xref: /linux/drivers/net/ethernet/sfc/ef10.c (revision 2cef30d7bd8b8fbddeb74e3753c29d4248c094e0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2012-2013 Solarflare Communications Inc.
5  */
6 
7 #include "net_driver.h"
8 #include "rx_common.h"
9 #include "ef10_regs.h"
10 #include "io.h"
11 #include "mcdi.h"
12 #include "mcdi_pcol.h"
13 #include "mcdi_port.h"
14 #include "mcdi_port_common.h"
15 #include "mcdi_functions.h"
16 #include "nic.h"
17 #include "mcdi_filters.h"
18 #include "workarounds.h"
19 #include "selftest.h"
20 #include "ef10_sriov.h"
21 #include <linux/in.h>
22 #include <linux/jhash.h>
23 #include <linux/wait.h>
24 #include <linux/workqueue.h>
25 
26 /* Hardware control for EF10 architecture including 'Huntington'. */
27 
28 #define EFX_EF10_DRVGEN_EV		7
29 enum {
30 	EFX_EF10_TEST = 1,
31 	EFX_EF10_REFILL,
32 };
33 
34 /* VLAN list entry */
35 struct efx_ef10_vlan {
36 	struct list_head list;
37 	u16 vid;
38 };
39 
40 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
41 
42 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
43 {
44 	efx_dword_t reg;
45 
46 	efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
47 	return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
48 		EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
49 }
50 
51 /* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
52  * I/O space and BAR 2(&3) for memory.  On SFC9250 (Medford2), there is no I/O
53  * bar; PFs use BAR 0/1 for memory.
54  */
55 static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx)
56 {
57 	switch (efx->pci_dev->device) {
58 	case 0x0b03: /* SFC9250 PF */
59 		return 0;
60 	default:
61 		return 2;
62 	}
63 }
64 
65 /* All VFs use BAR 0/1 for memory */
66 static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx)
67 {
68 	return 0;
69 }
70 
71 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
72 {
73 	int bar;
74 
75 	bar = efx->type->mem_bar(efx);
76 	return resource_size(&efx->pci_dev->resource[bar]);
77 }
78 
79 static bool efx_ef10_is_vf(struct efx_nic *efx)
80 {
81 	return efx->type->is_vf;
82 }
83 
84 #ifdef CONFIG_SFC_SRIOV
85 static int efx_ef10_get_vf_index(struct efx_nic *efx)
86 {
87 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
88 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
89 	size_t outlen;
90 	int rc;
91 
92 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
93 			  sizeof(outbuf), &outlen);
94 	if (rc)
95 		return rc;
96 	if (outlen < sizeof(outbuf))
97 		return -EIO;
98 
99 	nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
100 	return 0;
101 }
102 #endif
103 
104 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
105 {
106 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN);
107 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
108 	size_t outlen;
109 	int rc;
110 
111 	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
112 
113 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
114 			  outbuf, sizeof(outbuf), &outlen);
115 	if (rc)
116 		return rc;
117 	if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
118 		netif_err(efx, drv, efx->net_dev,
119 			  "unable to read datapath firmware capabilities\n");
120 		return -EIO;
121 	}
122 
123 	nic_data->datapath_caps =
124 		MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
125 
126 	if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
127 		nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
128 				GET_CAPABILITIES_V2_OUT_FLAGS2);
129 		nic_data->piobuf_size = MCDI_WORD(outbuf,
130 				GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
131 	} else {
132 		nic_data->datapath_caps2 = 0;
133 		nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
134 	}
135 
136 	/* record the DPCPU firmware IDs to determine VEB vswitching support.
137 	 */
138 	nic_data->rx_dpcpu_fw_id =
139 		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
140 	nic_data->tx_dpcpu_fw_id =
141 		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
142 
143 	if (!(nic_data->datapath_caps &
144 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
145 		netif_err(efx, probe, efx->net_dev,
146 			  "current firmware does not support an RX prefix\n");
147 		return -ENODEV;
148 	}
149 
150 	if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
151 		u8 vi_window_mode = MCDI_BYTE(outbuf,
152 				GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
153 
154 		rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
155 		if (rc)
156 			return rc;
157 	} else {
158 		/* keep default VI stride */
159 		netif_dbg(efx, probe, efx->net_dev,
160 			  "firmware did not report VI window mode, assuming vi_stride = %u\n",
161 			  efx->vi_stride);
162 	}
163 
164 	if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
165 		efx->num_mac_stats = MCDI_WORD(outbuf,
166 				GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
167 		netif_dbg(efx, probe, efx->net_dev,
168 			  "firmware reports num_mac_stats = %u\n",
169 			  efx->num_mac_stats);
170 	} else {
171 		/* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
172 		netif_dbg(efx, probe, efx->net_dev,
173 			  "firmware did not report num_mac_stats, assuming %u\n",
174 			  efx->num_mac_stats);
175 	}
176 
177 	return 0;
178 }
179 
180 static void efx_ef10_read_licensed_features(struct efx_nic *efx)
181 {
182 	MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN);
183 	MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN);
184 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
185 	size_t outlen;
186 	int rc;
187 
188 	MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP,
189 		       MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE);
190 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf),
191 				outbuf, sizeof(outbuf), &outlen);
192 	if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN))
193 		return;
194 
195 	nic_data->licensed_features = MCDI_QWORD(outbuf,
196 					 LICENSING_V3_OUT_LICENSED_FEATURES);
197 }
198 
199 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
200 {
201 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
202 	int rc;
203 
204 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
205 			  outbuf, sizeof(outbuf), NULL);
206 	if (rc)
207 		return rc;
208 	rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
209 	return rc > 0 ? rc : -ERANGE;
210 }
211 
212 static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
213 {
214 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
215 	unsigned int implemented;
216 	unsigned int enabled;
217 	int rc;
218 
219 	nic_data->workaround_35388 = false;
220 	nic_data->workaround_61265 = false;
221 
222 	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
223 
224 	if (rc == -ENOSYS) {
225 		/* Firmware without GET_WORKAROUNDS - not a problem. */
226 		rc = 0;
227 	} else if (rc == 0) {
228 		/* Bug61265 workaround is always enabled if implemented. */
229 		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
230 			nic_data->workaround_61265 = true;
231 
232 		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
233 			nic_data->workaround_35388 = true;
234 		} else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
235 			/* Workaround is implemented but not enabled.
236 			 * Try to enable it.
237 			 */
238 			rc = efx_mcdi_set_workaround(efx,
239 						     MC_CMD_WORKAROUND_BUG35388,
240 						     true, NULL);
241 			if (rc == 0)
242 				nic_data->workaround_35388 = true;
243 			/* If we failed to set the workaround just carry on. */
244 			rc = 0;
245 		}
246 	}
247 
248 	netif_dbg(efx, probe, efx->net_dev,
249 		  "workaround for bug 35388 is %sabled\n",
250 		  nic_data->workaround_35388 ? "en" : "dis");
251 	netif_dbg(efx, probe, efx->net_dev,
252 		  "workaround for bug 61265 is %sabled\n",
253 		  nic_data->workaround_61265 ? "en" : "dis");
254 
255 	return rc;
256 }
257 
258 static void efx_ef10_process_timer_config(struct efx_nic *efx,
259 					  const efx_dword_t *data)
260 {
261 	unsigned int max_count;
262 
263 	if (EFX_EF10_WORKAROUND_61265(efx)) {
264 		efx->timer_quantum_ns = MCDI_DWORD(data,
265 			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
266 		efx->timer_max_ns = MCDI_DWORD(data,
267 			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
268 	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
269 		efx->timer_quantum_ns = MCDI_DWORD(data,
270 			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
271 		max_count = MCDI_DWORD(data,
272 			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
273 		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
274 	} else {
275 		efx->timer_quantum_ns = MCDI_DWORD(data,
276 			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
277 		max_count = MCDI_DWORD(data,
278 			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
279 		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
280 	}
281 
282 	netif_dbg(efx, probe, efx->net_dev,
283 		  "got timer properties from MC: quantum %u ns; max %u ns\n",
284 		  efx->timer_quantum_ns, efx->timer_max_ns);
285 }
286 
287 static int efx_ef10_get_timer_config(struct efx_nic *efx)
288 {
289 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
290 	int rc;
291 
292 	rc = efx_ef10_get_timer_workarounds(efx);
293 	if (rc)
294 		return rc;
295 
296 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
297 				outbuf, sizeof(outbuf), NULL);
298 
299 	if (rc == 0) {
300 		efx_ef10_process_timer_config(efx, outbuf);
301 	} else if (rc == -ENOSYS || rc == -EPERM) {
302 		/* Not available - fall back to Huntington defaults. */
303 		unsigned int quantum;
304 
305 		rc = efx_ef10_get_sysclk_freq(efx);
306 		if (rc < 0)
307 			return rc;
308 
309 		quantum = 1536000 / rc; /* 1536 cycles */
310 		efx->timer_quantum_ns = quantum;
311 		efx->timer_max_ns = efx->type->timer_period_max * quantum;
312 		rc = 0;
313 	} else {
314 		efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
315 				       MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
316 				       NULL, 0, rc);
317 	}
318 
319 	return rc;
320 }
321 
322 static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
323 {
324 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
325 	size_t outlen;
326 	int rc;
327 
328 	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
329 
330 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
331 			  outbuf, sizeof(outbuf), &outlen);
332 	if (rc)
333 		return rc;
334 	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
335 		return -EIO;
336 
337 	ether_addr_copy(mac_address,
338 			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
339 	return 0;
340 }
341 
342 static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
343 {
344 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
345 	MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
346 	size_t outlen;
347 	int num_addrs, rc;
348 
349 	MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
350 		       EVB_PORT_ID_ASSIGNED);
351 	rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
352 			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
353 
354 	if (rc)
355 		return rc;
356 	if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
357 		return -EIO;
358 
359 	num_addrs = MCDI_DWORD(outbuf,
360 			       VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
361 
362 	WARN_ON(num_addrs != 1);
363 
364 	ether_addr_copy(mac_address,
365 			MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
366 
367 	return 0;
368 }
369 
370 static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
371 					       struct device_attribute *attr,
372 					       char *buf)
373 {
374 	struct efx_nic *efx = dev_get_drvdata(dev);
375 
376 	return sprintf(buf, "%d\n",
377 		       ((efx->mcdi->fn_flags) &
378 			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
379 		       ? 1 : 0);
380 }
381 
382 static ssize_t efx_ef10_show_primary_flag(struct device *dev,
383 					  struct device_attribute *attr,
384 					  char *buf)
385 {
386 	struct efx_nic *efx = dev_get_drvdata(dev);
387 
388 	return sprintf(buf, "%d\n",
389 		       ((efx->mcdi->fn_flags) &
390 			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
391 		       ? 1 : 0);
392 }
393 
394 static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
395 {
396 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
397 	struct efx_ef10_vlan *vlan;
398 
399 	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
400 
401 	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
402 		if (vlan->vid == vid)
403 			return vlan;
404 	}
405 
406 	return NULL;
407 }
408 
409 static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
410 {
411 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
412 	struct efx_ef10_vlan *vlan;
413 	int rc;
414 
415 	mutex_lock(&nic_data->vlan_lock);
416 
417 	vlan = efx_ef10_find_vlan(efx, vid);
418 	if (vlan) {
419 		/* We add VID 0 on init. 8021q adds it on module init
420 		 * for all interfaces with VLAN filtring feature.
421 		 */
422 		if (vid == 0)
423 			goto done_unlock;
424 		netif_warn(efx, drv, efx->net_dev,
425 			   "VLAN %u already added\n", vid);
426 		rc = -EALREADY;
427 		goto fail_exist;
428 	}
429 
430 	rc = -ENOMEM;
431 	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
432 	if (!vlan)
433 		goto fail_alloc;
434 
435 	vlan->vid = vid;
436 
437 	list_add_tail(&vlan->list, &nic_data->vlan_list);
438 
439 	if (efx->filter_state) {
440 		mutex_lock(&efx->mac_lock);
441 		down_write(&efx->filter_sem);
442 		rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
443 		up_write(&efx->filter_sem);
444 		mutex_unlock(&efx->mac_lock);
445 		if (rc)
446 			goto fail_filter_add_vlan;
447 	}
448 
449 done_unlock:
450 	mutex_unlock(&nic_data->vlan_lock);
451 	return 0;
452 
453 fail_filter_add_vlan:
454 	list_del(&vlan->list);
455 	kfree(vlan);
456 fail_alloc:
457 fail_exist:
458 	mutex_unlock(&nic_data->vlan_lock);
459 	return rc;
460 }
461 
462 static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
463 				       struct efx_ef10_vlan *vlan)
464 {
465 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
466 
467 	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
468 
469 	if (efx->filter_state) {
470 		down_write(&efx->filter_sem);
471 		efx_mcdi_filter_del_vlan(efx, vlan->vid);
472 		up_write(&efx->filter_sem);
473 	}
474 
475 	list_del(&vlan->list);
476 	kfree(vlan);
477 }
478 
479 static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
480 {
481 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
482 	struct efx_ef10_vlan *vlan;
483 	int rc = 0;
484 
485 	/* 8021q removes VID 0 on module unload for all interfaces
486 	 * with VLAN filtering feature. We need to keep it to receive
487 	 * untagged traffic.
488 	 */
489 	if (vid == 0)
490 		return 0;
491 
492 	mutex_lock(&nic_data->vlan_lock);
493 
494 	vlan = efx_ef10_find_vlan(efx, vid);
495 	if (!vlan) {
496 		netif_err(efx, drv, efx->net_dev,
497 			  "VLAN %u to be deleted not found\n", vid);
498 		rc = -ENOENT;
499 	} else {
500 		efx_ef10_del_vlan_internal(efx, vlan);
501 	}
502 
503 	mutex_unlock(&nic_data->vlan_lock);
504 
505 	return rc;
506 }
507 
508 static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
509 {
510 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
511 	struct efx_ef10_vlan *vlan, *next_vlan;
512 
513 	mutex_lock(&nic_data->vlan_lock);
514 	list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
515 		efx_ef10_del_vlan_internal(efx, vlan);
516 	mutex_unlock(&nic_data->vlan_lock);
517 }
518 
519 static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
520 		   NULL);
521 static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
522 
523 static int efx_ef10_probe(struct efx_nic *efx)
524 {
525 	struct efx_ef10_nic_data *nic_data;
526 	int i, rc;
527 
528 	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
529 	if (!nic_data)
530 		return -ENOMEM;
531 	efx->nic_data = nic_data;
532 
533 	/* we assume later that we can copy from this buffer in dwords */
534 	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
535 
536 	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
537 				  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
538 	if (rc)
539 		goto fail1;
540 
541 	/* Get the MC's warm boot count.  In case it's rebooting right
542 	 * now, be prepared to retry.
543 	 */
544 	i = 0;
545 	for (;;) {
546 		rc = efx_ef10_get_warm_boot_count(efx);
547 		if (rc >= 0)
548 			break;
549 		if (++i == 5)
550 			goto fail2;
551 		ssleep(1);
552 	}
553 	nic_data->warm_boot_count = rc;
554 
555 	efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
556 
557 	/* In case we're recovering from a crash (kexec), we want to
558 	 * cancel any outstanding request by the previous user of this
559 	 * function.  We send a special message using the least
560 	 * significant bits of the 'high' (doorbell) register.
561 	 */
562 	_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
563 
564 	rc = efx_mcdi_init(efx);
565 	if (rc)
566 		goto fail2;
567 
568 	mutex_init(&nic_data->udp_tunnels_lock);
569 
570 	/* Reset (most) configuration for this function */
571 	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
572 	if (rc)
573 		goto fail3;
574 
575 	/* Enable event logging */
576 	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
577 	if (rc)
578 		goto fail3;
579 
580 	rc = device_create_file(&efx->pci_dev->dev,
581 				&dev_attr_link_control_flag);
582 	if (rc)
583 		goto fail3;
584 
585 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
586 	if (rc)
587 		goto fail4;
588 
589 	rc = efx_get_pf_index(efx, &nic_data->pf_index);
590 	if (rc)
591 		goto fail5;
592 
593 	rc = efx_ef10_init_datapath_caps(efx);
594 	if (rc < 0)
595 		goto fail5;
596 
597 	efx_ef10_read_licensed_features(efx);
598 
599 	/* We can have one VI for each vi_stride-byte region.
600 	 * However, until we use TX option descriptors we need two TX queues
601 	 * per channel.
602 	 */
603 	efx->max_vis = efx_ef10_mem_map_size(efx) / efx->vi_stride;
604 	if (!efx->max_vis) {
605 		netif_err(efx, drv, efx->net_dev, "error determining max VIs\n");
606 		rc = -EIO;
607 		goto fail5;
608 	}
609 	efx->max_channels = min_t(unsigned int, EFX_MAX_CHANNELS,
610 				  efx->max_vis / EFX_TXQ_TYPES);
611 	efx->max_tx_channels = efx->max_channels;
612 	if (WARN_ON(efx->max_channels == 0)) {
613 		rc = -EIO;
614 		goto fail5;
615 	}
616 
617 	efx->rx_packet_len_offset =
618 		ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
619 
620 	if (nic_data->datapath_caps &
621 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
622 		efx->net_dev->hw_features |= NETIF_F_RXFCS;
623 
624 	rc = efx_mcdi_port_get_number(efx);
625 	if (rc < 0)
626 		goto fail5;
627 	efx->port_num = rc;
628 
629 	rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
630 	if (rc)
631 		goto fail5;
632 
633 	rc = efx_ef10_get_timer_config(efx);
634 	if (rc < 0)
635 		goto fail5;
636 
637 	rc = efx_mcdi_mon_probe(efx);
638 	if (rc && rc != -EPERM)
639 		goto fail5;
640 
641 	efx_ptp_defer_probe_with_channel(efx);
642 
643 #ifdef CONFIG_SFC_SRIOV
644 	if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
645 		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
646 		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
647 
648 		efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
649 	} else
650 #endif
651 		ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
652 
653 	INIT_LIST_HEAD(&nic_data->vlan_list);
654 	mutex_init(&nic_data->vlan_lock);
655 
656 	/* Add unspecified VID to support VLAN filtering being disabled */
657 	rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
658 	if (rc)
659 		goto fail_add_vid_unspec;
660 
661 	/* If VLAN filtering is enabled, we need VID 0 to get untagged
662 	 * traffic.  It is added automatically if 8021q module is loaded,
663 	 * but we can't rely on it since module may be not loaded.
