1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2012-2013 Solarflare Communications Inc. 5 */ 6 7 #include "net_driver.h" 8 #include "rx_common.h" 9 #include "tx_common.h" 10 #include "ef10_regs.h" 11 #include "io.h" 12 #include "mcdi.h" 13 #include "mcdi_pcol.h" 14 #include "mcdi_port.h" 15 #include "mcdi_port_common.h" 16 #include "mcdi_functions.h" 17 #include "nic.h" 18 #include "mcdi_filters.h" 19 #include "workarounds.h" 20 #include "selftest.h" 21 #include "ef10_sriov.h" 22 #include <linux/in.h> 23 #include <linux/jhash.h> 24 #include <linux/wait.h> 25 #include <linux/workqueue.h> 26 #include <net/udp_tunnel.h> 27 28 /* Hardware control for EF10 architecture including 'Huntington'. */ 29 30 #define EFX_EF10_DRVGEN_EV 7 31 enum { 32 EFX_EF10_TEST = 1, 33 EFX_EF10_REFILL, 34 }; 35 36 /* VLAN list entry */ 37 struct efx_ef10_vlan { 38 struct list_head list; 39 u16 vid; 40 }; 41 42 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading); 43 static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels; 44 45 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx) 46 { 47 efx_dword_t reg; 48 49 efx_readd(efx, ®, ER_DZ_BIU_MC_SFT_STATUS); 50 return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ? 51 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO; 52 } 53 54 /* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for 55 * I/O space and BAR 2(&3) for memory. On SFC9250 (Medford2), there is no I/O 56 * bar; PFs use BAR 0/1 for memory. 57 */ 58 static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx) 59 { 60 switch (efx->pci_dev->device) { 61 case 0x0b03: /* SFC9250 PF */ 62 return 0; 63 default: 64 return 2; 65 } 66 } 67 68 /* All VFs use BAR 0/1 for memory */ 69 static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx) 70 { 71 return 0; 72 } 73 74 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx) 75 { 76 int bar; 77 78 bar = efx->type->mem_bar(efx); 79 return resource_size(&efx->pci_dev->resource[bar]); 80 } 81 82 static bool efx_ef10_is_vf(struct efx_nic *efx) 83 { 84 return efx->type->is_vf; 85 } 86 87 #ifdef CONFIG_SFC_SRIOV 88 static int efx_ef10_get_vf_index(struct efx_nic *efx) 89 { 90 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN); 91 struct efx_ef10_nic_data *nic_data = efx->nic_data; 92 size_t outlen; 93 int rc; 94 95 rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf, 96 sizeof(outbuf), &outlen); 97 if (rc) 98 return rc; 99 if (outlen < sizeof(outbuf)) 100 return -EIO; 101 102 nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF); 103 return 0; 104 } 105 #endif 106 107 static int efx_ef10_init_datapath_caps(struct efx_nic *efx) 108 { 109 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN); 110 struct efx_ef10_nic_data *nic_data = efx->nic_data; 111 size_t outlen; 112 int rc; 113 114 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0); 115 116 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0, 117 outbuf, sizeof(outbuf), &outlen); 118 if (rc) 119 return rc; 120 if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) { 121 netif_err(efx, drv, efx->net_dev, 122 "unable to read datapath firmware capabilities\n"); 123 return -EIO; 124 } 125 126 nic_data->datapath_caps = 127 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1); 128 129 if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) { 130 nic_data->datapath_caps2 = MCDI_DWORD(outbuf, 131 GET_CAPABILITIES_V2_OUT_FLAGS2); 132 nic_data->piobuf_size = MCDI_WORD(outbuf, 133 GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF); 134 } else { 135 nic_data->datapath_caps2 = 0; 136 nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE; 137 } 138 139 /* record the DPCPU firmware IDs to determine VEB vswitching support. 140 */ 141 nic_data->rx_dpcpu_fw_id = 142 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID); 143 nic_data->tx_dpcpu_fw_id = 144 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID); 145 146 if (!(nic_data->datapath_caps & 147 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) { 148 netif_err(efx, probe, efx->net_dev, 149 "current firmware does not support an RX prefix\n"); 150 return -ENODEV; 151 } 152 153 if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) { 154 u8 vi_window_mode = MCDI_BYTE(outbuf, 155 GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE); 156 157 rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode); 158 if (rc) 159 return rc; 160 } else { 161 /* keep default VI stride */ 162 netif_dbg(efx, probe, efx->net_dev, 163 "firmware did not report VI window mode, assuming vi_stride = %u\n", 164 efx->vi_stride); 165 } 166 167 if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) { 168 efx->num_mac_stats = MCDI_WORD(outbuf, 169 GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS); 170 netif_dbg(efx, probe, efx->net_dev, 171 "firmware reports num_mac_stats = %u\n", 172 efx->num_mac_stats); 173 } else { 174 /* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */ 175 netif_dbg(efx, probe, efx->net_dev, 176 "firmware did not report num_mac_stats, assuming %u\n", 177 efx->num_mac_stats); 178 } 179 180 return 0; 181 } 182 183 static void efx_ef10_read_licensed_features(struct efx_nic *efx) 184 { 185 MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN); 186 MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN); 187 struct efx_ef10_nic_data *nic_data = efx->nic_data; 188 size_t outlen; 189 int rc; 190 191 MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP, 192 MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE); 193 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf), 194 outbuf, sizeof(outbuf), &outlen); 195 if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN)) 196 return; 197 198 nic_data->licensed_features = MCDI_QWORD(outbuf, 199 LICENSING_V3_OUT_LICENSED_FEATURES); 200 } 201 202 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx) 203 { 204 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN); 205 int rc; 206 207 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0, 208 outbuf, sizeof(outbuf), NULL); 209 if (rc) 210 return rc; 211 rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ); 212 return rc > 0 ? rc : -ERANGE; 213 } 214 215 static int efx_ef10_get_timer_workarounds(struct efx_nic *efx) 216 { 217 struct efx_ef10_nic_data *nic_data = efx->nic_data; 218 unsigned int implemented; 219 unsigned int enabled; 220 int rc; 221 222 nic_data->workaround_35388 = false; 223 nic_data->workaround_61265 = false; 224 225 rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled); 226 227 if (rc == -ENOSYS) { 228 /* Firmware without GET_WORKAROUNDS - not a problem. */ 229 rc = 0; 230 } else if (rc == 0) { 231 /* Bug61265 workaround is always enabled if implemented. */ 232 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265) 233 nic_data->workaround_61265 = true; 234 235 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) { 236 nic_data->workaround_35388 = true; 237 } else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) { 238 /* Workaround is implemented but not enabled. 239 * Try to enable it. 240 */ 241 rc = efx_mcdi_set_workaround(efx, 242 MC_CMD_WORKAROUND_BUG35388, 243 true, NULL); 244 if (rc == 0) 245 nic_data->workaround_35388 = true; 246 /* If we failed to set the workaround just carry on. */ 247 rc = 0; 248 } 249 } 250 251 netif_dbg(efx, probe, efx->net_dev, 252 "workaround for bug 35388 is %sabled\n", 253 nic_data->workaround_35388 ? "en" : "dis"); 254 netif_dbg(efx, probe, efx->net_dev, 255 "workaround for bug 61265 is %sabled\n", 256 nic_data->workaround_61265 ? "en" : "dis"); 257 258 return rc; 259 } 260 261 static void efx_ef10_process_timer_config(struct efx_nic *efx, 262 const efx_dword_t *data) 263 { 264 unsigned int max_count; 265 266 if (EFX_EF10_WORKAROUND_61265(efx)) { 267 efx->timer_quantum_ns = MCDI_DWORD(data, 268 GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS); 269 efx->timer_max_ns = MCDI_DWORD(data, 270 GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS); 271 } else if (EFX_EF10_WORKAROUND_35388(efx)) { 272 efx->timer_quantum_ns = MCDI_DWORD(data, 273 GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT); 274 max_count = MCDI_DWORD(data, 275 GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT); 276 efx->timer_max_ns = max_count * efx->timer_quantum_ns; 277 } else { 278 efx->timer_quantum_ns = MCDI_DWORD(data, 279 GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT); 280 max_count = MCDI_DWORD(data, 281 GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT); 282 efx->timer_max_ns = max_count * efx->timer_quantum_ns; 283 } 284 285 netif_dbg(efx, probe, efx->net_dev, 286 "got timer properties from MC: quantum %u ns; max %u ns\n", 287 efx->timer_quantum_ns, efx->timer_max_ns); 288 } 289 290 static int efx_ef10_get_timer_config(struct efx_nic *efx) 291 { 292 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN); 293 int rc; 294 295 rc = efx_ef10_get_timer_workarounds(efx); 296 if (rc) 297 return rc; 298 299 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0, 300 outbuf, sizeof(outbuf), NULL); 301 302 if (rc == 0) { 303 efx_ef10_process_timer_config(efx, outbuf); 304 } else if (rc == -ENOSYS || rc == -EPERM) { 305 /* Not available - fall back to Huntington defaults. */ 306 unsigned int quantum; 307 308 rc = efx_ef10_get_sysclk_freq(efx); 309 if (rc < 0) 310 return rc; 311 312 quantum = 1536000 / rc; /* 1536 cycles */ 313 efx->timer_quantum_ns = quantum; 314 efx->timer_max_ns = efx->type->timer_period_max * quantum; 315 rc = 0; 316 } else { 317 efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, 318 MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN, 319 NULL, 0, rc); 320 } 321 322 return rc; 323 } 324 325 static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address) 326 { 327 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN); 328 size_t outlen; 329 int rc; 330 331 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0); 332 333 rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0, 334 outbuf, sizeof(outbuf), &outlen); 335 if (rc) 336 return rc; 337 if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN) 338 return -EIO; 339 340 ether_addr_copy(mac_address, 341 MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE)); 342 return 0; 343 } 344 345 static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address) 346 { 347 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN); 348 MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX); 349 size_t outlen; 350 int num_addrs, rc; 351 352 MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID, 353 EVB_PORT_ID_ASSIGNED); 354 rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf, 355 sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); 356 357 if (rc) 358 return rc; 359 if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN) 360 return -EIO; 361 362 num_addrs = MCDI_DWORD(outbuf, 363 VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT); 364 365 WARN_ON(num_addrs != 1); 366 367 ether_addr_copy(mac_address, 368 MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR)); 369 370 return 0; 371 } 372 373 static ssize_t link_control_flag_show(struct device *dev, 374 struct device_attribute *attr, 375 char *buf) 376 { 377 struct efx_nic *efx = dev_get_drvdata(dev); 378 379 return sprintf(buf, "%d\n", 380 ((efx->mcdi->fn_flags) & 381 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL)) 382 ? 1 : 0); 383 } 384 385 static ssize_t primary_flag_show(struct device *dev, 386 struct device_attribute *attr, 387 char *buf) 388 { 389 struct efx_nic *efx = dev_get_drvdata(dev); 390 391 return sprintf(buf, "%d\n", 392 ((efx->mcdi->fn_flags) & 393 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) 394 ? 1 : 0); 395 } 396 397 static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid) 398 { 399 struct efx_ef10_nic_data *nic_data = efx->nic_data; 400 struct efx_ef10_vlan *vlan; 401 402 WARN_ON(!mutex_is_locked(&nic_data->vlan_lock)); 403 404 list_for_each_entry(vlan, &nic_data->vlan_list, list) { 405 if (vlan->vid == vid) 406 return vlan; 407 } 408 409 return NULL; 410 } 411 412 static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid) 413 { 414 struct efx_ef10_nic_data *nic_data = efx->nic_data; 415 struct efx_ef10_vlan *vlan; 416 int rc; 417 418 mutex_lock(&nic_data->vlan_lock); 419 420 vlan = efx_ef10_find_vlan(efx, vid); 421 if (vlan) { 422 /* We add VID 0 on init. 8021q adds it on module init 423 * for all interfaces with VLAN filtring feature. 424 */ 425 if (vid == 0) 426 goto done_unlock; 427 netif_warn(efx, drv, efx->net_dev, 428 "VLAN %u already added\n", vid); 429 rc = -EALREADY; 430 goto fail_exist; 431 } 432 433 rc = -ENOMEM; 434 vlan = kzalloc(sizeof(*vlan), GFP_KERNEL); 435 if (!vlan) 436 goto fail_alloc; 437 438 vlan->vid = vid; 439 440 list_add_tail(&vlan->list, &nic_data->vlan_list); 441 442 if (efx->filter_state) { 443 mutex_lock(&efx->mac_lock); 444 down_write(&efx->filter_sem); 445 rc = efx_mcdi_filter_add_vlan(efx, vlan->vid); 446 up_write(&efx->filter_sem); 447 mutex_unlock(&efx->mac_lock); 448 if (rc) 449 goto fail_filter_add_vlan; 450 } 451 452 done_unlock: 453 mutex_unlock(&nic_data->vlan_lock); 454 return 0; 455 456 fail_filter_add_vlan: 457 list_del(&vlan->list); 458 kfree(vlan); 459 fail_alloc: 460 fail_exist: 461 mutex_unlock(&nic_data->vlan_lock); 462 return rc; 463 } 464 465 static void efx_ef10_del_vlan_internal(struct efx_nic *efx, 466 struct efx_ef10_vlan *vlan) 467 { 468 struct efx_ef10_nic_data *nic_data = efx->nic_data; 469 470 WARN_ON(!mutex_is_locked(&nic_data->vlan_lock)); 471 472 if (efx->filter_state) { 473 down_write(&efx->filter_sem); 474 efx_mcdi_filter_del_vlan(efx, vlan->vid); 475 up_write(&efx->filter_sem); 476 } 477 478 list_del(&vlan->list); 479 kfree(vlan); 480 } 481 482 static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid) 483 { 484 struct efx_ef10_nic_data *nic_data = efx->nic_data; 485 struct efx_ef10_vlan *vlan; 486 int rc = 0; 487 488 /* 8021q removes VID 0 on module unload for all interfaces 489 * with VLAN filtering feature. We need to keep it to receive 490 * untagged traffic. 491 */ 492 if (vid == 0) 493 return 0; 494 495 mutex_lock(&nic_data->vlan_lock); 496 497 vlan = efx_ef10_find_vlan(efx, vid); 498 if (!vlan) { 499 netif_err(efx, drv, efx->net_dev, 500 "VLAN %u to be deleted not found\n", vid); 501 rc = -ENOENT; 502 } else { 503 efx_ef10_del_vlan_internal(efx, vlan); 504 } 505 506 mutex_unlock(&nic_data->vlan_lock); 507 508 return rc; 509 } 510 511 static void efx_ef10_cleanup_vlans(struct efx_nic *efx) 512 { 513 struct efx_ef10_nic_data *nic_data = efx->nic_data; 514 struct efx_ef10_vlan *vlan, *next_vlan; 515 516 mutex_lock(&nic_data->vlan_lock); 517 list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list) 518 efx_ef10_del_vlan_internal(efx, vlan); 519 mutex_unlock(&nic_data->vlan_lock); 520 } 521 522 static DEVICE_ATTR_RO(link_control_flag); 523 static DEVICE_ATTR_RO(primary_flag); 524 525 static int efx_ef10_probe(struct efx_nic *efx) 526 { 527 struct efx_ef10_nic_data *nic_data; 528 int i, rc; 529 530 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL); 531 if (!nic_data) 532 return -ENOMEM; 533 efx->nic_data = nic_data; 534 535 /* we assume later that we can copy from this buffer in dwords */ 536 BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4); 537 538 rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf, 539 8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL); 540 if (rc) 541 goto fail1; 542 543 /* Get the MC's warm boot count. In case it's rebooting right 544 * now, be prepared to retry. 545 */ 546 i = 0; 547 for (;;) { 548 rc = efx_ef10_get_warm_boot_count(efx); 549 if (rc >= 0) 550 break; 551 if (++i == 5) 552 goto fail2; 553 ssleep(1); 554 } 555 nic_data->warm_boot_count = rc; 556 557 /* In case we're recovering from a crash (kexec), we want to 558 * cancel any outstanding request by the previous user of this 559 * function. We send a special message using the least 560 * significant bits of the 'high' (doorbell) register. 561 */ 562 _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD); 563 564 rc = efx_mcdi_init(efx); 565 if (rc) 566 goto fail2; 567 568 mutex_init(&nic_data->udp_tunnels_lock); 569 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) 570 nic_data->udp_tunnels[i].type = 571 TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID; 572 573 /* Reset (most) configuration for this function */ 574 rc = efx_mcdi_reset(efx, RESET_TYPE_ALL); 575 if (rc) 576 goto fail3; 577 578 /* Enable event logging */ 579 rc = efx_mcdi_log_ctrl(efx, true, false, 0); 580 if (rc) 581 goto fail3; 582 583 rc = device_create_file(&efx->pci_dev->dev, 584 &dev_attr_link_control_flag); 585 if (rc) 586 goto fail3; 587 588 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag); 589 if (rc) 590 goto fail4; 591 592 rc = efx_get_pf_index(efx, &nic_data->pf_index); 593 if (rc) 594 goto fail5; 595 596 rc = efx_ef10_init_datapath_caps(efx); 597 if (rc < 0) 598 goto fail5; 599 600 efx_ef10_read_licensed_features(efx); 601 602 /* We can have one VI for each vi_stride-byte region. 603 * However, until we use TX option descriptors we need up to four 604 * TX queues per channel for different checksumming combinations. 