xref: /linux/drivers/net/ethernet/samsung/sxgbe/sxgbe_main.c (revision d003d772e64df08af04ee63609d47169ee82ae0e)
1 /* 10G controller driver for Samsung SoCs
2  *
3  * Copyright (C) 2013 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * Author: Siva Reddy Kallam <siva.kallam@samsung.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/clk.h>
16 #include <linux/crc32.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/etherdevice.h>
19 #include <linux/ethtool.h>
20 #include <linux/if.h>
21 #include <linux/if_ether.h>
22 #include <linux/if_vlan.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/ip.h>
26 #include <linux/kernel.h>
27 #include <linux/mii.h>
28 #include <linux/module.h>
29 #include <linux/net_tstamp.h>
30 #include <linux/netdevice.h>
31 #include <linux/phy.h>
32 #include <linux/platform_device.h>
33 #include <linux/prefetch.h>
34 #include <linux/skbuff.h>
35 #include <linux/slab.h>
36 #include <linux/tcp.h>
37 #include <linux/sxgbe_platform.h>
38 
39 #include "sxgbe_common.h"
40 #include "sxgbe_desc.h"
41 #include "sxgbe_dma.h"
42 #include "sxgbe_mtl.h"
43 #include "sxgbe_reg.h"
44 
45 #define SXGBE_ALIGN(x)	L1_CACHE_ALIGN(x)
46 #define JUMBO_LEN	9000
47 
48 /* Module parameters */
49 #define TX_TIMEO	5000
50 #define DMA_TX_SIZE	512
51 #define DMA_RX_SIZE	1024
52 #define TC_DEFAULT	64
53 #define DMA_BUFFER_SIZE	BUF_SIZE_2KiB
54 /* The default timer value as per the sxgbe specification 1 sec(1000 ms) */
55 #define SXGBE_DEFAULT_LPI_TIMER	1000
56 
57 static int debug = -1;
58 static int eee_timer = SXGBE_DEFAULT_LPI_TIMER;
59 
60 module_param(eee_timer, int, 0644);
61 
62 module_param(debug, int, 0644);
63 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
64 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
65 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
66 
67 static irqreturn_t sxgbe_common_interrupt(int irq, void *dev_id);
68 static irqreturn_t sxgbe_tx_interrupt(int irq, void *dev_id);
69 static irqreturn_t sxgbe_rx_interrupt(int irq, void *dev_id);
70 
71 #define SXGBE_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
72 
73 #define SXGBE_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x))
74 
75 /**
76  * sxgbe_verify_args - verify the driver parameters.
77  * Description: it verifies if some wrong parameter is passed to the driver.
78  * Note that wrong parameters are replaced with the default values.
79  */
80 static void sxgbe_verify_args(void)
81 {
82 	if (unlikely(eee_timer < 0))
83 		eee_timer = SXGBE_DEFAULT_LPI_TIMER;
84 }
85 
86 static void sxgbe_enable_eee_mode(const struct sxgbe_priv_data *priv)
87 {
88 	/* Check and enter in LPI mode */
89 	if (!priv->tx_path_in_lpi_mode)
90 		priv->hw->mac->set_eee_mode(priv->ioaddr);
91 }
92 
93 void sxgbe_disable_eee_mode(struct sxgbe_priv_data * const priv)
94 {
95 	/* Exit and disable EEE in case of we are are in LPI state. */
96 	priv->hw->mac->reset_eee_mode(priv->ioaddr);
97 	del_timer_sync(&priv->eee_ctrl_timer);
98 	priv->tx_path_in_lpi_mode = false;
99 }
100 
101 /**
102  * sxgbe_eee_ctrl_timer
103  * @arg : data hook
104  * Description:
105  *  If there is no data transfer and if we are not in LPI state,
106  *  then MAC Transmitter can be moved to LPI state.
107  */
108 static void sxgbe_eee_ctrl_timer(struct timer_list *t)
109 {
110 	struct sxgbe_priv_data *priv = from_timer(priv, t, eee_ctrl_timer);
111 
112 	sxgbe_enable_eee_mode(priv);
113 	mod_timer(&priv->eee_ctrl_timer, SXGBE_LPI_TIMER(eee_timer));
114 }
115 
116 /**
117  * sxgbe_eee_init
118  * @priv: private device pointer
119  * Description:
120  *  If the EEE support has been enabled while configuring the driver,
121  *  if the GMAC actually supports the EEE (from the HW cap reg) and the
122  *  phy can also manage EEE, so enable the LPI state and start the timer
123  *  to verify if the tx path can enter in LPI state.