664 	 */
665 	rc = efx_ef10_add_vlan(efx, 0);
666 	if (rc)
667 		goto fail_add_vid_0;
668 
669 	return 0;
670 
671 fail_add_vid_0:
672 	efx_ef10_cleanup_vlans(efx);
673 fail_add_vid_unspec:
674 	mutex_destroy(&nic_data->vlan_lock);
675 	efx_ptp_remove(efx);
676 	efx_mcdi_mon_remove(efx);
677 fail5:
678 	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
679 fail4:
680 	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
681 fail3:
682 	efx_mcdi_detach(efx);
683 
684 	mutex_lock(&nic_data->udp_tunnels_lock);
685 	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
686 	(void)efx_ef10_set_udp_tnl_ports(efx, true);
687 	mutex_unlock(&nic_data->udp_tunnels_lock);
688 	mutex_destroy(&nic_data->udp_tunnels_lock);
689 
690 	efx_mcdi_fini(efx);
691 fail2:
692 	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
693 fail1:
694 	kfree(nic_data);
695 	efx->nic_data = NULL;
696 	return rc;
697 }
698 
699 #ifdef EFX_USE_PIO
700 
701 static void efx_ef10_free_piobufs(struct efx_nic *efx)
702 {
703 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
704 	MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
705 	unsigned int i;
706 	int rc;
707 
708 	BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
709 
710 	for (i = 0; i < nic_data->n_piobufs; i++) {
711 		MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
712 			       nic_data->piobuf_handle[i]);
713 		rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
714 				  NULL, 0, NULL);
715 		WARN_ON(rc);
716 	}
717 
718 	nic_data->n_piobufs = 0;
719 }
720 
721 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
722 {
723 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
724 	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
725 	unsigned int i;
726 	size_t outlen;
727 	int rc = 0;
728 
729 	BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
730 
731 	for (i = 0; i < n; i++) {
732 		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
733 					outbuf, sizeof(outbuf), &outlen);
734 		if (rc) {
735 			/* Don't display the MC error if we didn't have space
736 			 * for a VF.
737 			 */
738 			if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
739 				efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
740 						       0, outbuf, outlen, rc);
741 			break;
742 		}
743 		if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
744 			rc = -EIO;
745 			break;
746 		}
747 		nic_data->piobuf_handle[i] =
748 			MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
749 		netif_dbg(efx, probe, efx->net_dev,
750 			  "allocated PIO buffer %u handle %x\n", i,
751 			  nic_data->piobuf_handle[i]);
752 	}
753 
754 	nic_data->n_piobufs = i;
755 	if (rc)
756 		efx_ef10_free_piobufs(efx);
757 	return rc;
758 }
759 
760 static int efx_ef10_link_piobufs(struct efx_nic *efx)
761 {
762 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
763 	MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
764 	struct efx_channel *channel;
765 	struct efx_tx_queue *tx_queue;
766 	unsigned int offset, index;
767 	int rc;
768 
769 	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
770 	BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
771 
772 	/* Link a buffer to each VI in the write-combining mapping */
773 	for (index = 0; index < nic_data->n_piobufs; ++index) {
774 		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
775 			       nic_data->piobuf_handle[index]);
776 		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
777 			       nic_data->pio_write_vi_base + index);
778 		rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
779 				  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
780 				  NULL, 0, NULL);
781 		if (rc) {
782 			netif_err(efx, drv, efx->net_dev,
783 				  "failed to link VI %u to PIO buffer %u (%d)\n",
784 				  nic_data->pio_write_vi_base + index, index,
785 				  rc);
786 			goto fail;
787 		}
788 		netif_dbg(efx, probe, efx->net_dev,
789 			  "linked VI %u to PIO buffer %u\n",
790 			  nic_data->pio_write_vi_base + index, index);
791 	}
792 
793 	/* Link a buffer to each TX queue */
794 	efx_for_each_channel(channel, efx) {
795 		/* Extra channels, even those with TXQs (PTP), do not require
796 		 * PIO resources.
797 		 */
798 		if (!channel->type->want_pio ||
799 		    channel->channel >= efx->xdp_channel_offset)
800 			continue;
801 
802 		efx_for_each_channel_tx_queue(tx_queue, channel) {
803 			/* We assign the PIO buffers to queues in
804 			 * reverse order to allow for the following
805 			 * special case.
806 			 */
807 			offset = ((efx->tx_channel_offset + efx->n_tx_channels -
808 				   tx_queue->channel->channel - 1) *
809 				  efx_piobuf_size);
810 			index = offset / nic_data->piobuf_size;
811 			offset = offset % nic_data->piobuf_size;
812 
813 			/* When the host page size is 4K, the first
814 			 * host page in the WC mapping may be within
815 			 * the same VI page as the last TX queue.  We
816 			 * can only link one buffer to each VI.
817 			 */
818 			if (tx_queue->queue == nic_data->pio_write_vi_base) {
819 				BUG_ON(index != 0);
820 				rc = 0;
821 			} else {
822 				MCDI_SET_DWORD(inbuf,
823 					       LINK_PIOBUF_IN_PIOBUF_HANDLE,
824 					       nic_data->piobuf_handle[index]);
825 				MCDI_SET_DWORD(inbuf,
826 					       LINK_PIOBUF_IN_TXQ_INSTANCE,
827 					       tx_queue->queue);
828 				rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
829 						  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
830 						  NULL, 0, NULL);
831 			}
832 
833 			if (rc) {
834 				/* This is non-fatal; the TX path just
835 				 * won't use PIO for this queue
836 				 */
837 				netif_err(efx, drv, efx->net_dev,
838 					  "failed to link VI %u to PIO buffer %u (%d)\n",
839 					  tx_queue->queue, index, rc);
840 				tx_queue->piobuf = NULL;
841 			} else {
842 				tx_queue->piobuf =
843 					nic_data->pio_write_base +
844 					index * efx->vi_stride + offset;
845 				tx_queue->piobuf_offset = offset;
846 				netif_dbg(efx, probe, efx->net_dev,
847 					  "linked VI %u to PIO buffer %u offset %x addr %p\n",
848 					  tx_queue->queue, index,
849 					  tx_queue->piobuf_offset,
850 					  tx_queue->piobuf);
851 			}
852 		}
853 	}
854 
855 	return 0;
856 
857 fail:
858 	/* inbuf was defined for MC_CMD_LINK_PIOBUF.  We can use the same
859 	 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
860 	 */
861 	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
862 	while (index--) {
863 		MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
864 			       nic_data->pio_write_vi_base + index);
865 		efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
866 			     inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
867 			     NULL, 0, NULL);
868 	}
869 	return rc;
870 }
871 
872 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
873 {
874 	struct efx_channel *channel;
875 	struct efx_tx_queue *tx_queue;
876 
877 	/* All our existing PIO buffers went away */
878 	efx_for_each_channel(channel, efx)
879 		efx_for_each_channel_tx_queue(tx_queue, channel)
880 			tx_queue->piobuf = NULL;
881 }
882 
883 #else /* !EFX_USE_PIO */
884 
885 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
886 {
887 	return n == 0 ? 0 : -ENOBUFS;
888 }
889 
890 static int efx_ef10_link_piobufs(struct efx_nic *efx)
891 {
892 	return 0;
893 }
894 
895 static void efx_ef10_free_piobufs(struct efx_nic *efx)
896 {
897 }
898 
899 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
900 {
901 }
902 
903 #endif /* EFX_USE_PIO */
904 
905 static void efx_ef10_remove(struct efx_nic *efx)
906 {
907 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
908 	int rc;
909 
910 #ifdef CONFIG_SFC_SRIOV
911 	struct efx_ef10_nic_data *nic_data_pf;
912 	struct pci_dev *pci_dev_pf;
913 	struct efx_nic *efx_pf;
914 	struct ef10_vf *vf;
915 
916 	if (efx->pci_dev->is_virtfn) {
917 		pci_dev_pf = efx->pci_dev->physfn;
918 		if (pci_dev_pf) {
919 			efx_pf = pci_get_drvdata(pci_dev_pf);
920 			nic_data_pf = efx_pf->nic_data;
921 			vf = nic_data_pf->vf + nic_data->vf_index;
922 			vf->efx = NULL;
923 		} else
924 			netif_info(efx, drv, efx->net_dev,
925 				   "Could not get the PF id from VF\n");
926 	}
927 #endif
928 
929 	efx_ef10_cleanup_vlans(efx);
930 	mutex_destroy(&nic_data->vlan_lock);
931 
932 	efx_ptp_remove(efx);
933 
934 	efx_mcdi_mon_remove(efx);
935 
936 	efx_mcdi_rx_free_indir_table(efx);
937 
938 	if (nic_data->wc_membase)
939 		iounmap(nic_data->wc_membase);
940 
941 	rc = efx_mcdi_free_vis(efx);
942 	WARN_ON(rc != 0);
943 
944 	if (!nic_data->must_restore_piobufs)
945 		efx_ef10_free_piobufs(efx);
946 
947 	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
948 	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
949 
950 	efx_mcdi_detach(efx);
951 
952 	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
953 	mutex_lock(&nic_data->udp_tunnels_lock);
954 	(void)efx_ef10_set_udp_tnl_ports(efx, true);
955 	mutex_unlock(&nic_data->udp_tunnels_lock);
956 
957 	mutex_destroy(&nic_data->udp_tunnels_lock);
958 
959 	efx_mcdi_fini(efx);
960 	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
961 	kfree(nic_data);
962 }
963 
964 static int efx_ef10_probe_pf(struct efx_nic *efx)
965 {
966 	return efx_ef10_probe(efx);
967 }
968 
969 int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
970 			    u32 *port_flags, u32 *vadaptor_flags,
971 			    unsigned int *vlan_tags)
972 {
973 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
974 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
975 	MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
976 	size_t outlen;
977 	int rc;
978 
979 	if (nic_data->datapath_caps &
980 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
981 		MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
982 			       port_id);
983 
984 		rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
985 				  outbuf, sizeof(outbuf), &outlen);
986 		if (rc)
987 			return rc;
988 
989 		if (outlen < sizeof(outbuf)) {
990 			rc = -EIO;
991 			return rc;
992 		}
993 	}
994 
995 	if (port_flags)
996 		*port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
997 	if (vadaptor_flags)
998 		*vadaptor_flags =
999 			MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1000 	if (vlan_tags)
1001 		*vlan_tags =
1002 			MCDI_DWORD(outbuf,
1003 				   VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1004 
1005 	return 0;
1006 }
1007 
1008 int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1009 {
1010 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1011 
1012 	MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1013 	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1014 			    NULL, 0, NULL);
1015 }
1016 
1017 int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1018 {
1019 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1020 
1021 	MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1022 	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1023 			    NULL, 0, NULL);
1024 }
1025 
1026 int efx_ef10_vport_add_mac(struct efx_nic *efx,
1027 			   unsigned int port_id, u8 *mac)
1028 {
1029 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1030 
1031 	MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1032 	ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1033 
1034 	return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1035 			    sizeof(inbuf), NULL, 0, NULL);
1036 }
1037 
1038 int efx_ef10_vport_del_mac(struct efx_nic *efx,
1039 			   unsigned int port_id, u8 *mac)
1040 {
1041 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1042 
1043 	MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1044 	ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1045 
1046 	return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1047 			    sizeof(inbuf), NULL, 0, NULL);
1048 }
1049 
1050 #ifdef CONFIG_SFC_SRIOV
1051 static int efx_ef10_probe_vf(struct efx_nic *efx)
1052 {
1053 	int rc;
1054 	struct pci_dev *pci_dev_pf;
1055 
1056 	/* If the parent PF has no VF data structure, it doesn't know about this
1057 	 * VF so fail probe.  The VF needs to be re-created.  This can happen
1058 	 * if the PF driver is unloaded while the VF is assigned to a guest.
1059 	 */
1060 	pci_dev_pf = efx->pci_dev->physfn;
1061 	if (pci_dev_pf) {
1062 		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1063 		struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1064 
1065 		if (!nic_data_pf->vf) {
1066 			netif_info(efx, drv, efx->net_dev,
1067 				   "The VF cannot link to its parent PF; "
1068 				   "please destroy and re-create the VF\n");
1069 			return -EBUSY;
1070 		}
1071 	}
1072 
1073 	rc = efx_ef10_probe(efx);
1074 	if (rc)
1075 		return rc;
1076 
1077 	rc = efx_ef10_get_vf_index(efx);
1078 	if (rc)
1079 		goto fail;
1080 
1081 	if (efx->pci_dev->is_virtfn) {
1082 		if (efx->pci_dev->physfn) {
1083 			struct efx_nic *efx_pf =
1084 				pci_get_drvdata(efx->pci_dev->physfn);
1085 			struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1086 			struct efx_ef10_nic_data *nic_data = efx->nic_data;
1087 
1088 			nic_data_p->vf[nic_data->vf_index].efx = efx;
1089 			nic_data_p->vf[nic_data->vf_index].pci_dev =
1090 				efx->pci_dev;
1091 		} else
1092 			netif_info(efx, drv, efx->net_dev,
1093 				   "Could not get the PF id from VF\n");
1094 	}
1095 
1096 	return 0;
1097 
1098 fail:
1099 	efx_ef10_remove(efx);
1100 	return rc;
1101 }
1102 #else
1103 static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1104 {
1105 	return 0;
1106 }
1107 #endif
1108 
1109 static int efx_ef10_alloc_vis(struct efx_nic *efx,
1110 			      unsigned int min_vis, unsigned int max_vis)
1111 {
1112 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1113 
1114 	return efx_mcdi_alloc_vis(efx, min_vis, max_vis, &nic_data->vi_base,
1115 				  &nic_data->n_allocated_vis);
1116 }
1117 
1118 /* Note that the failure path of this function does not free
1119  * resources, as this will be done by efx_ef10_remove().
1120  */
1121 static int efx_ef10_dimension_resources(struct efx_nic *efx)
1122 {
1123 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1124 	unsigned int uc_mem_map_size, wc_mem_map_size;
1125 	unsigned int min_vis = max(EFX_TXQ_TYPES,
1126 				   efx_separate_tx_channels ? 2 : 1);
1127 	unsigned int channel_vis, pio_write_vi_base, max_vis;
1128 	void __iomem *membase;
1129 	int rc;
1130 
1131 	channel_vis = max(efx->n_channels,
1132 			  ((efx->n_tx_channels + efx->n_extra_tx_channels) *
1133 			   EFX_TXQ_TYPES) +
1134 			   efx->n_xdp_channels * efx->xdp_tx_per_channel);
1135 	if (efx->max_vis && efx->max_vis < channel_vis) {
1136 		netif_dbg(efx, drv, efx->net_dev,
1137 			  "Reducing channel VIs from %u to %u\n",
1138 			  channel_vis, efx->max_vis);
1139 		channel_vis = efx->max_vis;
1140 	}
1141 
1142 #ifdef EFX_USE_PIO
1143 	/* Try to allocate PIO buffers if wanted and if the full
1144 	 * number of PIO buffers would be sufficient to allocate one
1145 	 * copy-buffer per TX channel.  Failure is non-fatal, as there
1146 	 * are only a small number of PIO buffers shared between all
1147 	 * functions of the controller.
1148 	 */
1149 	if (efx_piobuf_size != 0 &&
1150 	    nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1151 	    efx->n_tx_channels) {
1152 		unsigned int n_piobufs =
1153 			DIV_ROUND_UP(efx->n_tx_channels,
1154 				     nic_data->piobuf_size / efx_piobuf_size);
1155 
1156 		rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1157 		if (rc == -ENOSPC)
1158 			netif_dbg(efx, probe, efx->net_dev,
1159 				  "out of PIO buffers; cannot allocate more\n");
1160 		else if (rc == -EPERM)
1161 			netif_dbg(efx, probe, efx->net_dev,
1162 				  "not permitted to allocate PIO buffers\n");
1163 		else if (rc)
1164 			netif_err(efx, probe, efx->net_dev,
1165 				  "failed to allocate PIO buffers (%d)\n", rc);
1166 		else
1167 			netif_dbg(efx, probe, efx->net_dev,
1168 				  "allocated %u PIO buffers\n", n_piobufs);
1169 	}
1170 #else
1171 	nic_data->n_piobufs = 0;
1172 #endif
1173 
1174 	/* PIO buffers should be mapped with write-combining enabled,
1175 	 * and we want to make single UC and WC mappings rather than
1176 	 * several of each (in fact that's the only option if host
1177 	 * page size is >4K).  So we may allocate some extra VIs just
1178 	 * for writing PIO buffers through.
1179 	 *
1180 	 * The UC mapping contains (channel_vis - 1) complete VIs and the
1181 	 * first 4K of the next VI.  Then the WC mapping begins with
1182 	 * the remainder of this last VI.