605 */ 606 if (nic_data->datapath_caps & 607 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)) 608 efx->tx_queues_per_channel = 4; 609 else 610 efx->tx_queues_per_channel = 2; 611 efx->max_vis = efx_ef10_mem_map_size(efx) / efx->vi_stride; 612 if (!efx->max_vis) { 613 netif_err(efx, drv, efx->net_dev, "error determining max VIs\n"); 614 rc = -EIO; 615 goto fail5; 616 } 617 efx->max_channels = min_t(unsigned int, EFX_MAX_CHANNELS, 618 efx->max_vis / efx->tx_queues_per_channel); 619 efx->max_tx_channels = efx->max_channels; 620 if (WARN_ON(efx->max_channels == 0)) { 621 rc = -EIO; 622 goto fail5; 623 } 624 625 efx->rx_packet_len_offset = 626 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE; 627 628 if (nic_data->datapath_caps & 629 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN)) 630 efx->net_dev->hw_features |= NETIF_F_RXFCS; 631 632 rc = efx_mcdi_port_get_number(efx); 633 if (rc < 0) 634 goto fail5; 635 efx->port_num = rc; 636 637 rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr); 638 if (rc) 639 goto fail5; 640 641 rc = efx_ef10_get_timer_config(efx); 642 if (rc < 0) 643 goto fail5; 644 645 rc = efx_mcdi_mon_probe(efx); 646 if (rc && rc != -EPERM) 647 goto fail5; 648 649 efx_ptp_defer_probe_with_channel(efx); 650 651 #ifdef CONFIG_SFC_SRIOV 652 if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) { 653 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn; 654 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf); 655 656 efx_pf->type->get_mac_address(efx_pf, nic_data->port_id); 657 } else 658 #endif 659 ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr); 660 661 INIT_LIST_HEAD(&nic_data->vlan_list); 662 mutex_init(&nic_data->vlan_lock); 663 664 /* Add unspecified VID to support VLAN filtering being disabled */ 665 rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC); 666 if (rc) 667 goto fail_add_vid_unspec; 668 669 /* If VLAN filtering is enabled, we need VID 0 to get untagged 670 * traffic. It is added automatically if 8021q module is loaded, 671 * but we can't rely on it since module may be not loaded. 672 */ 673 rc = efx_ef10_add_vlan(efx, 0); 674 if (rc) 675 goto fail_add_vid_0; 676 677 if (nic_data->datapath_caps & 678 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) && 679 efx->mcdi->fn_flags & 680 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED)) 681 efx->net_dev->udp_tunnel_nic_info = &efx_ef10_udp_tunnels; 682 683 return 0; 684 685 fail_add_vid_0: 686 efx_ef10_cleanup_vlans(efx); 687 fail_add_vid_unspec: 688 mutex_destroy(&nic_data->vlan_lock); 689 efx_ptp_remove(efx); 690 efx_mcdi_mon_remove(efx); 691 fail5: 692 device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag); 693 fail4: 694 device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag); 695 fail3: 696 efx_mcdi_detach(efx); 697 698 mutex_lock(&nic_data->udp_tunnels_lock); 699 memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels)); 700 (void)efx_ef10_set_udp_tnl_ports(efx, true); 701 mutex_unlock(&nic_data->udp_tunnels_lock); 702 mutex_destroy(&nic_data->udp_tunnels_lock); 703 704 efx_mcdi_fini(efx); 705 fail2: 706 efx_nic_free_buffer(efx, &nic_data->mcdi_buf); 707 fail1: 708 kfree(nic_data); 709 efx->nic_data = NULL; 710 return rc; 711 } 712 713 #ifdef EFX_USE_PIO 714 715 static void efx_ef10_free_piobufs(struct efx_nic *efx) 716 { 717 struct efx_ef10_nic_data *nic_data = efx->nic_data; 718 MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN); 719 unsigned int i; 720 int rc; 721 722 BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0); 723 724 for (i = 0; i < nic_data->n_piobufs; i++) { 725 MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE, 726 nic_data->piobuf_handle[i]); 727 rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf), 728 NULL, 0, NULL); 729 WARN_ON(rc); 730 } 731 732 nic_data->n_piobufs = 0; 733 } 734 735 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n) 736 { 737 struct efx_ef10_nic_data *nic_data = efx->nic_data; 738 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN); 739 unsigned int i; 740 size_t outlen; 741 int rc = 0; 742 743 BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0); 744 745 for (i = 0; i < n; i++) { 746 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0, 747 outbuf, sizeof(outbuf), &outlen); 748 if (rc) { 749 /* Don't display the MC error if we didn't have space 750 * for a VF. 751 */ 752 if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC)) 753 efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF, 754 0, outbuf, outlen, rc); 755 break; 756 } 757 if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) { 758 rc = -EIO; 759 break; 760 } 761 nic_data->piobuf_handle[i] = 762 MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE); 763 netif_dbg(efx, probe, efx->net_dev, 764 "allocated PIO buffer %u handle %x\n", i, 765 nic_data->piobuf_handle[i]); 766 } 767 768 nic_data->n_piobufs = i; 769 if (rc) 770 efx_ef10_free_piobufs(efx); 771 return rc; 772 } 773 774 static int efx_ef10_link_piobufs(struct efx_nic *efx) 775 { 776 struct efx_ef10_nic_data *nic_data = efx->nic_data; 777 MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN); 778 struct efx_channel *channel; 779 struct efx_tx_queue *tx_queue; 780 unsigned int offset, index; 781 int rc; 782 783 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0); 784 BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0); 785 786 /* Link a buffer to each VI in the write-combining mapping */ 787 for (index = 0; index < nic_data->n_piobufs; ++index) { 788 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE, 789 nic_data->piobuf_handle[index]); 790 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE, 791 nic_data->pio_write_vi_base + index); 792 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF, 793 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN, 794 NULL, 0, NULL); 795 if (rc) { 796 netif_err(efx, drv, efx->net_dev, 797 "failed to link VI %u to PIO buffer %u (%d)\n", 798 nic_data->pio_write_vi_base + index, index, 799 rc); 800 goto fail; 801 } 802 netif_dbg(efx, probe, efx->net_dev, 803 "linked VI %u to PIO buffer %u\n", 804 nic_data->pio_write_vi_base + index, index); 805 } 806 807 /* Link a buffer to each TX queue */ 808 efx_for_each_channel(channel, efx) { 809 /* Extra channels, even those with TXQs (PTP), do not require 810 * PIO resources. 811 */ 812 if (!channel->type->want_pio || 813 channel->channel >= efx->xdp_channel_offset) 814 continue; 815 816 efx_for_each_channel_tx_queue(tx_queue, channel) { 817 /* We assign the PIO buffers to queues in 818 * reverse order to allow for the following 819 * special case. 820 */ 821 offset = ((efx->tx_channel_offset + efx->n_tx_channels - 822 tx_queue->channel->channel - 1) * 823 efx_piobuf_size); 824 index = offset / nic_data->piobuf_size; 825 offset = offset % nic_data->piobuf_size; 826 827 /* When the host page size is 4K, the first 828 * host page in the WC mapping may be within 829 * the same VI page as the last TX queue. We 830 * can only link one buffer to each VI. 831 */ 832 if (tx_queue->queue == nic_data->pio_write_vi_base) { 833 BUG_ON(index != 0); 834 rc = 0; 835 } else { 836 MCDI_SET_DWORD(inbuf, 837 LINK_PIOBUF_IN_PIOBUF_HANDLE, 838 nic_data->piobuf_handle[index]); 839 MCDI_SET_DWORD(inbuf, 840 LINK_PIOBUF_IN_TXQ_INSTANCE, 841 tx_queue->queue); 842 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF, 843 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN, 844 NULL, 0, NULL); 845 } 846 847 if (rc) { 848 /* This is non-fatal; the TX path just 849 * won't use PIO for this queue 850 */ 851 netif_err(efx, drv, efx->net_dev, 852 "failed to link VI %u to PIO buffer %u (%d)\n", 853 tx_queue->queue, index, rc); 854 tx_queue->piobuf = NULL; 855 } else { 856 tx_queue->piobuf = 857 nic_data->pio_write_base + 858 index * efx->vi_stride + offset; 859 tx_queue->piobuf_offset = offset; 860 netif_dbg(efx, probe, efx->net_dev, 861 "linked VI %u to PIO buffer %u offset %x addr %p\n", 862 tx_queue->queue, index, 863 tx_queue->piobuf_offset, 864 tx_queue->piobuf); 865 } 866 } 867 } 868 869 return 0; 870 871 fail: 872 /* inbuf was defined for MC_CMD_LINK_PIOBUF. We can use the same 873 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter. 874 */ 875 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN); 876 while (index--) { 877 MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE, 878 nic_data->pio_write_vi_base + index); 879 efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF, 880 inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN, 881 NULL, 0, NULL); 882 } 883 return rc; 884 } 885 886 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx) 887 { 888 struct efx_channel *channel; 889 struct efx_tx_queue *tx_queue; 890 891 /* All our existing PIO buffers went away */ 892 efx_for_each_channel(channel, efx) 893 efx_for_each_channel_tx_queue(tx_queue, channel) 894 tx_queue->piobuf = NULL; 895 } 896 897 #else /* !EFX_USE_PIO */ 898 899 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n) 900 { 901 return n == 0 ? 0 : -ENOBUFS; 902 } 903 904 static int efx_ef10_link_piobufs(struct efx_nic *efx) 905 { 906 return 0; 907 } 908 909 static void efx_ef10_free_piobufs(struct efx_nic *efx) 910 { 911 } 912 913 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx) 914 { 915 } 916 917 #endif /* EFX_USE_PIO */ 918 919 static void efx_ef10_remove(struct efx_nic *efx) 920 { 921 struct efx_ef10_nic_data *nic_data = efx->nic_data; 922 int rc; 923 924 #ifdef CONFIG_SFC_SRIOV 925 struct efx_ef10_nic_data *nic_data_pf; 926 struct pci_dev *pci_dev_pf; 927 struct efx_nic *efx_pf; 928 struct ef10_vf *vf; 929 930 if (efx->pci_dev->is_virtfn) { 931 pci_dev_pf = efx->pci_dev->physfn; 932 if (pci_dev_pf) { 933 efx_pf = pci_get_drvdata(pci_dev_pf); 934 nic_data_pf = efx_pf->nic_data; 935 vf = nic_data_pf->vf + nic_data->vf_index; 936 vf->efx = NULL; 937 } else 938 netif_info(efx, drv, efx->net_dev, 939 "Could not get the PF id from VF\n"); 940 } 941 #endif 942 943 efx_ef10_cleanup_vlans(efx); 944 mutex_destroy(&nic_data->vlan_lock); 945 946 efx_ptp_remove(efx); 947 948 efx_mcdi_mon_remove(efx); 949 950 efx_mcdi_rx_free_indir_table(efx); 951 952 if (nic_data->wc_membase) 953 iounmap(nic_data->wc_membase); 954 955 rc = efx_mcdi_free_vis(efx); 956 WARN_ON(rc != 0); 957 958 if (!nic_data->must_restore_piobufs) 959 efx_ef10_free_piobufs(efx); 960 961 device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag); 962 device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag); 963 964 efx_mcdi_detach(efx); 965 966 memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels)); 967 mutex_lock(&nic_data->udp_tunnels_lock); 968 (void)efx_ef10_set_udp_tnl_ports(efx, true); 969 mutex_unlock(&nic_data->udp_tunnels_lock); 970 971 mutex_destroy(&nic_data->udp_tunnels_lock); 972 973 efx_mcdi_fini(efx); 974 efx_nic_free_buffer(efx, &nic_data->mcdi_buf); 975 kfree(nic_data); 976 } 977 978 static int efx_ef10_probe_pf(struct efx_nic *efx) 979 { 980 return efx_ef10_probe(efx); 981 } 982 983 int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id, 984 u32 *port_flags, u32 *vadaptor_flags, 985 unsigned int *vlan_tags) 986 { 987 struct efx_ef10_nic_data *nic_data = efx->nic_data; 988 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN); 989 MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN); 990 size_t outlen; 991 int rc; 992 993 if (nic_data->datapath_caps & 994 (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) { 995 MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID, 996 port_id); 997 998 rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf), 999 outbuf, sizeof(outbuf), &outlen); 1000 if (rc) 1001 return rc; 1002 1003 if (outlen < sizeof(outbuf)) { 1004 rc = -EIO; 1005 return rc; 1006 } 1007 } 1008 1009 if (port_flags) 1010 *port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS); 1011 if (vadaptor_flags) 1012 *vadaptor_flags = 1013 MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS); 1014 if (vlan_tags) 1015 *vlan_tags = 1016 MCDI_DWORD(outbuf, 1017 VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS); 1018 1019 return 0; 1020 } 1021 1022 int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id) 1023 { 1024 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN); 1025 1026 MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id); 1027 return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf), 1028 NULL, 0, NULL); 1029 } 1030 1031 int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id) 1032 { 1033 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN); 1034 1035 MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id); 1036 return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf), 1037 NULL, 0, NULL); 1038 } 1039 1040 int efx_ef10_vport_add_mac(struct efx_nic *efx, 1041 unsigned int port_id, const u8 *mac) 1042 { 1043 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN); 1044 1045 MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id); 1046 ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac); 1047 1048 return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf, 1049 sizeof(inbuf), NULL, 0, NULL); 1050 } 1051 1052 int efx_ef10_vport_del_mac(struct efx_nic *efx, 1053 unsigned int port_id, const u8 *mac) 1054 { 1055 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN); 1056 1057 MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id); 1058 ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac); 1059 1060 return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf, 1061 sizeof(inbuf), NULL, 0, NULL); 1062 } 1063 1064 #ifdef CONFIG_SFC_SRIOV 1065 static int efx_ef10_probe_vf(struct efx_nic *efx) 1066 { 1067 int rc; 1068 struct pci_dev *pci_dev_pf; 1069 1070 /* If the parent PF has no VF data structure, it doesn't know about this 1071 * VF so fail probe. The VF needs to be re-created. This can happen 1072 * if the PF driver was unloaded while any VF was assigned to a guest 1073 * (using Xen, only). 1074 */ 1075 pci_dev_pf = efx->pci_dev->physfn; 1076 if (pci_dev_pf) { 1077 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf); 1078 struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data; 1079 1080 if (!nic_data_pf->vf) { 1081 netif_info(efx, drv, efx->net_dev, 1082 "The VF cannot link to its parent PF; " 1083 "please destroy and re-create the VF\n"); 1084 return -EBUSY; 1085 } 1086 } 1087 1088 rc = efx_ef10_probe(efx); 1089 if (rc) 1090 return rc; 1091 1092 rc = efx_ef10_get_vf_index(efx); 1093 if (rc) 1094 goto fail; 1095 1096 if (efx->pci_dev->is_virtfn) { 1097 if (efx->pci_dev->physfn) { 1098 struct efx_nic *efx_pf = 1099 pci_get_drvdata(efx->pci_dev->physfn); 1100 struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data; 1101 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1102 1103 nic_data_p->vf[nic_data->vf_index].efx = efx; 1104 nic_data_p->vf[nic_data->vf_index].pci_dev = 1105 efx->pci_dev; 1106 } else 1107 netif_info(efx, drv, efx->net_dev, 1108 "Could not get the PF id from VF\n"); 1109 } 1110 1111 return 0; 1112 1113 fail: 1114 efx_ef10_remove(efx); 1115 return rc; 1116 } 1117 #else 1118 static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused))) 1119 { 1120 return 0; 1121 } 1122 #endif 1123 1124 static int efx_ef10_alloc_vis(struct efx_nic *efx, 1125 unsigned int min_vis, unsigned int max_vis) 1126 { 1127 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1128 1129 return efx_mcdi_alloc_vis(efx, min_vis, max_vis, &nic_data->vi_base, 1130 &nic_data->n_allocated_vis); 1131 } 1132 1133 /* Note that the failure path of this function does not free 1134 * resources, as this will be done by efx_ef10_remove(). 1135 */ 1136 static int efx_ef10_dimension_resources(struct efx_nic *efx) 1137 { 1138 unsigned int min_vis = max_t(unsigned int, efx->tx_queues_per_channel, 1139 efx_separate_tx_channels ? 2 : 1); 1140 unsigned int channel_vis, pio_write_vi_base, max_vis; 1141 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1142 unsigned int uc_mem_map_size, wc_mem_map_size; 1143 void __iomem *membase; 1144 int rc; 1145 1146 channel_vis = max(efx->n_channels, 1147 ((efx->n_tx_channels + efx->n_extra_tx_channels) * 1148 efx->tx_queues_per_channel) + 1149 efx->n_xdp_channels * efx->xdp_tx_per_channel); 1150 if (efx->max_vis && efx->max_vis < channel_vis) { 1151 netif_dbg(efx, drv, efx->net_dev, 1152 "Reducing channel VIs from %u to %u\n", 1153 channel_vis, efx->max_vis); 1154 channel_vis = efx->max_vis; 1155 } 1156 1157 #ifdef EFX_USE_PIO 1158 /* Try to allocate PIO buffers if wanted and if the full 1159 * number of PIO buffers would be sufficient to allocate one 1160 * copy-buffer per TX channel. Failure is non-fatal, as there 1161 * are only a small number of PIO buffers shared between all 1162 * functions of the controller. 1163 */ 1164 if (efx_piobuf_size != 0 && 1165 nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >= 1166 efx->n_tx_channels) { 1167 unsigned int n_piobufs = 1168 DIV_ROUND_UP(efx->n_tx_channels, 1169 nic_data->piobuf_size / efx_piobuf_size); 1170 1171 rc = efx_ef10_alloc_piobufs(efx, n_piobufs); 1172 if (rc == -ENOSPC) 1173 netif_dbg(efx, probe, efx->net_dev, 1174 "out of PIO buffers; cannot allocate more\n"); 1175 else if (rc == -EPERM) 1176 netif_dbg(efx, probe, efx->net_dev, 1177 "not permitted to allocate PIO buffers\n"); 1178 else if (rc) 1179 netif_err(efx, probe, efx->net_dev, 1180 "failed to allocate PIO buffers (%d)\n", rc); 1181 else 1182 netif_dbg(efx, probe, efx->net_dev, 1183 "allocated %u PIO buffers\n", n_piobufs); 1184 } 1185 #else 1186 nic_data->n_piobufs = 0; 1187 #endif 1188 1189 /* PIO buffers should be mapped with write-combining enabled, 1190 * and we want to make single UC and WC mappings rather than 1191 * several of each (in fact that's the only option if host 1192 * page size is >4K). So we may allocate some extra VIs just 1193 * for writing PIO buffers through. 1194 * 1195 * The UC mapping contains (channel_vis - 1) complete VIs and the 1196 * first 4K of the next VI. Then the WC mapping begins with 1197 * the remainder of this last VI. 1198 */ 1199 uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride + 1200 ER_DZ_TX_PIOBUF); 1201 if (nic_data->n_piobufs) { 1202 /* pio_write_vi_base rounds down to give the number of complete 1203 * VIs inside the UC mapping. 1204 */ 1205 pio_write_vi_base = uc_mem_map_size / efx->vi_stride; 1206 wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base + 1207 nic_data->n_piobufs) * 1208 efx->vi_stride) - 1209 uc_mem_map_size); 1210 max_vis = pio_write_vi_base + nic_data->n_piobufs; 1211 } else { 1212 pio_write_vi_base = 0; 1213 wc_mem_map_size = 0; 1214 max_vis = channel_vis; 1215 } 1216 1217 /* In case the last attached driver failed to free VIs, do it now */ 1218 rc = efx_mcdi_free_vis(efx); 1219 if (rc != 0) 1220 return rc; 1221 1222 rc = efx_ef10_alloc_vis(efx, min_vis, max_vis); 1223 if (rc != 0) 1224 return rc; 1225 1226 if (nic_data->n_allocated_vis < channel_vis) { 1227 netif_info(efx, drv, efx->net_dev, 1228 "Could not allocate enough VIs to satisfy RSS" 1229 " requirements. Performance may not be optimal.