124  */
125 bool sxgbe_eee_init(struct sxgbe_priv_data * const priv)
126 {
127 	struct net_device *ndev = priv->dev;
128 	bool ret = false;
129 
130 	/* MAC core supports the EEE feature. */
131 	if (priv->hw_cap.eee) {
132 		/* Check if the PHY supports EEE */
133 		if (phy_init_eee(ndev->phydev, 1))
134 			return false;
135 
136 		priv->eee_active = 1;
137 		timer_setup(&priv->eee_ctrl_timer, sxgbe_eee_ctrl_timer, 0);
138 		priv->eee_ctrl_timer.expires = SXGBE_LPI_TIMER(eee_timer);
139 		add_timer(&priv->eee_ctrl_timer);
140 
141 		priv->hw->mac->set_eee_timer(priv->ioaddr,
142 					     SXGBE_DEFAULT_LPI_TIMER,
143 					     priv->tx_lpi_timer);
144 
145 		pr_info("Energy-Efficient Ethernet initialized\n");
146 
147 		ret = true;
148 	}
149 
150 	return ret;
151 }
152 
153 static void sxgbe_eee_adjust(const struct sxgbe_priv_data *priv)
154 {
155 	struct net_device *ndev = priv->dev;
156 
157 	/* When the EEE has been already initialised we have to
158 	 * modify the PLS bit in the LPI ctrl & status reg according
159 	 * to the PHY link status. For this reason.
160 	 */
161 	if (priv->eee_enabled)
162 		priv->hw->mac->set_eee_pls(priv->ioaddr, ndev->phydev->link);
163 }
164 
165 /**
166  * sxgbe_clk_csr_set - dynamically set the MDC clock
167  * @priv: driver private structure
168  * Description: this is to dynamically set the MDC clock according to the csr
169  * clock input.
170  */
171 static void sxgbe_clk_csr_set(struct sxgbe_priv_data *priv)
172 {
173 	u32 clk_rate = clk_get_rate(priv->sxgbe_clk);
174 
175 	/* assign the proper divider, this will be used during
176 	 * mdio communication
177 	 */
178 	if (clk_rate < SXGBE_CSR_F_150M)
179 		priv->clk_csr = SXGBE_CSR_100_150M;
180 	else if (clk_rate <= SXGBE_CSR_F_250M)
181 		priv->clk_csr = SXGBE_CSR_150_250M;
182 	else if (clk_rate <= SXGBE_CSR_F_300M)
183 		priv->clk_csr = SXGBE_CSR_250_300M;
184 	else if (clk_rate <= SXGBE_CSR_F_350M)
185 		priv->clk_csr = SXGBE_CSR_300_350M;
186 	else if (clk_rate <= SXGBE_CSR_F_400M)
187 		priv->clk_csr = SXGBE_CSR_350_400M;
188 	else if (clk_rate <= SXGBE_CSR_F_500M)
189 		priv->clk_csr = SXGBE_CSR_400_500M;
190 }
191 
192 /* minimum number of free TX descriptors required to wake up TX process */
193 #define SXGBE_TX_THRESH(x)	(x->dma_tx_size/4)
194 
195 static inline u32 sxgbe_tx_avail(struct sxgbe_tx_queue *queue, int tx_qsize)
196 {
197 	return queue->dirty_tx + tx_qsize - queue->cur_tx - 1;
198 }
199 
200 /**
201  * sxgbe_adjust_link
202  * @dev: net device structure
203  * Description: it adjusts the link parameters.
204  */
205 static void sxgbe_adjust_link(struct net_device *dev)
206 {
207 	struct sxgbe_priv_data *priv = netdev_priv(dev);
208 	struct phy_device *phydev = dev->phydev;
209 	u8 new_state = 0;
210 	u8 speed = 0xff;
211 
212 	if (!phydev)
213 		return;
214 
215 	/* SXGBE is not supporting auto-negotiation and
216 	 * half duplex mode. so, not handling duplex change
217 	 * in this function. only handling speed and link status
218 	 */
219 	if (phydev->link) {
220 		if (phydev->speed != priv->speed) {
221 			new_state = 1;
222 			switch (phydev->speed) {
223 			case SPEED_10000:
224 				speed = SXGBE_SPEED_10G;
225 				break;
226 			case SPEED_2500:
227 				speed = SXGBE_SPEED_2_5G;
228 				break;
229 			case SPEED_1000:
230 				speed = SXGBE_SPEED_1G;
231 				break;
232 			default:
233 				netif_err(priv, link, dev,
234 					  "Speed (%d) not supported\n",
235 					  phydev->speed);
236 			}
237 
238 			priv->speed = phydev->speed;
239 			priv->hw->mac->set_speed(priv->ioaddr, speed);
240 		}
241 
242 		if (!priv->oldlink) {
243 			new_state = 1;
244 			priv->oldlink = 1;
245 		}
246 	} else if (priv->oldlink) {
247 		new_state = 1;
248 		priv->oldlink = 0;
249 		priv->speed = SPEED_UNKNOWN;
250 	}
251 
252 	if (new_state & netif_msg_link(priv))
253 		phy_print_status(phydev);
254 
255 	/* Alter the MAC settings for EEE */
256 	sxgbe_eee_adjust(priv);
257 }
258 
259 /**
260  * sxgbe_init_phy - PHY initialization
261  * @dev: net device structure
262  * Description: it initializes the driver's PHY state, and attaches the PHY
263  * to the mac driver.