1183 	 */
1184 	uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride +
1185 				     ER_DZ_TX_PIOBUF);
1186 	if (nic_data->n_piobufs) {
1187 		/* pio_write_vi_base rounds down to give the number of complete
1188 		 * VIs inside the UC mapping.
1189 		 */
1190 		pio_write_vi_base = uc_mem_map_size / efx->vi_stride;
1191 		wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1192 					       nic_data->n_piobufs) *
1193 					      efx->vi_stride) -
1194 				   uc_mem_map_size);
1195 		max_vis = pio_write_vi_base + nic_data->n_piobufs;
1196 	} else {
1197 		pio_write_vi_base = 0;
1198 		wc_mem_map_size = 0;
1199 		max_vis = channel_vis;
1200 	}
1201 
1202 	/* In case the last attached driver failed to free VIs, do it now */
1203 	rc = efx_mcdi_free_vis(efx);
1204 	if (rc != 0)
1205 		return rc;
1206 
1207 	rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1208 	if (rc != 0)
1209 		return rc;
1210 
1211 	if (nic_data->n_allocated_vis < channel_vis) {
1212 		netif_info(efx, drv, efx->net_dev,
1213 			   "Could not allocate enough VIs to satisfy RSS"
1214 			   " requirements. Performance may not be optimal.\n");
1215 		/* We didn't get the VIs to populate our channels.
1216 		 * We could keep what we got but then we'd have more
1217 		 * interrupts than we need.
1218 		 * Instead calculate new max_channels and restart
1219 		 */
1220 		efx->max_channels = nic_data->n_allocated_vis;
1221 		efx->max_tx_channels =
1222 			nic_data->n_allocated_vis / EFX_TXQ_TYPES;
1223 
1224 		efx_mcdi_free_vis(efx);
1225 		return -EAGAIN;
1226 	}
1227 
1228 	/* If we didn't get enough VIs to map all the PIO buffers, free the
1229 	 * PIO buffers
1230 	 */
1231 	if (nic_data->n_piobufs &&
1232 	    nic_data->n_allocated_vis <
1233 	    pio_write_vi_base + nic_data->n_piobufs) {
1234 		netif_dbg(efx, probe, efx->net_dev,
1235 			  "%u VIs are not sufficient to map %u PIO buffers\n",
1236 			  nic_data->n_allocated_vis, nic_data->n_piobufs);
1237 		efx_ef10_free_piobufs(efx);
1238 	}
1239 
1240 	/* Shrink the original UC mapping of the memory BAR */
1241 	membase = ioremap(efx->membase_phys, uc_mem_map_size);
1242 	if (!membase) {
1243 		netif_err(efx, probe, efx->net_dev,
1244 			  "could not shrink memory BAR to %x\n",
1245 			  uc_mem_map_size);
1246 		return -ENOMEM;
1247 	}
1248 	iounmap(efx->membase);
1249 	efx->membase = membase;
1250 
1251 	/* Set up the WC mapping if needed */
1252 	if (wc_mem_map_size) {
1253 		nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1254 						  uc_mem_map_size,
1255 						  wc_mem_map_size);
1256 		if (!nic_data->wc_membase) {
1257 			netif_err(efx, probe, efx->net_dev,
1258 				  "could not allocate WC mapping of size %x\n",
1259 				  wc_mem_map_size);
1260 			return -ENOMEM;
1261 		}
1262 		nic_data->pio_write_vi_base = pio_write_vi_base;
1263 		nic_data->pio_write_base =
1264 			nic_data->wc_membase +
1265 			(pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF -
1266 			 uc_mem_map_size);
1267 
1268 		rc = efx_ef10_link_piobufs(efx);
1269 		if (rc)
1270 			efx_ef10_free_piobufs(efx);
1271 	}
1272 
1273 	netif_dbg(efx, probe, efx->net_dev,
1274 		  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1275 		  &efx->membase_phys, efx->membase, uc_mem_map_size,
1276 		  nic_data->wc_membase, wc_mem_map_size);
1277 
1278 	return 0;
1279 }
1280 
1281 static void efx_ef10_fini_nic(struct efx_nic *efx)
1282 {
1283 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1284 
1285 	kfree(nic_data->mc_stats);
1286 	nic_data->mc_stats = NULL;
1287 }
1288 
1289 static int efx_ef10_init_nic(struct efx_nic *efx)
1290 {
1291 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1292 	int rc;
1293 
1294 	if (nic_data->must_check_datapath_caps) {
1295 		rc = efx_ef10_init_datapath_caps(efx);
1296 		if (rc)
1297 			return rc;
1298 		nic_data->must_check_datapath_caps = false;
1299 	}
1300 
1301 	if (efx->must_realloc_vis) {
1302 		/* We cannot let the number of VIs change now */
1303 		rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1304 					nic_data->n_allocated_vis);
1305 		if (rc)
1306 			return rc;
1307 		efx->must_realloc_vis = false;
1308 	}
1309 
1310 	nic_data->mc_stats = kmalloc(efx->num_mac_stats * sizeof(__le64),
1311 				     GFP_KERNEL);
1312 	if (!nic_data->mc_stats)
1313 		return -ENOMEM;
1314 
1315 	if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1316 		rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1317 		if (rc == 0) {
1318 			rc = efx_ef10_link_piobufs(efx);
1319 			if (rc)
1320 				efx_ef10_free_piobufs(efx);
1321 		}
1322 
1323 		/* Log an error on failure, but this is non-fatal.
1324 		 * Permission errors are less important - we've presumably
1325 		 * had the PIO buffer licence removed.
1326 		 */
1327 		if (rc == -EPERM)
1328 			netif_dbg(efx, drv, efx->net_dev,
1329 				  "not permitted to restore PIO buffers\n");
1330 		else if (rc)
1331 			netif_err(efx, drv, efx->net_dev,
1332 				  "failed to restore PIO buffers (%d)\n", rc);
1333 		nic_data->must_restore_piobufs = false;
1334 	}
1335 
1336 	/* don't fail init if RSS setup doesn't work */
1337 	rc = efx->type->rx_push_rss_config(efx, false,
1338 					   efx->rss_context.rx_indir_table, NULL);
1339 
1340 	return 0;
1341 }
1342 
1343 static void efx_ef10_table_reset_mc_allocations(struct efx_nic *efx)
1344 {
1345 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1346 #ifdef CONFIG_SFC_SRIOV
1347 	unsigned int i;
1348 #endif
1349 
1350 	/* All our allocations have been reset */
1351 	efx->must_realloc_vis = true;
1352 	efx_mcdi_filter_table_reset_mc_allocations(efx);
1353 	nic_data->must_restore_piobufs = true;
1354 	efx_ef10_forget_old_piobufs(efx);
1355 	efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
1356 
1357 	/* Driver-created vswitches and vports must be re-created */
1358 	nic_data->must_probe_vswitching = true;
1359 	efx->vport_id = EVB_PORT_ID_ASSIGNED;
1360 #ifdef CONFIG_SFC_SRIOV
1361 	if (nic_data->vf)
1362 		for (i = 0; i < efx->vf_count; i++)
1363 			nic_data->vf[i].vport_id = 0;
1364 #endif
1365 }
1366 
1367 static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1368 {
1369 	if (reason == RESET_TYPE_MC_FAILURE)
1370 		return RESET_TYPE_DATAPATH;
1371 
1372 	return efx_mcdi_map_reset_reason(reason);
1373 }
1374 
1375 static int efx_ef10_map_reset_flags(u32 *flags)
1376 {
1377 	enum {
1378 		EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1379 				   ETH_RESET_SHARED_SHIFT),
1380 		EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1381 				  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1382 				  ETH_RESET_PHY | ETH_RESET_MGMT) <<
1383 				 ETH_RESET_SHARED_SHIFT)
1384 	};
1385 
1386 	/* We assume for now that our PCI function is permitted to
1387 	 * reset everything.
1388 	 */
1389 
1390 	if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1391 		*flags &= ~EF10_RESET_MC;
1392 		return RESET_TYPE_WORLD;
1393 	}
1394 
1395 	if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1396 		*flags &= ~EF10_RESET_PORT;
1397 		return RESET_TYPE_ALL;
1398 	}
1399 
1400 	/* no invisible reset implemented */
1401 
1402 	return -EINVAL;
1403 }
1404 
1405 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1406 {
1407 	int rc = efx_mcdi_reset(efx, reset_type);
1408 
1409 	/* Unprivileged functions return -EPERM, but need to return success
1410 	 * here so that the datapath is brought back up.
1411 	 */
1412 	if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1413 		rc = 0;
1414 
1415 	/* If it was a port reset, trigger reallocation of MC resources.
1416 	 * Note that on an MC reset nothing needs to be done now because we'll
1417 	 * detect the MC reset later and handle it then.
1418 	 * For an FLR, we never get an MC reset event, but the MC has reset all
1419 	 * resources assigned to us, so we have to trigger reallocation now.
1420 	 */
1421 	if ((reset_type == RESET_TYPE_ALL ||
1422 	     reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1423 		efx_ef10_table_reset_mc_allocations(efx);
1424 	return rc;
1425 }
1426 
1427 #define EF10_DMA_STAT(ext_name, mcdi_name)			\
1428 	[EF10_STAT_ ## ext_name] =				\
1429 	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1430 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name)		\
1431 	[EF10_STAT_ ## int_name] =				\
1432 	{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1433 #define EF10_OTHER_STAT(ext_name)				\
1434 	[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1435 
1436 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1437 	EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1438 	EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1439 	EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1440 	EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1441 	EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1442 	EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1443 	EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1444 	EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1445 	EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1446 	EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1447 	EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1448 	EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1449 	EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1450 	EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1451 	EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1452 	EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1453 	EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1454 	EF10_OTHER_STAT(port_rx_good_bytes),
1455 	EF10_OTHER_STAT(port_rx_bad_bytes),
1456 	EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1457 	EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1458 	EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1459 	EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1460 	EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1461 	EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1462 	EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1463 	EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1464 	EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1465 	EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1466 	EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1467 	EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1468 	EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1469 	EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1470 	EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1471 	EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1472 	EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1473 	EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1474 	EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1475 	EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1476 	EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1477 	EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1478 	EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
1479 	EFX_GENERIC_SW_STAT(rx_noskb_drops),
1480 	EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1481 	EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1482 	EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1483 	EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1484 	EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1485 	EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1486 	EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1487 	EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1488 	EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1489 	EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1490 	EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1491 	EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1492 	EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1493 	EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1494 	EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1495 	EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1496 	EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1497 	EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1498 	EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1499 	EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1500 	EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1501 	EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1502 	EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1503 	EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1504 	EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1505 	EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1506 	EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1507 	EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1508 	EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1509 	EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1510 	EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS),
1511 	EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS),
1512 	EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0),
1513 	EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1),
1514 	EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2),
1515 	EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3),
1516 	EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK),
1517 	EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS),
1518 	EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL),
1519 	EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL),
1520 	EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL),
1521 	EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL),
1522 	EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL),
1523 	EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL),
1524 	EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL),
1525 	EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK),
1526 	EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK),
1527 	EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK),
1528 	EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS),
1529 	EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK),
1530 	EF10_DMA_STAT(ctpio_poison, CTPIO_POISON),
1531 	EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE),
1532 };
1533 
1534 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |	\
1535 			       (1ULL << EF10_STAT_port_tx_packets) |	\
1536 			       (1ULL << EF10_STAT_port_tx_pause) |	\
1537 			       (1ULL << EF10_STAT_port_tx_unicast) |	\
1538 			       (1ULL << EF10_STAT_port_tx_multicast) |	\
1539 			       (1ULL << EF10_STAT_port_tx_broadcast) |	\
1540 			       (1ULL << EF10_STAT_port_rx_bytes) |	\
1541 			       (1ULL <<                                 \
1542 				EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1543 			       (1ULL << EF10_STAT_port_rx_good_bytes) |	\
1544 			       (1ULL << EF10_STAT_port_rx_bad_bytes) |	\
1545 			       (1ULL << EF10_STAT_port_rx_packets) |	\
1546 			       (1ULL << EF10_STAT_port_rx_good) |	\
1547 			       (1ULL << EF10_STAT_port_rx_bad) |	\
1548 			       (1ULL << EF10_STAT_port_rx_pause) |	\
1549 			       (1ULL << EF10_STAT_port_rx_control) |	\
1550 			       (1ULL << EF10_STAT_port_rx_unicast) |	\
1551 			       (1ULL << EF10_STAT_port_rx_multicast) |	\
1552 			       (1ULL << EF10_STAT_port_rx_broadcast) |	\
1553 			       (1ULL << EF10_STAT_port_rx_lt64) |	\
1554 			       (1ULL << EF10_STAT_port_rx_64) |		\
1555 			       (1ULL << EF10_STAT_port_rx_65_to_127) |	\
1556 			       (1ULL << EF10_STAT_port_rx_128_to_255) |	\
1557 			       (1ULL << EF10_STAT_port_rx_256_to_511) |	\
1558 			       (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1559 			       (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1560 			       (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1561 			       (1ULL << EF10_STAT_port_rx_gtjumbo) |	\
1562 			       (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1563 			       (1ULL << EF10_STAT_port_rx_overflow) |	\
1564 			       (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1565 			       (1ULL << GENERIC_STAT_rx_nodesc_trunc) |	\
1566 			       (1ULL << GENERIC_STAT_rx_noskb_drops))
1567 
1568 /* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1569  * For a 10G/40G switchable port we do not expose these because they might
1570  * not include all the packets they should.
1571  * On 8000 series NICs these statistics are always provided.
1572  */
1573 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |	\
1574 				 (1ULL << EF10_STAT_port_tx_lt64) |	\
1575 				 (1ULL << EF10_STAT_port_tx_64) |	\
1576 				 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1577 				 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1578 				 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1579 				 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1580 				 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1581 				 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1582 
1583 /* These statistics are only provided by the 40G MAC.  For a 10G/40G
1584  * switchable port we do expose these because the errors will otherwise
1585  * be silent.
1586  */
1587 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1588 				  (1ULL << EF10_STAT_port_rx_length_error))
1589 
1590 /* These statistics are only provided if the firmware supports the
1591  * capability PM_AND_RXDP_COUNTERS.
1592  */
1593 #define HUNT_PM_AND_RXDP_STAT_MASK (					\
1594 	(1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |		\
1595 	(1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |		\
1596 	(1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |		\
1597 	(1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |		\
1598 	(1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |			\
1599 	(1ULL << EF10_STAT_port_rx_pm_discard_qbb) |			\
1600 	(1ULL << EF10_STAT_port_rx_pm_discard_mapping) |		\
1601 	(1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |		\
1602 	(1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |		\
1603 	(1ULL << EF10_STAT_port_rx_dp_streaming_packets) |		\
1604 	(1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |			\
1605 	(1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1606 
1607 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
1608  * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
1609  * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1610  * These bits are in the second u64 of the raw mask.
1611  */
1612 #define EF10_FEC_STAT_MASK (						\
1613 	(1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) |		\
1614 	(1ULL << (EF10_STAT_fec_corrected_errors - 64)) |		\
1615 	(1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) |	\
1616 	(1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) |	\
1617 	(1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) |	\
1618 	(1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
1619 
1620 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
1621  * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
1622  * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1623  * These bits are in the second u64 of the raw mask.
1624  */
1625 #define EF10_CTPIO_STAT_MASK (						\
1626 	(1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) |		\
1627 	(1ULL << (EF10_STAT_ctpio_long_write_success - 64)) |		\
1628 	(1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) |		\
1629 	(1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) |		\
1630 	(1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) |		\
1631 	(1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) |			\
1632 	(1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) |		\
1633 	(1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) |		\
1634 	(1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) |		\
1635 	(1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) |		\
1636 	(1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) |		\
1637 	(1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) |		\
1638 	(1ULL << (EF10_STAT_ctpio_success - 64)) |			\
1639 	(1ULL << (EF10_STAT_ctpio_fallback - 64)) |			\
1640 	(1ULL << (EF10_STAT_ctpio_poison - 64)) |			\
1641 	(1ULL << (EF10_STAT_ctpio_erase - 64)))
1642 
1643 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1644 {
1645 	u64 raw_mask = HUNT_COMMON_STAT_MASK;
1646 	u32 port_caps = efx_mcdi_phy_get_caps(efx);
1647 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1648 
1649 	if (!(efx->mcdi->fn_flags &
1650 	      1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1651 		return 0;
1652 
1653 	if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1654 		raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1655 		/* 8000 series have everything even at 40G */
1656 		if (nic_data->datapath_caps2 &
1657 		    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1658 			raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1659 	} else {
1660 		raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1661 	}
1662 
1663 	if (nic_data->datapath_caps &
1664 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1665 		raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1666 
1667 	return raw_mask;
1668 }
1669 
1670 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1671 {
1672 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1673 	u64 raw_mask[2];
1674 
1675 	raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1676 
1677 	/* Only show vadaptor stats when EVB capability is present */
1678 	if (nic_data->datapath_caps &
1679 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1680 		raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1681 		raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1;
1682 	} else {
1683 		raw_mask[1] = 0;
1684 	}
1685 	/* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
1686 	if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2)
1687 		raw_mask[1] |= EF10_FEC_STAT_MASK;
1688 
1689 	/* CTPIO stats appear in V3. Only show them on devices that actually
1690 	 * support CTPIO. Although this driver doesn't use CTPIO others might,
1691 	 * and we may be reporting the stats for the underlying port.
