3475 
3476 	part->common.dev_type_name = "EF10 NVRAM manager";
3477 	part->common.type_name = info->name;
3478 
3479 	part->common.mtd.type = MTD_NORFLASH;
3480 	part->common.mtd.flags = MTD_CAP_NORFLASH;
3481 	part->common.mtd.size = size;
3482 	part->common.mtd.erasesize = erase_size;
3483 	/* sfc_status is read-only */
3484 	if (!erase_size)
3485 		part->common.mtd.flags |= MTD_NO_ERASE;
3486 
3487 	return 0;
3488 }
3489 
3490 static int efx_ef10_mtd_probe(struct efx_nic *efx)
3491 {
3492 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3493 	DECLARE_BITMAP(found, EF10_NVRAM_PARTITION_COUNT) = { 0 };
3494 	struct efx_mcdi_mtd_partition *parts;
3495 	size_t outlen, n_parts_total, i, n_parts;
3496 	unsigned int type;
3497 	int rc;
3498 
3499 	ASSERT_RTNL();
3500 
3501 	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3502 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3503 			  outbuf, sizeof(outbuf), &outlen);
3504 	if (rc)
3505 		return rc;
3506 	if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3507 		return -EIO;
3508 
3509 	n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3510 	if (n_parts_total >
3511 	    MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3512 		return -EIO;
3513 
3514 	parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3515 	if (!parts)
3516 		return -ENOMEM;
3517 
3518 	n_parts = 0;
3519 	for (i = 0; i < n_parts_total; i++) {
3520 		type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3521 					i);
3522 		rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type,
3523 						  found);
3524 		if (rc == -EEXIST || rc == -ENODEV)
3525 			continue;
3526 		if (rc)
3527 			goto fail;
3528 		n_parts++;
3529 	}
3530 
3531 	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3532 fail:
3533 	if (rc)
3534 		kfree(parts);
3535 	return rc;
3536 }
3537 
3538 #endif /* CONFIG_SFC_MTD */
3539 
3540 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3541 {
3542 	_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3543 }
3544 
3545 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
3546 					    u32 host_time) {}
3547 
3548 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
3549 					   bool temp)
3550 {
3551 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
3552 	int rc;
3553 
3554 	if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
3555 	    channel->sync_events_state == SYNC_EVENTS_VALID ||
3556 	    (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
3557 		return 0;
3558 	channel->sync_events_state = SYNC_EVENTS_REQUESTED;
3559 
3560 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
3561 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3562 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
3563 		       channel->channel);
3564 
3565 	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3566 			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3567 
3568 	if (rc != 0)
3569 		channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3570 						    SYNC_EVENTS_DISABLED;
3571 
3572 	return rc;
3573 }
3574 
3575 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
3576 					    bool temp)
3577 {
3578 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
3579 	int rc;
3580 
3581 	if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
3582 	    (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
3583 		return 0;
3584 	if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
3585 		channel->sync_events_state = SYNC_EVENTS_DISABLED;
3586 		return 0;
3587 	}
3588 	channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3589 					    SYNC_EVENTS_DISABLED;
3590 
3591 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
3592 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3593 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
3594 		       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
3595 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
3596 		       channel->channel);
3597 
3598 	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3599 			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3600 
3601 	return rc;
3602 }
3603 
3604 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
3605 					   bool temp)
3606 {
3607 	int (*set)(struct efx_channel *channel, bool temp);
3608 	struct efx_channel *channel;
3609 
3610 	set = en ?