\n"); 1230 /* We didn't get the VIs to populate our channels. 1231 * We could keep what we got but then we'd have more 1232 * interrupts than we need. 1233 * Instead calculate new max_channels and restart 1234 */ 1235 efx->max_channels = nic_data->n_allocated_vis; 1236 efx->max_tx_channels = 1237 nic_data->n_allocated_vis / efx->tx_queues_per_channel; 1238 1239 efx_mcdi_free_vis(efx); 1240 return -EAGAIN; 1241 } 1242 1243 /* If we didn't get enough VIs to map all the PIO buffers, free the 1244 * PIO buffers 1245 */ 1246 if (nic_data->n_piobufs && 1247 nic_data->n_allocated_vis < 1248 pio_write_vi_base + nic_data->n_piobufs) { 1249 netif_dbg(efx, probe, efx->net_dev, 1250 "%u VIs are not sufficient to map %u PIO buffers\n", 1251 nic_data->n_allocated_vis, nic_data->n_piobufs); 1252 efx_ef10_free_piobufs(efx); 1253 } 1254 1255 /* Shrink the original UC mapping of the memory BAR */ 1256 membase = ioremap(efx->membase_phys, uc_mem_map_size); 1257 if (!membase) { 1258 netif_err(efx, probe, efx->net_dev, 1259 "could not shrink memory BAR to %x\n", 1260 uc_mem_map_size); 1261 return -ENOMEM; 1262 } 1263 iounmap(efx->membase); 1264 efx->membase = membase; 1265 1266 /* Set up the WC mapping if needed */ 1267 if (wc_mem_map_size) { 1268 nic_data->wc_membase = ioremap_wc(efx->membase_phys + 1269 uc_mem_map_size, 1270 wc_mem_map_size); 1271 if (!nic_data->wc_membase) { 1272 netif_err(efx, probe, efx->net_dev, 1273 "could not allocate WC mapping of size %x\n", 1274 wc_mem_map_size); 1275 return -ENOMEM; 1276 } 1277 nic_data->pio_write_vi_base = pio_write_vi_base; 1278 nic_data->pio_write_base = 1279 nic_data->wc_membase + 1280 (pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF - 1281 uc_mem_map_size); 1282 1283 rc = efx_ef10_link_piobufs(efx); 1284 if (rc) 1285 efx_ef10_free_piobufs(efx); 1286 } 1287 1288 netif_dbg(efx, probe, efx->net_dev, 1289 "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n", 1290 &efx->membase_phys, efx->membase, uc_mem_map_size, 1291 nic_data->wc_membase, wc_mem_map_size); 1292 1293 return 0; 1294 } 1295 1296 static void efx_ef10_fini_nic(struct efx_nic *efx) 1297 { 1298 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1299 1300 spin_lock_bh(&efx->stats_lock); 1301 kfree(nic_data->mc_stats); 1302 nic_data->mc_stats = NULL; 1303 spin_unlock_bh(&efx->stats_lock); 1304 } 1305 1306 static int efx_ef10_init_nic(struct efx_nic *efx) 1307 { 1308 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1309 struct net_device *net_dev = efx->net_dev; 1310 netdev_features_t tun_feats, tso_feats; 1311 int rc; 1312 1313 if (nic_data->must_check_datapath_caps) { 1314 rc = efx_ef10_init_datapath_caps(efx); 1315 if (rc) 1316 return rc; 1317 nic_data->must_check_datapath_caps = false; 1318 } 1319 1320 if (efx->must_realloc_vis) { 1321 /* We cannot let the number of VIs change now */ 1322 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis, 1323 nic_data->n_allocated_vis); 1324 if (rc) 1325 return rc; 1326 efx->must_realloc_vis = false; 1327 } 1328 1329 nic_data->mc_stats = kmalloc(efx->num_mac_stats * sizeof(__le64), 1330 GFP_KERNEL); 1331 if (!nic_data->mc_stats) 1332 return -ENOMEM; 1333 1334 if (nic_data->must_restore_piobufs && nic_data->n_piobufs) { 1335 rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs); 1336 if (rc == 0) { 1337 rc = efx_ef10_link_piobufs(efx); 1338 if (rc) 1339 efx_ef10_free_piobufs(efx); 1340 } 1341 1342 /* Log an error on failure, but this is non-fatal. 1343 * Permission errors are less important - we've presumably 1344 * had the PIO buffer licence removed. 1345 */ 1346 if (rc == -EPERM) 1347 netif_dbg(efx, drv, efx->net_dev, 1348 "not permitted to restore PIO buffers\n"); 1349 else if (rc) 1350 netif_err(efx, drv, efx->net_dev, 1351 "failed to restore PIO buffers (%d)\n", rc); 1352 nic_data->must_restore_piobufs = false; 1353 } 1354 1355 /* encap features might change during reset if fw variant changed */ 1356 if (efx_has_cap(efx, VXLAN_NVGRE) && !efx_ef10_is_vf(efx)) 1357 net_dev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 1358 else 1359 net_dev->hw_enc_features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 1360 1361 tun_feats = NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 1362 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM; 1363 tso_feats = NETIF_F_TSO | NETIF_F_TSO6; 1364 1365 if (efx_has_cap(efx, TX_TSO_V2_ENCAP)) { 1366 /* If this is first nic_init, or if it is a reset and a new fw 1367 * variant has added new features, enable them by default. 1368 * If the features are not new, maintain their current value. 1369 */ 1370 if (!(net_dev->hw_features & tun_feats)) 1371 net_dev->features |= tun_feats; 1372 net_dev->hw_enc_features |= tun_feats | tso_feats; 1373 net_dev->hw_features |= tun_feats; 1374 } else { 1375 net_dev->hw_enc_features &= ~(tun_feats | tso_feats); 1376 net_dev->hw_features &= ~tun_feats; 1377 net_dev->features &= ~tun_feats; 1378 } 1379 1380 /* don't fail init if RSS setup doesn't work */ 1381 rc = efx->type->rx_push_rss_config(efx, false, 1382 efx->rss_context.rx_indir_table, NULL); 1383 1384 return 0; 1385 } 1386 1387 static void efx_ef10_table_reset_mc_allocations(struct efx_nic *efx) 1388 { 1389 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1390 #ifdef CONFIG_SFC_SRIOV 1391 unsigned int i; 1392 #endif 1393 1394 /* All our allocations have been reset */ 1395 efx->must_realloc_vis = true; 1396 efx_mcdi_filter_table_reset_mc_allocations(efx); 1397 nic_data->must_restore_piobufs = true; 1398 efx_ef10_forget_old_piobufs(efx); 1399 efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID; 1400 1401 /* Driver-created vswitches and vports must be re-created */ 1402 nic_data->must_probe_vswitching = true; 1403 efx->vport_id = EVB_PORT_ID_ASSIGNED; 1404 #ifdef CONFIG_SFC_SRIOV 1405 if (nic_data->vf) 1406 for (i = 0; i < efx->vf_count; i++) 1407 nic_data->vf[i].vport_id = 0; 1408 #endif 1409 } 1410 1411 static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason) 1412 { 1413 if (reason == RESET_TYPE_MC_FAILURE) 1414 return RESET_TYPE_DATAPATH; 1415 1416 return efx_mcdi_map_reset_reason(reason); 1417 } 1418 1419 static int efx_ef10_map_reset_flags(u32 *flags) 1420 { 1421 enum { 1422 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) << 1423 ETH_RESET_SHARED_SHIFT), 1424 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER | 1425 ETH_RESET_OFFLOAD | ETH_RESET_MAC | 1426 ETH_RESET_PHY | ETH_RESET_MGMT) << 1427 ETH_RESET_SHARED_SHIFT) 1428 }; 1429 1430 /* We assume for now that our PCI function is permitted to 1431 * reset everything. 1432 */ 1433 1434 if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) { 1435 *flags &= ~EF10_RESET_MC; 1436 return RESET_TYPE_WORLD; 1437 } 1438 1439 if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) { 1440 *flags &= ~EF10_RESET_PORT; 1441 return RESET_TYPE_ALL; 1442 } 1443 1444 /* no invisible reset implemented */ 1445 1446 return -EINVAL; 1447 } 1448 1449 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type) 1450 { 1451 int rc = efx_mcdi_reset(efx, reset_type); 1452 1453 /* Unprivileged functions return -EPERM, but need to return success 1454 * here so that the datapath is brought back up. 1455 */ 1456 if (reset_type == RESET_TYPE_WORLD && rc == -EPERM) 1457 rc = 0; 1458 1459 /* If it was a port reset, trigger reallocation of MC resources. 1460 * Note that on an MC reset nothing needs to be done now because we'll 1461 * detect the MC reset later and handle it then. 1462 * For an FLR, we never get an MC reset event, but the MC has reset all 1463 * resources assigned to us, so we have to trigger reallocation now. 1464 */ 1465 if ((reset_type == RESET_TYPE_ALL || 1466 reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc) 1467 efx_ef10_table_reset_mc_allocations(efx); 1468 return rc; 1469 } 1470 1471 #define EF10_DMA_STAT(ext_name, mcdi_name) \ 1472 [EF10_STAT_ ## ext_name] = \ 1473 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name } 1474 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \ 1475 [EF10_STAT_ ## int_name] = \ 1476 { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name } 1477 #define EF10_OTHER_STAT(ext_name) \ 1478 [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 } 1479 1480 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = { 1481 EF10_DMA_STAT(port_tx_bytes, TX_BYTES), 1482 EF10_DMA_STAT(port_tx_packets, TX_PKTS), 1483 EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS), 1484 EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS), 1485 EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS), 1486 EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS), 1487 EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS), 1488 EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS), 1489 EF10_DMA_STAT(port_tx_64, TX_64_PKTS), 1490 EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS), 1491 EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS), 1492 EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS), 1493 EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS), 1494 EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS), 1495 EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS), 1496 EF10_DMA_STAT(port_rx_bytes, RX_BYTES), 1497 EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES), 1498 EF10_OTHER_STAT(port_rx_good_bytes), 1499 EF10_OTHER_STAT(port_rx_bad_bytes), 1500 EF10_DMA_STAT(port_rx_packets, RX_PKTS), 1501 EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS), 1502 EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS), 1503 EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS), 1504 EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS), 1505 EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS), 1506 EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS), 1507 EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS), 1508 EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS), 1509 EF10_DMA_STAT(port_rx_64, RX_64_PKTS), 1510 EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS), 1511 EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS), 1512 EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS), 1513 EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS), 1514 EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS), 1515 EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS), 1516 EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS), 1517 EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS), 1518 EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS), 1519 EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS), 1520 EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS), 1521 EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS), 1522 EFX_GENERIC_SW_STAT(rx_nodesc_trunc), 1523 EFX_GENERIC_SW_STAT(rx_noskb_drops), 1524 EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW), 1525 EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW), 1526 EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL), 1527 EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL), 1528 EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB), 1529 EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB), 1530 EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING), 1531 EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS), 1532 EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS), 1533 EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS), 1534 EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS), 1535 EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS), 1536 EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS), 1537 EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES), 1538 EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS), 1539 EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES), 1540 EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS), 1541 EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES), 1542 EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS), 1543 EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES), 1544 EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW), 1545 EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS), 1546 EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES), 1547 EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS), 1548 EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES), 1549 EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS), 1550 EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES), 1551 EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS), 1552 EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES), 1553 EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW), 1554 EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS), 1555 EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS), 1556 EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0), 1557 EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1), 1558 EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2), 1559 EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3), 1560 EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK), 1561 EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS), 1562 EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL), 1563 EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL), 1564 EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL), 1565 EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL), 1566 EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL), 1567 EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL), 1568 EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL), 1569 EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK), 1570 EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK), 1571 EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK), 1572 EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS), 1573 EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK), 1574 EF10_DMA_STAT(ctpio_poison, CTPIO_POISON), 1575 EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE), 1576 }; 1577 1578 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) | \ 1579 (1ULL << EF10_STAT_port_tx_packets) | \ 1580 (1ULL << EF10_STAT_port_tx_pause) | \ 1581 (1ULL << EF10_STAT_port_tx_unicast) | \ 1582 (1ULL << EF10_STAT_port_tx_multicast) | \ 1583 (1ULL << EF10_STAT_port_tx_broadcast) | \ 1584 (1ULL << EF10_STAT_port_rx_bytes) | \ 1585 (1ULL << \ 1586 EF10_STAT_port_rx_bytes_minus_good_bytes) | \ 1587 (1ULL << EF10_STAT_port_rx_good_bytes) | \ 1588 (1ULL << EF10_STAT_port_rx_bad_bytes) | \ 1589 (1ULL << EF10_STAT_port_rx_packets) | \ 1590 (1ULL << EF10_STAT_port_rx_good) | \ 1591 (1ULL << EF10_STAT_port_rx_bad) | \ 1592 (1ULL << EF10_STAT_port_rx_pause) | \ 1593 (1ULL << EF10_STAT_port_rx_control) | \ 1594 (1ULL << EF10_STAT_port_rx_unicast) | \ 1595 (1ULL << EF10_STAT_port_rx_multicast) | \ 1596 (1ULL << EF10_STAT_port_rx_broadcast) | \ 1597 (1ULL << EF10_STAT_port_rx_lt64) | \ 1598 (1ULL << EF10_STAT_port_rx_64) | \ 1599 (1ULL << EF10_STAT_port_rx_65_to_127) | \ 1600 (1ULL << EF10_STAT_port_rx_128_to_255) | \ 1601 (1ULL << EF10_STAT_port_rx_256_to_511) | \ 1602 (1ULL << EF10_STAT_port_rx_512_to_1023) |\ 1603 (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\ 1604 (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\ 1605 (1ULL << EF10_STAT_port_rx_gtjumbo) | \ 1606 (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\ 1607 (1ULL << EF10_STAT_port_rx_overflow) | \ 1608 (1ULL << EF10_STAT_port_rx_nodesc_drops) |\ 1609 (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \ 1610 (1ULL << GENERIC_STAT_rx_noskb_drops)) 1611 1612 /* On 7000 series NICs, these statistics are only provided by the 10G MAC. 1613 * For a 10G/40G switchable port we do not expose these because they might 1614 * not include all the packets they should. 1615 * On 8000 series NICs these statistics are always provided. 1616 */ 1617 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) | \ 1618 (1ULL << EF10_STAT_port_tx_lt64) | \ 1619 (1ULL << EF10_STAT_port_tx_64) | \ 1620 (1ULL << EF10_STAT_port_tx_65_to_127) |\ 1621 (1ULL << EF10_STAT_port_tx_128_to_255) |\ 1622 (1ULL << EF10_STAT_port_tx_256_to_511) |\ 1623 (1ULL << EF10_STAT_port_tx_512_to_1023) |\ 1624 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\ 1625 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo)) 1626 1627 /* These statistics are only provided by the 40G MAC. For a 10G/40G 1628 * switchable port we do expose these because the errors will otherwise 1629 * be silent. 1630 */ 1631 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\ 1632 (1ULL << EF10_STAT_port_rx_length_error)) 1633 1634 /* These statistics are only provided if the firmware supports the 1635 * capability PM_AND_RXDP_COUNTERS. 