1692 	 */
1693 	if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 &&
1694 	    (nic_data->datapath_caps2 &
1695 	     (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN)))
1696 		raw_mask[1] |= EF10_CTPIO_STAT_MASK;
1697 
1698 #if BITS_PER_LONG == 64
1699 	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1700 	mask[0] = raw_mask[0];
1701 	mask[1] = raw_mask[1];
1702 #else
1703 	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1704 	mask[0] = raw_mask[0] & 0xffffffff;
1705 	mask[1] = raw_mask[0] >> 32;
1706 	mask[2] = raw_mask[1] & 0xffffffff;
1707 #endif
1708 }
1709 
1710 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1711 {
1712 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1713 
1714 	efx_ef10_get_stat_mask(efx, mask);
1715 	return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1716 				      mask, names);
1717 }
1718 
1719 static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1720 					   struct rtnl_link_stats64 *core_stats)
1721 {
1722 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1723 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1724 	u64 *stats = nic_data->stats;
1725 	size_t stats_count = 0, index;
1726 
1727 	efx_ef10_get_stat_mask(efx, mask);
1728 
1729 	if (full_stats) {
1730 		for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1731 			if (efx_ef10_stat_desc[index].name) {
1732 				*full_stats++ = stats[index];
1733 				++stats_count;
1734 			}
1735 		}
1736 	}
1737 
1738 	if (!core_stats)
1739 		return stats_count;
1740 
1741 	if (nic_data->datapath_caps &
1742 			1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1743 		/* Use vadaptor stats. */
1744 		core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1745 					 stats[EF10_STAT_rx_multicast] +
1746 					 stats[EF10_STAT_rx_broadcast];
1747 		core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1748 					 stats[EF10_STAT_tx_multicast] +
1749 					 stats[EF10_STAT_tx_broadcast];
1750 		core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1751 				       stats[EF10_STAT_rx_multicast_bytes] +
1752 				       stats[EF10_STAT_rx_broadcast_bytes];
1753 		core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1754 				       stats[EF10_STAT_tx_multicast_bytes] +
1755 				       stats[EF10_STAT_tx_broadcast_bytes];
1756 		core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1757 					 stats[GENERIC_STAT_rx_noskb_drops];
1758 		core_stats->multicast = stats[EF10_STAT_rx_multicast];
1759 		core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1760 		core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1761 		core_stats->rx_errors = core_stats->rx_crc_errors;
1762 		core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1763 	} else {
1764 		/* Use port stats. */
1765 		core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1766 		core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1767 		core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1768 		core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1769 		core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1770 					 stats[GENERIC_STAT_rx_nodesc_trunc] +
1771 					 stats[GENERIC_STAT_rx_noskb_drops];
1772 		core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1773 		core_stats->rx_length_errors =
1774 				stats[EF10_STAT_port_rx_gtjumbo] +
1775 				stats[EF10_STAT_port_rx_length_error];
1776 		core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1777 		core_stats->rx_frame_errors =
1778 				stats[EF10_STAT_port_rx_align_error];
1779 		core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1780 		core_stats->rx_errors = (core_stats->rx_length_errors +
1781 					 core_stats->rx_crc_errors +
1782 					 core_stats->rx_frame_errors);
1783 	}
1784 
1785 	return stats_count;
1786 }
1787 
1788 static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1789 				       struct rtnl_link_stats64 *core_stats)
1790 {
1791 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1792 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1793 	u64 *stats = nic_data->stats;
1794 
1795 	efx_ef10_get_stat_mask(efx, mask);
1796 
1797 	efx_nic_copy_stats(efx, nic_data->mc_stats);
1798 	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1799 			     mask, stats, nic_data->mc_stats, false);
1800 
1801 	/* Update derived statistics */
1802 	efx_nic_fix_nodesc_drop_stat(efx,
1803 				     &stats[EF10_STAT_port_rx_nodesc_drops]);
1804 	/* MC Firmware reads RX_BYTES and RX_GOOD_BYTES from the MAC.
1805 	 * It then calculates RX_BAD_BYTES and DMAs it to us with RX_BYTES.
1806 	 * We report these as port_rx_ stats. We are not given RX_GOOD_BYTES.
1807 	 * Here we calculate port_rx_good_bytes.
1808 	 */
1809 	stats[EF10_STAT_port_rx_good_bytes] =
1810 		stats[EF10_STAT_port_rx_bytes] -
1811 		stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1812 
1813 	/* The asynchronous reads used to calculate RX_BAD_BYTES in
1814 	 * MC Firmware are done such that we should not see an increase in
1815 	 * RX_BAD_BYTES when a good packet has arrived. Unfortunately this
1816 	 * does mean that the stat can decrease at times. Here we do not
1817 	 * update the stat unless it has increased or has gone to zero
1818 	 * (In the case of the NIC rebooting).
1819 	 * Please see Bug 33781 for a discussion of why things work this way.
1820 	 */
1821 	efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1822 			     stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1823 	efx_update_sw_stats(efx, stats);
1824 
1825 	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1826 }
1827 
1828 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1829 	__must_hold(&efx->stats_lock)
1830 {
1831 	MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1832 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1833 	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1834 	__le64 generation_start, generation_end;
1835 	u64 *stats = nic_data->stats;
1836 	u32 dma_len = efx->num_mac_stats * sizeof(u64);
1837 	struct efx_buffer stats_buf;
1838 	__le64 *dma_stats;
1839 	int rc;
1840 
1841 	spin_unlock_bh(&efx->stats_lock);
1842 
1843 	if (in_interrupt()) {
1844 		/* If in atomic context, cannot update stats.  Just update the
1845 		 * software stats and return so the caller can continue.
1846 		 */
1847 		spin_lock_bh(&efx->stats_lock);
1848 		efx_update_sw_stats(efx, stats);
1849 		return 0;
1850 	}
1851 
1852 	efx_ef10_get_stat_mask(efx, mask);
1853 
1854 	rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
1855 	if (rc) {
1856 		spin_lock_bh(&efx->stats_lock);
1857 		return rc;
1858 	}
1859 
1860 	dma_stats = stats_buf.addr;
1861 	dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID;
1862 
1863 	MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1864 	MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1865 			      MAC_STATS_IN_DMA, 1);
1866 	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1867 	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1868 
1869 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1870 				NULL, 0, NULL);
1871 	spin_lock_bh(&efx->stats_lock);
1872 	if (rc) {
1873 		/* Expect ENOENT if DMA queues have not been set up */
1874 		if (rc != -ENOENT || atomic_read(&efx->active_queues))
1875 			efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1876 					       sizeof(inbuf), NULL, 0, rc);
1877 		goto out;
1878 	}
1879 
1880 	generation_end = dma_stats[efx->num_mac_stats - 1];
1881 	if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1882 		WARN_ON_ONCE(1);
1883 		goto out;
1884 	}
1885 	rmb();
1886 	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1887 			     stats, stats_buf.addr, false);
1888 	rmb();
1889 	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1890 	if (generation_end != generation_start) {
1891 		rc = -EAGAIN;
1892 		goto out;
1893 	}
1894 
1895 	efx_update_sw_stats(efx, stats);
1896 out:
1897 	efx_nic_free_buffer(efx, &stats_buf);
1898 	return rc;
1899 }
1900 
1901 static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1902 				       struct rtnl_link_stats64 *core_stats)
1903 {
1904 	if (efx_ef10_try_update_nic_stats_vf(efx))
1905 		return 0;
1906 
1907 	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1908 }
1909 
1910 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1911 {
1912 	struct efx_nic *efx = channel->efx;
1913 	unsigned int mode, usecs;
1914 	efx_dword_t timer_cmd;
1915 
1916 	if (channel->irq_moderation_us) {
1917 		mode = 3;
1918 		usecs = channel->irq_moderation_us;
1919 	} else {
1920 		mode = 0;
1921 		usecs = 0;
1922 	}
1923 
1924 	if (EFX_EF10_WORKAROUND_61265(efx)) {
1925 		MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
1926 		unsigned int ns = usecs * 1000;
1927 
1928 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
1929 			       channel->channel);
1930 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
1931 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
1932 		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
1933 
1934 		efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
1935 				   inbuf, sizeof(inbuf), 0, NULL, 0);
1936 	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
1937 		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1938 
1939 		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1940 				     EFE_DD_EVQ_IND_TIMER_FLAGS,
1941 				     ERF_DD_EVQ_IND_TIMER_MODE, mode,
1942 				     ERF_DD_EVQ_IND_TIMER_VAL, ticks);
1943 		efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1944 				channel->channel);
1945 	} else {
1946 		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1947 
1948 		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1949 				     ERF_DZ_TC_TIMER_VAL, ticks,
1950 				     ERF_FZ_TC_TMR_REL_VAL, ticks);
1951 		efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1952 				channel->channel);
1953 	}
1954 }
1955 
1956 static void efx_ef10_get_wol_vf(struct efx_nic *efx,
1957 				struct ethtool_wolinfo *wol) {}
1958 
1959 static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
1960 {
1961 	return -EOPNOTSUPP;
1962 }
1963 
1964 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1965 {
1966 	wol->supported = 0;
1967 	wol->wolopts = 0;
1968 	memset(&wol->sopass, 0, sizeof(wol->sopass));
1969 }
1970 
1971 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1972 {
1973 	if (type != 0)
1974 		return -EINVAL;
1975 	return 0;
1976 }
1977 
1978 static void efx_ef10_mcdi_request(struct efx_nic *efx,
1979 				  const efx_dword_t *hdr, size_t hdr_len,
1980 				  const efx_dword_t *sdu, size_t sdu_len)
1981 {
1982 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1983 	u8 *pdu = nic_data->mcdi_buf.addr;
1984 
1985 	memcpy(pdu, hdr, hdr_len);
1986 	memcpy(pdu + hdr_len, sdu, sdu_len);
1987 	wmb();
1988 
1989 	/* The hardware provides 'low' and 'high' (doorbell) registers
1990 	 * for passing the 64-bit address of an MCDI request to
1991 	 * firmware.  However the dwords are swapped by firmware.  The
1992 	 * least significant bits of the doorbell are then 0 for all
1993 	 * MCDI requests due to alignment.
1994 	 */
1995 	_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
1996 		    ER_DZ_MC_DB_LWRD);
1997 	_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
1998 		    ER_DZ_MC_DB_HWRD);
1999 }
2000 
2001 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
2002 {
2003 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2004 	const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
2005 
2006 	rmb();
2007 	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2008 }
2009 
2010 static void
2011 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2012 			    size_t offset, size_t outlen)
2013 {
2014 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2015 	const u8 *pdu = nic_data->mcdi_buf.addr;
2016 
2017 	memcpy(outbuf, pdu + offset, outlen);
2018 }
2019 
2020 static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2021 {
2022 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2023 
2024 	/* All our allocations have been reset */
2025 	efx_ef10_table_reset_mc_allocations(efx);
2026 
2027 	/* The datapath firmware might have been changed */
2028 	nic_data->must_check_datapath_caps = true;
2029 
2030 	/* MAC statistics have been cleared on the NIC; clear the local
2031 	 * statistic that we update with efx_update_diff_stat().
2032 	 */
2033 	nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2034 }
2035 
2036 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2037 {
2038 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2039 	int rc;
2040 
2041 	rc = efx_ef10_get_warm_boot_count(efx);
2042 	if (rc < 0) {
2043 		/* The firmware is presumably in the process of
2044 		 * rebooting.  However, we are supposed to report each
2045 		 * reboot just once, so we must only do that once we
2046 		 * can read and store the updated warm boot count.
2047 		 */
2048 		return 0;
2049 	}
2050 
2051 	if (rc == nic_data->warm_boot_count)
2052 		return 0;
2053 
2054 	nic_data->warm_boot_count = rc;
2055 	efx_ef10_mcdi_reboot_detected(efx);
2056 
2057 	return -EIO;
2058 }
2059 
2060 /* Handle an MSI interrupt
2061  *
2062  * Handle an MSI hardware interrupt.  This routine schedules event
2063  * queue processing.  No interrupt acknowledgement cycle is necessary.
2064  * Also, we never need to check that the interrupt is for us, since
2065  * MSI interrupts cannot be shared.
2066  */
2067 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2068 {
2069 	struct efx_msi_context *context = dev_id;
2070 	struct efx_nic *efx = context->efx;
2071 
2072 	netif_vdbg(efx, intr, efx->net_dev,
2073 		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2074 
2075 	if (likely(READ_ONCE(efx->irq_soft_enabled))) {
2076 		/* Note test interrupts */
2077 		if (context->index == efx->irq_level)
2078 			efx->last_irq_cpu = raw_smp_processor_id();
2079 
2080 		/* Schedule processing of the channel */
2081 		efx_schedule_channel_irq(efx->channel[context->index]);
2082 	}
2083 
2084 	return IRQ_HANDLED;
2085 }
2086 
2087 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2088 {
2089 	struct efx_nic *efx = dev_id;
2090 	bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
2091 	struct efx_channel *channel;
2092 	efx_dword_t reg;
2093 	u32 queues;
2094 
2095 	/* Read the ISR which also ACKs the interrupts */
2096 	efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
2097 	queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2098 
2099 	if (queues == 0)
2100 		return IRQ_NONE;
2101 
2102 	if (likely(soft_enabled)) {
2103 		/* Note test interrupts */
2104 		if (queues & (1U << efx->irq_level))
2105 			efx->last_irq_cpu = raw_smp_processor_id();
2106 
2107 		efx_for_each_channel(channel, efx) {
2108 			if (queues & 1)
2109 				efx_schedule_channel_irq(channel);
2110 			queues >>= 1;
2111 		}
2112 	}
2113 
2114 	netif_vdbg(efx, intr, efx->net_dev,
2115 		   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2116 		   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2117 
2118 	return IRQ_HANDLED;
2119 }
2120 
2121 static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2122 {
2123 	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2124 
2125 	if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2126 				    NULL) == 0)
2127 		return -ENOTSUPP;
2128 
2129 	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2130 
2131 	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2132 	return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2133 			    inbuf, sizeof(inbuf), NULL, 0, NULL);
2134 }
2135 
2136 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2137 {
2138 	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
2139 				    (tx_queue->ptr_mask + 1) *
2140 				    sizeof(efx_qword_t),
2141 				    GFP_KERNEL);
2142 }
2143 
2144 /* This writes to the TX_DESC_WPTR and also pushes data */
2145 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2146 					 const efx_qword_t *txd)
2147 {
2148 	unsigned int write_ptr;
2149 	efx_oword_t reg;
2150 
2151 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2152 	EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2153 	reg.qword[0] = *txd;
2154 	efx_writeo_page(tx_queue->efx, &reg,
2155 			ER_DZ_TX_DESC_UPD, tx_queue->queue);
2156 }
2157 
2158 /* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2159  */
2160 static int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue,
2161 				struct sk_buff *skb,
2162 				bool *data_mapped)
2163 {
2164 	struct efx_tx_buffer *buffer;
2165 	struct tcphdr *tcp;
2166 	struct iphdr *ip;
2167 
2168 	u16 ipv4_id;
2169 	u32 seqnum;
2170 	u32 mss;
2171 
2172 	EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2173 
2174 	mss = skb_shinfo(skb)->gso_size;
2175 
2176 	if (unlikely(mss < 4)) {
2177 		WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2178 		return -EINVAL;
2179 	}
2180 
2181 	ip = ip_hdr(skb);
2182 	if (ip->version == 4) {
2183 		/* Modify IPv4 header if needed. */
2184 		ip->tot_len = 0;
2185 		ip->check = 0;
2186 		ipv4_id = ntohs(ip->id);
2187 	} else {
2188 		/* Modify IPv6 header if needed. */
2189 		struct ipv6hdr *ipv6 = ipv6_hdr(skb);
2190 
2191 		ipv6->payload_len = 0;
2192 		ipv4_id = 0;
2193 	}
2194 
2195 	tcp = tcp_hdr(skb);
2196 	seqnum = ntohl(tcp->seq);
2197 
2198 	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2199 
2200 	buffer->flags = EFX_TX_BUF_OPTION;
2201 	buffer->len = 0;
2202 	buffer->unmap_len = 0;
2203 	EFX_POPULATE_QWORD_5(buffer->option,
2204 			ESF_DZ_TX_DESC_IS_OPT, 1,
2205 			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2206 			ESF_DZ_TX_TSO_OPTION_TYPE,
2207 			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2208 			ESF_DZ_TX_TSO_IP_ID, ipv4_id,
2209 			ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2210 			);
2211 	++tx_queue->insert_count;
2212 
2213 	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2214 
2215 	buffer->flags = EFX_TX_BUF_OPTION;
2216 	buffer->len = 0;
2217 	buffer->unmap_len = 0;
2218 	EFX_POPULATE_QWORD_4(buffer->option,
2219 			ESF_DZ_TX_DESC_IS_OPT, 1,
2220 			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2221 			ESF_DZ_TX_TSO_OPTION_TYPE,
2222 			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
2223 			ESF_DZ_TX_TSO_TCP_MSS, mss
2224 			);
2225 	++tx_queue->insert_count;
2226 
2227 	return 0;
2228 }
2229 
2230 static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2231 {
2232 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2233 	u32 tso_versions = 0;
2234 
2235 	if (nic_data->datapath_caps &
2236 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2237 		tso_versions |= BIT(1);
2238 	if (nic_data->datapath_caps2 &
2239 	    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2240 		tso_versions |= BIT(2);
2241 	return tso_versions;
2242 }
2243 
2244 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2245 {
2246 	bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
2247 	struct efx_channel *channel = tx_queue->channel;
2248 	struct efx_nic *efx = tx_queue->efx;
2249 	struct efx_ef10_nic_data *nic_data;
2250 	bool tso_v2 = false;
2251 	efx_qword_t *txd;
2252 	int rc;
2253 
2254 	nic_data = efx->nic_data;
2255 
2256 	/* Only attempt to enable TX timestamping if we have the license for it,
2257 	 * otherwise TXQ init will fail
2258 	 */
2259 	if (!(nic_data->licensed_features &
2260 	      (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) {
2261 		tx_queue->timestamping = false;
2262 		/* Disable sync events on this channel. */
2263 		if (efx->type->ptp_set_ts_sync_events)
2264 			efx->type->ptp_set_ts_sync_events(efx, false, false);
2265 	}
2266 
2267 	/* TSOv2 is a limited resource that can only be configured on a limited
2268 	 * number of queues. TSO without checksum offload is not really a thing,
2269 	 * so we only enable it for those queues.