3611 	      efx_ef10_rx_enable_timestamping :
3612 	      efx_ef10_rx_disable_timestamping;
3613 
3614 	channel = efx_ptp_channel(efx);
3615 	if (channel) {
3616 		int rc = set(channel, temp);
3617 		if (en && rc != 0) {
3618 			efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
3619 			return rc;
3620 		}
3621 	}
3622 
3623 	return 0;
3624 }
3625 
3626 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
3627 					 struct hwtstamp_config *init)
3628 {
3629 	return -EOPNOTSUPP;
3630 }
3631 
3632 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
3633 				      struct hwtstamp_config *init)
3634 {
3635 	int rc;
3636 
3637 	switch (init->rx_filter) {
3638 	case HWTSTAMP_FILTER_NONE:
3639 		efx_ef10_ptp_set_ts_sync_events(efx, false, false);
3640 		/* if TX timestamping is still requested then leave PTP on */
3641 		return efx_ptp_change_mode(efx,
3642 					   init->tx_type != HWTSTAMP_TX_OFF, 0);
3643 	case HWTSTAMP_FILTER_ALL:
3644 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3645 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3646 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3647 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3648 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3649 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3650 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3651 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3652 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3653 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3654 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3655 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3656 	case HWTSTAMP_FILTER_NTP_ALL:
3657 		init->rx_filter = HWTSTAMP_FILTER_ALL;
3658 		rc = efx_ptp_change_mode(efx, true, 0);
3659 		if (!rc)
3660 			rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
3661 		if (rc)
3662 			efx_ptp_change_mode(efx, false, 0);
3663 		return rc;
3664 	default:
3665 		return -ERANGE;
3666 	}
3667 }
3668 
3669 static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
3670 				     struct netdev_phys_item_id *ppid)
3671 {
3672 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3673 
3674 	if (!is_valid_ether_addr(nic_data->port_id))
3675 		return -EOPNOTSUPP;
3676 
3677 	ppid->id_len = ETH_ALEN;
3678 	memcpy(ppid->id, nic_data->port_id, ppid->id_len);
3679 
3680 	return 0;
3681 }
3682 
3683 static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3684 {
3685 	if (proto != htons(ETH_P_8021Q))
3686 		return -EINVAL;
3687 
3688 	return efx_ef10_add_vlan(efx, vid);
3689 }
3690 
3691 static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3692 {
3693 	if (proto != htons(ETH_P_8021Q))
3694 		return -EINVAL;
3695 
3696 	return efx_ef10_del_vlan(efx, vid);
3697 }
3698 
3699 /* We rely on the MCDI wiping out our TX rings if it made any changes to the
3700  * ports table, ensuring that any TSO descriptors that were made on a now-
3701  * removed tunnel port will be blown away and won't break things when we try
3702  * to transmit them using the new ports table.
3703  */
3704 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
3705 {
3706 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3707 	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
3708 	MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
3709 	bool will_reset = false;
3710 	size_t num_entries = 0;
3711 	size_t inlen, outlen;
3712 	size_t i;
3713 	int rc;
3714 	efx_dword_t flags_and_num_entries;
3715 
3716 	WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
3717 
3718 	nic_data->udp_tunnels_dirty = false;
3719 
3720 	if (!(nic_data->datapath_caps &
3721 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
3722 		efx_device_attach_if_not_resetting(efx);
3723 		return 0;
3724 	}
3725 
3726 	BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
3727 		     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
3728 
3729 	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
3730 		if (nic_data->udp_tunnels[i].count &&
3731 		    nic_data->udp_tunnels[i].port) {
3732 			efx_dword_t entry;
3733 
3734 			EFX_POPULATE_DWORD_2(entry,
3735 				TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
3736 					ntohs(nic_data->udp_tunnels[i].port),
3737 				TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
3738 					nic_data->udp_tunnels[i].type);
3739 			*_MCDI_ARRAY_DWORD(inbuf,
3740 				SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
3741 				num_entries++) = entry;
3742 		}
3743 	}
3744 
3745 	BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
3746 		      MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
3747 		     EFX_WORD_1_LBN);
3748 	BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
3749 		     EFX_WORD_1_WIDTH);
3750 	EFX_POPULATE_DWORD_2(flags_and_num_entries,
3751 			     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
3752 				!!unloading,
3753 			     EFX_WORD_1, num_entries);
3754 	*_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
3755 		flags_and_num_entries;
3756 
3757 	inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
3758 
3759 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
3760 				inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
3761 	if (rc == -EIO) {
3762 		/* Most likely the MC rebooted due to another function also
3763 		 * setting its tunnel port list. Mark the tunnel port list as
3764 		 * dirty, so it will be pushed upon coming up from the reboot.