264  *  Return value:
265  *  0 on success
266  */
267 static int sxgbe_init_phy(struct net_device *ndev)
268 {
269 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
270 	char bus_id[MII_BUS_ID_SIZE];
271 	struct phy_device *phydev;
272 	struct sxgbe_priv_data *priv = netdev_priv(ndev);
273 	int phy_iface = priv->plat->interface;
274 
275 	/* assign default link status */
276 	priv->oldlink = 0;
277 	priv->speed = SPEED_UNKNOWN;
278 	priv->oldduplex = DUPLEX_UNKNOWN;
279 
280 	if (priv->plat->phy_bus_name)
281 		snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
282 			 priv->plat->phy_bus_name, priv->plat->bus_id);
283 	else
284 		snprintf(bus_id, MII_BUS_ID_SIZE, "sxgbe-%x",
285 			 priv->plat->bus_id);
286 
287 	snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
288 		 priv->plat->phy_addr);
289 	netdev_dbg(ndev, "%s: trying to attach to %s\n", __func__, phy_id_fmt);
290 
291 	phydev = phy_connect(ndev, phy_id_fmt, &sxgbe_adjust_link, phy_iface);
292 
293 	if (IS_ERR(phydev)) {
294 		netdev_err(ndev, "Could not attach to PHY\n");
295 		return PTR_ERR(phydev);
296 	}
297 
298 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
299 	if ((phy_iface == PHY_INTERFACE_MODE_MII) ||
300 	    (phy_iface == PHY_INTERFACE_MODE_RMII))
301 		phy_set_max_speed(phydev, SPEED_1000);
302 
303 	if (phydev->phy_id == 0) {
304 		phy_disconnect(phydev);
305 		return -ENODEV;
306 	}
307 
308 	netdev_dbg(ndev, "%s: attached to PHY (UID 0x%x) Link = %d\n",
309 		   __func__, phydev->phy_id, phydev->link);
310 
311 	return 0;
312 }
313 
314 /**
315  * sxgbe_clear_descriptors: clear descriptors
316  * @priv: driver private structure
317  * Description: this function is called to clear the tx and rx descriptors
318  * in case of both basic and extended descriptors are used.
319  */
320 static void sxgbe_clear_descriptors(struct sxgbe_priv_data *priv)
321 {
322 	int i, j;
323 	unsigned int txsize = priv->dma_tx_size;
324 	unsigned int rxsize = priv->dma_rx_size;
325 
326 	/* Clear the Rx/Tx descriptors */
327 	for (j = 0; j < SXGBE_RX_QUEUES; j++) {
328 		for (i = 0; i < rxsize; i++)
329 			priv->hw->desc->init_rx_desc(&priv->rxq[j]->dma_rx[i],
330 						     priv->use_riwt, priv->mode,
331 						     (i == rxsize - 1));
332 	}
333 
334 	for (j = 0; j < SXGBE_TX_QUEUES; j++) {
335 		for (i = 0; i < txsize; i++)
336 			priv->hw->desc->init_tx_desc(&priv->txq[j]->dma_tx[i]);
337 	}
338 }
339 
340 static int sxgbe_init_rx_buffers(struct net_device *dev,
341 				 struct sxgbe_rx_norm_desc *p, int i,
342 				 unsigned int dma_buf_sz,
343 				 struct sxgbe_rx_queue *rx_ring)
344 {
345 	struct sxgbe_priv_data *priv = netdev_priv(dev);
346 	struct sk_buff *skb;
347 
348 	skb = __netdev_alloc_skb_ip_align(dev, dma_buf_sz, GFP_KERNEL);
349 	if (!skb)
350 		return -ENOMEM;
351 
352 	rx_ring->rx_skbuff[i] = skb;
353 	rx_ring->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
354 						   dma_buf_sz, DMA_FROM_DEVICE);
355 
356 	if (dma_mapping_error(priv->device, rx_ring->rx_skbuff_dma[i])) {
357 		netdev_err(dev, "%s: DMA mapping error\n", __func__);
358 		dev_kfree_skb_any(skb);
359 		return -EINVAL;
360 	}
361 
362 	p->rdes23.rx_rd_des23.buf2_addr = rx_ring->rx_skbuff_dma[i];
363 
364 	return 0;
365 }
366 
367 /**
368  * sxgbe_free_rx_buffers - free what sxgbe_init_rx_buffers() allocated
369  * @dev: net device structure
370  * @rx_ring: ring to be freed
371  * @rx_rsize: ring size
372  * Description:  this function initializes the DMA RX descriptor
373  */
374 static void sxgbe_free_rx_buffers(struct net_device *dev,
375 				  struct sxgbe_rx_norm_desc *p, int i,
376 				  unsigned int dma_buf_sz,
377 				  struct sxgbe_rx_queue *rx_ring)
378 {
379 	struct sxgbe_priv_data *priv = netdev_priv(dev);
380 
381 	kfree_skb(rx_ring->rx_skbuff[i]);
382 	dma_unmap_single(priv->device, rx_ring->rx_skbuff_dma[i],
383 			 dma_buf_sz, DMA_FROM_DEVICE);
384 }
385 
386 /**
387  * init_tx_ring - init the TX descriptor ring
388  * @dev: net device structure
389  * @tx_ring: ring to be initialised
390  * @tx_rsize: ring size
391  * Description:  this function initializes the DMA TX descriptor
392  */
393 static int init_tx_ring(struct device *dev, u8 queue_no,
394 			struct sxgbe_tx_queue *tx_ring,	int tx_rsize)
395 {
396 	/* TX ring is not allcoated */
397 	if (!tx_ring) {
398 		dev_err(dev, "No memory for TX queue of SXGBE\n");
399 		return -ENOMEM;
400 	}
401 
402 	/* allocate memory for TX descriptors */