2270 	 * TSOv2 cannot be used with Hardware timestamping, and is never needed
2271 	 * for XDP tx.
2272 	 */
2273 	if (csum_offload && (nic_data->datapath_caps2 &
2274 			(1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN)) &&
2275 	    !tx_queue->timestamping && !tx_queue->xdp_tx) {
2276 		tso_v2 = true;
2277 		netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2278 				channel->channel);
2279 	}
2280 
2281 	rc = efx_mcdi_tx_init(tx_queue, tso_v2);
2282 	if (rc)
2283 		goto fail;
2284 
2285 	/* A previous user of this TX queue might have set us up the
2286 	 * bomb by writing a descriptor to the TX push collector but
2287 	 * not the doorbell.  (Each collector belongs to a port, not a
2288 	 * queue or function, so cannot easily be reset.)  We must
2289 	 * attempt to push a no-op descriptor in its place.
2290 	 */
2291 	tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2292 	tx_queue->insert_count = 1;
2293 	txd = efx_tx_desc(tx_queue, 0);
2294 	EFX_POPULATE_QWORD_5(*txd,
2295 			     ESF_DZ_TX_DESC_IS_OPT, true,
2296 			     ESF_DZ_TX_OPTION_TYPE,
2297 			     ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2298 			     ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2299 			     ESF_DZ_TX_OPTION_IP_CSUM, csum_offload,
2300 			     ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping);
2301 	tx_queue->write_count = 1;
2302 
2303 	if (tso_v2) {
2304 		tx_queue->handle_tso = efx_ef10_tx_tso_desc;
2305 		tx_queue->tso_version = 2;
2306 	} else if (nic_data->datapath_caps &
2307 			(1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
2308 		tx_queue->tso_version = 1;
2309 	}
2310 
2311 	wmb();
2312 	efx_ef10_push_tx_desc(tx_queue, txd);
2313 
2314 	return;
2315 
2316 fail:
2317 	netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2318 		    tx_queue->queue);
2319 }
2320 
2321 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2322 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2323 {
2324 	unsigned int write_ptr;
2325 	efx_dword_t reg;
2326 
2327 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2328 	EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2329 	efx_writed_page(tx_queue->efx, &reg,
2330 			ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2331 }
2332 
2333 #define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2334 
2335 static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2336 					  dma_addr_t dma_addr, unsigned int len)
2337 {
2338 	if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2339 		/* If we need to break across multiple descriptors we should
2340 		 * stop at a page boundary. This assumes the length limit is
2341 		 * greater than the page size.
2342 		 */
2343 		dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2344 
2345 		BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2346 		len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2347 	}
2348 
2349 	return len;
2350 }
2351 
2352 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2353 {
2354 	unsigned int old_write_count = tx_queue->write_count;
2355 	struct efx_tx_buffer *buffer;
2356 	unsigned int write_ptr;
2357 	efx_qword_t *txd;
2358 
2359 	tx_queue->xmit_more_available = false;
2360 	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2361 		return;
2362 
2363 	do {
2364 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2365 		buffer = &tx_queue->buffer[write_ptr];
2366 		txd = efx_tx_desc(tx_queue, write_ptr);
2367 		++tx_queue->write_count;
2368 
2369 		/* Create TX descriptor ring entry */
2370 		if (buffer->flags & EFX_TX_BUF_OPTION) {
2371 			*txd = buffer->option;
2372 			if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2373 				/* PIO descriptor */
2374 				tx_queue->packet_write_count = tx_queue->write_count;
2375 		} else {
2376 			tx_queue->packet_write_count = tx_queue->write_count;
2377 			BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2378 			EFX_POPULATE_QWORD_3(
2379 				*txd,
2380 				ESF_DZ_TX_KER_CONT,
2381 				buffer->flags & EFX_TX_BUF_CONT,
2382 				ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2383 				ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2384 		}
2385 	} while (tx_queue->write_count != tx_queue->insert_count);
2386 
2387 	wmb(); /* Ensure descriptors are written before they are fetched */
2388 
2389 	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2390 		txd = efx_tx_desc(tx_queue,
2391 				  old_write_count & tx_queue->ptr_mask);
2392 		efx_ef10_push_tx_desc(tx_queue, txd);
2393 		++tx_queue->pushes;
2394 	} else {
2395 		efx_ef10_notify_tx_desc(tx_queue);
2396 	}
2397 }
2398 
2399 static int efx_ef10_probe_multicast_chaining(struct efx_nic *efx)
2400 {
2401 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2402 	unsigned int enabled, implemented;
2403 	bool want_workaround_26807;
2404 	int rc;
2405 
2406 	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
2407 	if (rc == -ENOSYS) {
2408 		/* GET_WORKAROUNDS was implemented before this workaround,
2409 		 * thus it must be unavailable in this firmware.
2410 		 */
2411 		nic_data->workaround_26807 = false;
2412 		return 0;
2413 	}
2414 	if (rc)
2415 		return rc;
2416 	want_workaround_26807 =
2417 		implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807;
2418 	nic_data->workaround_26807 =
2419 		!!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
2420 
2421 	if (want_workaround_26807 && !nic_data->workaround_26807) {
2422 		unsigned int flags;
2423 
2424 		rc = efx_mcdi_set_workaround(efx,
2425 					     MC_CMD_WORKAROUND_BUG26807,
2426 					     true, &flags);
2427 		if (!rc) {
2428 			if (flags &
2429 			    1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
2430 				netif_info(efx, drv, efx->net_dev,
2431 					   "other functions on NIC have been reset\n");
2432 
2433 				/* With MCFW v4.6.x and earlier, the
2434 				 * boot count will have incremented,
2435 				 * so re-read the warm_boot_count
2436 				 * value now to ensure this function
2437 				 * doesn't think it has changed next
2438 				 * time it checks.
2439 				 */
2440 				rc = efx_ef10_get_warm_boot_count(efx);
2441 				if (rc >= 0) {
2442 					nic_data->warm_boot_count = rc;
2443 					rc = 0;
2444 				}
2445 			}
2446 			nic_data->workaround_26807 = true;
2447 		} else if (rc == -EPERM) {
2448 			rc = 0;
2449 		}
2450 	}
2451 	return rc;
2452 }
2453 
2454 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
2455 {
2456 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2457 	int rc = efx_ef10_probe_multicast_chaining(efx);
2458 	struct efx_mcdi_filter_vlan *vlan;
2459 
2460 	if (rc)
2461 		return rc;
2462 	rc = efx_mcdi_filter_table_probe(efx, nic_data->workaround_26807);
2463 
2464 	if (rc)
2465 		return rc;
2466 
2467 	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
2468 		rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
2469 		if (rc)
2470 			goto fail_add_vlan;
2471 	}
2472 	return 0;
2473 
2474 fail_add_vlan:
2475 	efx_mcdi_filter_table_remove(efx);
2476 	return rc;
2477 }
2478 
2479 /* This creates an entry in the RX descriptor queue */
2480 static inline void
2481 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2482 {
2483 	struct efx_rx_buffer *rx_buf;
2484 	efx_qword_t *rxd;
2485 
2486 	rxd = efx_rx_desc(rx_queue, index);
2487 	rx_buf = efx_rx_buffer(rx_queue, index);
2488 	EFX_POPULATE_QWORD_2(*rxd,
2489 			     ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2490 			     ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2491 }
2492 
2493 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2494 {
2495 	struct efx_nic *efx = rx_queue->efx;
2496 	unsigned int write_count;
2497 	efx_dword_t reg;
2498 
2499 	/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2500 	write_count = rx_queue->added_count & ~7;
2501 	if (rx_queue->notified_count == write_count)
2502 		return;
2503 
2504 	do
2505 		efx_ef10_build_rx_desc(
2506 			rx_queue,
2507 			rx_queue->notified_count & rx_queue->ptr_mask);
2508 	while (++rx_queue->notified_count != write_count);
2509 
2510 	wmb();
2511 	EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2512 			     write_count & rx_queue->ptr_mask);
2513 	efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
2514 			efx_rx_queue_index(rx_queue));
2515 }
2516 
2517 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2518 
2519 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2520 {
2521 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2522 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2523 	efx_qword_t event;
2524 
2525 	EFX_POPULATE_QWORD_2(event,
2526 			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2527 			     ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2528 
2529 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2530 
2531 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2532 	 * already swapped the data to little-endian order.
2533 	 */
2534 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2535 	       sizeof(efx_qword_t));
2536 
2537 	efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2538 			   inbuf, sizeof(inbuf), 0,
2539 			   efx_ef10_rx_defer_refill_complete, 0);
2540 }
2541 
2542 static void
2543 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2544 				  int rc, efx_dword_t *outbuf,
2545 				  size_t outlen_actual)
2546 {
2547 	/* nothing to do */
2548 }
2549 
2550 static int efx_ef10_ev_init(struct efx_channel *channel)
2551 {
2552 	struct efx_nic *efx = channel->efx;
2553 	struct efx_ef10_nic_data *nic_data;
2554 	bool use_v2, cut_thru;
2555 
2556 	nic_data = efx->nic_data;
2557 	use_v2 = nic_data->datapath_caps2 &
2558 			    1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN;
2559 	cut_thru = !(nic_data->datapath_caps &
2560 			      1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2561 	return efx_mcdi_ev_init(channel, cut_thru, use_v2);
2562 }
2563 
2564 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
2565 					   unsigned int rx_queue_label)
2566 {
2567 	struct efx_nic *efx = rx_queue->efx;
2568 
2569 	netif_info(efx, hw, efx->net_dev,
2570 		   "rx event arrived on queue %d labeled as queue %u\n",
2571 		   efx_rx_queue_index(rx_queue), rx_queue_label);
2572 
2573 	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2574 }
2575 
2576 static void
2577 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
2578 			     unsigned int actual, unsigned int expected)
2579 {
2580 	unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
2581 	struct efx_nic *efx = rx_queue->efx;
2582 
2583 	netif_info(efx, hw, efx->net_dev,
2584 		   "dropped %d events (index=%d expected=%d)\n",
2585 		   dropped, actual, expected);
2586 
2587 	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2588 }
2589 
2590 /* partially received RX was aborted. clean up. */
2591 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
2592 {
2593 	unsigned int rx_desc_ptr;
2594 
2595 	netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
2596 		  "scattered RX aborted (dropping %u buffers)\n",
2597 		  rx_queue->scatter_n);
2598 
2599 	rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
2600 
2601 	efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
2602 		      0, EFX_RX_PKT_DISCARD);
2603 
2604 	rx_queue->removed_count += rx_queue->scatter_n;
2605 	rx_queue->scatter_n = 0;
2606 	rx_queue->scatter_len = 0;
2607 	++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
2608 }
2609 
2610 static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
2611 					   unsigned int n_packets,
2612 					   unsigned int rx_encap_hdr,
2613 					   unsigned int rx_l3_class,
2614 					   unsigned int rx_l4_class,
2615 					   const efx_qword_t *event)
2616 {
2617 	struct efx_nic *efx = channel->efx;
2618 	bool handled = false;
2619 
2620 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
2621 		if (!(efx->net_dev->features & NETIF_F_RXALL)) {
2622 			if (!efx->loopback_selftest)
2623 				channel->n_rx_eth_crc_err += n_packets;
2624 			return EFX_RX_PKT_DISCARD;
2625 		}
2626 		handled = true;
2627 	}
2628 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
2629 		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2630 			     rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2631 			     rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2632 			     rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2633 			     rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2634 			netdev_WARN(efx->net_dev,
2635 				    "invalid class for RX_IPCKSUM_ERR: event="
2636 				    EFX_QWORD_FMT "\n",
2637 				    EFX_QWORD_VAL(*event));
2638 		if (!efx->loopback_selftest)
2639 			*(rx_encap_hdr ?
2640 			  &channel->n_rx_outer_ip_hdr_chksum_err :
2641 			  &channel->n_rx_ip_hdr_chksum_err) += n_packets;
2642 		return 0;
2643 	}
2644 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
2645 		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2646 			     ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2647 			       rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2648 			      (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2649 			       rx_l4_class != ESE_FZ_L4_CLASS_UDP))))
2650 			netdev_WARN(efx->net_dev,
2651 				    "invalid class for RX_TCPUDP_CKSUM_ERR: event="
2652 				    EFX_QWORD_FMT "\n",
2653 				    EFX_QWORD_VAL(*event));
2654 		if (!efx->loopback_selftest)
2655 			*(rx_encap_hdr ?
2656 			  &channel->n_rx_outer_tcp_udp_chksum_err :
2657 			  &channel->n_rx_tcp_udp_chksum_err) += n_packets;
2658 		return 0;
2659 	}
2660 	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
2661 		if (unlikely(!rx_encap_hdr))
2662 			netdev_WARN(efx->net_dev,
2663 				    "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
2664 				    EFX_QWORD_FMT "\n",
2665 				    EFX_QWORD_VAL(*event));
2666 		else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2667 				  rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2668 				  rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2669 				  rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2670 			netdev_WARN(efx->net_dev,
2671 				    "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
2672 				    EFX_QWORD_FMT "\n",
2673 				    EFX_QWORD_VAL(*event));
2674 		if (!efx->loopback_selftest)
2675 			channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
2676 		return 0;
2677 	}
2678 	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
2679 		if (unlikely(!rx_encap_hdr))
2680 			netdev_WARN(efx->net_dev,
2681 				    "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2682 				    EFX_QWORD_FMT "\n",
2683 				    EFX_QWORD_VAL(*event));
2684 		else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2685 				   rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2686 				  (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2687 				   rx_l4_class != ESE_FZ_L4_CLASS_UDP)))
2688 			netdev_WARN(efx->net_dev,
2689 				    "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2690 				    EFX_QWORD_FMT "\n",
2691 				    EFX_QWORD_VAL(*event));
2692 		if (!efx->loopback_selftest)
2693 			channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
2694 		return 0;
2695 	}
2696 
2697 	WARN_ON(!handled); /* No error bits were recognised */
2698 	return 0;
2699 }
2700 
2701 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
2702 				    const efx_qword_t *event)
2703 {
2704 	unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
2705 	unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
2706 	unsigned int n_descs, n_packets, i;
2707 	struct efx_nic *efx = channel->efx;
2708 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2709 	struct efx_rx_queue *rx_queue;
2710 	efx_qword_t errors;
2711 	bool rx_cont;
2712 	u16 flags = 0;
2713 
2714 	if (unlikely(READ_ONCE(efx->reset_pending)))
2715 		return 0;
2716 
2717 	/* Basic packet information */
2718 	rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
2719 	next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
2720 	rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
2721 	rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
2722 	rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS);
2723 	rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
2724 	rx_encap_hdr =
2725 		nic_data->datapath_caps &
2726 			(1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
2727 		EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
2728 		ESE_EZ_ENCAP_HDR_NONE;
2729 
2730 	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
2731 		netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
2732 			    EFX_QWORD_FMT "\n",
2733 			    EFX_QWORD_VAL(*event));
2734 
2735 	rx_queue = efx_channel_get_rx_queue(channel);
2736 
2737 	if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
2738 		efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
2739 
2740 	n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
2741 		   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2742 
2743 	if (n_descs != rx_queue->scatter_n + 1) {
2744 		struct efx_ef10_nic_data *nic_data = efx->nic_data;
2745 
2746 		/* detect rx abort */
2747 		if (unlikely(n_descs == rx_queue->scatter_n)) {
2748 			if (rx_queue->scatter_n == 0 || rx_bytes != 0)
2749 				netdev_WARN(efx->net_dev,
2750 					    "invalid RX abort: scatter_n=%u event="
2751 					    EFX_QWORD_FMT "\n",
2752 					    rx_queue->scatter_n,
2753 					    EFX_QWORD_VAL(*event));
2754 			efx_ef10_handle_rx_abort(rx_queue);
2755 			return 0;
2756 		}
2757 
2758 		/* Check that RX completion merging is valid, i.e.
2759 		 * the current firmware supports it and this is a
2760 		 * non-scattered packet.