3765 		 */
3766 		nic_data->udp_tunnels_dirty = true;
3767 		return 0;
3768 	}
3769 
3770 	if (rc) {
3771 		/* expected not available on unprivileged functions */
3772 		if (rc != -EPERM)
3773 			netif_warn(efx, drv, efx->net_dev,
3774 				   "Unable to set UDP tunnel ports; rc=%d.\n", rc);
3775 	} else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
3776 		   (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
3777 		netif_info(efx, drv, efx->net_dev,
3778 			   "Rebooting MC due to UDP tunnel port list change\n");
3779 		will_reset = true;
3780 		if (unloading)
3781 			/* Delay for the MC reset to complete. This will make
3782 			 * unloading other functions a bit smoother. This is a
3783 			 * race, but the other unload will work whichever way
3784 			 * it goes, this just avoids an unnecessary error
3785 			 * message.
3786 			 */
3787 			msleep(100);
3788 	}
3789 	if (!will_reset && !unloading) {
3790 		/* The caller will have detached, relying on the MC reset to
3791 		 * trigger a re-attach.  Since there won't be an MC reset, we
3792 		 * have to do the attach ourselves.
3793 		 */
3794 		efx_device_attach_if_not_resetting(efx);
3795 	}
3796 
3797 	return rc;
3798 }
3799 
3800 static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
3801 {
3802 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3803 	int rc = 0;
3804 
3805 	mutex_lock(&nic_data->udp_tunnels_lock);
3806 	if (nic_data->udp_tunnels_dirty) {
3807 		/* Make sure all TX are stopped while we modify the table, else
3808 		 * we might race against an efx_features_check().
3809 		 */
3810 		efx_device_detach_sync(efx);
3811 		rc = efx_ef10_set_udp_tnl_ports(efx, false);
3812 	}
3813 	mutex_unlock(&nic_data->udp_tunnels_lock);
3814 	return rc;
3815 }
3816 
3817 static struct efx_udp_tunnel *__efx_ef10_udp_tnl_lookup_port(struct efx_nic *efx,
3818 							     __be16 port)
3819 {
3820 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3821 	size_t i;
3822 
3823 	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
3824 		if (!nic_data->udp_tunnels[i].count)
3825 			continue;
3826 		if (nic_data->udp_tunnels[i].port == port)
3827 			return &nic_data->udp_tunnels[i];
3828 	}
3829 	return NULL;
3830 }
3831 
3832 static int efx_ef10_udp_tnl_add_port(struct efx_nic *efx,
3833 				     struct efx_udp_tunnel tnl)
3834 {
3835 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3836 	struct efx_udp_tunnel *match;
3837 	char typebuf[8];
3838 	size_t i;
3839 	int rc;
3840 
3841 	if (!(nic_data->datapath_caps &
3842 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3843 		return 0;
3844 
3845 	efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
3846 	netif_dbg(efx, drv, efx->net_dev, "Adding UDP tunnel (%s) port %d\n",
3847 		  typebuf, ntohs(tnl.port));
3848 
3849 	mutex_lock(&nic_data->udp_tunnels_lock);
3850 	/* Make sure all TX are stopped while we add to the table, else we
3851 	 * might race against an efx_features_check().
3852 	 */
3853 	efx_device_detach_sync(efx);
3854 
3855 	match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
3856 	if (match != NULL) {
3857 		if (match->type == tnl.type) {
3858 			netif_dbg(efx, drv, efx->net_dev,
3859 				  "Referencing existing tunnel entry\n");
3860 			match->count++;
3861 			/* No need to cause an MCDI update */
3862 			rc = 0;
3863 			goto unlock_out;
3864 		}
3865 		efx_get_udp_tunnel_type_name(match->type,
3866 					     typebuf, sizeof(typebuf));
3867 		netif_dbg(efx, drv, efx->net_dev,
3868 			  "UDP port %d is already in use by %s\n",
3869 			  ntohs(tnl.port), typebuf);
3870 		rc = -EEXIST;
3871 		goto unlock_out;
3872 	}
3873 
3874 	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
3875 		if (!nic_data->udp_tunnels[i].count) {
3876 			nic_data->udp_tunnels[i] = tnl;
3877 			nic_data->udp_tunnels[i].count = 1;
3878 			rc = efx_ef10_set_udp_tnl_ports(efx, false);
3879 			goto unlock_out;
3880 		}
3881 
3882 	netif_dbg(efx, drv, efx->net_dev,
3883 		  "Unable to add UDP tunnel (%s) port %d; insufficient resources.\n",
3884 		  typebuf, ntohs(tnl.port));
3885 
3886 	rc = -ENOMEM;
3887 
3888 unlock_out:
3889 	mutex_unlock(&nic_data->udp_tunnels_lock);
3890 	return rc;
3891 }
3892 
3893 /* Called under the TX lock with the TX queue running, hence no-one can be
3894  * in the middle of updating the UDP tunnels table.  However, they could
3895  * have tried and failed the MCDI, in which case they'll have set the dirty
3896  * flag before dropping their locks.