1636 */ 1637 #define HUNT_PM_AND_RXDP_STAT_MASK ( \ 1638 (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) | \ 1639 (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) | \ 1640 (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) | \ 1641 (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) | \ 1642 (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) | \ 1643 (1ULL << EF10_STAT_port_rx_pm_discard_qbb) | \ 1644 (1ULL << EF10_STAT_port_rx_pm_discard_mapping) | \ 1645 (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) | \ 1646 (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) | \ 1647 (1ULL << EF10_STAT_port_rx_dp_streaming_packets) | \ 1648 (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) | \ 1649 (1ULL << EF10_STAT_port_rx_dp_hlb_wait)) 1650 1651 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2, 1652 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in 1653 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS. 1654 * These bits are in the second u64 of the raw mask. 1655 */ 1656 #define EF10_FEC_STAT_MASK ( \ 1657 (1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) | \ 1658 (1ULL << (EF10_STAT_fec_corrected_errors - 64)) | \ 1659 (1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) | \ 1660 (1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) | \ 1661 (1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) | \ 1662 (1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64))) 1663 1664 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3, 1665 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in 1666 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS. 1667 * These bits are in the second u64 of the raw mask. 1668 */ 1669 #define EF10_CTPIO_STAT_MASK ( \ 1670 (1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) | \ 1671 (1ULL << (EF10_STAT_ctpio_long_write_success - 64)) | \ 1672 (1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) | \ 1673 (1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) | \ 1674 (1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) | \ 1675 (1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) | \ 1676 (1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) | \ 1677 (1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) | \ 1678 (1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) | \ 1679 (1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) | \ 1680 (1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) | \ 1681 (1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) | \ 1682 (1ULL << (EF10_STAT_ctpio_success - 64)) | \ 1683 (1ULL << (EF10_STAT_ctpio_fallback - 64)) | \ 1684 (1ULL << (EF10_STAT_ctpio_poison - 64)) | \ 1685 (1ULL << (EF10_STAT_ctpio_erase - 64))) 1686 1687 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx) 1688 { 1689 u64 raw_mask = HUNT_COMMON_STAT_MASK; 1690 u32 port_caps = efx_mcdi_phy_get_caps(efx); 1691 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1692 1693 if (!(efx->mcdi->fn_flags & 1694 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL)) 1695 return 0; 1696 1697 if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) { 1698 raw_mask |= HUNT_40G_EXTRA_STAT_MASK; 1699 /* 8000 series have everything even at 40G */ 1700 if (nic_data->datapath_caps2 & 1701 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN)) 1702 raw_mask |= HUNT_10G_ONLY_STAT_MASK; 1703 } else { 1704 raw_mask |= HUNT_10G_ONLY_STAT_MASK; 1705 } 1706 1707 if (nic_data->datapath_caps & 1708 (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN)) 1709 raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK; 1710 1711 return raw_mask; 1712 } 1713 1714 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask) 1715 { 1716 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1717 u64 raw_mask[2]; 1718 1719 raw_mask[0] = efx_ef10_raw_stat_mask(efx); 1720 1721 /* Only show vadaptor stats when EVB capability is present */ 1722 if (nic_data->datapath_caps & 1723 (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) { 1724 raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1); 1725 raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1; 1726 } else { 1727 raw_mask[1] = 0; 1728 } 1729 /* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */ 1730 if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2) 1731 raw_mask[1] |= EF10_FEC_STAT_MASK; 1732 1733 /* CTPIO stats appear in V3. Only show them on devices that actually 1734 * support CTPIO. Although this driver doesn't use CTPIO others might, 1735 * and we may be reporting the stats for the underlying port. 1736 */ 1737 if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 && 1738 (nic_data->datapath_caps2 & 1739 (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN))) 1740 raw_mask[1] |= EF10_CTPIO_STAT_MASK; 1741 1742 #if BITS_PER_LONG == 64 1743 BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2); 1744 mask[0] = raw_mask[0]; 1745 mask[1] = raw_mask[1]; 1746 #else 1747 BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3); 1748 mask[0] = raw_mask[0] & 0xffffffff; 1749 mask[1] = raw_mask[0] >> 32; 1750 mask[2] = raw_mask[1] & 0xffffffff; 1751 #endif 1752 } 1753 1754 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names) 1755 { 1756 DECLARE_BITMAP(mask, EF10_STAT_COUNT); 1757 1758 efx_ef10_get_stat_mask(efx, mask); 1759 return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, 1760 mask, names); 1761 } 1762 1763 static void efx_ef10_get_fec_stats(struct efx_nic *efx, 1764 struct ethtool_fec_stats *fec_stats) 1765 { 1766 DECLARE_BITMAP(mask, EF10_STAT_COUNT); 1767 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1768 u64 *stats = nic_data->stats; 1769 1770 efx_ef10_get_stat_mask(efx, mask); 1771 if (test_bit(EF10_STAT_fec_corrected_errors, mask)) 1772 fec_stats->corrected_blocks.total = 1773 stats[EF10_STAT_fec_corrected_errors]; 1774 if (test_bit(EF10_STAT_fec_uncorrected_errors, mask)) 1775 fec_stats->uncorrectable_blocks.total = 1776 stats[EF10_STAT_fec_uncorrected_errors]; 1777 } 1778 1779 static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats, 1780 struct rtnl_link_stats64 *core_stats) 1781 { 1782 DECLARE_BITMAP(mask, EF10_STAT_COUNT); 1783 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1784 u64 *stats = nic_data->stats; 1785 size_t stats_count = 0, index; 1786 1787 efx_ef10_get_stat_mask(efx, mask); 1788 1789 if (full_stats) { 1790 for_each_set_bit(index, mask, EF10_STAT_COUNT) { 1791 if (efx_ef10_stat_desc[index].name) { 1792 *full_stats++ = stats[index]; 1793 ++stats_count; 1794 } 1795 } 1796 } 1797 1798 if (!core_stats) 1799 return stats_count; 1800 1801 if (nic_data->datapath_caps & 1802 1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) { 1803 /* Use vadaptor stats. */ 1804 core_stats->rx_packets = stats[EF10_STAT_rx_unicast] + 1805 stats[EF10_STAT_rx_multicast] + 1806 stats[EF10_STAT_rx_broadcast]; 1807 core_stats->tx_packets = stats[EF10_STAT_tx_unicast] + 1808 stats[EF10_STAT_tx_multicast] + 1809 stats[EF10_STAT_tx_broadcast]; 1810 core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] + 1811 stats[EF10_STAT_rx_multicast_bytes] + 1812 stats[EF10_STAT_rx_broadcast_bytes]; 1813 core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] + 1814 stats[EF10_STAT_tx_multicast_bytes] + 1815 stats[EF10_STAT_tx_broadcast_bytes]; 1816 core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] + 1817 stats[GENERIC_STAT_rx_noskb_drops]; 1818 core_stats->multicast = stats[EF10_STAT_rx_multicast]; 1819 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad]; 1820 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow]; 1821 core_stats->rx_errors = core_stats->rx_crc_errors; 1822 core_stats->tx_errors = stats[EF10_STAT_tx_bad]; 1823 } else { 1824 /* Use port stats. */ 1825 core_stats->rx_packets = stats[EF10_STAT_port_rx_packets]; 1826 core_stats->tx_packets = stats[EF10_STAT_port_tx_packets]; 1827 core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes]; 1828 core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes]; 1829 core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] + 1830 stats[GENERIC_STAT_rx_nodesc_trunc] + 1831 stats[GENERIC_STAT_rx_noskb_drops]; 1832 core_stats->multicast = stats[EF10_STAT_port_rx_multicast]; 1833 core_stats->rx_length_errors = 1834 stats[EF10_STAT_port_rx_gtjumbo] + 1835 stats[EF10_STAT_port_rx_length_error]; 1836 core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad]; 1837 core_stats->rx_frame_errors = 1838 stats[EF10_STAT_port_rx_align_error]; 1839 core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow]; 1840 core_stats->rx_errors = (core_stats->rx_length_errors + 1841 core_stats->rx_crc_errors + 1842 core_stats->rx_frame_errors); 1843 } 1844 1845 return stats_count; 1846 } 1847 1848 static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats, 1849 struct rtnl_link_stats64 *core_stats) 1850 { 1851 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1852 DECLARE_BITMAP(mask, EF10_STAT_COUNT); 1853 u64 *stats = nic_data->stats; 1854 1855 efx_ef10_get_stat_mask(efx, mask); 1856 1857 /* If NIC was fini'd (probably resetting), then we can't read 1858 * updated stats right now. 1859 */ 1860 if (nic_data->mc_stats) { 1861 efx_nic_copy_stats(efx, nic_data->mc_stats); 1862 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, 1863 mask, stats, nic_data->mc_stats, false); 1864 } 1865 1866 /* Update derived statistics */ 1867 efx_nic_fix_nodesc_drop_stat(efx, 1868 &stats[EF10_STAT_port_rx_nodesc_drops]); 1869 /* MC Firmware reads RX_BYTES and RX_GOOD_BYTES from the MAC. 1870 * It then calculates RX_BAD_BYTES and DMAs it to us with RX_BYTES. 1871 * We report these as port_rx_ stats. We are not given RX_GOOD_BYTES. 1872 * Here we calculate port_rx_good_bytes. 1873 */ 1874 stats[EF10_STAT_port_rx_good_bytes] = 1875 stats[EF10_STAT_port_rx_bytes] - 1876 stats[EF10_STAT_port_rx_bytes_minus_good_bytes]; 1877 1878 /* The asynchronous reads used to calculate RX_BAD_BYTES in 1879 * MC Firmware are done such that we should not see an increase in 1880 * RX_BAD_BYTES when a good packet has arrived. Unfortunately this 1881 * does mean that the stat can decrease at times. Here we do not 1882 * update the stat unless it has increased or has gone to zero 1883 * (In the case of the NIC rebooting). 1884 * Please see Bug 33781 for a discussion of why things work this way. 1885 */ 1886 efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes], 1887 stats[EF10_STAT_port_rx_bytes_minus_good_bytes]); 1888 efx_update_sw_stats(efx, stats); 1889 1890 return efx_ef10_update_stats_common(efx, full_stats, core_stats); 1891 } 1892 1893 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx) 1894 __must_hold(&efx->stats_lock) 1895 { 1896 MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN); 1897 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1898 DECLARE_BITMAP(mask, EF10_STAT_COUNT); 1899 __le64 generation_start, generation_end; 1900 u64 *stats = nic_data->stats; 1901 u32 dma_len = efx->num_mac_stats * sizeof(u64); 1902 struct efx_buffer stats_buf; 1903 __le64 *dma_stats; 1904 int rc; 1905 1906 spin_unlock_bh(&efx->stats_lock); 1907 1908 efx_ef10_get_stat_mask(efx, mask); 1909 1910 rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_KERNEL); 1911 if (rc) { 1912 spin_lock_bh(&efx->stats_lock); 1913 return rc; 1914 } 1915 1916 dma_stats = stats_buf.addr; 1917 dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID; 1918 1919 MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr); 1920 MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD, 1921 MAC_STATS_IN_DMA, 1); 1922 MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len); 1923 MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED); 1924 1925 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf), 1926 NULL, 0, NULL); 1927 spin_lock_bh(&efx->stats_lock); 1928 if (rc) { 1929 /* Expect ENOENT if DMA queues have not been set up */ 1930 if (rc != -ENOENT || atomic_read(&efx->active_queues)) 1931 efx_mcdi_display_error(efx, MC_CMD_MAC_STATS, 1932 sizeof(inbuf), NULL, 0, rc); 1933 goto out; 1934 } 1935 1936 generation_end = dma_stats[efx->num_mac_stats - 1]; 1937 if (generation_end == EFX_MC_STATS_GENERATION_INVALID) { 1938 WARN_ON_ONCE(1); 1939 goto out; 1940 } 1941 rmb(); 1942 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask, 1943 stats, stats_buf.addr, false); 1944 rmb(); 1945 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START]; 1946 if (generation_end != generation_start) { 1947 rc = -EAGAIN; 1948 goto out; 1949 } 1950 1951 efx_update_sw_stats(efx, stats); 1952 out: 1953 /* releasing a DMA coherent buffer with BH disabled can panic */ 1954 spin_unlock_bh(&efx->stats_lock); 1955 efx_nic_free_buffer(efx, &stats_buf); 1956 spin_lock_bh(&efx->stats_lock); 1957 return rc; 1958 } 1959 1960 static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats, 1961 struct rtnl_link_stats64 *core_stats) 1962 { 1963 if (efx_ef10_try_update_nic_stats_vf(efx)) 1964 return 0; 1965 1966 return efx_ef10_update_stats_common(efx, full_stats, core_stats); 1967 } 1968 1969 static size_t efx_ef10_update_stats_atomic_vf(struct efx_nic *efx, u64 *full_stats, 1970 struct rtnl_link_stats64 *core_stats) 1971 { 1972 struct efx_ef10_nic_data *nic_data = efx->nic_data; 1973 1974 /* In atomic context, cannot update HW stats. Just update the 1975 * software stats and return so the caller can continue. 1976 */ 1977 efx_update_sw_stats(efx, nic_data->stats); 1978 return efx_ef10_update_stats_common(efx, full_stats, core_stats); 1979 } 1980 1981 static void efx_ef10_push_irq_moderation(struct efx_channel *channel) 1982 { 1983 struct efx_nic *efx = channel->efx; 1984 unsigned int mode, usecs; 1985 efx_dword_t timer_cmd; 1986 1987 if (channel->irq_moderation_us) { 1988 mode = 3; 1989 usecs = channel->irq_moderation_us; 1990 } else { 1991 mode = 0; 1992 usecs = 0; 1993 } 1994 1995 if (EFX_EF10_WORKAROUND_61265(efx)) { 1996 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN); 1997 unsigned int ns = usecs * 1000; 1998 1999 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE, 2000 channel->channel); 2001 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns); 2002 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns); 2003 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode); 2004 2005 efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR, 2006 inbuf, sizeof(inbuf), 0, NULL, 0); 2007 } else if (EFX_EF10_WORKAROUND_35388(efx)) { 2008 unsigned int ticks = efx_usecs_to_ticks(efx, usecs); 2009 2010 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS, 2011 EFE_DD_EVQ_IND_TIMER_FLAGS, 2012 ERF_DD_EVQ_IND_TIMER_MODE, mode, 2013 ERF_DD_EVQ_IND_TIMER_VAL, ticks); 2014 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT, 2015 channel->channel); 2016 } else { 2017 unsigned int ticks = efx_usecs_to_ticks(efx, usecs); 2018 2019 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode, 2020 ERF_DZ_TC_TIMER_VAL, ticks, 2021 ERF_FZ_TC_TMR_REL_VAL, ticks); 2022 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR, 2023 channel->channel); 2024 } 2025 } 2026 2027 static void efx_ef10_get_wol_vf(struct efx_nic *efx, 2028 struct ethtool_wolinfo *wol) {} 2029 2030 static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type) 2031 { 2032 return -EOPNOTSUPP; 2033 } 2034 2035 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol) 2036 { 2037 wol->supported = 0; 2038 wol->wolopts = 0; 2039 memset(&wol->sopass, 0, sizeof(wol->sopass)); 2040 } 2041 2042 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type) 2043 { 2044 if (type != 0) 2045 return -EINVAL; 2046 return 0; 2047 } 2048 2049 static void efx_ef10_mcdi_request(struct efx_nic *efx, 2050 const efx_dword_t *hdr, size_t hdr_len, 2051 const efx_dword_t *sdu, size_t sdu_len) 2052 { 2053 struct efx_ef10_nic_data *nic_data = efx->nic_data; 2054 u8 *pdu = nic_data->mcdi_buf.addr; 2055 2056 memcpy(pdu, hdr, hdr_len); 2057 memcpy(pdu + hdr_len, sdu, sdu_len); 2058 wmb(); 2059 2060 /* The hardware provides 'low' and 'high' (doorbell) registers 2061 * for passing the 64-bit address of an MCDI request to 2062 * firmware. However the dwords are swapped by firmware. The 2063 * least significant bits of the doorbell are then 0 for all 2064 * MCDI requests due to alignment. 2065 */ 2066 _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32), 2067 ER_DZ_MC_DB_LWRD); 2068 _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr), 2069 ER_DZ_MC_DB_HWRD); 2070 } 2071 2072 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx) 2073 { 2074 struct efx_ef10_nic_data *nic_data = efx->nic_data; 2075 const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr; 2076 2077 rmb(); 2078 return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE); 2079 } 2080 2081 static void 2082 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf, 2083 size_t offset, size_t outlen) 2084 { 2085 struct efx_ef10_nic_data *nic_data = efx->nic_data; 2086 const u8 *pdu = nic_data->mcdi_buf.addr; 2087 2088 memcpy(outbuf, pdu + offset, outlen); 2089 } 2090 2091 static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx) 2092 { 2093 struct efx_ef10_nic_data *nic_data = efx->nic_data; 2094 2095 /* All our allocations have been reset */ 2096 efx_ef10_table_reset_mc_allocations(efx); 2097 2098 /* The datapath firmware might have been changed */ 2099 nic_data->must_check_datapath_caps = true; 2100 2101 /* MAC statistics have been cleared on the NIC; clear the local 2102 * statistic that we update with efx_update_diff_stat(). 2103 */ 2104 nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0; 2105 } 2106 2107 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx) 2108 { 2109 struct efx_ef10_nic_data *nic_data = efx->nic_data; 2110 int rc; 2111 2112 rc = efx_ef10_get_warm_boot_count(efx); 2113 if (rc < 0) { 2114 /* The firmware is presumably in the process of 2115 * rebooting. However, we are supposed to report each 2116 * reboot just once, so we must only do that once we 2117 * can read and store the updated warm boot count. 2118 */ 2119 return 0; 2120 } 2121 2122 if (rc == nic_data->warm_boot_count) 2123 return 0; 2124 2125 nic_data->warm_boot_count = rc; 2126 efx_ef10_mcdi_reboot_detected(efx); 2127 2128 return -EIO; 2129 } 2130 2131 /* Handle an MSI interrupt 2132 * 2133 * Handle an MSI hardware interrupt. This routine schedules event 2134 * queue processing. No interrupt acknowledgement cycle is necessary. 2135 * Also, we never need to check that the interrupt is for us, since 2136 * MSI interrupts cannot be shared. 