2761 		 */
2762 		if (!(nic_data->datapath_caps &
2763 		      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
2764 		    rx_queue->scatter_n != 0 || rx_cont) {
2765 			efx_ef10_handle_rx_bad_lbits(
2766 				rx_queue, next_ptr_lbits,
2767 				(rx_queue->removed_count +
2768 				 rx_queue->scatter_n + 1) &
2769 				((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2770 			return 0;
2771 		}
2772 
2773 		/* Merged completion for multiple non-scattered packets */
2774 		rx_queue->scatter_n = 1;
2775 		rx_queue->scatter_len = 0;
2776 		n_packets = n_descs;
2777 		++channel->n_rx_merge_events;
2778 		channel->n_rx_merge_packets += n_packets;
2779 		flags |= EFX_RX_PKT_PREFIX_LEN;
2780 	} else {
2781 		++rx_queue->scatter_n;
2782 		rx_queue->scatter_len += rx_bytes;
2783 		if (rx_cont)
2784 			return 0;
2785 		n_packets = 1;
2786 	}
2787 
2788 	EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
2789 				     ESF_DZ_RX_IPCKSUM_ERR, 1,
2790 				     ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
2791 				     ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
2792 				     ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
2793 	EFX_AND_QWORD(errors, *event, errors);
2794 	if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
2795 		flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
2796 							 rx_encap_hdr,
2797 							 rx_l3_class, rx_l4_class,
2798 							 event);
2799 	} else {
2800 		bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP ||
2801 			      rx_l4_class == ESE_FZ_L4_CLASS_UDP;
2802 
2803 		switch (rx_encap_hdr) {
2804 		case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
2805 			flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
2806 			if (tcpudp)
2807 				flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
2808 			break;
2809 		case ESE_EZ_ENCAP_HDR_GRE:
2810 		case ESE_EZ_ENCAP_HDR_NONE:
2811 			if (tcpudp)
2812 				flags |= EFX_RX_PKT_CSUMMED;
2813 			break;
2814 		default:
2815 			netdev_WARN(efx->net_dev,
2816 				    "unknown encapsulation type: event="
2817 				    EFX_QWORD_FMT "\n",
2818 				    EFX_QWORD_VAL(*event));
2819 		}
2820 	}
2821 
2822 	if (rx_l4_class == ESE_FZ_L4_CLASS_TCP)
2823 		flags |= EFX_RX_PKT_TCP;
2824 
2825 	channel->irq_mod_score += 2 * n_packets;
2826 
2827 	/* Handle received packet(s) */
2828 	for (i = 0; i < n_packets; i++) {
2829 		efx_rx_packet(rx_queue,
2830 			      rx_queue->removed_count & rx_queue->ptr_mask,
2831 			      rx_queue->scatter_n, rx_queue->scatter_len,
2832 			      flags);
2833 		rx_queue->removed_count += rx_queue->scatter_n;
2834 	}
2835 
2836 	rx_queue->scatter_n = 0;
2837 	rx_queue->scatter_len = 0;
2838 
2839 	return n_packets;
2840 }
2841 
2842 static u32 efx_ef10_extract_event_ts(efx_qword_t *event)
2843 {
2844 	u32 tstamp;
2845 
2846 	tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI);
2847 	tstamp <<= 16;
2848 	tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO);
2849 
2850 	return tstamp;
2851 }
2852 
2853 static void
2854 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
2855 {
2856 	struct efx_nic *efx = channel->efx;
2857 	struct efx_tx_queue *tx_queue;
2858 	unsigned int tx_ev_desc_ptr;
2859 	unsigned int tx_ev_q_label;
2860 	unsigned int tx_ev_type;
2861 	u64 ts_part;
2862 
2863 	if (unlikely(READ_ONCE(efx->reset_pending)))
2864 		return;
2865 
2866 	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
2867 		return;
2868 
2869 	/* Get the transmit queue */
2870 	tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
2871 	tx_queue = efx_channel_get_tx_queue(channel,
2872 					    tx_ev_q_label % EFX_TXQ_TYPES);
2873 
2874 	if (!tx_queue->timestamping) {
2875 		/* Transmit completion */
2876 		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
2877 		efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
2878 		return;
2879 	}
2880 
2881 	/* Transmit timestamps are only available for 8XXX series. They result
2882 	 * in up to three events per packet. These occur in order, and are:
2883 	 *  - the normal completion event (may be omitted)
2884 	 *  - the low part of the timestamp
2885 	 *  - the high part of the timestamp
2886 	 *
2887 	 * It's possible for multiple completion events to appear before the
2888 	 * corresponding timestamps. So we can for example get:
2889 	 *  COMP N
2890 	 *  COMP N+1
2891 	 *  TS_LO N
2892 	 *  TS_HI N
2893 	 *  TS_LO N+1
2894 	 *  TS_HI N+1
2895 	 *
2896 	 * In addition it's also possible for the adjacent completions to be
2897 	 * merged, so we may not see COMP N above. As such, the completion
2898 	 * events are not very useful here.
2899 	 *
2900 	 * Each part of the timestamp is itself split across two 16 bit
2901 	 * fields in the event.
2902 	 */
2903 	tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1);
2904 
2905 	switch (tx_ev_type) {
2906 	case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION:
2907 		/* Ignore this event - see above. */
2908 		break;
2909 
2910 	case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO:
2911 		ts_part = efx_ef10_extract_event_ts(event);
2912 		tx_queue->completed_timestamp_minor = ts_part;
2913 		break;
2914 
2915 	case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI:
2916 		ts_part = efx_ef10_extract_event_ts(event);
2917 		tx_queue->completed_timestamp_major = ts_part;
2918 
2919 		efx_xmit_done_single(tx_queue);
2920 		break;
2921 
2922 	default:
2923 		netif_err(efx, hw, efx->net_dev,
2924 			  "channel %d unknown tx event type %d (data "
2925 			  EFX_QWORD_FMT ")\n",
2926 			  channel->channel, tx_ev_type,
2927 			  EFX_QWORD_VAL(*event));
2928 		break;
2929 	}
2930 }
2931 
2932 static void
2933 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
2934 {
2935 	struct efx_nic *efx = channel->efx;
2936 	int subcode;
2937 
2938 	subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
2939 
2940 	switch (subcode) {
2941 	case ESE_DZ_DRV_TIMER_EV:
2942 	case ESE_DZ_DRV_WAKE_UP_EV:
2943 		break;
2944 	case ESE_DZ_DRV_START_UP_EV:
2945 		/* event queue init complete. ok. */
2946 		break;
2947 	default:
2948 		netif_err(efx, hw, efx->net_dev,
2949 			  "channel %d unknown driver event type %d"
2950 			  " (data " EFX_QWORD_FMT ")\n",
2951 			  channel->channel, subcode,
2952 			  EFX_QWORD_VAL(*event));
2953 
2954 	}
2955 }
2956 
2957 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
2958 						   efx_qword_t *event)
2959 {
2960 	struct efx_nic *efx = channel->efx;
2961 	u32 subcode;
2962 
2963 	subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
2964 
2965 	switch (subcode) {
2966 	case EFX_EF10_TEST:
2967 		channel->event_test_cpu = raw_smp_processor_id();
2968 		break;
2969 	case EFX_EF10_REFILL:
2970 		/* The queue must be empty, so we won't receive any rx
2971 		 * events, so efx_process_channel() won't refill the
2972 		 * queue. Refill it here
2973 		 */
2974 		efx_fast_push_rx_descriptors(&channel->rx_queue, true);
2975 		break;
2976 	default:
2977 		netif_err(efx, hw, efx->net_dev,
2978 			  "channel %d unknown driver event type %u"
2979 			  " (data " EFX_QWORD_FMT ")\n",
2980 			  channel->channel, (unsigned) subcode,
2981 			  EFX_QWORD_VAL(*event));
2982 	}
2983 }
2984 
2985 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
2986 {
2987 	struct efx_nic *efx = channel->efx;
2988 	efx_qword_t event, *p_event;
2989 	unsigned int read_ptr;
2990 	int ev_code;
2991 	int spent = 0;
2992 
2993 	if (quota <= 0)
2994 		return spent;
2995 
2996 	read_ptr = channel->eventq_read_ptr;
2997 
2998 	for (;;) {
2999 		p_event = efx_event(channel, read_ptr);
3000 		event = *p_event;
3001 
3002 		if (!efx_event_present(&event))
3003 			break;
3004 
3005 		EFX_SET_QWORD(*p_event);
3006 
3007 		++read_ptr;
3008 
3009 		ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3010 
3011 		netif_vdbg(efx, drv, efx->net_dev,
3012 			   "processing event on %d " EFX_QWORD_FMT "\n",
3013 			   channel->channel, EFX_QWORD_VAL(event));
3014 
3015 		switch (ev_code) {
3016 		case ESE_DZ_EV_CODE_MCDI_EV:
3017 			efx_mcdi_process_event(channel, &event);
3018 			break;
3019 		case ESE_DZ_EV_CODE_RX_EV:
3020 			spent += efx_ef10_handle_rx_event(channel, &event);
3021 			if (spent >= quota) {
3022 				/* XXX can we split a merged event to
3023 				 * avoid going over-quota?
3024 				 */
3025 				spent = quota;
3026 				goto out;
3027 			}
3028 			break;
3029 		case ESE_DZ_EV_CODE_TX_EV:
3030 			efx_ef10_handle_tx_event(channel, &event);
3031 			break;
3032 		case ESE_DZ_EV_CODE_DRIVER_EV:
3033 			efx_ef10_handle_driver_event(channel, &event);
3034 			if (++spent == quota)
3035 				goto out;
3036 			break;
3037 		case EFX_EF10_DRVGEN_EV:
3038 			efx_ef10_handle_driver_generated_event(channel, &event);
3039 			break;
3040 		default:
3041 			netif_err(efx, hw, efx->net_dev,
3042 				  "channel %d unknown event type %d"
3043 				  " (data " EFX_QWORD_FMT ")\n",
3044 				  channel->channel, ev_code,
3045 				  EFX_QWORD_VAL(event));
3046 		}
3047 	}
3048 
3049 out:
3050 	channel->eventq_read_ptr = read_ptr;
3051 	return spent;
3052 }
3053 
3054 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3055 {
3056 	struct efx_nic *efx = channel->efx;
3057 	efx_dword_t rptr;
3058 
3059 	if (EFX_EF10_WORKAROUND_35388(efx)) {
3060 		BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3061 			     (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3062 		BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3063 			     (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3064 
3065 		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3066 				     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3067 				     ERF_DD_EVQ_IND_RPTR,
3068 				     (channel->eventq_read_ptr &
3069 				      channel->eventq_mask) >>
3070 				     ERF_DD_EVQ_IND_RPTR_WIDTH);
3071 		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3072 				channel->channel);
3073 		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3074 				     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3075 				     ERF_DD_EVQ_IND_RPTR,
3076 				     channel->eventq_read_ptr &
3077 				     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3078 		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3079 				channel->channel);
3080 	} else {
3081 		EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3082 				     channel->eventq_read_ptr &
3083 				     channel->eventq_mask);
3084 		efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3085 	}
3086 }
3087 
3088 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3089 {
3090 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3091 	struct efx_nic *efx = channel->efx;
3092 	efx_qword_t event;
3093 	int rc;
3094 
3095 	EFX_POPULATE_QWORD_2(event,
3096 			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3097 			     ESF_DZ_EV_DATA, EFX_EF10_TEST);
3098 
3099 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3100 
3101 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3102 	 * already swapped the data to little-endian order.
3103 	 */
3104 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3105 	       sizeof(efx_qword_t));
3106 
3107 	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3108 			  NULL, 0, NULL);
3109 	if (rc != 0)
3110 		goto fail;
3111 
3112 	return;
3113 
3114 fail:
3115 	WARN_ON(true);
3116 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3117 }
3118 
3119 static int efx_ef10_fini_dmaq(struct efx_nic *efx)
3120 {
3121 	struct efx_tx_queue *tx_queue;
3122 	struct efx_rx_queue *rx_queue;
3123 	struct efx_channel *channel;
3124 	int pending;
3125 
3126 	/* If the MC has just rebooted, the TX/RX queues will have already been
3127 	 * torn down, but efx->active_queues needs to be set to zero.
3128 	 */
3129 	if (efx->must_realloc_vis) {
3130 		atomic_set(&efx->active_queues, 0);
3131 		return 0;
3132 	}
3133 
3134 	/* Do not attempt to write to the NIC during EEH recovery */
3135 	if (efx->state != STATE_RECOVERY) {
3136 		efx_for_each_channel(channel, efx) {
3137 			efx_for_each_channel_rx_queue(rx_queue, channel)
3138 				efx_mcdi_rx_fini(rx_queue);
3139 			efx_for_each_channel_tx_queue(tx_queue, channel)
3140 				efx_mcdi_tx_fini(tx_queue);
3141 		}
3142 
3143 		wait_event_timeout(efx->flush_wq,
3144 				   atomic_read(&efx->active_queues) == 0,
3145 				   msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
3146 		pending = atomic_read(&efx->active_queues);
3147 		if (pending) {
3148 			netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
3149 				  pending);
3150 			return -ETIMEDOUT;
3151 		}
3152 	}
3153 
3154 	return 0;
3155 }
3156 
3157 static void efx_ef10_prepare_flr(struct efx_nic *efx)
3158 {
3159 	atomic_set(&efx->active_queues, 0);
3160 }
3161 
3162 static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
3163 {
3164 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3165 	u8 mac_old[ETH_ALEN];
3166 	int rc, rc2;
3167 
3168 	/* Only reconfigure a PF-created vport */
3169 	if (is_zero_ether_addr(nic_data->vport_mac))
3170 		return 0;
3171 
3172 	efx_device_detach_sync(efx);
3173 	efx_net_stop(efx->net_dev);
3174 	down_write(&efx->filter_sem);
3175 	efx_mcdi_filter_table_remove(efx);
3176 	up_write(&efx->filter_sem);
3177 
3178 	rc = efx_ef10_vadaptor_free(efx, efx->vport_id);
3179 	if (rc)
3180 		goto restore_filters;
3181 
3182 	ether_addr_copy(mac_old, nic_data->vport_mac);
3183 	rc = efx_ef10_vport_del_mac(efx, efx->vport_id,
3184 				    nic_data->vport_mac);
3185 	if (rc)
3186 		goto restore_vadaptor;
3187 
3188 	rc = efx_ef10_vport_add_mac(efx, efx->vport_id,
3189 				    efx->net_dev->dev_addr);
3190 	if (!rc) {
3191 		ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
3192 	} else {
3193 		rc2 = efx_ef10_vport_add_mac(efx, efx->vport_id, mac_old);
3194 		if (rc2) {
3195 			/* Failed to add original MAC, so clear vport_mac */
3196 			eth_zero_addr(nic_data->vport_mac);
3197 			goto reset_nic;
3198 		}
3199 	}
3200 
3201 restore_vadaptor:
3202 	rc2 = efx_ef10_vadaptor_alloc(efx, efx->vport_id);
3203 	if (rc2)
3204 		goto reset_nic;
3205 restore_filters:
3206 	down_write(&efx->filter_sem);
3207 	rc2 = efx_ef10_filter_table_probe(efx);
3208 	up_write(&efx->filter_sem);
3209 	if (rc2)
3210 		goto reset_nic;
3211 
3212 	rc2 = efx_net_open(efx->net_dev);
3213 	if (rc2)
3214 		goto reset_nic;
3215 
3216 	efx_device_attach_if_not_resetting(efx);
3217 
3218 	return rc;
3219 
3220 reset_nic:
3221 	netif_err(efx, drv, efx->net_dev,
3222 		  "Failed to restore when changing MAC address - scheduling reset\n");
3223 	efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
3224 
3225 	return rc ? rc : rc2;
3226 }
3227 
3228 static int efx_ef10_set_mac_address(struct efx_nic *efx)
3229 {
3230 	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
3231 	bool was_enabled = efx->port_enabled;
3232 	int rc;
3233 
3234 	efx_device_detach_sync(efx);
3235 	efx_net_stop(efx->net_dev);
3236 
3237 	mutex_lock(&efx->mac_lock);
3238 	down_write(&efx->filter_sem);
3239 	efx_mcdi_filter_table_remove(efx);
3240 
3241 	ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
3242 			efx->net_dev->dev_addr);
3243 	MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
3244 		       efx->vport_id);
3245 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
3246 				sizeof(inbuf), NULL, 0, NULL);
3247 
3248 	efx_ef10_filter_table_probe(efx);
3249 	up_write(&efx->filter_sem);
3250 	mutex_unlock(&efx->mac_lock);
3251 
3252 	if (was_enabled)
3253 		efx_net_open(efx->net_dev);
3254 	efx_device_attach_if_not_resetting(efx);
3255 
3256 #ifdef CONFIG_SFC_SRIOV
3257 	if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
3258 		struct efx_ef10_nic_data *nic_data = efx->nic_data;
3259 		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
3260 
3261 		if (rc == -EPERM) {
3262 			struct efx_nic *efx_pf;
3263 
3264 			/* Switch to PF and change MAC address on vport */
3265 			efx_pf = pci_get_drvdata(pci_dev_pf);
3266 
3267 			rc = efx_ef10_sriov_set_vf_mac(efx_pf,
3268 						       nic_data->vf_index,
3269 						       efx->net_dev->dev_addr);
3270 		} else if (!rc) {
3271 			struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
3272 			struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
3273 			unsigned int i;
3274 
3275 			/* MAC address successfully changed by VF (with MAC
3276 			 * spoofing) so update the parent PF if possible.
3277 			 */
3278 			for (i = 0; i < efx_pf->vf_count; ++i) {
3279 				struct ef10_vf *vf = nic_data->vf + i;
3280 
3281 				if (vf->efx == efx) {
3282 					ether_addr_copy(vf->mac,
3283 							efx->net_dev->dev_addr);
3284 					return 0;
3285 				}
3286 			}
3287 		}
3288 	} else
3289 #endif
3290 	if (rc == -EPERM) {
3291 		netif_err(efx, drv, efx->net_dev,
3292 			  "Cannot change MAC address; use sfboot to enable"
3293 			  " mac-spoofing on this interface\n");
3294 	} else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
3295 		/* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
3296 		 * fall-back to the method of changing the MAC address on the
3297 		 * vport.  This only applies to PFs because such versions of
3298 		 * MCFW do not support VFs.
3299 		 */
3300 		rc = efx_ef10_vport_set_mac_address(efx);
3301 	} else if (rc) {
3302 		efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
3303 				       sizeof(inbuf), NULL, 0, rc);
3304 	}
3305 
3306 	return rc;
3307 }
3308 
3309 static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
3310 {
3311 	efx_mcdi_filter_sync_rx_mode(efx);
3312 
3313 	return efx_mcdi_set_mac(efx);
3314 }
3315 
3316 static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
3317 {
3318 	efx_mcdi_filter_sync_rx_mode(efx);
3319 
3320 	return 0;
3321 }
3322 
3323 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
3324 {
3325 	MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
3326 
3327 	MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
3328 	return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
3329 			    NULL, 0, NULL);
3330 }
3331 
3332 /* MC BISTs follow a different poll mechanism to phy BISTs.