403 	tx_ring->dma_tx = dma_alloc_coherent(dev,
404 					     tx_rsize * sizeof(struct sxgbe_tx_norm_desc),
405 					     &tx_ring->dma_tx_phy, GFP_KERNEL);
406 	if (!tx_ring->dma_tx)
407 		return -ENOMEM;
408 
409 	/* allocate memory for TX skbuff array */
410 	tx_ring->tx_skbuff_dma = devm_kcalloc(dev, tx_rsize,
411 					      sizeof(dma_addr_t), GFP_KERNEL);
412 	if (!tx_ring->tx_skbuff_dma)
413 		goto dmamem_err;
414 
415 	tx_ring->tx_skbuff = devm_kcalloc(dev, tx_rsize,
416 					  sizeof(struct sk_buff *), GFP_KERNEL);
417 
418 	if (!tx_ring->tx_skbuff)
419 		goto dmamem_err;
420 
421 	/* assign queue number */
422 	tx_ring->queue_no = queue_no;
423 
424 	/* initialise counters */
425 	tx_ring->dirty_tx = 0;
426 	tx_ring->cur_tx = 0;
427 
428 	return 0;
429 
430 dmamem_err:
431 	dma_free_coherent(dev, tx_rsize * sizeof(struct sxgbe_tx_norm_desc),
432 			  tx_ring->dma_tx, tx_ring->dma_tx_phy);
433 	return -ENOMEM;
434 }
435 
436 /**
437  * free_rx_ring - free the RX descriptor ring
438  * @dev: net device structure
439  * @rx_ring: ring to be initialised
440  * @rx_rsize: ring size
441  * Description:  this function initializes the DMA RX descriptor
442  */
443 static void free_rx_ring(struct device *dev, struct sxgbe_rx_queue *rx_ring,
444 			 int rx_rsize)
445 {
446 	dma_free_coherent(dev, rx_rsize * sizeof(struct sxgbe_rx_norm_desc),
447 			  rx_ring->dma_rx, rx_ring->dma_rx_phy);
448 	kfree(rx_ring->rx_skbuff_dma);
449 	kfree(rx_ring->rx_skbuff);
450 }
451 
452 /**
453  * init_rx_ring - init the RX descriptor ring
454  * @dev: net device structure
455  * @rx_ring: ring to be initialised
456  * @rx_rsize: ring size
457  * Description:  this function initializes the DMA RX descriptor
458  */
459 static int init_rx_ring(struct net_device *dev, u8 queue_no,
460 			struct sxgbe_rx_queue *rx_ring,	int rx_rsize)
461 {
462 	struct sxgbe_priv_data *priv = netdev_priv(dev);
463 	int desc_index;
464 	unsigned int bfsize = 0;
465 	unsigned int ret = 0;
466 
467 	/* Set the max buffer size according to the MTU. */
468 	bfsize = ALIGN(dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN, 8);
469 
470 	netif_dbg(priv, probe, dev, "%s: bfsize %d\n", __func__, bfsize);
471 
472 	/* RX ring is not allcoated */
473 	if (rx_ring == NULL) {
474 		netdev_err(dev, "No memory for RX queue\n");
475 		return -ENOMEM;
476 	}
477 
478 	/* assign queue number */
479 	rx_ring->queue_no = queue_no;
480 
481 	/* allocate memory for RX descriptors */
482 	rx_ring->dma_rx = dma_alloc_coherent(priv->device,
483 					     rx_rsize * sizeof(struct sxgbe_rx_norm_desc),
484 					     &rx_ring->dma_rx_phy, GFP_KERNEL);
485 
486 	if (rx_ring->dma_rx == NULL)
487 		return -ENOMEM;
488 
489 	/* allocate memory for RX skbuff array */
490 	rx_ring->rx_skbuff_dma = kmalloc_array(rx_rsize,
491 					       sizeof(dma_addr_t), GFP_KERNEL);
492 	if (!rx_ring->rx_skbuff_dma) {
493 		ret = -ENOMEM;
494 		goto err_free_dma_rx;
495 	}
496 
497 	rx_ring->rx_skbuff = kmalloc_array(rx_rsize,
498 					   sizeof(struct sk_buff *), GFP_KERNEL);
499 	if (!rx_ring->rx_skbuff) {
500 		ret = -ENOMEM;
501 		goto err_free_skbuff_dma;
502 	}
503 
504 	/* initialise the buffers */
505 	for (desc_index = 0; desc_index < rx_rsize; desc_index++) {
506 		struct sxgbe_rx_norm_desc *p;
507 		p = rx_ring->dma_rx + desc_index;
508 		ret = sxgbe_init_rx_buffers(dev, p, desc_index,
509 					    bfsize, rx_ring);
510 		if (ret)
511 			goto err_free_rx_buffers;
512 	}
513 
514 	/* initialise counters */
515 	rx_ring->cur_rx = 0;
516 	rx_ring->dirty_rx = (unsigned int)(desc_index - rx_rsize);
517 	priv->dma_buf_sz = bfsize;
518 
519 	return 0;
520 
521 err_free_rx_buffers:
522 	while (--desc_index >= 0) {
523 		struct sxgbe_rx_norm_desc *p;
524 
525 		p = rx_ring->dma_rx + desc_index;
526 		sxgbe_free_rx_buffers(dev, p, desc_index, bfsize, rx_ring);
527 	}
528 	kfree(rx_ring->rx_skbuff);
529 err_free_skbuff_dma:
530 	kfree(rx_ring->rx_skbuff_dma);
531 err_free_dma_rx:
532 	dma_free_coherent(priv->device,
533 			  rx_rsize * sizeof(struct sxgbe_rx_norm_desc),
534 			  rx_ring->dma_rx, rx_ring->dma_rx_phy);
535 
536 	return ret;
537 }
538 /**
539  * free_tx_ring - free the TX descriptor ring
540  * @dev: net device structure
541  * @tx_ring: ring to be initialised
542  * @tx_rsize: ring size
543  * Description:  this function initializes the DMA TX descriptor
544  */
545 static void free_tx_ring(struct device *dev, struct sxgbe_tx_queue *tx_ring,
546 			 int tx_rsize)