3897  */
3898 static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
3899 {
3900 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3901 
3902 	if (!(nic_data->datapath_caps &
3903 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3904 		return false;
3905 
3906 	if (nic_data->udp_tunnels_dirty)
3907 		/* SW table may not match HW state, so just assume we can't
3908 		 * use any UDP tunnel offloads.
3909 		 */
3910 		return false;
3911 
3912 	return __efx_ef10_udp_tnl_lookup_port(efx, port) != NULL;
3913 }
3914 
3915 static int efx_ef10_udp_tnl_del_port(struct efx_nic *efx,
3916 				     struct efx_udp_tunnel tnl)
3917 {
3918 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3919 	struct efx_udp_tunnel *match;
3920 	char typebuf[8];
3921 	int rc;
3922 
3923 	if (!(nic_data->datapath_caps &
3924 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3925 		return 0;
3926 
3927 	efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
3928 	netif_dbg(efx, drv, efx->net_dev, "Removing UDP tunnel (%s) port %d\n",
3929 		  typebuf, ntohs(tnl.port));
3930 
3931 	mutex_lock(&nic_data->udp_tunnels_lock);
3932 	/* Make sure all TX are stopped while we remove from the table, else we
3933 	 * might race against an efx_features_check().
3934 	 */
3935 	efx_device_detach_sync(efx);
3936 
3937 	match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
3938 	if (match != NULL) {
3939 		if (match->type == tnl.type) {
3940 			if (--match->count) {
3941 				/* Port is still in use, so nothing to do */
3942 				netif_dbg(efx, drv, efx->net_dev,
3943 					  "UDP tunnel port %d remains active\n",
3944 					  ntohs(tnl.port));
3945 				rc = 0;
3946 				goto out_unlock;
3947 			}
3948 			rc = efx_ef10_set_udp_tnl_ports(efx, false);
3949 			goto out_unlock;
3950 		}
3951 		efx_get_udp_tunnel_type_name(match->type,
3952 					     typebuf, sizeof(typebuf));
3953 		netif_warn(efx, drv, efx->net_dev,
3954 			   "UDP port %d is actually in use by %s, not removing\n",
3955 			   ntohs(tnl.port), typebuf);
3956 	}
3957 	rc = -ENOENT;
3958 
3959 out_unlock:
3960 	mutex_unlock(&nic_data->udp_tunnels_lock);
3961 	return rc;
3962 }
3963 
3964 #define EF10_OFFLOAD_FEATURES		\
3965 	(NETIF_F_IP_CSUM |		\
3966 	 NETIF_F_HW_VLAN_CTAG_FILTER |	\
3967 	 NETIF_F_IPV6_CSUM |		\
3968 	 NETIF_F_RXHASH |		\
3969 	 NETIF_F_NTUPLE)
3970 
3971 const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
3972 	.is_vf = true,
3973 	.mem_bar = efx_ef10_vf_mem_bar,
3974 	.mem_map_size = efx_ef10_mem_map_size,
3975 	.probe = efx_ef10_probe_vf,
3976 	.remove = efx_ef10_remove,
3977 	.dimension_resources = efx_ef10_dimension_resources,
3978 	.init = efx_ef10_init_nic,
3979 	.fini = efx_port_dummy_op_void,
3980 	.map_reset_reason = efx_ef10_map_reset_reason,
3981 	.map_reset_flags = efx_ef10_map_reset_flags,
3982 	.reset = efx_ef10_reset,
3983 	.probe_port = efx_mcdi_port_probe,
3984 	.remove_port = efx_mcdi_port_remove,
3985 	.fini_dmaq = efx_ef10_fini_dmaq,
3986 	.prepare_flr = efx_ef10_prepare_flr,
3987 	.finish_flr = efx_port_dummy_op_void,
3988 	.describe_stats = efx_ef10_describe_stats,
3989 	.update_stats = efx_ef10_update_stats_vf,
3990 	.start_stats = efx_port_dummy_op_void,
3991 	.pull_stats = efx_port_dummy_op_void,
3992 	.stop_stats = efx_port_dummy_op_void,
3993 	.set_id_led = efx_mcdi_set_id_led,