3333  * The BIST is done in the poll handler on the MC, and the MCDI command
3334  * will block until the BIST is done.
3335  */
3336 static int efx_ef10_poll_bist(struct efx_nic *efx)
3337 {
3338 	int rc;
3339 	MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
3340 	size_t outlen;
3341 	u32 result;
3342 
3343 	rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
3344 			   outbuf, sizeof(outbuf), &outlen);
3345 	if (rc != 0)
3346 		return rc;
3347 
3348 	if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
3349 		return -EIO;
3350 
3351 	result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
3352 	switch (result) {
3353 	case MC_CMD_POLL_BIST_PASSED:
3354 		netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
3355 		return 0;
3356 	case MC_CMD_POLL_BIST_TIMEOUT:
3357 		netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
3358 		return -EIO;
3359 	case MC_CMD_POLL_BIST_FAILED:
3360 		netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
3361 		return -EIO;
3362 	default:
3363 		netif_err(efx, hw, efx->net_dev,
3364 			  "BIST returned unknown result %u", result);
3365 		return -EIO;
3366 	}
3367 }
3368 
3369 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
3370 {
3371 	int rc;
3372 
3373 	netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
3374 
3375 	rc = efx_ef10_start_bist(efx, bist_type);
3376 	if (rc != 0)
3377 		return rc;
3378 
3379 	return efx_ef10_poll_bist(efx);
3380 }
3381 
3382 static int
3383 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
3384 {
3385 	int rc, rc2;
3386 
3387 	efx_reset_down(efx, RESET_TYPE_WORLD);
3388 
3389 	rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
3390 			  NULL, 0, NULL, 0, NULL);
3391 	if (rc != 0)
3392 		goto out;
3393 
3394 	tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
3395 	tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
3396 
3397 	rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
3398 
3399 out:
3400 	if (rc == -EPERM)
3401 		rc = 0;
3402 	rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
3403 	return rc ? rc : rc2;
3404 }
3405 
3406 #ifdef CONFIG_SFC_MTD
3407 
3408 struct efx_ef10_nvram_type_info {
3409 	u16 type, type_mask;
3410 	u8 port;
3411 	const char *name;
3412 };
3413 
3414 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3415 	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE,	   0,    0, "sfc_mcfw" },
3416 	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
3417 	{ NVRAM_PARTITION_TYPE_EXPANSION_ROM,	   0,    0, "sfc_exp_rom" },
3418 	{ NVRAM_PARTITION_TYPE_STATIC_CONFIG,	   0,    0, "sfc_static_cfg" },
3419 	{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,	   0,    0, "sfc_dynamic_cfg" },
3420 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
3421 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
3422 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
3423 	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
3424 	{ NVRAM_PARTITION_TYPE_LICENSE,		   0,    0, "sfc_license" },
3425 	{ NVRAM_PARTITION_TYPE_PHY_MIN,		   0xff, 0, "sfc_phy_fw" },
3426 	{ NVRAM_PARTITION_TYPE_MUM_FIRMWARE,	   0,    0, "sfc_mumfw" },
3427 	{ NVRAM_PARTITION_TYPE_EXPANSION_UEFI,	   0,    0, "sfc_uefi" },
3428 	{ NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS, 0,    0, "sfc_dynamic_cfg_dflt" },
3429 	{ NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS, 0,    0, "sfc_exp_rom_cfg_dflt" },
3430 	{ NVRAM_PARTITION_TYPE_STATUS,		   0,    0, "sfc_status" },
3431 	{ NVRAM_PARTITION_TYPE_BUNDLE,		   0,    0, "sfc_bundle" },
3432 	{ NVRAM_PARTITION_TYPE_BUNDLE_METADATA,	   0,    0, "sfc_bundle_metadata" },
3433 };
3434 #define EF10_NVRAM_PARTITION_COUNT	ARRAY_SIZE(efx_ef10_nvram_types)
3435 
3436 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3437 					struct efx_mcdi_mtd_partition *part,
3438 					unsigned int type,
3439 					unsigned long *found)
3440 {
3441 	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3442 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3443 	const struct efx_ef10_nvram_type_info *info;
3444 	size_t size, erase_size, outlen;
3445 	int type_idx = 0;
3446 	bool protected;
3447 	int rc;
3448 
3449 	for (type_idx = 0; ; type_idx++) {
3450 		if (type_idx == EF10_NVRAM_PARTITION_COUNT)
3451 			return -ENODEV;
3452 		info = efx_ef10_nvram_types + type_idx;
3453 		if ((type & ~info->type_mask) == info->type)
3454 			break;
3455 	}
3456 	if (info->port != efx_port_num(efx))
3457 		return -ENODEV;
3458 
3459 	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3460 	if (rc)
3461 		return rc;
3462 	if (protected &&
3463 	    (type != NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS &&
3464 	     type != NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS))
3465 		/* Hide protected partitions that don't provide defaults. */
3466 		return -ENODEV;
3467 
3468 	if (protected)
3469 		/* Protected partitions are read only. */
3470 		erase_size = 0;
3471 
3472 	/* If we've already exposed a partition of this type, hide this
3473 	 * duplicate.  All operations on MTDs are keyed by the type anyway,
3474 	 * so we can't act on the duplicate.
3475 	 */
3476 	if (__test_and_set_bit(type_idx, found))
3477 		return -EEXIST;
3478 
3479 	part->nvram_type = type;
3480 
3481 	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3482 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3483 			  outbuf, sizeof(outbuf), &outlen);
3484 	if (rc)
3485 		return rc;
3486 	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3487 		return -EIO;
3488 	if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3489 	    (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3490 		part->fw_subtype = MCDI_DWORD(outbuf,
3491 					      NVRAM_METADATA_OUT_SUBTYPE);
3492 
3493 	part->common.dev_type_name = "EF10 NVRAM manager";
3494 	part->common.type_name = info->name;
3495 
3496 	part->common.mtd.type = MTD_NORFLASH;
3497 	part->common.mtd.flags = MTD_CAP_NORFLASH;
3498 	part->common.mtd.size = size;
3499 	part->common.mtd.erasesize = erase_size;
3500 	/* sfc_status is read-only */
3501 	if (!erase_size)
3502 		part->common.mtd.flags |= MTD_NO_ERASE;
3503 
3504 	return 0;
3505 }
3506 
3507 static int efx_ef10_mtd_probe(struct efx_nic *efx)
3508 {
3509 	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3510 	DECLARE_BITMAP(found, EF10_NVRAM_PARTITION_COUNT) = { 0 };
3511 	struct efx_mcdi_mtd_partition *parts;
3512 	size_t outlen, n_parts_total, i, n_parts;
3513 	unsigned int type;
3514 	int rc;
3515 
3516 	ASSERT_RTNL();
3517 
3518 	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3519 	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3520 			  outbuf, sizeof(outbuf), &outlen);
3521 	if (rc)
3522 		return rc;
3523 	if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3524 		return -EIO;
3525 
3526 	n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3527 	if (n_parts_total >
3528 	    MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3529 		return -EIO;
3530 
3531 	parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3532 	if (!parts)
3533 		return -ENOMEM;
3534 
3535 	n_parts = 0;
3536 	for (i = 0; i < n_parts_total; i++) {
3537 		type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3538 					i);
3539 		rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type,
3540 						  found);
3541 		if (rc == -EEXIST || rc == -ENODEV)
3542 			continue;
3543 		if (rc)
3544 			goto fail;
3545 		n_parts++;
3546 	}
3547 
3548 	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3549 fail:
3550 	if (rc)
3551 		kfree(parts);
3552 	return rc;
3553 }
3554 
3555 #endif /* CONFIG_SFC_MTD */
3556 
3557 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3558 {
3559 	_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3560 }
3561 
3562 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
3563 					    u32 host_time) {}
3564 
3565 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
3566 					   bool temp)
3567 {
3568 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
3569 	int rc;
3570 
3571 	if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
3572 	    channel->sync_events_state == SYNC_EVENTS_VALID ||
3573 	    (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
3574 		return 0;
3575 	channel->sync_events_state = SYNC_EVENTS_REQUESTED;
3576 
3577 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
3578 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3579 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
3580 		       channel->channel);
3581 
3582 	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3583 			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3584 
3585 	if (rc != 0)
3586 		channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3587 						    SYNC_EVENTS_DISABLED;
3588 
3589 	return rc;
3590 }
3591 
3592 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
3593 					    bool temp)
3594 {
3595 	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
3596 	int rc;
3597 
3598 	if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
3599 	    (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
3600 		return 0;
3601 	if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
3602 		channel->sync_events_state = SYNC_EVENTS_DISABLED;
3603 		return 0;
3604 	}
3605 	channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3606 					    SYNC_EVENTS_DISABLED;
3607 
3608 	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
3609 	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3610 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
3611 		       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
3612 	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
3613 		       channel->channel);
3614 
3615 	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3616 			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3617 
3618 	return rc;
3619 }
3620 
3621 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
3622 					   bool temp)
3623 {
3624 	int (*set)(struct efx_channel *channel, bool temp);
3625 	struct efx_channel *channel;
3626 
3627 	set = en ?
3628 	      efx_ef10_rx_enable_timestamping :
3629 	      efx_ef10_rx_disable_timestamping;
3630 
3631 	channel = efx_ptp_channel(efx);
3632 	if (channel) {
3633 		int rc = set(channel, temp);
3634 		if (en && rc != 0) {
3635 			efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
3636 			return rc;
3637 		}
3638 	}
3639 
3640 	return 0;
3641 }
3642 
3643 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
3644 					 struct hwtstamp_config *init)
3645 {
3646 	return -EOPNOTSUPP;
3647 }
3648 
3649 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
3650 				      struct hwtstamp_config *init)
3651 {
3652 	int rc;
3653 
3654 	switch (init->rx_filter) {
3655 	case HWTSTAMP_FILTER_NONE:
3656 		efx_ef10_ptp_set_ts_sync_events(efx, false, false);
3657 		/* if TX timestamping is still requested then leave PTP on */
3658 		return efx_ptp_change_mode(efx,
3659 					   init->tx_type != HWTSTAMP_TX_OFF, 0);
3660 	case HWTSTAMP_FILTER_ALL:
3661 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3662 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3663 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3664 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3665 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3666 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3667 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3668 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3669 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3670 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3671 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3672 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3673 	case HWTSTAMP_FILTER_NTP_ALL:
3674 		init->rx_filter = HWTSTAMP_FILTER_ALL;
3675 		rc = efx_ptp_change_mode(efx, true, 0);
3676 		if (!rc)
3677 			rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
3678 		if (rc)
3679 			efx_ptp_change_mode(efx, false, 0);
3680 		return rc;
3681 	default:
3682 		return -ERANGE;
3683 	}
3684 }
3685 
3686 static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
3687 				     struct netdev_phys_item_id *ppid)
3688 {
3689 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3690 
3691 	if (!is_valid_ether_addr(nic_data->port_id))
3692 		return -EOPNOTSUPP;
3693 
3694 	ppid->id_len = ETH_ALEN;
3695 	memcpy(ppid->id, nic_data->port_id, ppid->id_len);
3696 
3697 	return 0;
3698 }
3699 
3700 static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3701 {
3702 	if (proto != htons(ETH_P_8021Q))
3703 		return -EINVAL;
3704 
3705 	return efx_ef10_add_vlan(efx, vid);
3706 }
3707 
3708 static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3709 {
3710 	if (proto != htons(ETH_P_8021Q))
3711 		return -EINVAL;
3712 
3713 	return efx_ef10_del_vlan(efx, vid);
3714 }
3715 
3716 /* We rely on the MCDI wiping out our TX rings if it made any changes to the
3717  * ports table, ensuring that any TSO descriptors that were made on a now-
3718  * removed tunnel port will be blown away and won't break things when we try
3719  * to transmit them using the new ports table.
3720  */
3721 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
3722 {
3723 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3724 	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
3725 	MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
3726 	bool will_reset = false;
3727 	size_t num_entries = 0;
3728 	size_t inlen, outlen;
3729 	size_t i;
3730 	int rc;
3731 	efx_dword_t flags_and_num_entries;
3732 
3733 	WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
3734 
3735 	nic_data->udp_tunnels_dirty = false;
3736 
3737 	if (!(nic_data->datapath_caps &
3738 	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
3739 		efx_device_attach_if_not_resetting(efx);
3740 		return 0;
3741 	}
3742 
3743 	BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
3744 		     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
3745 
3746 	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
3747 		if (nic_data->udp_tunnels[i].count &&
3748 		    nic_data->udp_tunnels[i].port) {
3749 			efx_dword_t entry;
3750 
3751 			EFX_POPULATE_DWORD_2(entry,
3752 				TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
3753 					ntohs(nic_data->udp_tunnels[i].port),
3754 				TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
3755 					nic_data->udp_tunnels[i].type);
3756 			*_MCDI_ARRAY_DWORD(inbuf,
3757 				SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
3758 				num_entries++) = entry;
3759 		}
3760 	}
3761 
3762 	BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
3763 		      MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
3764 		     EFX_WORD_1_LBN);
3765 	BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
3766 		     EFX_WORD_1_WIDTH);
3767 	EFX_POPULATE_DWORD_2(flags_and_num_entries,
3768 			     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
3769 				!!unloading,
3770 			     EFX_WORD_1, num_entries);
3771 	*_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
3772 		flags_and_num_entries;
3773 
3774 	inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
3775 
3776 	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
3777 				inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
3778 	if (rc == -EIO) {
3779 		/* Most likely the MC rebooted due to another function also
3780 		 * setting its tunnel port list. Mark the tunnel port list as
3781 		 * dirty, so it will be pushed upon coming up from the reboot.
3782 		 */
3783 		nic_data->udp_tunnels_dirty = true;
3784 		return 0;
3785 	}
3786 
3787 	if (rc) {
3788 		/* expected not available on unprivileged functions */
3789 		if (rc != -EPERM)
3790 			netif_warn(efx, drv, efx->net_dev,
3791 				   "Unable to set UDP tunnel ports; rc=%d.\n", rc);
3792 	} else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
3793 		   (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
3794 		netif_info(efx, drv, efx->net_dev,
3795 			   "Rebooting MC due to UDP tunnel port list change\n");
3796 		will_reset = true;
3797 		if (unloading)
3798 			/* Delay for the MC reset to complete. This will make
3799 			 * unloading other functions a bit smoother. This is a
3800 			 * race, but the other unload will work whichever way
3801 			 * it goes, this just avoids an unnecessary error
3802 			 * message.
3803 			 */
3804 			msleep(100);
3805 	}
3806 	if (!will_reset && !unloading) {
3807 		/* The caller will have detached, relying on the MC reset to
3808 		 * trigger a re-attach.  Since there won't be an MC reset, we
3809 		 * have to do the attach ourselves.
3810 		 */
3811 		efx_device_attach_if_not_resetting(efx);
3812 	}
3813 
3814 	return rc;
3815 }
3816 
3817 static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
3818 {
3819 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3820 	int rc = 0;
3821 
3822 	mutex_lock(&nic_data->udp_tunnels_lock);
3823 	if (nic_data->udp_tunnels_dirty) {
3824 		/* Make sure all TX are stopped while we modify the table, else
3825 		 * we might race against an efx_features_check().
3826 		 */
3827 		efx_device_detach_sync(efx);
3828 		rc = efx_ef10_set_udp_tnl_ports(efx, false);
3829 	}
3830 	mutex_unlock(&nic_data->udp_tunnels_lock);
3831 	return rc;
3832 }
3833 
3834 static struct efx_udp_tunnel *__efx_ef10_udp_tnl_lookup_port(struct efx_nic *efx,
3835 							     __be16 port)
3836 {
3837 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3838 	size_t i;
3839 
3840 	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
3841 		if (!nic_data->udp_tunnels[i].count)
3842 			continue;
3843 		if (nic_data->udp_tunnels[i].port == port)
3844 			return &nic_data->udp_tunnels[i];
3845 	}
3846 	return NULL;
3847 }
3848 
3849 static int efx_ef10_udp_tnl_add_port(struct efx_nic *efx,
3850 				     struct efx_udp_tunnel tnl)
3851 {
3852 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3853 	struct efx_udp_tunnel *match;
3854 	char typebuf[8];
3855 	size_t i;
3856 	int rc;
3857 
3858 	if (!(nic_data->datapath_caps &
3859 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3860 		return 0;
3861 
3862 	efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
3863 	netif_dbg(efx, drv, efx->net_dev, "Adding UDP tunnel (%s) port %d\n",
3864 		  typebuf, ntohs(tnl.port));
3865 
3866 	mutex_lock(&nic_data->udp_tunnels_lock);
3867 	/* Make sure all TX are stopped while we add to the table, else we
3868 	 * might race against an efx_features_check().