547 {
548 	dma_free_coherent(dev, tx_rsize * sizeof(struct sxgbe_tx_norm_desc),
549 			  tx_ring->dma_tx, tx_ring->dma_tx_phy);
550 }
551 
552 /**
553  * init_dma_desc_rings - init the RX/TX descriptor rings
554  * @dev: net device structure
555  * Description:  this function initializes the DMA RX/TX descriptors
556  * and allocates the socket buffers. It suppors the chained and ring
557  * modes.
558  */
559 static int init_dma_desc_rings(struct net_device *netd)
560 {
561 	int queue_num, ret;
562 	struct sxgbe_priv_data *priv = netdev_priv(netd);
563 	int tx_rsize = priv->dma_tx_size;
564 	int rx_rsize = priv->dma_rx_size;
565 
566 	/* Allocate memory for queue structures and TX descs */
567 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
568 		ret = init_tx_ring(priv->device, queue_num,
569 				   priv->txq[queue_num], tx_rsize);
570 		if (ret) {
571 			dev_err(&netd->dev, "TX DMA ring allocation failed!\n");
572 			goto txalloc_err;
573 		}
574 
575 		/* save private pointer in each ring this
576 		 * pointer is needed during cleaing TX queue
577 		 */
578 		priv->txq[queue_num]->priv_ptr = priv;
579 	}
580 
581 	/* Allocate memory for queue structures and RX descs */
582 	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
583 		ret = init_rx_ring(netd, queue_num,
584 				   priv->rxq[queue_num], rx_rsize);
585 		if (ret) {
586 			netdev_err(netd, "RX DMA ring allocation failed!!\n");
587 			goto rxalloc_err;
588 		}
589 
590 		/* save private pointer in each ring this
591 		 * pointer is needed during cleaing TX queue
592 		 */
593 		priv->rxq[queue_num]->priv_ptr = priv;
594 	}
595 
596 	sxgbe_clear_descriptors(priv);
597 
598 	return 0;
599 
600 txalloc_err:
601 	while (queue_num--)
602 		free_tx_ring(priv->device, priv->txq[queue_num], tx_rsize);
603 	return ret;
604 
605 rxalloc_err:
606 	while (queue_num--)
607 		free_rx_ring(priv->device, priv->rxq[queue_num], rx_rsize);
608 	return ret;
609 }
610 
611 static void tx_free_ring_skbufs(struct sxgbe_tx_queue *txqueue)
612 {
613 	int dma_desc;
614 	struct sxgbe_priv_data *priv = txqueue->priv_ptr;
615 	int tx_rsize = priv->dma_tx_size;
616 
617 	for (dma_desc = 0; dma_desc < tx_rsize; dma_desc++) {
618 		struct sxgbe_tx_norm_desc *tdesc = txqueue->dma_tx + dma_desc;
619 
620 		if (txqueue->tx_skbuff_dma[dma_desc])
621 			dma_unmap_single(priv->device,
622 					 txqueue->tx_skbuff_dma[dma_desc],
623 					 priv->hw->desc->get_tx_len(tdesc),
624 					 DMA_TO_DEVICE);
625 
626 		dev_kfree_skb_any(txqueue->tx_skbuff[dma_desc]);
627 		txqueue->tx_skbuff[dma_desc] = NULL;
628 		txqueue->tx_skbuff_dma[dma_desc] = 0;
629 	}
630 }
631 
632 
633 static void dma_free_tx_skbufs(struct sxgbe_priv_data *priv)
634 {
635 	int queue_num;
636 
637 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
638 		struct sxgbe_tx_queue *tqueue = priv->txq[queue_num];
639 		tx_free_ring_skbufs(tqueue);
640 	}
641 }
642 
643 static void free_dma_desc_resources(struct sxgbe_priv_data *priv)
644 {
645 	int queue_num;
646 	int tx_rsize = priv->dma_tx_size;
647 	int rx_rsize = priv->dma_rx_size;
648 
649 	/* Release the DMA TX buffers */
650 	dma_free_tx_skbufs(priv);
651 
652 	/* Release the TX ring memory also */
653 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
654 		free_tx_ring(priv->device, priv->txq[queue_num], tx_rsize);
655 	}
656 
657 	/* Release the RX ring memory also */
658 	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
659 		free_rx_ring(priv->device, priv->rxq[queue_num], rx_rsize);
660 	}
661 }
662 
663 static int txring_mem_alloc(struct sxgbe_priv_data *priv)
664 {
665 	int queue_num;
666 
667 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
668 		priv->txq[queue_num] = devm_kmalloc(priv->device,
669 						    sizeof(struct sxgbe_tx_queue), GFP_KERNEL);
670 		if (!priv->txq[queue_num])
671 			return -ENOMEM;
672 	}
673 
674 	return 0;
675 }
676 
677 static int rxring_mem_alloc(struct sxgbe_priv_data *priv)
678 {
679 	int queue_num;
680 
681 	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
682 		priv->rxq[queue_num] = devm_kmalloc(priv->device,
683 						    sizeof(struct sxgbe_rx_queue), GFP_KERNEL);
684 		if (!priv->rxq[queue_num])
685 			return -ENOMEM;
686 	}
687 
688 	return 0;
689 }
690 
691 /**
692  *  sxgbe_mtl_operation_mode - HW MTL operation mode
693  *  @priv: driver private structure
694  *  Description: it sets the MTL operation mode: tx/rx MTL thresholds
695  *  or Store-And-Forward capability.