2137 */ 2138 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id) 2139 { 2140 struct efx_msi_context *context = dev_id; 2141 struct efx_nic *efx = context->efx; 2142 2143 netif_vdbg(efx, intr, efx->net_dev, 2144 "IRQ %d on CPU %d\n", irq, raw_smp_processor_id()); 2145 2146 if (likely(READ_ONCE(efx->irq_soft_enabled))) { 2147 /* Note test interrupts */ 2148 if (context->index == efx->irq_level) 2149 efx->last_irq_cpu = raw_smp_processor_id(); 2150 2151 /* Schedule processing of the channel */ 2152 efx_schedule_channel_irq(efx->channel[context->index]); 2153 } 2154 2155 return IRQ_HANDLED; 2156 } 2157 2158 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id) 2159 { 2160 struct efx_nic *efx = dev_id; 2161 bool soft_enabled = READ_ONCE(efx->irq_soft_enabled); 2162 struct efx_channel *channel; 2163 efx_dword_t reg; 2164 u32 queues; 2165 2166 /* Read the ISR which also ACKs the interrupts */ 2167 efx_readd(efx, ®, ER_DZ_BIU_INT_ISR); 2168 queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG); 2169 2170 if (queues == 0) 2171 return IRQ_NONE; 2172 2173 if (likely(soft_enabled)) { 2174 /* Note test interrupts */ 2175 if (queues & (1U << efx->irq_level)) 2176 efx->last_irq_cpu = raw_smp_processor_id(); 2177 2178 efx_for_each_channel(channel, efx) { 2179 if (queues & 1) 2180 efx_schedule_channel_irq(channel); 2181 queues >>= 1; 2182 } 2183 } 2184 2185 netif_vdbg(efx, intr, efx->net_dev, 2186 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n", 2187 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg)); 2188 2189 return IRQ_HANDLED; 2190 } 2191 2192 static int efx_ef10_irq_test_generate(struct efx_nic *efx) 2193 { 2194 MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN); 2195 2196 if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true, 2197 NULL) == 0) 2198 return -ENOTSUPP; 2199 2200 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0); 2201 2202 MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level); 2203 return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT, 2204 inbuf, sizeof(inbuf), NULL, 0, NULL); 2205 } 2206 2207 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue) 2208 { 2209 /* low two bits of label are what we want for type */ 2210 BUILD_BUG_ON((EFX_TXQ_TYPE_OUTER_CSUM | EFX_TXQ_TYPE_INNER_CSUM) != 3); 2211 tx_queue->type = tx_queue->label & 3; 2212 return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd, 2213 (tx_queue->ptr_mask + 1) * 2214 sizeof(efx_qword_t), 2215 GFP_KERNEL); 2216 } 2217 2218 /* This writes to the TX_DESC_WPTR and also pushes data */ 2219 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue, 2220 const efx_qword_t *txd) 2221 { 2222 unsigned int write_ptr; 2223 efx_oword_t reg; 2224 2225 write_ptr = tx_queue->write_count & tx_queue->ptr_mask; 2226 EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr); 2227 reg.qword[0] = *txd; 2228 efx_writeo_page(tx_queue->efx, ®, 2229 ER_DZ_TX_DESC_UPD, tx_queue->queue); 2230 } 2231 2232 /* Add Firmware-Assisted TSO v2 option descriptors to a queue. 2233 */ 2234 int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue, struct sk_buff *skb, 2235 bool *data_mapped) 2236 { 2237 struct efx_tx_buffer *buffer; 2238 u16 inner_ipv4_id = 0; 2239 u16 outer_ipv4_id = 0; 2240 struct tcphdr *tcp; 2241 struct iphdr *ip; 2242 u16 ip_tot_len; 2243 u32 seqnum; 2244 u32 mss; 2245 2246 EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2); 2247 2248 mss = skb_shinfo(skb)->gso_size; 2249 2250 if (unlikely(mss < 4)) { 2251 WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss); 2252 return -EINVAL; 2253 } 2254 2255 if (skb->encapsulation) { 2256 if (!tx_queue->tso_encap) 2257 return -EINVAL; 2258 ip = ip_hdr(skb); 2259 if (ip->version == 4) 2260 outer_ipv4_id = ntohs(ip->id); 2261 2262 ip = inner_ip_hdr(skb); 2263 tcp = inner_tcp_hdr(skb); 2264 } else { 2265 ip = ip_hdr(skb); 2266 tcp = tcp_hdr(skb); 2267 } 2268 2269 /* 8000-series EF10 hardware requires that IP Total Length be 2270 * greater than or equal to the value it will have in each segment 2271 * (which is at most mss + 208 + TCP header length), but also less 2272 * than (0x10000 - inner_network_header). Otherwise the TCP 2273 * checksum calculation will be broken for encapsulated packets. 2274 * We fill in ip->tot_len with 0xff30, which should satisfy the 2275 * first requirement unless the MSS is ridiculously large (which 2276 * should be impossible as the driver max MTU is 9216); it is 2277 * guaranteed to satisfy the second as we only attempt TSO if 2278 * inner_network_header <= 208. 2279 */ 2280 ip_tot_len = 0x10000 - EFX_TSO2_MAX_HDRLEN; 2281 EFX_WARN_ON_ONCE_PARANOID(mss + EFX_TSO2_MAX_HDRLEN + 2282 (tcp->doff << 2u) > ip_tot_len); 2283 2284 if (ip->version == 4) { 2285 ip->tot_len = htons(ip_tot_len); 2286 ip->check = 0; 2287 inner_ipv4_id = ntohs(ip->id); 2288 } else { 2289 ((struct ipv6hdr *)ip)->payload_len = htons(ip_tot_len); 2290 } 2291 2292 seqnum = ntohl(tcp->seq); 2293 2294 buffer = efx_tx_queue_get_insert_buffer(tx_queue); 2295 2296 buffer->flags = EFX_TX_BUF_OPTION; 2297 buffer->len = 0; 2298 buffer->unmap_len = 0; 2299 EFX_POPULATE_QWORD_5(buffer->option, 2300 ESF_DZ_TX_DESC_IS_OPT, 1, 2301 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO, 2302 ESF_DZ_TX_TSO_OPTION_TYPE, 2303 ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A, 2304 ESF_DZ_TX_TSO_IP_ID, inner_ipv4_id, 2305 ESF_DZ_TX_TSO_TCP_SEQNO, seqnum 2306 ); 2307 ++tx_queue->insert_count; 2308 2309 buffer = efx_tx_queue_get_insert_buffer(tx_queue); 2310 2311 buffer->flags = EFX_TX_BUF_OPTION; 2312 buffer->len = 0; 2313 buffer->unmap_len = 0; 2314 EFX_POPULATE_QWORD_5(buffer->option, 2315 ESF_DZ_TX_DESC_IS_OPT, 1, 2316 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO, 2317 ESF_DZ_TX_TSO_OPTION_TYPE, 2318 ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B, 2319 ESF_DZ_TX_TSO_OUTER_IPID, outer_ipv4_id, 2320 ESF_DZ_TX_TSO_TCP_MSS, mss 2321 ); 2322 ++tx_queue->insert_count; 2323 2324 return 0; 2325 } 2326 2327 static u32 efx_ef10_tso_versions(struct efx_nic *efx) 2328 { 2329 struct efx_ef10_nic_data *nic_data = efx->nic_data; 2330 u32 tso_versions = 0; 2331 2332 if (nic_data->datapath_caps & 2333 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) 2334 tso_versions |= BIT(1); 2335 if (nic_data->datapath_caps2 & 2336 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN)) 2337 tso_versions |= BIT(2); 2338 return tso_versions; 2339 } 2340 2341 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue) 2342 { 2343 bool csum_offload = tx_queue->type & EFX_TXQ_TYPE_OUTER_CSUM; 2344 bool inner_csum = tx_queue->type & EFX_TXQ_TYPE_INNER_CSUM; 2345 struct efx_channel *channel = tx_queue->channel; 2346 struct efx_nic *efx = tx_queue->efx; 2347 struct efx_ef10_nic_data *nic_data; 2348 efx_qword_t *txd; 2349 int rc; 2350 2351 nic_data = efx->nic_data; 2352 2353 /* Only attempt to enable TX timestamping if we have the license for it, 2354 * otherwise TXQ init will fail 2355 */ 2356 if (!(nic_data->licensed_features & 2357 (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) { 2358 tx_queue->timestamping = false; 2359 /* Disable sync events on this channel. */ 2360 if (efx->type->ptp_set_ts_sync_events) 2361 efx->type->ptp_set_ts_sync_events(efx, false, false); 2362 } 2363 2364 /* TSOv2 is a limited resource that can only be configured on a limited 2365 * number of queues. TSO without checksum offload is not really a thing, 2366 * so we only enable it for those queues. 2367 * TSOv2 cannot be used with Hardware timestamping, and is never needed 2368 * for XDP tx. 2369 */ 2370 if (efx_has_cap(efx, TX_TSO_V2)) { 2371 if ((csum_offload || inner_csum) && 2372 !tx_queue->timestamping && !tx_queue->xdp_tx) { 2373 tx_queue->tso_version = 2; 2374 netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n", 2375 channel->channel); 2376 } 2377 } else if (efx_has_cap(efx, TX_TSO)) { 2378 tx_queue->tso_version = 1; 2379 } 2380 2381 rc = efx_mcdi_tx_init(tx_queue); 2382 if (rc) 2383 goto fail; 2384 2385 /* A previous user of this TX queue might have set us up the 2386 * bomb by writing a descriptor to the TX push collector but 2387 * not the doorbell. (Each collector belongs to a port, not a 2388 * queue or function, so cannot easily be reset.) We must 2389 * attempt to push a no-op descriptor in its place. 2390 */ 2391 tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION; 2392 tx_queue->insert_count = 1; 2393 txd = efx_tx_desc(tx_queue, 0); 2394 EFX_POPULATE_QWORD_7(*txd, 2395 ESF_DZ_TX_DESC_IS_OPT, true, 2396 ESF_DZ_TX_OPTION_TYPE, 2397 ESE_DZ_TX_OPTION_DESC_CRC_CSUM, 2398 ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload, 2399 ESF_DZ_TX_OPTION_IP_CSUM, csum_offload && tx_queue->tso_version != 2, 2400 ESF_DZ_TX_OPTION_INNER_UDP_TCP_CSUM, inner_csum, 2401 ESF_DZ_TX_OPTION_INNER_IP_CSUM, inner_csum && tx_queue->tso_version != 2, 2402 ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping); 2403 tx_queue->write_count = 1; 2404 2405 if (tx_queue->tso_version == 2 && efx_has_cap(efx, TX_TSO_V2_ENCAP)) 2406 tx_queue->tso_encap = true; 2407 2408 wmb(); 2409 efx_ef10_push_tx_desc(tx_queue, txd); 2410 2411 return; 2412 2413 fail: 2414 netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n", 2415 tx_queue->queue); 2416 } 2417 2418 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */ 2419 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue) 2420 { 2421 unsigned int write_ptr; 2422 efx_dword_t reg; 2423 2424 write_ptr = tx_queue->write_count & tx_queue->ptr_mask; 2425 EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr); 2426 efx_writed_page(tx_queue->efx, ®, 2427 ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue); 2428 } 2429 2430 #define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff 2431 2432 static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue, 2433 dma_addr_t dma_addr, unsigned int len) 2434 { 2435 if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) { 2436 /* If we need to break across multiple descriptors we should 2437 * stop at a page boundary. This assumes the length limit is 2438 * greater than the page size. 2439 */ 2440 dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN; 2441 2442 BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE); 2443 len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr; 2444 } 2445 2446 return len; 2447 } 2448 2449 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue) 2450 { 2451 unsigned int old_write_count = tx_queue->write_count; 2452 struct efx_tx_buffer *buffer; 2453 unsigned int write_ptr; 2454 efx_qword_t *txd; 2455 2456 tx_queue->xmit_pending = false; 2457 if (unlikely(tx_queue->write_count == tx_queue->insert_count)) 2458 return; 2459 2460 do { 2461 write_ptr = tx_queue->write_count & tx_queue->ptr_mask; 2462 buffer = &tx_queue->buffer[write_ptr]; 2463 txd = efx_tx_desc(tx_queue, write_ptr); 2464 ++tx_queue->write_count; 2465 2466 /* Create TX descriptor ring entry */ 2467 if (buffer->flags & EFX_TX_BUF_OPTION) { 2468 *txd = buffer->option; 2469 if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1) 2470 /* PIO descriptor */ 2471 tx_queue->packet_write_count = tx_queue->write_count; 2472 } else { 2473 tx_queue->packet_write_count = tx_queue->write_count; 2474 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1); 2475 EFX_POPULATE_QWORD_3( 2476 *txd, 2477 ESF_DZ_TX_KER_CONT, 2478 buffer->flags & EFX_TX_BUF_CONT, 2479 ESF_DZ_TX_KER_BYTE_CNT, buffer->len, 2480 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr); 2481 } 2482 } while (tx_queue->write_count != tx_queue->insert_count); 2483 2484 wmb(); /* Ensure descriptors are written before they are fetched */ 2485 2486 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) { 2487 txd = efx_tx_desc(tx_queue, 2488 old_write_count & tx_queue->ptr_mask); 2489 efx_ef10_push_tx_desc(tx_queue, txd); 2490 ++tx_queue->pushes; 2491 } else { 2492 efx_ef10_notify_tx_desc(tx_queue); 2493 } 2494 } 2495 2496 static int efx_ef10_probe_multicast_chaining(struct efx_nic *efx) 2497 { 2498 struct efx_ef10_nic_data *nic_data = efx->nic_data; 2499 unsigned int enabled, implemented; 2500 bool want_workaround_26807; 2501 int rc; 2502 2503 rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled); 2504 if (rc == -ENOSYS) { 2505 /* GET_WORKAROUNDS was implemented before this workaround, 2506 * thus it must be unavailable in this firmware. 2507 */ 2508 nic_data->workaround_26807 = false; 2509 return 0; 2510 } 2511 if (rc) 2512 return rc; 2513 want_workaround_26807 = 2514 implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807; 2515 nic_data->workaround_26807 = 2516 !!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807); 2517 2518 if (want_workaround_26807 && !nic_data->workaround_26807) { 2519 unsigned int flags; 2520 2521 rc = efx_mcdi_set_workaround(efx, 2522 MC_CMD_WORKAROUND_BUG26807, 2523 true, &flags); 2524 if (!rc) { 2525 if (flags & 2526 1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) { 2527 netif_info(efx, drv, efx->net_dev, 2528 "other functions on NIC have been reset\n"); 2529 2530 /* With MCFW v4.6.x and earlier, the 2531 * boot count will have incremented, 2532 * so re-read the warm_boot_count 2533 * value now to ensure this function 2534 * doesn't think it has changed next 2535 * time it checks. 2536 */ 2537 rc = efx_ef10_get_warm_boot_count(efx); 2538 if (rc >= 0) { 2539 nic_data->warm_boot_count = rc; 2540 rc = 0; 2541 } 2542 } 2543 nic_data->workaround_26807 = true; 2544 } else if (rc == -EPERM) { 2545 rc = 0; 2546 } 2547 } 2548 return rc; 2549 } 2550 2551 static int efx_ef10_filter_table_probe(struct efx_nic *efx) 2552 { 2553 struct efx_ef10_nic_data *nic_data = efx->nic_data; 2554 int rc = efx_ef10_probe_multicast_chaining(efx); 2555 struct efx_mcdi_filter_vlan *vlan; 2556 2557 if (rc) 2558 return rc; 2559 down_write(&efx->filter_sem); 2560 rc = efx_mcdi_filter_table_probe(efx, nic_data->workaround_26807); 2561 2562 if (rc) 2563 goto out_unlock; 2564 2565 list_for_each_entry(vlan, &nic_data->vlan_list, list) { 2566 rc = efx_mcdi_filter_add_vlan(efx, vlan->vid); 2567 if (rc) 2568 goto fail_add_vlan; 2569 } 2570 goto out_unlock; 2571 2572 fail_add_vlan: 2573 efx_mcdi_filter_table_remove(efx); 2574 out_unlock: 2575 up_write(&efx->filter_sem); 2576 return rc; 2577 } 2578 2579 static void efx_ef10_filter_table_remove(struct efx_nic *efx) 2580 { 2581 down_write(&efx->filter_sem); 2582 efx_mcdi_filter_table_remove(efx); 2583 up_write(&efx->filter_sem); 2584 } 2585 2586 /* This creates an entry in the RX descriptor queue */ 2587 static inline void 2588 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index) 2589 { 2590 struct efx_rx_buffer *rx_buf; 2591 efx_qword_t *rxd; 2592 2593 rxd = efx_rx_desc(rx_queue, index); 2594 rx_buf = efx_rx_buffer(rx_queue, index); 2595 EFX_POPULATE_QWORD_2(*rxd, 2596 ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len, 2597 ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr); 2598 } 2599 2600 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue) 2601 { 2602 struct efx_nic *efx = rx_queue->efx; 2603 unsigned int write_count; 2604 efx_dword_t reg; 2605 2606 /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */ 2607 write_count = rx_queue->added_count & ~7; 2608 if (rx_queue->notified_count == write_count) 2609 return; 2610 2611 do 2612 efx_ef10_build_rx_desc( 2613 rx_queue, 2614 rx_queue->notified_count & rx_queue->ptr_mask); 2615 while (++rx_queue->notified_count != write_count); 2616 2617 wmb(); 2618 EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR, 2619 write_count & rx_queue->ptr_mask); 2620 efx_writed_page(efx, ®, ER_DZ_RX_DESC_UPD, 2621 efx_rx_queue_index(rx_queue)); 2622 } 2623 2624 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete; 2625 2626 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue) 2627 { 2628 struct efx_channel *channel = efx_rx_queue_channel(rx_queue); 2629 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN); 2630 efx_qword_t event; 2631 2632 EFX_POPULATE_QWORD_2(event, 2633 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV, 2634 ESF_DZ_EV_DATA, EFX_EF10_REFILL); 2635 2636 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel); 2637 2638 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has 2639 * already swapped the data to little-endian order. 2640 */ 2641 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0], 2642 sizeof(efx_qword_t)); 2643 2644 efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT, 2645 inbuf, sizeof(inbuf), 0, 2646 efx_ef10_rx_defer_refill_complete, 0); 2647 } 2648 2649 static void 2650 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie, 2651 int rc, efx_dword_t *outbuf, 2652 size_t outlen_actual) 2653 { 2654 /* nothing to do */ 2655 } 2656 2657 static int efx_ef10_ev_init(struct efx_channel *channel) 2658 { 2659 struct efx_nic *efx = channel->efx; 2660 struct efx_ef10_nic_data *nic_data; 2661 bool use_v2, cut_thru; 2662 2663 nic_data = efx->nic_data; 2664 use_v2 = nic_data->datapath_caps2 & 2665 1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN; 2666 cut_thru = !(nic_data->datapath_caps & 2667 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN); 2668 return efx_mcdi_ev_init(channel, cut_thru, use_v2); 2669 } 2670 2671 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue, 2672 unsigned int rx_queue_label) 2673 { 2674 struct efx_nic *efx = rx_queue->efx; 2675 2676 netif_info(efx, hw, efx->net_dev, 2677 "rx event arrived on queue %d labeled as queue %u\n", 2678 efx_rx_queue_index(rx_queue), rx_queue_label); 2679 2680 efx_schedule_reset(efx, RESET_TYPE_DISABLE); 2681 } 2682 2683 static void 2684 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue, 2685 unsigned int actual, unsigned int expected) 2686 { 2687 unsigned int dropped = (actual - expected) & rx_queue->ptr_mask; 2688 struct efx_nic *efx = rx_queue->efx; 2689 2690 netif_info(efx, hw, efx->net_dev, 2691 "dropped %d events (index=%d expected=%d)\n", 2692 dropped, actual, expected); 2693 2694 efx_schedule_reset(efx, RESET_TYPE_DISABLE); 2695 } 2696 2697 /* partially received RX was aborted. clean up. */ 2698 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue) 2699 { 2700 unsigned int rx_desc_ptr; 2701 2702 netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev, 2703 "scattered RX aborted (dropping %u buffers)\n", 2704 rx_queue->scatter_n); 2705 2706 rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask; 2707 2708 efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n, 2709 0, EFX_RX_PKT_DISCARD); 2710 2711 rx_queue->removed_count += rx_queue->scatter_n; 2712 rx_queue->scatter_n = 0; 2713 rx_queue->scatter_len = 0; 2714 ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc; 2715 } 2716 2717 static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel, 2718 unsigned int n_packets, 2719 unsigned int rx_encap_hdr, 2720 unsigned int rx_l3_class, 2721 unsigned int rx_l4_class, 2722 const efx_qword_t *event) 2723 { 2724 struct efx_nic *efx = channel->efx; 2725 bool handled = false; 2726 2727 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) { 2728 if (!