3994 	.push_irq_moderation = efx_ef10_push_irq_moderation,
3995 	.reconfigure_mac = efx_ef10_mac_reconfigure_vf,
3996 	.check_mac_fault = efx_mcdi_mac_check_fault,
3997 	.reconfigure_port = efx_mcdi_port_reconfigure,
3998 	.get_wol = efx_ef10_get_wol_vf,
3999 	.set_wol = efx_ef10_set_wol_vf,
4000 	.resume_wol = efx_port_dummy_op_void,
4001 	.mcdi_request = efx_ef10_mcdi_request,
4002 	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
4003 	.mcdi_read_response = efx_ef10_mcdi_read_response,
4004 	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4005 	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4006 	.irq_enable_master = efx_port_dummy_op_void,
4007 	.irq_test_generate = efx_ef10_irq_test_generate,
4008 	.irq_disable_non_ev = efx_port_dummy_op_void,
4009 	.irq_handle_msi = efx_ef10_msi_interrupt,
4010 	.irq_handle_legacy = efx_ef10_legacy_interrupt,
4011 	.tx_probe = efx_ef10_tx_probe,
4012 	.tx_init = efx_ef10_tx_init,
4013 	.tx_remove = efx_mcdi_tx_remove,
4014 	.tx_write = efx_ef10_tx_write,
4015 	.tx_limit_len = efx_ef10_tx_limit_len,
4016 	.rx_push_rss_config = efx_mcdi_vf_rx_push_rss_config,
4017 	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4018 	.rx_probe = efx_mcdi_rx_probe,
4019 	.rx_init = efx_mcdi_rx_init,
4020 	.rx_remove = efx_mcdi_rx_remove,
4021 	.rx_write = efx_ef10_rx_write,
4022 	.rx_defer_refill = efx_ef10_rx_defer_refill,
4023 	.ev_probe = efx_mcdi_ev_probe,
4024 	.ev_init = efx_ef10_ev_init,
4025 	.ev_fini = efx_mcdi_ev_fini,
4026 	.ev_remove = efx_mcdi_ev_remove,
4027 	.ev_process = efx_ef10_ev_process,
4028 	.ev_read_ack = efx_ef10_ev_read_ack,
4029 	.ev_test_generate = efx_ef10_ev_test_generate,
4030 	.filter_table_probe = efx_mcdi_filter_table_probe,
4031 	.filter_table_restore = efx_mcdi_filter_table_restore,
4032 	.filter_table_remove = efx_mcdi_filter_table_remove,
4033 	.filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4034 	.filter_insert = efx_mcdi_filter_insert,
4035 	.filter_remove_safe = efx_mcdi_filter_remove_safe,
4036 	.filter_get_safe = efx_mcdi_filter_get_safe,
4037 	.filter_clear_rx = efx_mcdi_filter_clear_rx,
4038 	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4039 	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4040 	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4041 #ifdef CONFIG_RFS_ACCEL
4042 	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4043 #endif
4044 #ifdef CONFIG_SFC_MTD
4045 	.mtd_probe = efx_port_dummy_op_int,
4046 #endif
4047 	.ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
4048 	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
4049 	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4050 	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4051 #ifdef CONFIG_SFC_SRIOV
4052 	.vswitching_probe = efx_ef10_vswitching_probe_vf,
4053 	.vswitching_restore = efx_ef10_vswitching_restore_vf,
4054 	.vswitching_remove = efx_ef10_vswitching_remove_vf,
4055 #endif
4056 	.get_mac_address = efx_ef10_get_mac_address_vf,
4057 	.set_mac_address = efx_ef10_set_mac_address,
4058 
4059 	.get_phys_port_id = efx_ef10_get_phys_port_id,
4060 	.revision = EFX_REV_HUNT_A0,
4061 	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4062 	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4063 	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4064 	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4065 	.can_rx_scatter = true,