696  */
697 static void sxgbe_mtl_operation_mode(struct sxgbe_priv_data *priv)
698 {
699 	int queue_num;
700 
701 	/* TX/RX threshold control */
702 	if (likely(priv->plat->force_sf_dma_mode)) {
703 		/* set TC mode for TX QUEUES */
704 		SXGBE_FOR_EACH_QUEUE(priv->hw_cap.tx_mtl_queues, queue_num)
705 			priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, queue_num,
706 						       SXGBE_MTL_SFMODE);
707 		priv->tx_tc = SXGBE_MTL_SFMODE;
708 
709 		/* set TC mode for RX QUEUES */
710 		SXGBE_FOR_EACH_QUEUE(priv->hw_cap.rx_mtl_queues, queue_num)
711 			priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, queue_num,
712 						       SXGBE_MTL_SFMODE);
713 		priv->rx_tc = SXGBE_MTL_SFMODE;
714 	} else if (unlikely(priv->plat->force_thresh_dma_mode)) {
715 		/* set TC mode for TX QUEUES */
716 		SXGBE_FOR_EACH_QUEUE(priv->hw_cap.tx_mtl_queues, queue_num)
717 			priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, queue_num,
718 						       priv->tx_tc);
719 		/* set TC mode for RX QUEUES */
720 		SXGBE_FOR_EACH_QUEUE(priv->hw_cap.rx_mtl_queues, queue_num)
721 			priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, queue_num,
722 						       priv->rx_tc);
723 	} else {
724 		pr_err("ERROR: %s: Invalid TX threshold mode\n", __func__);
725 	}
726 }
727 
728 /**
729  * sxgbe_tx_queue_clean:
730  * @priv: driver private structure
731  * Description: it reclaims resources after transmission completes.
732  */
733 static void sxgbe_tx_queue_clean(struct sxgbe_tx_queue *tqueue)
734 {
735 	struct sxgbe_priv_data *priv = tqueue->priv_ptr;
736 	unsigned int tx_rsize = priv->dma_tx_size;
737 	struct netdev_queue *dev_txq;
738 	u8 queue_no = tqueue->queue_no;
739 
740 	dev_txq = netdev_get_tx_queue(priv->dev, queue_no);
741 
742 	__netif_tx_lock(dev_txq, smp_processor_id());
743 
744 	priv->xstats.tx_clean++;
745 	while (tqueue->dirty_tx != tqueue->cur_tx) {
746 		unsigned int entry = tqueue->dirty_tx % tx_rsize;
747 		struct sk_buff *skb = tqueue->tx_skbuff[entry];
748 		struct sxgbe_tx_norm_desc *p;
749 
750 		p = tqueue->dma_tx + entry;
751 
752 		/* Check if the descriptor is owned by the DMA. */
753 		if (priv->hw->desc->get_tx_owner(p))
754 			break;
755 
756 		if (netif_msg_tx_done(priv))
757 			pr_debug("%s: curr %d, dirty %d\n",
758 				 __func__, tqueue->cur_tx, tqueue->dirty_tx);
759 
760 		if (likely(tqueue->tx_skbuff_dma[entry])) {
761 			dma_unmap_single(priv->device,
762 					 tqueue->tx_skbuff_dma[entry],
763 					 priv->hw->desc->get_tx_len(p),
764 					 DMA_TO_DEVICE);
765 			tqueue->tx_skbuff_dma[entry] = 0;
766 		}
767 
768 		if (likely(skb)) {
769 			dev_kfree_skb(skb);
770 			tqueue->tx_skbuff[entry] = NULL;
771 		}
772 
773 		priv->hw->desc->release_tx_desc(p);
774 
775 		tqueue->dirty_tx++;
776 	}
777 
778 	/* wake up queue */
779 	if (unlikely(netif_tx_queue_stopped(dev_txq) &&
780 	    sxgbe_tx_avail(tqueue, tx_rsize) > SXGBE_TX_THRESH(priv))) {
781 		if (netif_msg_tx_done(priv))
782 			pr_debug("%s: restart transmit\n", __func__);
783 		netif_tx_wake_queue(dev_txq);
784 	}
785 
786 	__netif_tx_unlock(dev_txq);
787 }
788 
789 /**
790  * sxgbe_tx_clean:
791  * @priv: driver private structure
792  * Description: it reclaims resources after transmission completes.