(efx->net_dev->features & NETIF_F_RXALL)) { 2729 if (!efx->loopback_selftest) 2730 channel->n_rx_eth_crc_err += n_packets; 2731 return EFX_RX_PKT_DISCARD; 2732 } 2733 handled = true; 2734 } 2735 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) { 2736 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN && 2737 rx_l3_class != ESE_DZ_L3_CLASS_IP4 && 2738 rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG && 2739 rx_l3_class != ESE_DZ_L3_CLASS_IP6 && 2740 rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG)) 2741 netdev_WARN(efx->net_dev, 2742 "invalid class for RX_IPCKSUM_ERR: event=" 2743 EFX_QWORD_FMT "\n", 2744 EFX_QWORD_VAL(*event)); 2745 if (!efx->loopback_selftest) 2746 *(rx_encap_hdr ? 2747 &channel->n_rx_outer_ip_hdr_chksum_err : 2748 &channel->n_rx_ip_hdr_chksum_err) += n_packets; 2749 return 0; 2750 } 2751 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) { 2752 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN && 2753 ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 && 2754 rx_l3_class != ESE_DZ_L3_CLASS_IP6) || 2755 (rx_l4_class != ESE_FZ_L4_CLASS_TCP && 2756 rx_l4_class != ESE_FZ_L4_CLASS_UDP)))) 2757 netdev_WARN(efx->net_dev, 2758 "invalid class for RX_TCPUDP_CKSUM_ERR: event=" 2759 EFX_QWORD_FMT "\n", 2760 EFX_QWORD_VAL(*event)); 2761 if (!efx->loopback_selftest) 2762 *(rx_encap_hdr ? 2763 &channel->n_rx_outer_tcp_udp_chksum_err : 2764 &channel->n_rx_tcp_udp_chksum_err) += n_packets; 2765 return 0; 2766 } 2767 if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) { 2768 if (unlikely(!rx_encap_hdr)) 2769 netdev_WARN(efx->net_dev, 2770 "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event=" 2771 EFX_QWORD_FMT "\n", 2772 EFX_QWORD_VAL(*event)); 2773 else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 && 2774 rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG && 2775 rx_l3_class != ESE_DZ_L3_CLASS_IP6 && 2776 rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG)) 2777 netdev_WARN(efx->net_dev, 2778 "invalid class for RX_IP_INNER_CHKSUM_ERR: event=" 2779 EFX_QWORD_FMT "\n", 2780 EFX_QWORD_VAL(*event)); 2781 if (!efx->loopback_selftest) 2782 channel->n_rx_inner_ip_hdr_chksum_err += n_packets; 2783 return 0; 2784 } 2785 if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) { 2786 if (unlikely(!rx_encap_hdr)) 2787 netdev_WARN(efx->net_dev, 2788 "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event=" 2789 EFX_QWORD_FMT "\n", 2790 EFX_QWORD_VAL(*event)); 2791 else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 && 2792 rx_l3_class != ESE_DZ_L3_CLASS_IP6) || 2793 (rx_l4_class != ESE_FZ_L4_CLASS_TCP && 2794 rx_l4_class != ESE_FZ_L4_CLASS_UDP))) 2795 netdev_WARN(efx->net_dev, 2796 "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event=" 2797 EFX_QWORD_FMT "\n", 2798 EFX_QWORD_VAL(*event)); 2799 if (!efx->loopback_selftest) 2800 channel->n_rx_inner_tcp_udp_chksum_err += n_packets; 2801 return 0; 2802 } 2803 2804 WARN_ON(!handled); /* No error bits were recognised */ 2805 return 0; 2806 } 2807 2808 static int efx_ef10_handle_rx_event(struct efx_channel *channel, 2809 const efx_qword_t *event) 2810 { 2811 unsigned int rx_bytes, next_ptr_lbits, rx_queue_label; 2812 unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr; 2813 unsigned int n_descs, n_packets, i; 2814 struct efx_nic *efx = channel->efx; 2815 struct efx_ef10_nic_data *nic_data = efx->nic_data; 2816 struct efx_rx_queue *rx_queue; 2817 efx_qword_t errors; 2818 bool rx_cont; 2819 u16 flags = 0; 2820 2821 if (unlikely(READ_ONCE(efx->reset_pending))) 2822 return 0; 2823 2824 /* Basic packet information */ 2825 rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES); 2826 next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS); 2827 rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL); 2828 rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS); 2829 rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS); 2830 rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT); 2831 rx_encap_hdr = 2832 nic_data->datapath_caps & 2833 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ? 2834 EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) : 2835 ESE_EZ_ENCAP_HDR_NONE; 2836 2837 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT)) 2838 netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event=" 2839 EFX_QWORD_FMT "\n", 2840 EFX_QWORD_VAL(*event)); 2841 2842 rx_queue = efx_channel_get_rx_queue(channel); 2843 2844 if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue))) 2845 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label); 2846 2847 n_descs = ((next_ptr_lbits - rx_queue->removed_count) & 2848 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1)); 2849 2850 if (n_descs != rx_queue->scatter_n + 1) { 2851 struct efx_ef10_nic_data *nic_data = efx->nic_data; 2852 2853 /* detect rx abort */ 2854 if (unlikely(n_descs == rx_queue->scatter_n)) { 2855 if (rx_queue->scatter_n == 0 || rx_bytes != 0) 2856 netdev_WARN(efx->net_dev, 2857 "invalid RX abort: scatter_n=%u event=" 2858 EFX_QWORD_FMT "\n", 2859 rx_queue->scatter_n, 2860 EFX_QWORD_VAL(*event)); 2861 efx_ef10_handle_rx_abort(rx_queue); 2862 return 0; 2863 } 2864 2865 /* Check that RX completion merging is valid, i.e. 2866 * the current firmware supports it and this is a 2867 * non-scattered packet. 2868 */ 2869 if (!(nic_data->datapath_caps & 2870 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) || 2871 rx_queue->scatter_n != 0 || rx_cont) { 2872 efx_ef10_handle_rx_bad_lbits( 2873 rx_queue, next_ptr_lbits, 2874 (rx_queue->removed_count + 2875 rx_queue->scatter_n + 1) & 2876 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1)); 2877 return 0; 2878 } 2879 2880 /* Merged completion for multiple non-scattered packets */ 2881 rx_queue->scatter_n = 1; 2882 rx_queue->scatter_len = 0; 2883 n_packets = n_descs; 2884 ++channel->n_rx_merge_events; 2885 channel->n_rx_merge_packets += n_packets; 2886 flags |= EFX_RX_PKT_PREFIX_LEN; 2887 } else { 2888 ++rx_queue->scatter_n; 2889 rx_queue->scatter_len += rx_bytes; 2890 if (rx_cont) 2891 return 0; 2892 n_packets = 1; 2893 } 2894 2895 EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1, 2896 ESF_DZ_RX_IPCKSUM_ERR, 1, 2897 ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1, 2898 ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1, 2899 ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1); 2900 EFX_AND_QWORD(errors, *event, errors); 2901 if (unlikely(!EFX_QWORD_IS_ZERO(errors))) { 2902 flags |= efx_ef10_handle_rx_event_errors(channel, n_packets, 2903 rx_encap_hdr, 2904 rx_l3_class, rx_l4_class, 2905 event); 2906 } else { 2907 bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP || 2908 rx_l4_class == ESE_FZ_L4_CLASS_UDP; 2909 2910 switch (rx_encap_hdr) { 2911 case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */ 2912 flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */ 2913 if (tcpudp) 2914 flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */ 2915 break; 2916 case ESE_EZ_ENCAP_HDR_GRE: 2917 case ESE_EZ_ENCAP_HDR_NONE: 2918 if (tcpudp) 2919 flags |= EFX_RX_PKT_CSUMMED; 2920 break; 2921 default: 2922 netdev_WARN(efx->net_dev, 2923 "unknown encapsulation type: event=" 2924 EFX_QWORD_FMT "\n", 2925 EFX_QWORD_VAL(*event)); 2926 } 2927 } 2928 2929 if (rx_l4_class == ESE_FZ_L4_CLASS_TCP) 2930 flags |= EFX_RX_PKT_TCP; 2931 2932 channel->irq_mod_score += 2 * n_packets; 2933 2934 /* Handle received packet(s) */ 2935 for (i = 0; i < n_packets; i++) { 2936 efx_rx_packet(rx_queue, 2937 rx_queue->removed_count & rx_queue->ptr_mask, 2938 rx_queue->scatter_n, rx_queue->scatter_len, 2939 flags); 2940 rx_queue->removed_count += rx_queue->scatter_n; 2941 } 2942 2943 rx_queue->scatter_n = 0; 2944 rx_queue->scatter_len = 0; 2945 2946 return n_packets; 2947 } 2948 2949 static u32 efx_ef10_extract_event_ts(efx_qword_t *event) 2950 { 2951 u32 tstamp; 2952 2953 tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI); 2954 tstamp <<= 16; 2955 tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO); 2956 2957 return tstamp; 2958 } 2959 2960 static int 2961 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event) 2962 { 2963 struct efx_nic *efx = channel->efx; 2964 struct efx_tx_queue *tx_queue; 2965 unsigned int tx_ev_desc_ptr; 2966 unsigned int tx_ev_q_label; 2967 unsigned int tx_ev_type; 2968 int work_done; 2969 u64 ts_part; 2970 2971 if (unlikely(READ_ONCE(efx->reset_pending))) 2972 return 0; 2973 2974 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT))) 2975 return 0; 2976 2977 /* Get the transmit queue */ 2978 tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL); 2979 tx_queue = channel->tx_queue + (tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL); 2980 2981 if (!tx_queue->timestamping) { 2982 /* Transmit completion */ 2983 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX); 2984 return efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask); 2985 } 2986 2987 /* Transmit timestamps are only available for 8XXX series. They result 2988 * in up to three events per packet. These occur in order, and are: 2989 * - the normal completion event (may be omitted) 2990 * - the low part of the timestamp 2991 * - the high part of the timestamp 2992 * 2993 * It's possible for multiple completion events to appear before the 2994 * corresponding timestamps. So we can for example get: 2995 * COMP N 2996 * COMP N+1 2997 * TS_LO N 2998 * TS_HI N 2999 * TS_LO N+1 3000 * TS_HI N+1 3001 * 3002 * In addition it's also possible for the adjacent completions to be 3003 * merged, so we may not see COMP N above. As such, the completion 3004 * events are not very useful here. 3005 * 3006 * Each part of the timestamp is itself split across two 16 bit 3007 * fields in the event. 3008 */ 3009 tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1); 3010 work_done = 0; 3011 3012 switch (tx_ev_type) { 3013 case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION: 3014 /* Ignore this event - see above. */ 3015 break; 3016 3017 case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO: 3018 ts_part = efx_ef10_extract_event_ts(event); 3019 tx_queue->completed_timestamp_minor = ts_part; 3020 break; 3021 3022 case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI: 3023 ts_part = efx_ef10_extract_event_ts(event); 3024 tx_queue->completed_timestamp_major = ts_part; 3025 3026 efx_xmit_done_single(tx_queue); 3027 work_done = 1; 3028 break; 3029 3030 default: 3031 netif_err(efx, hw, efx->net_dev, 3032 "channel %d unknown tx event type %d (data " 3033 EFX_QWORD_FMT ")\n", 3034 channel->channel, tx_ev_type, 3035 EFX_QWORD_VAL(*event)); 3036 break; 3037 } 3038 3039 return work_done; 3040 } 3041 3042 static void 3043 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event) 3044 { 3045 struct efx_nic *efx = channel->efx; 3046 int subcode; 3047 3048 subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE); 3049 3050 switch (subcode) { 3051 case ESE_DZ_DRV_TIMER_EV: 3052 case ESE_DZ_DRV_WAKE_UP_EV: 3053 break; 3054 case ESE_DZ_DRV_START_UP_EV: 3055 /* event queue init complete. ok. */ 3056 break; 3057 default: 3058 netif_err(efx, hw, efx->net_dev, 3059 "channel %d unknown driver event type %d" 3060 " (data " EFX_QWORD_FMT ")\n", 3061 channel->channel, subcode, 3062 EFX_QWORD_VAL(*event)); 3063 3064 } 3065 } 3066 3067 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel, 3068 efx_qword_t *event) 3069 { 3070 struct efx_nic *efx = channel->efx; 3071 u32 subcode; 3072 3073 subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0); 3074 3075 switch (subcode) { 3076 case EFX_EF10_TEST: 3077 channel->event_test_cpu = raw_smp_processor_id(); 3078 break; 3079 case EFX_EF10_REFILL: 3080 /* The queue must be empty, so we won't receive any rx 3081 * events, so efx_process_channel() won't refill the 3082 * queue. Refill it here 3083 */ 3084 efx_fast_push_rx_descriptors(&channel->rx_queue, true); 3085 break; 3086 default: 3087 netif_err(efx, hw, efx->net_dev, 3088 "channel %d unknown driver event type %u" 3089 " (data " EFX_QWORD_FMT ")\n", 3090 channel->channel, (unsigned) subcode, 3091 EFX_QWORD_VAL(*event)); 3092 } 3093 } 3094 3095 #define EFX_NAPI_MAX_TX 512 3096 3097 static int efx_ef10_ev_process(struct efx_channel *channel, int quota) 3098 { 3099 struct efx_nic *efx = channel->efx; 3100 efx_qword_t event, *p_event; 3101 unsigned int read_ptr; 3102 int spent_tx = 0; 3103 int spent = 0; 3104 int ev_code; 3105 3106 if (quota <= 0) 3107 return spent; 3108 3109 read_ptr = channel->eventq_read_ptr; 3110 3111 for (;;) { 3112 p_event = efx_event(channel, read_ptr); 3113 event = *p_event; 3114 3115 if (!efx_event_present(&event)) 3116 break; 3117 3118 EFX_SET_QWORD(*p_event); 3119 3120 ++read_ptr; 3121 3122 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE); 3123 3124 netif_vdbg(efx, drv, efx->net_dev, 3125 "processing event on %d " EFX_QWORD_FMT "\n", 3126 channel->channel, EFX_QWORD_VAL(event)); 3127 3128 switch (ev_code) { 3129 case ESE_DZ_EV_CODE_MCDI_EV: 3130 efx_mcdi_process_event(channel, &event); 3131 break; 3132 case ESE_DZ_EV_CODE_RX_EV: 3133 spent += efx_ef10_handle_rx_event(channel, &event); 3134 if (spent >= quota) { 3135 /* XXX can we split a merged event to 3136 * avoid going over-quota? 3137 */ 3138 spent = quota; 3139 goto out; 3140 } 3141 break; 3142 case ESE_DZ_EV_CODE_TX_EV: 3143 spent_tx += efx_ef10_handle_tx_event(channel, &event); 3144 if (spent_tx >= EFX_NAPI_MAX_TX) { 3145 spent = quota; 3146 goto out; 3147 } 3148 break; 3149 case ESE_DZ_EV_CODE_DRIVER_EV: 3150 efx_ef10_handle_driver_event(channel, &event); 3151 if (++spent == quota) 3152 goto out; 3153 break; 3154 case EFX_EF10_DRVGEN_EV: 3155 efx_ef10_handle_driver_generated_event(channel, &event); 3156 break; 3157 default: 3158 netif_err(efx, hw, efx->net_dev, 3159 "channel %d unknown event type %d" 3160 " (data " EFX_QWORD_FMT ")\n", 3161 channel->channel, ev_code, 3162 EFX_QWORD_VAL(event)); 3163 } 3164 } 3165 3166 out: 3167 channel->eventq_read_ptr = read_ptr; 3168 return spent; 3169 } 3170 3171 static void efx_ef10_ev_read_ack(struct efx_channel *channel) 3172 { 3173 struct efx_nic *efx = channel->efx; 3174 efx_dword_t rptr; 3175 3176 if (EFX_EF10_WORKAROUND_35388(efx)) { 3177 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE < 3178 (1 << ERF_DD_EVQ_IND_RPTR_WIDTH)); 3179 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE > 3180 (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH)); 3181 3182 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS, 3183 EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH, 3184 ERF_DD_EVQ_IND_RPTR, 3185 (channel->eventq_read_ptr & 3186 channel->eventq_mask) >> 3187 ERF_DD_EVQ_IND_RPTR_WIDTH); 3188 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT, 3189 channel->channel); 3190 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS, 3191 EFE_DD_EVQ_IND_RPTR_FLAGS_LOW, 3192 ERF_DD_EVQ_IND_RPTR, 3193 channel->eventq_read_ptr & 3194 ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1)); 3195 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT, 3196 channel->channel); 3197 } else { 3198 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR, 3199 channel->eventq_read_ptr & 3200 channel->eventq_mask); 3201 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel); 3202 } 3203 } 3204 3205 static void efx_ef10_ev_test_generate(struct efx_channel *channel) 3206 { 3207 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN); 3208 struct efx_nic *efx = channel->efx; 3209 efx_qword_t event; 3210 int rc; 3211 3212 EFX_POPULATE_QWORD_2(event, 3213 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV, 3214 ESF_DZ_EV_DATA, EFX_EF10_TEST); 3215 3216 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel); 3217 3218 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has 3219 * already swapped the data to little-endian order. 3220 */ 3221 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0], 3222 sizeof(efx_qword_t)); 3223 3224 rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf), 3225 NULL, 0, NULL); 3226 if (rc != 0) 3227 goto fail; 3228 3229 return; 3230 3231 fail: 3232 WARN_ON(true); 3233 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); 3234 } 3235 3236 static void efx_ef10_prepare_flr(struct efx_nic *efx) 3237 { 3238 atomic_set(&efx->active_queues, 0); 3239 } 3240 3241 static int efx_ef10_vport_set_mac_address(struct efx_nic *efx) 3242 { 3243 struct efx_ef10_nic_data *nic_data = efx->nic_data; 3244 u8 mac_old[ETH_ALEN]; 3245 int rc, rc2; 3246 3247 /* Only reconfigure a PF-created vport */ 3248 if (is_zero_ether_addr(nic_data->vport_mac)) 3249 return 0; 3250 3251 efx_device_detach_sync(efx); 3252 efx_net_stop(efx->net_dev); 3253 efx_ef10_filter_table_remove(efx); 3254 3255 rc = efx_ef10_vadaptor_free(efx, efx->vport_id); 3256 if (rc) 3257 goto restore_filters; 3258 3259 ether_addr_copy(mac_old, nic_data->vport_mac); 3260 rc = efx_ef10_vport_del_mac(efx, efx->vport_id, 3261 nic_data->vport_mac); 3262 if (rc) 3263 goto restore_vadaptor; 3264 3265 rc = efx_ef10_vport_add_mac(efx, efx->vport_id, 3266 efx->net_dev->dev_addr); 3267 if (!rc) { 3268 ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr); 3269 } else { 3270 rc2 = efx_ef10_vport_add_mac(efx, efx->vport_id, mac_old); 3271 if (rc2) { 3272 /* Failed to add original MAC, so clear vport_mac */ 3273 eth_zero_addr(nic_data->vport_mac); 3274 goto reset_nic; 3275 } 3276 } 3277 3278 restore_vadaptor: 3279 rc2 = efx_ef10_vadaptor_alloc(efx, efx->vport_id); 3280 if (rc2) 3281 goto reset_nic; 3282 restore_filters: 3283 rc2 = efx_ef10_filter_table_probe(efx); 3284 if (rc2) 3285 goto reset_nic; 3286 3287 rc2 = efx_net_open(efx->net_dev); 3288 if (rc2) 3289 goto reset_nic; 3290 3291 efx_device_attach_if_not_resetting(efx); 3292 3293 return rc; 3294 3295 reset_nic: 3296 netif_err(efx, drv, efx->net_dev, 3297 "Failed to restore when changing MAC address - scheduling reset\n"); 3298 efx_schedule_reset(efx, RESET_TYPE_DATAPATH); 3299 3300 return rc ? rc : rc2; 3301 } 3302 3303 static int efx_ef10_set_mac_address(struct efx_nic *efx) 3304 { 3305 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN); 3306 bool was_enabled = efx->port_enabled; 3307 int rc; 3308 3309 #ifdef CONFIG_SFC_SRIOV 3310 /* If this function is a VF and we have access to the parent PF, 3311 * then use the PF control path to attempt to change the VF MAC address. 