4066 	.always_rx_scatter = true,
4067 	.min_interrupt_mode = EFX_INT_MODE_MSIX,
4068 	.max_interrupt_mode = EFX_INT_MODE_MSIX,
4069 	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4070 	.offload_features = EF10_OFFLOAD_FEATURES,
4071 	.mcdi_max_ver = 2,
4072 	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4073 	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4074 			    1 << HWTSTAMP_FILTER_ALL,
4075 	.rx_hash_key_size = 40,
4076 };
4077 
4078 const struct efx_nic_type efx_hunt_a0_nic_type = {
4079 	.is_vf = false,
4080 	.mem_bar = efx_ef10_pf_mem_bar,
4081 	.mem_map_size = efx_ef10_mem_map_size,
4082 	.probe = efx_ef10_probe_pf,
4083 	.remove = efx_ef10_remove,
4084 	.dimension_resources = efx_ef10_dimension_resources,
4085 	.init = efx_ef10_init_nic,
4086 	.fini = efx_port_dummy_op_void,
4087 	.map_reset_reason = efx_ef10_map_reset_reason,
4088 	.map_reset_flags = efx_ef10_map_reset_flags,
4089 	.reset = efx_ef10_reset,
4090 	.probe_port = efx_mcdi_port_probe,
4091 	.remove_port = efx_mcdi_port_remove,
4092 	.fini_dmaq = efx_ef10_fini_dmaq,
4093 	.prepare_flr = efx_ef10_prepare_flr,
4094 	.finish_flr = efx_port_dummy_op_void,
4095 	.describe_stats = efx_ef10_describe_stats,
4096 	.update_stats = efx_ef10_update_stats_pf,
4097 	.start_stats = efx_mcdi_mac_start_stats,
4098 	.pull_stats = efx_mcdi_mac_pull_stats,
4099 	.stop_stats = efx_mcdi_mac_stop_stats,
4100 	.set_id_led = efx_mcdi_set_id_led,
4101 	.push_irq_moderation = efx_ef10_push_irq_moderation,
4102 	.reconfigure_mac = efx_ef10_mac_reconfigure,
4103 	.check_mac_fault = efx_mcdi_mac_check_fault,
4104 	.reconfigure_port = efx_mcdi_port_reconfigure,
4105 	.get_wol = efx_ef10_get_wol,
4106 	.set_wol = efx_ef10_set_wol,
4107 	.resume_wol = efx_port_dummy_op_void,
4108 	.test_chip = efx_ef10_test_chip,
4109 	.test_nvram = efx_mcdi_nvram_test_all,
4110 	.mcdi_request = efx_ef10_mcdi_request,
4111 	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
4112 	.mcdi_read_response = efx_ef10_mcdi_read_response,
4113 	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4114 	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4115 	.irq_enable_master = efx_port_dummy_op_void,
4116 	.irq_test_generate = efx_ef10_irq_test_generate,
4117 	.irq_disable_non_ev = efx_port_dummy_op_void,
4118 	.irq_handle_msi = efx_ef10_msi_interrupt,
4119 	.irq_handle_legacy = efx_ef10_legacy_interrupt,
4120 	.tx_probe = efx_ef10_tx_probe,
4121 	.tx_init = efx_ef10_tx_init,
4122 	.tx_remove = efx_mcdi_tx_remove,
4123 	.tx_write = efx_ef10_tx_write,
4124 	.tx_limit_len = efx_ef10_tx_limit_len,
4125 	.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
4126 	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4127 	.rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
4128 	.rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
4129 	.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
4130 	.rx_probe = efx_mcdi_rx_probe,
4131 	.rx_init = efx_mcdi_rx_init,
4132 	.rx_remove = efx_mcdi_rx_remove,
4133 	.rx_write = efx_ef10_rx_write,
4134 	.rx_defer_refill = efx_ef10_rx_defer_refill,
4135 	.ev_probe = efx_mcdi_ev_probe,
4136 	.ev_init = efx_ef10_ev_init,
4137 	.ev_fini = efx_mcdi_ev_fini,
4138 	.ev_remove = efx_mcdi_ev_remove,
4139 	.ev_process = efx_ef10_ev_process,
4140 	.ev_read_ack = efx_ef10_ev_read_ack,