793  */
794 static void sxgbe_tx_all_clean(struct sxgbe_priv_data * const priv)
795 {
796 	u8 queue_num;
797 
798 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
799 		struct sxgbe_tx_queue *tqueue = priv->txq[queue_num];
800 
801 		sxgbe_tx_queue_clean(tqueue);
802 	}
803 
804 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
805 		sxgbe_enable_eee_mode(priv);
806 		mod_timer(&priv->eee_ctrl_timer, SXGBE_LPI_TIMER(eee_timer));
807 	}
808 }
809 
810 /**
811  * sxgbe_restart_tx_queue: irq tx error mng function
812  * @priv: driver private structure
813  * Description: it cleans the descriptors and restarts the transmission
814  * in case of errors.
815  */
816 static void sxgbe_restart_tx_queue(struct sxgbe_priv_data *priv, int queue_num)
817 {
818 	struct sxgbe_tx_queue *tx_ring = priv->txq[queue_num];
819 	struct netdev_queue *dev_txq = netdev_get_tx_queue(priv->dev,
820 							   queue_num);
821 
822 	/* stop the queue */
823 	netif_tx_stop_queue(dev_txq);
824 
825 	/* stop the tx dma */
826 	priv->hw->dma->stop_tx_queue(priv->ioaddr, queue_num);
827 
828 	/* free the skbuffs of the ring */
829 	tx_free_ring_skbufs(tx_ring);
830 
831 	/* initialise counters */
832 	tx_ring->cur_tx = 0;
833 	tx_ring->dirty_tx = 0;
834 
835 	/* start the tx dma */
836 	priv->hw->dma->start_tx_queue(priv->ioaddr, queue_num);
837 
838 	priv->dev->stats.tx_errors++;
839 
840 	/* wakeup the queue */
841 	netif_tx_wake_queue(dev_txq);
842 }
843 
844 /**
845  * sxgbe_reset_all_tx_queues: irq tx error mng function
846  * @priv: driver private structure
847  * Description: it cleans all the descriptors and
848  * restarts the transmission on all queues in case of errors.
849  */
850 static void sxgbe_reset_all_tx_queues(struct sxgbe_priv_data *priv)
851 {
852 	int queue_num;
853 
854 	/* On TX timeout of net device, resetting of all queues
855 	 * may not be proper way, revisit this later if needed
856 	 */
857 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num)
858 		sxgbe_restart_tx_queue(priv, queue_num);
859 }
860 
861 /**
862  * sxgbe_get_hw_features: get XMAC capabilities from the HW cap. register.
863  * @priv: driver private structure
864  * Description:
865  *  new GMAC chip generations have a new register to indicate the
866  *  presence of the optional feature/functions.
867  *  This can be also used to override the value passed through the
868  *  platform and necessary for old MAC10/100 and GMAC chips.
869  */
870 static int sxgbe_get_hw_features(struct sxgbe_priv_data * const priv)
871 {
872 	int rval = 0;
873 	struct sxgbe_hw_features *features = &priv->hw_cap;
874 
875 	/* Read First Capability Register CAP[0] */
876 	rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 0);
877 	if (rval) {
878 		features->pmt_remote_wake_up =
879 			SXGBE_HW_FEAT_PMT_TEMOTE_WOP(rval);
880 		features->pmt_magic_frame = SXGBE_HW_FEAT_PMT_MAGIC_PKT(rval);
881 		features->atime_stamp = SXGBE_HW_FEAT_IEEE1500_2008(rval);
882 		features->tx_csum_offload =
883 			SXGBE_HW_FEAT_TX_CSUM_OFFLOAD(rval);
884 		features->rx_csum_offload =
885 			SXGBE_HW_FEAT_RX_CSUM_OFFLOAD(rval);
886 		features->multi_macaddr = SXGBE_HW_FEAT_MACADDR_COUNT(rval);
887 		features->tstamp_srcselect = SXGBE_HW_FEAT_TSTMAP_SRC(rval);
888 		features->sa_vlan_insert = SXGBE_HW_FEAT_SRCADDR_VLAN(rval);
889 		features->eee = SXGBE_HW_FEAT_EEE(rval);
890 	}
891 
892 	/* Read First Capability Register CAP[1] */
893 	rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 1);
894 	if (rval) {
895 		features->rxfifo_size = SXGBE_HW_FEAT_RX_FIFO_SIZE(rval);
896 		features->txfifo_size = SXGBE_HW_FEAT_TX_FIFO_SIZE(rval);
897 		features->atstmap_hword = SXGBE_HW_FEAT_TX_FIFO_SIZE(rval);
898 		features->dcb_enable = SXGBE_HW_FEAT_DCB(rval);
899 		features->splithead_enable = SXGBE_HW_FEAT_SPLIT_HDR(rval);
900 		features->tcpseg_offload = SXGBE_HW_FEAT_TSO(rval);