3312 */ 3313 if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) { 3314 struct efx_nic *efx_pf = pci_get_drvdata(efx->pci_dev->physfn); 3315 struct efx_ef10_nic_data *nic_data = efx->nic_data; 3316 u8 mac[ETH_ALEN]; 3317 3318 /* net_dev->dev_addr can be zeroed by efx_net_stop in 3319 * efx_ef10_sriov_set_vf_mac, so pass in a copy. 3320 */ 3321 ether_addr_copy(mac, efx->net_dev->dev_addr); 3322 3323 rc = efx_ef10_sriov_set_vf_mac(efx_pf, nic_data->vf_index, mac); 3324 if (!rc) 3325 return 0; 3326 3327 netif_dbg(efx, drv, efx->net_dev, 3328 "Updating VF mac via PF failed (%d), setting directly\n", 3329 rc); 3330 } 3331 #endif 3332 3333 efx_device_detach_sync(efx); 3334 efx_net_stop(efx->net_dev); 3335 3336 mutex_lock(&efx->mac_lock); 3337 efx_ef10_filter_table_remove(efx); 3338 3339 ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR), 3340 efx->net_dev->dev_addr); 3341 MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID, 3342 efx->vport_id); 3343 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf, 3344 sizeof(inbuf), NULL, 0, NULL); 3345 3346 efx_ef10_filter_table_probe(efx); 3347 mutex_unlock(&efx->mac_lock); 3348 3349 if (was_enabled) 3350 efx_net_open(efx->net_dev); 3351 efx_device_attach_if_not_resetting(efx); 3352 3353 if (rc == -EPERM) { 3354 netif_err(efx, drv, efx->net_dev, 3355 "Cannot change MAC address; use sfboot to enable" 3356 " mac-spoofing on this interface\n"); 3357 } else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) { 3358 /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC 3359 * fall-back to the method of changing the MAC address on the 3360 * vport. This only applies to PFs because such versions of 3361 * MCFW do not support VFs. 3362 */ 3363 rc = efx_ef10_vport_set_mac_address(efx); 3364 } else if (rc) { 3365 efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC, 3366 sizeof(inbuf), NULL, 0, rc); 3367 } 3368 3369 return rc; 3370 } 3371 3372 static int efx_ef10_mac_reconfigure(struct efx_nic *efx, bool mtu_only) 3373 { 3374 WARN_ON(!mutex_is_locked(&efx->mac_lock)); 3375 3376 efx_mcdi_filter_sync_rx_mode(efx); 3377 3378 if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED)) 3379 return efx_mcdi_set_mtu(efx); 3380 return efx_mcdi_set_mac(efx); 3381 } 3382 3383 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type) 3384 { 3385 MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN); 3386 3387 MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type); 3388 return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf), 3389 NULL, 0, NULL); 3390 } 3391 3392 /* MC BISTs follow a different poll mechanism to phy BISTs. 3393 * The BIST is done in the poll handler on the MC, and the MCDI command 3394 * will block until the BIST is done. 3395 */ 3396 static int efx_ef10_poll_bist(struct efx_nic *efx) 3397 { 3398 int rc; 3399 MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN); 3400 size_t outlen; 3401 u32 result; 3402 3403 rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0, 3404 outbuf, sizeof(outbuf), &outlen); 3405 if (rc != 0) 3406 return rc; 3407 3408 if (outlen < MC_CMD_POLL_BIST_OUT_LEN) 3409 return -EIO; 3410 3411 result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT); 3412 switch (result) { 3413 case MC_CMD_POLL_BIST_PASSED: 3414 netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n"); 3415 return 0; 3416 case MC_CMD_POLL_BIST_TIMEOUT: 3417 netif_err(efx, hw, efx->net_dev, "BIST timed out\n"); 3418 return -EIO; 3419 case MC_CMD_POLL_BIST_FAILED: 3420 netif_err(efx, hw, efx->net_dev, "BIST failed.\n"); 3421 return -EIO; 3422 default: 3423 netif_err(efx, hw, efx->net_dev, 3424 "BIST returned unknown result %u", result); 3425 return -EIO; 3426 } 3427 } 3428 3429 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type) 3430 { 3431 int rc; 3432 3433 netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type); 3434 3435 rc = efx_ef10_start_bist(efx, bist_type); 3436 if (rc != 0) 3437 return rc; 3438 3439 return efx_ef10_poll_bist(efx); 3440 } 3441 3442 static int 3443 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests) 3444 { 3445 int rc, rc2; 3446 3447 efx_reset_down(efx, RESET_TYPE_WORLD); 3448 3449 rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST, 3450 NULL, 0, NULL, 0, NULL); 3451 if (rc != 0) 3452 goto out; 3453 3454 tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1; 3455 tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1; 3456 3457 rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD); 3458 3459 out: 3460 if (rc == -EPERM) 3461 rc = 0; 3462 rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0); 3463 return rc ? rc : rc2; 3464 } 3465 3466 #ifdef CONFIG_SFC_MTD 3467 3468 struct efx_ef10_nvram_type_info { 3469 u16 type, type_mask; 3470 u8 port; 3471 const char *name; 3472 }; 3473 3474 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = { 3475 { NVRAM_PARTITION_TYPE_MC_FIRMWARE, 0, 0, "sfc_mcfw" }, 3476 { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0, 0, "sfc_mcfw_backup" }, 3477 { NVRAM_PARTITION_TYPE_EXPANSION_ROM, 0, 0, "sfc_exp_rom" }, 3478 { NVRAM_PARTITION_TYPE_STATIC_CONFIG, 0, 0, "sfc_static_cfg" }, 3479 { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 0, 0, "sfc_dynamic_cfg" }, 3480 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0, 0, "sfc_exp_rom_cfg" }, 3481 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0, 1, "sfc_exp_rom_cfg" }, 3482 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0, 2, "sfc_exp_rom_cfg" }, 3483 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0, 3, "sfc_exp_rom_cfg" }, 3484 { NVRAM_PARTITION_TYPE_LICENSE, 0, 0, "sfc_license" }, 3485 { NVRAM_PARTITION_TYPE_PHY_MIN, 0xff, 0, "sfc_phy_fw" }, 3486 { NVRAM_PARTITION_TYPE_MUM_FIRMWARE, 0, 0, "sfc_mumfw" }, 3487 { NVRAM_PARTITION_TYPE_EXPANSION_UEFI, 0, 0, "sfc_uefi" }, 3488 { NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS, 0, 0, "sfc_dynamic_cfg_dflt" }, 3489 { NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS, 0, 0, "sfc_exp_rom_cfg_dflt" }, 3490 { NVRAM_PARTITION_TYPE_STATUS, 0, 0, "sfc_status" }, 3491 { NVRAM_PARTITION_TYPE_BUNDLE, 0, 0, "sfc_bundle" }, 3492 { NVRAM_PARTITION_TYPE_BUNDLE_METADATA, 0, 0, "sfc_bundle_metadata" }, 3493 }; 3494 #define EF10_NVRAM_PARTITION_COUNT ARRAY_SIZE(efx_ef10_nvram_types) 3495 3496 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx, 3497 struct efx_mcdi_mtd_partition *part, 3498 unsigned int type, 3499 unsigned long *found) 3500 { 3501 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN); 3502 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX); 3503 const struct efx_ef10_nvram_type_info *info; 3504 size_t size, erase_size, outlen; 3505 int type_idx = 0; 3506 bool protected; 3507 int rc; 3508 3509 for (type_idx = 0; ; type_idx++) { 3510 if (type_idx == EF10_NVRAM_PARTITION_COUNT) 3511 return -ENODEV; 3512 info = efx_ef10_nvram_types + type_idx; 3513 if ((type & ~info->type_mask) == info->type) 3514 break; 3515 } 3516 if (info->port != efx_port_num(efx)) 3517 return -ENODEV; 3518 3519 rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected); 3520 if (rc) 3521 return rc; 3522 if (protected && 3523 (type != NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS && 3524 type != NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS)) 3525 /* Hide protected partitions that don't provide defaults. */ 3526 return -ENODEV; 3527 3528 if (protected) 3529 /* Protected partitions are read only. */ 3530 erase_size = 0; 3531 3532 /* If we've already exposed a partition of this type, hide this 3533 * duplicate. All operations on MTDs are keyed by the type anyway, 3534 * so we can't act on the duplicate. 3535 */ 3536 if (__test_and_set_bit(type_idx, found)) 3537 return -EEXIST; 3538 3539 part->nvram_type = type; 3540 3541 MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type); 3542 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf), 3543 outbuf, sizeof(outbuf), &outlen); 3544 if (rc) 3545 return rc; 3546 if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN) 3547 return -EIO; 3548 if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) & 3549 (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN)) 3550 part->fw_subtype = MCDI_DWORD(outbuf, 3551 NVRAM_METADATA_OUT_SUBTYPE); 3552 3553 part->common.dev_type_name = "EF10 NVRAM manager"; 3554 part->common.type_name = info->name; 3555 3556 part->common.mtd.type = MTD_NORFLASH; 3557 part->common.mtd.flags = MTD_CAP_NORFLASH; 3558 part->common.mtd.size = size; 3559 part->common.mtd.erasesize = erase_size; 3560 /* sfc_status is read-only */ 3561 if (!erase_size) 3562 part->common.mtd.flags |= MTD_NO_ERASE; 3563 3564 return 0; 3565 } 3566 3567 static int efx_ef10_mtd_probe(struct efx_nic *efx) 3568 { 3569 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX); 3570 DECLARE_BITMAP(found, EF10_NVRAM_PARTITION_COUNT) = { 0 }; 3571 struct efx_mcdi_mtd_partition *parts; 3572 size_t outlen, n_parts_total, i, n_parts; 3573 unsigned int type; 3574 int rc; 3575 3576 ASSERT_RTNL(); 3577 3578 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0); 3579 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0, 3580 outbuf, sizeof(outbuf), &outlen); 3581 if (rc) 3582 return rc; 3583 if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN) 3584 return -EIO; 3585 3586 n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS); 3587 if (n_parts_total > 3588 MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID)) 3589 return -EIO; 3590 3591 parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL); 3592 if (!parts) 3593 return -ENOMEM; 3594 3595 n_parts = 0; 3596 for (i = 0; i < n_parts_total; i++) { 3597 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID, 3598 i); 3599 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type, 3600 found); 3601 if (rc == -EEXIST || rc == -ENODEV) 3602 continue; 3603 if (rc) 3604 goto fail; 3605 n_parts++; 3606 } 3607 3608 if (!n_parts) { 3609 kfree(parts); 3610 return 0; 3611 } 3612 3613 rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts)); 3614 fail: 3615 if (rc) 3616 kfree(parts); 3617 return rc; 3618 } 3619 3620 #endif /* CONFIG_SFC_MTD */ 3621 3622 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time) 3623 { 3624 _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD); 3625 } 3626 3627 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx, 3628 u32 host_time) {} 3629 3630 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel, 3631 bool temp) 3632 { 3633 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN); 3634 int rc; 3635 3636 if (channel->sync_events_state == SYNC_EVENTS_REQUESTED || 3637 channel->sync_events_state == SYNC_EVENTS_VALID || 3638 (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED)) 3639 return 0; 3640 channel->sync_events_state = SYNC_EVENTS_REQUESTED; 3641 3642 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE); 3643 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 3644 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE, 3645 channel->channel); 3646 3647 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP, 3648 inbuf, sizeof(inbuf), NULL, 0, NULL); 3649 3650 if (rc != 0) 3651 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT : 3652 SYNC_EVENTS_DISABLED; 3653 3654 return rc; 3655 } 3656 3657 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel, 3658 bool temp) 3659 { 3660 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN); 3661 int rc; 3662 3663 if (channel->sync_events_state == SYNC_EVENTS_DISABLED || 3664 (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT)) 3665 return 0; 3666 if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) { 3667 channel->sync_events_state = SYNC_EVENTS_DISABLED; 3668 return 0; 3669 } 3670 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT : 3671 SYNC_EVENTS_DISABLED; 3672 3673 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE); 3674 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); 3675 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL, 3676 MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE); 3677 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE, 3678 channel->channel); 3679 3680 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP, 3681 inbuf, sizeof(inbuf), NULL, 0, NULL); 3682 3683 return rc; 3684 } 3685 3686 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en, 3687 bool temp) 3688 { 3689 int (*set)(struct efx_channel *channel, bool temp); 3690 struct efx_channel *channel; 3691 3692 set = en ? 3693 efx_ef10_rx_enable_timestamping : 3694 efx_ef10_rx_disable_timestamping; 3695 3696 channel = efx_ptp_channel(efx); 3697 if (channel) { 3698 int rc = set(channel, temp); 3699 if (en && rc != 0) { 3700 efx_ef10_ptp_set_ts_sync_events(efx, false, temp); 3701 return rc; 3702 } 3703 } 3704 3705 return 0; 3706 } 3707 3708 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx, 3709 struct kernel_hwtstamp_config *init) 3710 { 3711 return -EOPNOTSUPP; 3712 } 3713 3714 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx, 3715 struct kernel_hwtstamp_config *init) 3716 { 3717 int rc; 3718 3719 switch (init->rx_filter) { 3720 case HWTSTAMP_FILTER_NONE: 3721 efx_ef10_ptp_set_ts_sync_events(efx, false, false); 3722 /* if TX timestamping is still requested then leave PTP on */ 3723 return efx_ptp_change_mode(efx, 3724 init->tx_type != HWTSTAMP_TX_OFF, 0); 3725 case HWTSTAMP_FILTER_ALL: 3726 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 3727 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 3728 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 3729 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 3730 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 3731 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 3732 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 3733 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 3734 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 3735 case HWTSTAMP_FILTER_PTP_V2_EVENT: 3736 case HWTSTAMP_FILTER_PTP_V2_SYNC: 3737 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 3738 case HWTSTAMP_FILTER_NTP_ALL: 3739 init->rx_filter = HWTSTAMP_FILTER_ALL; 3740 rc = efx_ptp_change_mode(efx, true, 0); 3741 if (!rc) 3742 rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false); 3743 if (rc) 3744 efx_ptp_change_mode(efx, false, 0); 3745 return rc; 3746 default: 3747 return -ERANGE; 3748 } 3749 } 3750 3751 static int efx_ef10_get_phys_port_id(struct efx_nic *efx, 3752 struct netdev_phys_item_id *ppid) 3753 { 3754 struct efx_ef10_nic_data *nic_data = efx->nic_data; 3755 3756 if (!is_valid_ether_addr(nic_data->port_id)) 3757 return -EOPNOTSUPP; 3758 3759 ppid->id_len = ETH_ALEN; 3760 memcpy(ppid->id, nic_data->port_id, ppid->id_len); 3761 3762 return 0; 3763 } 3764 3765 static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid) 3766 { 3767 if (proto != htons(ETH_P_8021Q)) 3768 return -EINVAL; 3769 3770 return efx_ef10_add_vlan(efx, vid); 3771 } 3772 3773 static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid) 3774 { 3775 if (proto != htons(ETH_P_8021Q)) 3776 return -EINVAL; 3777 3778 return efx_ef10_del_vlan(efx, vid); 3779 } 3780 3781 /* We rely on the MCDI wiping out our TX rings if it made any changes to the 3782 * ports table, ensuring that any TSO descriptors that were made on a now- 3783 * removed tunnel port will be blown away and won't break things when we try 3784 * to transmit them using the new ports table. 3785 */ 3786 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading) 3787 { 3788 struct efx_ef10_nic_data *nic_data = efx->nic_data; 3789 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX); 3790 MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN); 3791 bool will_reset = false; 3792 size_t num_entries = 0; 3793 size_t inlen, outlen; 3794 size_t i; 3795 int rc; 3796 efx_dword_t flags_and_num_entries; 3797 3798 WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock)); 3799 3800 nic_data->udp_tunnels_dirty = false; 3801 3802 if (!(nic_data->datapath_caps & 3803 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) { 3804 efx_device_attach_if_not_resetting(efx); 3805 return 0; 3806 } 3807 3808 BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) > 3809 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM); 3810 3811 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) { 3812 if (nic_data->udp_tunnels[i].type != 3813 TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID) { 3814 efx_dword_t entry; 3815 3816 EFX_POPULATE_DWORD_2(entry, 3817 TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT, 3818 ntohs(nic_data->udp_tunnels[i].port), 3819 TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL, 3820 nic_data->udp_tunnels[i].type); 3821 *_MCDI_ARRAY_DWORD(inbuf, 3822 SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES, 3823 num_entries++) = entry; 3824 } 3825 } 3826 3827 BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST - 3828 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 != 3829 EFX_WORD_1_LBN); 3830 BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 != 3831 EFX_WORD_1_WIDTH); 3832 EFX_POPULATE_DWORD_2(flags_and_num_entries, 3833 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING, 3834 !!unloading, 3835 EFX_WORD_1, num_entries); 3836 *_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) = 3837 flags_and_num_entries; 3838 3839 inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries); 3840 3841 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS, 3842 inbuf, inlen, outbuf, sizeof(outbuf), &outlen); 3843 if (rc == -EIO) { 3844 /* Most likely the MC rebooted due to another function also 3845 * setting its tunnel port list. Mark the tunnel port list as 3846 * dirty, so it will be pushed upon coming up from the reboot. 