4141 	.ev_test_generate = efx_ef10_ev_test_generate,
4142 	.filter_table_probe = efx_mcdi_filter_table_probe,
4143 	.filter_table_restore = efx_mcdi_filter_table_restore,
4144 	.filter_table_remove = efx_mcdi_filter_table_remove,
4145 	.filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4146 	.filter_insert = efx_mcdi_filter_insert,
4147 	.filter_remove_safe = efx_mcdi_filter_remove_safe,
4148 	.filter_get_safe = efx_mcdi_filter_get_safe,
4149 	.filter_clear_rx = efx_mcdi_filter_clear_rx,
4150 	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4151 	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4152 	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4153 #ifdef CONFIG_RFS_ACCEL
4154 	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4155 #endif
4156 #ifdef CONFIG_SFC_MTD
4157 	.mtd_probe = efx_ef10_mtd_probe,
4158 	.mtd_rename = efx_mcdi_mtd_rename,
4159 	.mtd_read = efx_mcdi_mtd_read,
4160 	.mtd_erase = efx_mcdi_mtd_erase,
4161 	.mtd_write = efx_mcdi_mtd_write,
4162 	.mtd_sync = efx_mcdi_mtd_sync,
4163 #endif
4164 	.ptp_write_host_time = efx_ef10_ptp_write_host_time,
4165 	.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
4166 	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
4167 	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4168 	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4169 	.udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
4170 	.udp_tnl_add_port = efx_ef10_udp_tnl_add_port,
4171 	.udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
4172 	.udp_tnl_del_port = efx_ef10_udp_tnl_del_port,
4173 #ifdef CONFIG_SFC_SRIOV
4174 	.sriov_configure = efx_ef10_sriov_configure,
4175 	.sriov_init = efx_ef10_sriov_init,
4176 	.sriov_fini = efx_ef10_sriov_fini,
4177 	.sriov_wanted = efx_ef10_sriov_wanted,
4178 	.sriov_reset = efx_ef10_sriov_reset,
4179 	.sriov_flr = efx_ef10_sriov_flr,
4180 	.sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
4181 	.sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
4182 	.sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
4183 	.sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
4184 	.sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
4185 	.vswitching_probe = efx_ef10_vswitching_probe_pf,
4186 	.vswitching_restore = efx_ef10_vswitching_restore_pf,
4187 	.vswitching_remove = efx_ef10_vswitching_remove_pf,
4188 #endif
4189 	.get_mac_address = efx_ef10_get_mac_address_pf,
4190 	.set_mac_address = efx_ef10_set_mac_address,
4191 	.tso_versions = efx_ef10_tso_versions,
4192 
4193 	.get_phys_port_id = efx_ef10_get_phys_port_id,
4194 	.revision = EFX_REV_HUNT_A0,
4195 	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4196 	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4197 	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4198 	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4199 	.can_rx_scatter = true,
4200 	.always_rx_scatter = true,
4201 	.option_descriptors = true,
4202 	.min_interrupt_mode = EFX_INT_MODE_LEGACY,
4203 	.max_interrupt_mode = EFX_INT_MODE_MSIX,
4204 	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4205 	.offload_features = EF10_OFFLOAD_FEATURES,
4206 	.mcdi_max_ver = 2,
4207 	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4208 	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4209 			    1 << HWTSTAMP_FILTER_ALL,
4210 	.rx_hash_key_size = 40,
4211 };
4212