3869 	 */
3870 	efx_device_detach_sync(efx);
3871 
3872 	match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
3873 	if (match != NULL) {
3874 		if (match->type == tnl.type) {
3875 			netif_dbg(efx, drv, efx->net_dev,
3876 				  "Referencing existing tunnel entry\n");
3877 			match->count++;
3878 			/* No need to cause an MCDI update */
3879 			rc = 0;
3880 			goto unlock_out;
3881 		}
3882 		efx_get_udp_tunnel_type_name(match->type,
3883 					     typebuf, sizeof(typebuf));
3884 		netif_dbg(efx, drv, efx->net_dev,
3885 			  "UDP port %d is already in use by %s\n",
3886 			  ntohs(tnl.port), typebuf);
3887 		rc = -EEXIST;
3888 		goto unlock_out;
3889 	}
3890 
3891 	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
3892 		if (!nic_data->udp_tunnels[i].count) {
3893 			nic_data->udp_tunnels[i] = tnl;
3894 			nic_data->udp_tunnels[i].count = 1;
3895 			rc = efx_ef10_set_udp_tnl_ports(efx, false);
3896 			goto unlock_out;
3897 		}
3898 
3899 	netif_dbg(efx, drv, efx->net_dev,
3900 		  "Unable to add UDP tunnel (%s) port %d; insufficient resources.\n",
3901 		  typebuf, ntohs(tnl.port));
3902 
3903 	rc = -ENOMEM;
3904 
3905 unlock_out:
3906 	mutex_unlock(&nic_data->udp_tunnels_lock);
3907 	return rc;
3908 }
3909 
3910 /* Called under the TX lock with the TX queue running, hence no-one can be
3911  * in the middle of updating the UDP tunnels table.  However, they could
3912  * have tried and failed the MCDI, in which case they'll have set the dirty
3913  * flag before dropping their locks.
3914  */
3915 static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
3916 {
3917 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3918 
3919 	if (!(nic_data->datapath_caps &
3920 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3921 		return false;
3922 
3923 	if (nic_data->udp_tunnels_dirty)
3924 		/* SW table may not match HW state, so just assume we can't
3925 		 * use any UDP tunnel offloads.
3926 		 */
3927 		return false;
3928 
3929 	return __efx_ef10_udp_tnl_lookup_port(efx, port) != NULL;
3930 }
3931 
3932 static int efx_ef10_udp_tnl_del_port(struct efx_nic *efx,
3933 				     struct efx_udp_tunnel tnl)
3934 {
3935 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3936 	struct efx_udp_tunnel *match;
3937 	char typebuf[8];
3938 	int rc;
3939 
3940 	if (!(nic_data->datapath_caps &
3941 	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3942 		return 0;
3943 
3944 	efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
3945 	netif_dbg(efx, drv, efx->net_dev, "Removing UDP tunnel (%s) port %d\n",
3946 		  typebuf, ntohs(tnl.port));
3947 
3948 	mutex_lock(&nic_data->udp_tunnels_lock);
3949 	/* Make sure all TX are stopped while we remove from the table, else we
3950 	 * might race against an efx_features_check().
3951 	 */
3952 	efx_device_detach_sync(efx);
3953 
3954 	match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
3955 	if (match != NULL) {
3956 		if (match->type == tnl.type) {
3957 			if (--match->count) {
3958 				/* Port is still in use, so nothing to do */
3959 				netif_dbg(efx, drv, efx->net_dev,
3960 					  "UDP tunnel port %d remains active\n",
3961 					  ntohs(tnl.port));
3962 				rc = 0;
3963 				goto out_unlock;
3964 			}
3965 			rc = efx_ef10_set_udp_tnl_ports(efx, false);
3966 			goto out_unlock;
3967 		}
3968 		efx_get_udp_tunnel_type_name(match->type,
3969 					     typebuf, sizeof(typebuf));
3970 		netif_warn(efx, drv, efx->net_dev,
3971 			   "UDP port %d is actually in use by %s, not removing\n",
3972 			   ntohs(tnl.port), typebuf);
3973 	}
3974 	rc = -ENOENT;
3975 
3976 out_unlock:
3977 	mutex_unlock(&nic_data->udp_tunnels_lock);
3978 	return rc;
3979 }
3980 
3981 /* EF10 may have multiple datapath firmware variants within a
3982  * single version.  Report which variants are running.
3983  */
3984 static size_t efx_ef10_print_additional_fwver(struct efx_nic *efx, char *buf,
3985 					      size_t len)
3986 {
3987 	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3988 
3989 	return scnprintf(buf, len, " rx%x tx%x",
3990 			 nic_data->rx_dpcpu_fw_id,
3991 			 nic_data->tx_dpcpu_fw_id);
3992 }
3993 
3994 static unsigned int ef10_check_caps(const struct efx_nic *efx,
3995 				    u8 flag,
3996 				    u32 offset)
3997 {
3998 	const struct efx_ef10_nic_data *nic_data = efx->nic_data;
3999 
4000 	switch (offset) {
4001 	case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS1_OFST):
4002 		return nic_data->datapath_caps & BIT_ULL(flag);
4003 	case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS2_OFST):
4004 		return nic_data->datapath_caps2 & BIT_ULL(flag);
4005 	default:
4006 		return 0;
4007 	}
4008 }
4009 
4010 #define EF10_OFFLOAD_FEATURES		\
4011 	(NETIF_F_IP_CSUM |		\
4012 	 NETIF_F_HW_VLAN_CTAG_FILTER |	\
4013 	 NETIF_F_IPV6_CSUM |		\
4014 	 NETIF_F_RXHASH |		\
4015 	 NETIF_F_NTUPLE)
4016 
4017 const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
4018 	.is_vf = true,
4019 	.mem_bar = efx_ef10_vf_mem_bar,
4020 	.mem_map_size = efx_ef10_mem_map_size,
4021 	.probe = efx_ef10_probe_vf,
4022 	.remove = efx_ef10_remove,
4023 	.dimension_resources = efx_ef10_dimension_resources,
4024 	.init = efx_ef10_init_nic,
4025 	.fini = efx_ef10_fini_nic,
4026 	.map_reset_reason = efx_ef10_map_reset_reason,
4027 	.map_reset_flags = efx_ef10_map_reset_flags,
4028 	.reset = efx_ef10_reset,
4029 	.probe_port = efx_mcdi_port_probe,
4030 	.remove_port = efx_mcdi_port_remove,
4031 	.fini_dmaq = efx_ef10_fini_dmaq,
4032 	.prepare_flr = efx_ef10_prepare_flr,
4033 	.finish_flr = efx_port_dummy_op_void,
4034 	.describe_stats = efx_ef10_describe_stats,
4035 	.update_stats = efx_ef10_update_stats_vf,
4036 	.start_stats = efx_port_dummy_op_void,
4037 	.pull_stats = efx_port_dummy_op_void,
4038 	.stop_stats = efx_port_dummy_op_void,
4039 	.set_id_led = efx_mcdi_set_id_led,
4040 	.push_irq_moderation = efx_ef10_push_irq_moderation,
4041 	.reconfigure_mac = efx_ef10_mac_reconfigure_vf,
4042 	.check_mac_fault = efx_mcdi_mac_check_fault,
4043 	.reconfigure_port = efx_mcdi_port_reconfigure,
4044 	.get_wol = efx_ef10_get_wol_vf,
4045 	.set_wol = efx_ef10_set_wol_vf,
4046 	.resume_wol = efx_port_dummy_op_void,
4047 	.mcdi_request = efx_ef10_mcdi_request,
4048 	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
4049 	.mcdi_read_response = efx_ef10_mcdi_read_response,
4050 	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4051 	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4052 	.irq_enable_master = efx_port_dummy_op_void,
4053 	.irq_test_generate = efx_ef10_irq_test_generate,
4054 	.irq_disable_non_ev = efx_port_dummy_op_void,
4055 	.irq_handle_msi = efx_ef10_msi_interrupt,
4056 	.irq_handle_legacy = efx_ef10_legacy_interrupt,
4057 	.tx_probe = efx_ef10_tx_probe,
4058 	.tx_init = efx_ef10_tx_init,
4059 	.tx_remove = efx_mcdi_tx_remove,
4060 	.tx_write = efx_ef10_tx_write,
4061 	.tx_limit_len = efx_ef10_tx_limit_len,
4062 	.rx_push_rss_config = efx_mcdi_vf_rx_push_rss_config,
4063 	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4064 	.rx_probe = efx_mcdi_rx_probe,
4065 	.rx_init = efx_mcdi_rx_init,
4066 	.rx_remove = efx_mcdi_rx_remove,
4067 	.rx_write = efx_ef10_rx_write,
4068 	.rx_defer_refill = efx_ef10_rx_defer_refill,
4069 	.ev_probe = efx_mcdi_ev_probe,
4070 	.ev_init = efx_ef10_ev_init,
4071 	.ev_fini = efx_mcdi_ev_fini,
4072 	.ev_remove = efx_mcdi_ev_remove,
4073 	.ev_process = efx_ef10_ev_process,
4074 	.ev_read_ack = efx_ef10_ev_read_ack,
4075 	.ev_test_generate = efx_ef10_ev_test_generate,
4076 	.filter_table_probe = efx_ef10_filter_table_probe,
4077 	.filter_table_restore = efx_mcdi_filter_table_restore,
4078 	.filter_table_remove = efx_mcdi_filter_table_remove,
4079 	.filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4080 	.filter_insert = efx_mcdi_filter_insert,
4081 	.filter_remove_safe = efx_mcdi_filter_remove_safe,
4082 	.filter_get_safe = efx_mcdi_filter_get_safe,
4083 	.filter_clear_rx = efx_mcdi_filter_clear_rx,
4084 	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4085 	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4086 	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4087 #ifdef CONFIG_RFS_ACCEL
4088 	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4089 #endif
4090 #ifdef CONFIG_SFC_MTD
4091 	.mtd_probe = efx_port_dummy_op_int,
4092 #endif
4093 	.ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
4094 	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
4095 	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4096 	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4097 #ifdef CONFIG_SFC_SRIOV
4098 	.vswitching_probe = efx_ef10_vswitching_probe_vf,
4099 	.vswitching_restore = efx_ef10_vswitching_restore_vf,
4100 	.vswitching_remove = efx_ef10_vswitching_remove_vf,
4101 #endif
4102 	.get_mac_address = efx_ef10_get_mac_address_vf,
4103 	.set_mac_address = efx_ef10_set_mac_address,
4104 
4105 	.get_phys_port_id = efx_ef10_get_phys_port_id,
4106 	.revision = EFX_REV_HUNT_A0,
4107 	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4108 	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4109 	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4110 	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4111 	.can_rx_scatter = true,
4112 	.always_rx_scatter = true,
4113 	.min_interrupt_mode = EFX_INT_MODE_MSIX,
4114 	.max_interrupt_mode = EFX_INT_MODE_MSIX,
4115 	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4116 	.offload_features = EF10_OFFLOAD_FEATURES,
4117 	.mcdi_max_ver = 2,
4118 	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4119 	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4120 			    1 << HWTSTAMP_FILTER_ALL,
4121 	.rx_hash_key_size = 40,
4122 	.check_caps = ef10_check_caps,
4123 	.print_additional_fwver = efx_ef10_print_additional_fwver,
4124 };
4125 
4126 const struct efx_nic_type efx_hunt_a0_nic_type = {
4127 	.is_vf = false,
4128 	.mem_bar = efx_ef10_pf_mem_bar,
4129 	.mem_map_size = efx_ef10_mem_map_size,
4130 	.probe = efx_ef10_probe_pf,
4131 	.remove = efx_ef10_remove,
4132 	.dimension_resources = efx_ef10_dimension_resources,
4133 	.init = efx_ef10_init_nic,
4134 	.fini = efx_ef10_fini_nic,
4135 	.map_reset_reason = efx_ef10_map_reset_reason,
4136 	.map_reset_flags = efx_ef10_map_reset_flags,
4137 	.reset = efx_ef10_reset,
4138 	.probe_port = efx_mcdi_port_probe,
4139 	.remove_port = efx_mcdi_port_remove,
4140 	.fini_dmaq = efx_ef10_fini_dmaq,
4141 	.prepare_flr = efx_ef10_prepare_flr,
4142 	.finish_flr = efx_port_dummy_op_void,
4143 	.describe_stats = efx_ef10_describe_stats,
4144 	.update_stats = efx_ef10_update_stats_pf,
4145 	.start_stats = efx_mcdi_mac_start_stats,
4146 	.pull_stats = efx_mcdi_mac_pull_stats,
4147 	.stop_stats = efx_mcdi_mac_stop_stats,
4148 	.set_id_led = efx_mcdi_set_id_led,
4149 	.push_irq_moderation = efx_ef10_push_irq_moderation,
4150 	.reconfigure_mac = efx_ef10_mac_reconfigure,
4151 	.check_mac_fault = efx_mcdi_mac_check_fault,
4152 	.reconfigure_port = efx_mcdi_port_reconfigure,
4153 	.get_wol = efx_ef10_get_wol,
4154 	.set_wol = efx_ef10_set_wol,
4155 	.resume_wol = efx_port_dummy_op_void,
4156 	.test_chip = efx_ef10_test_chip,
4157 	.test_nvram = efx_mcdi_nvram_test_all,
4158 	.mcdi_request = efx_ef10_mcdi_request,
4159 	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
4160 	.mcdi_read_response = efx_ef10_mcdi_read_response,
4161 	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4162 	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4163 	.irq_enable_master = efx_port_dummy_op_void,
4164 	.irq_test_generate = efx_ef10_irq_test_generate,
4165 	.irq_disable_non_ev = efx_port_dummy_op_void,
4166 	.irq_handle_msi = efx_ef10_msi_interrupt,
4167 	.irq_handle_legacy = efx_ef10_legacy_interrupt,
4168 	.tx_probe = efx_ef10_tx_probe,
4169 	.tx_init = efx_ef10_tx_init,
4170 	.tx_remove = efx_mcdi_tx_remove,
4171 	.tx_write = efx_ef10_tx_write,
4172 	.tx_limit_len = efx_ef10_tx_limit_len,
4173 	.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
4174 	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4175 	.rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
4176 	.rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
4177 	.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
4178 	.rx_probe = efx_mcdi_rx_probe,
4179 	.rx_init = efx_mcdi_rx_init,
4180 	.rx_remove = efx_mcdi_rx_remove,
4181 	.rx_write = efx_ef10_rx_write,
4182 	.rx_defer_refill = efx_ef10_rx_defer_refill,
4183 	.ev_probe = efx_mcdi_ev_probe,
4184 	.ev_init = efx_ef10_ev_init,
4185 	.ev_fini = efx_mcdi_ev_fini,
4186 	.ev_remove = efx_mcdi_ev_remove,
4187 	.ev_process = efx_ef10_ev_process,
4188 	.ev_read_ack = efx_ef10_ev_read_ack,
4189 	.ev_test_generate = efx_ef10_ev_test_generate,
4190 	.filter_table_probe = efx_ef10_filter_table_probe,
4191 	.filter_table_restore = efx_mcdi_filter_table_restore,
4192 	.filter_table_remove = efx_mcdi_filter_table_remove,
4193 	.filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4194 	.filter_insert = efx_mcdi_filter_insert,
4195 	.filter_remove_safe = efx_mcdi_filter_remove_safe,
4196 	.filter_get_safe = efx_mcdi_filter_get_safe,
4197 	.filter_clear_rx = efx_mcdi_filter_clear_rx,
4198 	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4199 	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4200 	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4201 #ifdef CONFIG_RFS_ACCEL
4202 	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4203 #endif
4204 #ifdef CONFIG_SFC_MTD
4205 	.mtd_probe = efx_ef10_mtd_probe,
4206 	.mtd_rename = efx_mcdi_mtd_rename,
4207 	.mtd_read = efx_mcdi_mtd_read,
4208 	.mtd_erase = efx_mcdi_mtd_erase,
4209 	.mtd_write = efx_mcdi_mtd_write,
4210 	.mtd_sync = efx_mcdi_mtd_sync,
4211 #endif
4212 	.ptp_write_host_time = efx_ef10_ptp_write_host_time,
4213 	.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
4214 	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
4215 	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4216 	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4217 	.udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
4218 	.udp_tnl_add_port = efx_ef10_udp_tnl_add_port,
4219 	.udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
4220 	.udp_tnl_del_port = efx_ef10_udp_tnl_del_port,
4221 #ifdef CONFIG_SFC_SRIOV
4222 	.sriov_configure = efx_ef10_sriov_configure,
4223 	.sriov_init = efx_ef10_sriov_init,
4224 	.sriov_fini = efx_ef10_sriov_fini,
4225 	.sriov_wanted = efx_ef10_sriov_wanted,
4226 	.sriov_reset = efx_ef10_sriov_reset,
4227 	.sriov_flr = efx_ef10_sriov_flr,
4228 	.sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
4229 	.sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
4230 	.sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
4231 	.sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
4232 	.sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
4233 	.vswitching_probe = efx_ef10_vswitching_probe_pf,
4234 	.vswitching_restore = efx_ef10_vswitching_restore_pf,
4235 	.vswitching_remove = efx_ef10_vswitching_remove_pf,
4236 #endif
4237 	.get_mac_address = efx_ef10_get_mac_address_pf,
4238 	.set_mac_address = efx_ef10_set_mac_address,
4239 	.tso_versions = efx_ef10_tso_versions,
4240 
4241 	.get_phys_port_id = efx_ef10_get_phys_port_id,
4242 	.revision = EFX_REV_HUNT_A0,
4243 	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4244 	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4245 	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4246 	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4247 	.can_rx_scatter = true,
4248 	.always_rx_scatter = true,
4249 	.option_descriptors = true,
4250 	.min_interrupt_mode = EFX_INT_MODE_LEGACY,
4251 	.max_interrupt_mode = EFX_INT_MODE_MSIX,
4252 	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4253 	.offload_features = EF10_OFFLOAD_FEATURES,
4254 	.mcdi_max_ver = 2,
4255 	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4256 	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4257 			    1 << HWTSTAMP_FILTER_ALL,
4258 	.rx_hash_key_size = 40,
4259 	.check_caps = ef10_check_caps,
4260 	.print_additional_fwver = efx_ef10_print_additional_fwver,
4261 };
4262