3847 */ 3848 nic_data->udp_tunnels_dirty = true; 3849 return 0; 3850 } 3851 3852 if (rc) { 3853 /* expected not available on unprivileged functions */ 3854 if (rc != -EPERM) 3855 netif_warn(efx, drv, efx->net_dev, 3856 "Unable to set UDP tunnel ports; rc=%d.\n", rc); 3857 } else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) & 3858 (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) { 3859 netif_info(efx, drv, efx->net_dev, 3860 "Rebooting MC due to UDP tunnel port list change\n"); 3861 will_reset = true; 3862 if (unloading) 3863 /* Delay for the MC reset to complete. This will make 3864 * unloading other functions a bit smoother. This is a 3865 * race, but the other unload will work whichever way 3866 * it goes, this just avoids an unnecessary error 3867 * message. 3868 */ 3869 msleep(100); 3870 } 3871 if (!will_reset && !unloading) { 3872 /* The caller will have detached, relying on the MC reset to 3873 * trigger a re-attach. Since there won't be an MC reset, we 3874 * have to do the attach ourselves. 3875 */ 3876 efx_device_attach_if_not_resetting(efx); 3877 } 3878 3879 return rc; 3880 } 3881 3882 static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx) 3883 { 3884 struct efx_ef10_nic_data *nic_data = efx->nic_data; 3885 int rc = 0; 3886 3887 mutex_lock(&nic_data->udp_tunnels_lock); 3888 if (nic_data->udp_tunnels_dirty) { 3889 /* Make sure all TX are stopped while we modify the table, else 3890 * we might race against an efx_features_check(). 3891 */ 3892 efx_device_detach_sync(efx); 3893 rc = efx_ef10_set_udp_tnl_ports(efx, false); 3894 } 3895 mutex_unlock(&nic_data->udp_tunnels_lock); 3896 return rc; 3897 } 3898 3899 static int efx_ef10_udp_tnl_set_port(struct net_device *dev, 3900 unsigned int table, unsigned int entry, 3901 struct udp_tunnel_info *ti) 3902 { 3903 struct efx_nic *efx = efx_netdev_priv(dev); 3904 struct efx_ef10_nic_data *nic_data; 3905 int efx_tunnel_type, rc; 3906 3907 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 3908 efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN; 3909 else 3910 efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE; 3911 3912 nic_data = efx->nic_data; 3913 if (!(nic_data->datapath_caps & 3914 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) 3915 return -EOPNOTSUPP; 3916 3917 mutex_lock(&nic_data->udp_tunnels_lock); 3918 /* Make sure all TX are stopped while we add to the table, else we 3919 * might race against an efx_features_check(). 3920 */ 3921 efx_device_detach_sync(efx); 3922 nic_data->udp_tunnels[entry].type = efx_tunnel_type; 3923 nic_data->udp_tunnels[entry].port = ti->port; 3924 rc = efx_ef10_set_udp_tnl_ports(efx, false); 3925 mutex_unlock(&nic_data->udp_tunnels_lock); 3926 3927 return rc; 3928 } 3929 3930 /* Called under the TX lock with the TX queue running, hence no-one can be 3931 * in the middle of updating the UDP tunnels table. However, they could 3932 * have tried and failed the MCDI, in which case they'll have set the dirty 3933 * flag before dropping their locks. 3934 */ 3935 static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port) 3936 { 3937 struct efx_ef10_nic_data *nic_data = efx->nic_data; 3938 size_t i; 3939 3940 if (!(nic_data->datapath_caps & 3941 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) 3942 return false; 3943 3944 if (nic_data->udp_tunnels_dirty) 3945 /* SW table may not match HW state, so just assume we can't 3946 * use any UDP tunnel offloads. 3947 */ 3948 return false; 3949 3950 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) 3951 if (nic_data->udp_tunnels[i].type != 3952 TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID && 3953 nic_data->udp_tunnels[i].port == port) 3954 return true; 3955 3956 return false; 3957 } 3958 3959 static int efx_ef10_udp_tnl_unset_port(struct net_device *dev, 3960 unsigned int table, unsigned int entry, 3961 struct udp_tunnel_info *ti) 3962 { 3963 struct efx_nic *efx = efx_netdev_priv(dev); 3964 struct efx_ef10_nic_data *nic_data; 3965 int rc; 3966 3967 nic_data = efx->nic_data; 3968 3969 mutex_lock(&nic_data->udp_tunnels_lock); 3970 /* Make sure all TX are stopped while we remove from the table, else we 3971 * might race against an efx_features_check(). 3972 */ 3973 efx_device_detach_sync(efx); 3974 nic_data->udp_tunnels[entry].type = TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID; 3975 nic_data->udp_tunnels[entry].port = 0; 3976 rc = efx_ef10_set_udp_tnl_ports(efx, false); 3977 mutex_unlock(&nic_data->udp_tunnels_lock); 3978 3979 return rc; 3980 } 3981 3982 static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels = { 3983 .set_port = efx_ef10_udp_tnl_set_port, 3984 .unset_port = efx_ef10_udp_tnl_unset_port, 3985 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP, 3986 .tables = { 3987 { 3988 .n_entries = 16, 3989 .tunnel_types = UDP_TUNNEL_TYPE_VXLAN | 3990 UDP_TUNNEL_TYPE_GENEVE, 3991 }, 3992 }, 3993 }; 3994 3995 /* EF10 may have multiple datapath firmware variants within a 3996 * single version. Report which variants are running. 3997 */ 3998 static size_t efx_ef10_print_additional_fwver(struct efx_nic *efx, char *buf, 3999 size_t len) 4000 { 4001 struct efx_ef10_nic_data *nic_data = efx->nic_data; 4002 4003 return scnprintf(buf, len, " rx%x tx%x", 4004 nic_data->rx_dpcpu_fw_id, 4005 nic_data->tx_dpcpu_fw_id); 4006 } 4007 4008 static unsigned int ef10_check_caps(const struct efx_nic *efx, 4009 u8 flag, 4010 u32 offset) 4011 { 4012 const struct efx_ef10_nic_data *nic_data = efx->nic_data; 4013 4014 switch (offset) { 4015 case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS1_OFST): 4016 return nic_data->datapath_caps & BIT_ULL(flag); 4017 case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS2_OFST): 4018 return nic_data->datapath_caps2 & BIT_ULL(flag); 4019 default: 4020 return 0; 4021 } 4022 } 4023 4024 static unsigned int efx_ef10_recycle_ring_size(const struct efx_nic *efx) 4025 { 4026 unsigned int ret = EFX_RECYCLE_RING_SIZE_10G; 4027 4028 /* There is no difference between PFs and VFs. The side is based on 4029 * the maximum link speed of a given NIC. 4030 */ 4031 switch (efx->pci_dev->device & 0xfff) { 4032 case 0x0903: /* Farmingdale can do up to 10G */ 4033 break; 4034 case 0x0923: /* Greenport can do up to 40G */ 4035 case 0x0a03: /* Medford can do up to 40G */ 4036 ret *= 4; 4037 break; 4038 default: /* Medford2 can do up to 100G */ 4039 ret *= 10; 4040 } 4041 4042 if (IS_ENABLED(CONFIG_PPC64)) 4043 ret *= 4; 4044 4045 return ret; 4046 } 4047 4048 #define EF10_OFFLOAD_FEATURES \ 4049 (NETIF_F_IP_CSUM | \ 4050 NETIF_F_HW_VLAN_CTAG_FILTER | \ 4051 NETIF_F_IPV6_CSUM | \ 4052 NETIF_F_RXHASH | \ 4053 NETIF_F_NTUPLE | \ 4054 NETIF_F_SG | \ 4055 NETIF_F_RXCSUM | \ 4056 NETIF_F_RXALL) 4057 4058 const struct efx_nic_type efx_hunt_a0_vf_nic_type = { 4059 .is_vf = true, 4060 .mem_bar = efx_ef10_vf_mem_bar, 4061 .mem_map_size = efx_ef10_mem_map_size, 4062 .probe = efx_ef10_probe_vf, 4063 .remove = efx_ef10_remove, 4064 .dimension_resources = efx_ef10_dimension_resources, 4065 .init = efx_ef10_init_nic, 4066 .fini = efx_ef10_fini_nic, 4067 .map_reset_reason = efx_ef10_map_reset_reason, 4068 .map_reset_flags = efx_ef10_map_reset_flags, 4069 .reset = efx_ef10_reset, 4070 .probe_port = efx_mcdi_port_probe, 4071 .remove_port = efx_mcdi_port_remove, 4072 .fini_dmaq = efx_fini_dmaq, 4073 .prepare_flr = efx_ef10_prepare_flr, 4074 .finish_flr = efx_port_dummy_op_void, 4075 .describe_stats = efx_ef10_describe_stats, 4076 .update_stats = efx_ef10_update_stats_vf, 4077 .update_stats_atomic = efx_ef10_update_stats_atomic_vf, 4078 .start_stats = efx_port_dummy_op_void, 4079 .pull_stats = efx_port_dummy_op_void, 4080 .stop_stats = efx_port_dummy_op_void, 4081 .push_irq_moderation = efx_ef10_push_irq_moderation, 4082 .reconfigure_mac = efx_ef10_mac_reconfigure, 4083 .check_mac_fault = efx_mcdi_mac_check_fault, 4084 .reconfigure_port = efx_mcdi_port_reconfigure, 4085 .get_wol = efx_ef10_get_wol_vf, 4086 .set_wol = efx_ef10_set_wol_vf, 4087 .resume_wol = efx_port_dummy_op_void, 4088 .mcdi_request = efx_ef10_mcdi_request, 4089 .mcdi_poll_response = efx_ef10_mcdi_poll_response, 4090 .mcdi_read_response = efx_ef10_mcdi_read_response, 4091 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot, 4092 .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected, 4093 .irq_enable_master = efx_port_dummy_op_void, 4094 .irq_test_generate = efx_ef10_irq_test_generate, 4095 .irq_disable_non_ev = efx_port_dummy_op_void, 4096 .irq_handle_msi = efx_ef10_msi_interrupt, 4097 .irq_handle_legacy = efx_ef10_legacy_interrupt, 4098 .tx_probe = efx_ef10_tx_probe, 4099 .tx_init = efx_ef10_tx_init, 4100 .tx_remove = efx_mcdi_tx_remove, 4101 .tx_write = efx_ef10_tx_write, 4102 .tx_limit_len = efx_ef10_tx_limit_len, 4103 .tx_enqueue = __efx_enqueue_skb, 4104 .rx_push_rss_config = efx_mcdi_vf_rx_push_rss_config, 4105 .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config, 4106 .rx_probe = efx_mcdi_rx_probe, 4107 .rx_init = efx_mcdi_rx_init, 4108 .rx_remove = efx_mcdi_rx_remove, 4109 .rx_write = efx_ef10_rx_write, 4110 .rx_defer_refill = efx_ef10_rx_defer_refill, 4111 .rx_packet = __efx_rx_packet, 4112 .ev_probe = efx_mcdi_ev_probe, 4113 .ev_init = efx_ef10_ev_init, 4114 .ev_fini = efx_mcdi_ev_fini, 4115 .ev_remove = efx_mcdi_ev_remove, 4116 .ev_process = efx_ef10_ev_process, 4117 .ev_read_ack = efx_ef10_ev_read_ack, 4118 .ev_test_generate = efx_ef10_ev_test_generate, 4119 .filter_table_probe = efx_ef10_filter_table_probe, 4120 .filter_table_restore = efx_mcdi_filter_table_restore, 4121 .filter_table_remove = efx_ef10_filter_table_remove, 4122 .filter_update_rx_scatter = efx_mcdi_update_rx_scatter, 4123 .filter_insert = efx_mcdi_filter_insert, 4124 .filter_remove_safe = efx_mcdi_filter_remove_safe, 4125 .filter_get_safe = efx_mcdi_filter_get_safe, 4126 .filter_clear_rx = efx_mcdi_filter_clear_rx, 4127 .filter_count_rx_used = efx_mcdi_filter_count_rx_used, 4128 .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit, 4129 .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids, 4130 #ifdef CONFIG_RFS_ACCEL 4131 .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one, 4132 #endif 4133 #ifdef CONFIG_SFC_MTD 4134 .mtd_probe = efx_port_dummy_op_int, 4135 #endif 4136 .ptp_write_host_time = efx_ef10_ptp_write_host_time_vf, 4137 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf, 4138 .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid, 4139 .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid, 4140 #ifdef CONFIG_SFC_SRIOV 4141 .vswitching_probe = efx_ef10_vswitching_probe_vf, 4142 .vswitching_restore = efx_ef10_vswitching_restore_vf, 4143 .vswitching_remove = efx_ef10_vswitching_remove_vf, 4144 #endif 4145 .get_mac_address = efx_ef10_get_mac_address_vf, 4146 .set_mac_address = efx_ef10_set_mac_address, 4147 4148 .get_phys_port_id = efx_ef10_get_phys_port_id, 4149 .revision = EFX_REV_HUNT_A0, 4150 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH), 4151 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE, 4152 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST, 4153 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST, 4154 .can_rx_scatter = true, 4155 .always_rx_scatter = true, 4156 .min_interrupt_mode = EFX_INT_MODE_MSIX, 4157 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH, 4158 .offload_features = EF10_OFFLOAD_FEATURES, 4159 .mcdi_max_ver = 2, 4160 .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS, 4161 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE | 4162 1 << HWTSTAMP_FILTER_ALL, 4163 .rx_hash_key_size = 40, 4164 .check_caps = ef10_check_caps, 4165 .print_additional_fwver = efx_ef10_print_additional_fwver, 4166 .sensor_event = efx_mcdi_sensor_event, 4167 .rx_recycle_ring_size = efx_ef10_recycle_ring_size, 4168 }; 4169 4170 const struct efx_nic_type efx_hunt_a0_nic_type = { 4171 .is_vf = false, 4172 .mem_bar = efx_ef10_pf_mem_bar, 4173 .mem_map_size = efx_ef10_mem_map_size, 4174 .probe = efx_ef10_probe_pf, 4175 .remove = efx_ef10_remove, 4176 .dimension_resources = efx_ef10_dimension_resources, 4177 .init = efx_ef10_init_nic, 4178 .fini = efx_ef10_fini_nic, 4179 .map_reset_reason = efx_ef10_map_reset_reason, 4180 .map_reset_flags = efx_ef10_map_reset_flags, 4181 .reset = efx_ef10_reset, 4182 .probe_port = efx_mcdi_port_probe, 4183 .remove_port = efx_mcdi_port_remove, 4184 .fini_dmaq = efx_fini_dmaq, 4185 .prepare_flr = efx_ef10_prepare_flr, 4186 .finish_flr = efx_port_dummy_op_void, 4187 .describe_stats = efx_ef10_describe_stats, 4188 .update_stats = efx_ef10_update_stats_pf, 4189 .start_stats = efx_mcdi_mac_start_stats, 4190 .pull_stats = efx_mcdi_mac_pull_stats, 4191 .stop_stats = efx_mcdi_mac_stop_stats, 4192 .push_irq_moderation = efx_ef10_push_irq_moderation, 4193 .reconfigure_mac = efx_ef10_mac_reconfigure, 4194 .check_mac_fault = efx_mcdi_mac_check_fault, 4195 .reconfigure_port = efx_mcdi_port_reconfigure, 4196 .get_wol = efx_ef10_get_wol, 4197 .set_wol = efx_ef10_set_wol, 4198 .resume_wol = efx_port_dummy_op_void, 4199 .get_fec_stats = efx_ef10_get_fec_stats, 4200 .test_chip = efx_ef10_test_chip, 4201 .test_nvram = efx_mcdi_nvram_test_all, 4202 .mcdi_request = efx_ef10_mcdi_request, 4203 .mcdi_poll_response = efx_ef10_mcdi_poll_response, 4204 .mcdi_read_response = efx_ef10_mcdi_read_response, 4205 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot, 4206 .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected, 4207 .irq_enable_master = efx_port_dummy_op_void, 4208 .irq_test_generate = efx_ef10_irq_test_generate, 4209 .irq_disable_non_ev = efx_port_dummy_op_void, 4210 .irq_handle_msi = efx_ef10_msi_interrupt, 4211 .irq_handle_legacy = efx_ef10_legacy_interrupt, 4212 .tx_probe = efx_ef10_tx_probe, 4213 .tx_init = efx_ef10_tx_init, 4214 .tx_remove = efx_mcdi_tx_remove, 4215 .tx_write = efx_ef10_tx_write, 4216 .tx_limit_len = efx_ef10_tx_limit_len, 4217 .tx_enqueue = __efx_enqueue_skb, 4218 .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config, 4219 .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config, 4220 .rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config, 4221 .rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config, 4222 .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts, 4223 .rx_probe = efx_mcdi_rx_probe, 4224 .rx_init = efx_mcdi_rx_init, 4225 .rx_remove = efx_mcdi_rx_remove, 4226 .rx_write = efx_ef10_rx_write, 4227 .rx_defer_refill = efx_ef10_rx_defer_refill, 4228 .rx_packet = __efx_rx_packet, 4229 .ev_probe = efx_mcdi_ev_probe, 4230 .ev_init = efx_ef10_ev_init, 4231 .ev_fini = efx_mcdi_ev_fini, 4232 .ev_remove = efx_mcdi_ev_remove, 4233 .ev_process = efx_ef10_ev_process, 4234 .ev_read_ack = efx_ef10_ev_read_ack, 4235 .ev_test_generate = efx_ef10_ev_test_generate, 4236 .filter_table_probe = efx_ef10_filter_table_probe, 4237 .filter_table_restore = efx_mcdi_filter_table_restore, 4238 .filter_table_remove = efx_ef10_filter_table_remove, 4239 .filter_update_rx_scatter = efx_mcdi_update_rx_scatter, 4240 .filter_insert = efx_mcdi_filter_insert, 4241 .filter_remove_safe = efx_mcdi_filter_remove_safe, 4242 .filter_get_safe = efx_mcdi_filter_get_safe, 4243 .filter_clear_rx = efx_mcdi_filter_clear_rx, 4244 .filter_count_rx_used = efx_mcdi_filter_count_rx_used, 4245 .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit, 4246 .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids, 4247 #ifdef CONFIG_RFS_ACCEL 4248 .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one, 4249 #endif 4250 #ifdef CONFIG_SFC_MTD 4251 .mtd_probe = efx_ef10_mtd_probe, 4252 .mtd_rename = efx_mcdi_mtd_rename, 4253 .mtd_read = efx_mcdi_mtd_read, 4254 .mtd_erase = efx_mcdi_mtd_erase, 4255 .mtd_write = efx_mcdi_mtd_write, 4256 .mtd_sync = efx_mcdi_mtd_sync, 4257 #endif 4258 .ptp_write_host_time = efx_ef10_ptp_write_host_time, 4259 .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events, 4260 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config, 4261 .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid, 4262 .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid, 4263 .udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports, 4264 .udp_tnl_has_port = efx_ef10_udp_tnl_has_port, 4265 #ifdef CONFIG_SFC_SRIOV 4266 .sriov_configure = efx_ef10_sriov_configure, 4267 .sriov_init = efx_ef10_sriov_init, 4268 .sriov_fini = efx_ef10_sriov_fini, 4269 .sriov_wanted = efx_ef10_sriov_wanted, 4270 .sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac, 4271 .sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan, 4272 .sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk, 4273 .sriov_get_vf_config = efx_ef10_sriov_get_vf_config, 4274 .sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state, 4275 .vswitching_probe = efx_ef10_vswitching_probe_pf, 4276 .vswitching_restore = efx_ef10_vswitching_restore_pf, 4277 .vswitching_remove = efx_ef10_vswitching_remove_pf, 4278 #endif 4279 .get_mac_address = efx_ef10_get_mac_address_pf, 4280 .set_mac_address = efx_ef10_set_mac_address, 4281 .tso_versions = efx_ef10_tso_versions, 4282 4283 .get_phys_port_id = efx_ef10_get_phys_port_id, 4284 .revision = EFX_REV_HUNT_A0, 4285 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH), 4286 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE, 4287 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST, 4288 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST, 4289 .can_rx_scatter = true, 4290 .always_rx_scatter = true, 4291 .option_descriptors = true, 4292 .min_interrupt_mode = EFX_INT_MODE_LEGACY, 4293 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH, 4294 .offload_features = EF10_OFFLOAD_FEATURES, 4295 .mcdi_max_ver = 2, 4296 .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS, 4297 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE | 4298 1 << HWTSTAMP_FILTER_ALL, 4299 .rx_hash_key_size = 40, 4300 .check_caps = ef10_check_caps, 4301 .print_additional_fwver = efx_ef10_print_additional_fwver, 4302 .sensor_event = efx_mcdi_sensor_event, 4303 .rx_recycle_ring_size = efx_ef10_recycle_ring_size, 4304 }; 4305