901 		features->debug_mem = SXGBE_HW_FEAT_DEBUG_MEM_IFACE(rval);
902 		features->rss_enable = SXGBE_HW_FEAT_RSS(rval);
903 		features->hash_tsize = SXGBE_HW_FEAT_HASH_TABLE_SIZE(rval);
904 		features->l3l4_filer_size = SXGBE_HW_FEAT_L3L4_FILTER_NUM(rval);
905 	}
906 
907 	/* Read First Capability Register CAP[2] */
908 	rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 2);
909 	if (rval) {
910 		features->rx_mtl_queues = SXGBE_HW_FEAT_RX_MTL_QUEUES(rval);
911 		features->tx_mtl_queues = SXGBE_HW_FEAT_TX_MTL_QUEUES(rval);
912 		features->rx_dma_channels = SXGBE_HW_FEAT_RX_DMA_CHANNELS(rval);
913 		features->tx_dma_channels = SXGBE_HW_FEAT_TX_DMA_CHANNELS(rval);
914 		features->pps_output_count = SXGBE_HW_FEAT_PPS_OUTPUTS(rval);
915 		features->aux_input_count = SXGBE_HW_FEAT_AUX_SNAPSHOTS(rval);
916 	}
917 
918 	return rval;
919 }
920 
921 /**
922  * sxgbe_check_ether_addr: check if the MAC addr is valid
923  * @priv: driver private structure
924  * Description:
925  * it is to verify if the MAC address is valid, in case of failures it
926  * generates a random MAC address
927  */
928 static void sxgbe_check_ether_addr(struct sxgbe_priv_data *priv)
929 {
930 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
931 		priv->hw->mac->get_umac_addr((void __iomem *)
932 					     priv->ioaddr,
933 					     priv->dev->dev_addr, 0);
934 		if (!is_valid_ether_addr(priv->dev->dev_addr))
935 			eth_hw_addr_random(priv->dev);
936 	}
937 	dev_info(priv->device, "device MAC address %pM\n",
938 		 priv->dev->dev_addr);
939 }
940 
941 /**
942  * sxgbe_init_dma_engine: DMA init.
943  * @priv: driver private structure
944  * Description:
945  * It inits the DMA invoking the specific SXGBE callback.
946  * Some DMA parameters can be passed from the platform;
947  * in case of these are not passed a default is kept for the MAC or GMAC.
948  */
949 static int sxgbe_init_dma_engine(struct sxgbe_priv_data *priv)
950 {
951 	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_map = 0;
952 	int queue_num;
953 
954 	if (priv->plat->dma_cfg) {
955 		pbl = priv->plat->dma_cfg->pbl;
956 		fixed_burst = priv->plat->dma_cfg->fixed_burst;
957 		burst_map = priv->plat->dma_cfg->burst_map;
958 	}
959 
960 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num)
961 		priv->hw->dma->cha_init(priv->ioaddr, queue_num,
962 					fixed_burst, pbl,
963 					(priv->txq[queue_num])->dma_tx_phy,
964 					(priv->rxq[queue_num])->dma_rx_phy,
965 					priv->dma_tx_size, priv->dma_rx_size);
966 
967 	return priv->hw->dma->init(priv->ioaddr, fixed_burst, burst_map);
968 }
969 
970 /**
971  * sxgbe_init_mtl_engine: MTL init.
972  * @priv: driver private structure
973  * Description:
974  * It inits the MTL invoking the specific SXGBE callback.
975  */
976 static void sxgbe_init_mtl_engine(struct sxgbe_priv_data *priv)
977 {
978 	int queue_num;
979 
980 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
981 		priv->hw->mtl->mtl_set_txfifosize(priv->ioaddr, queue_num,
982 						  priv->hw_cap.tx_mtl_qsize);
983 		priv->hw->mtl->mtl_enable_txqueue(priv->ioaddr, queue_num);
984 	}
985 }
986 
987 /**
988  * sxgbe_disable_mtl_engine: MTL disable.
989  * @priv: driver private structure
990  * Description:
991  * It disables the MTL queues by invoking the specific SXGBE callback.
992  */
993 static void sxgbe_disable_mtl_engine(struct sxgbe_priv_data *priv)
994 {
995 	int queue_num;
996 
997 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num)
998 		priv->hw->mtl->mtl_disable_txqueue(priv->ioaddr, queue_num);
999 }
1000 
1001 
1002 /**
1003  * sxgbe_tx_timer: mitigation sw timer for tx.
1004  * @t: timer pointer
1005  * Description:
1006  * This is the timer handler to directly invoke the sxgbe_tx_clean.
1007  */
1008 static void sxgbe_tx_timer(struct timer_list *t)
1009 {
1010 	struct sxgbe_tx_queue *p = from_timer(p, t, txtimer);
1011 	sxgbe_tx_queue_clean(p);
1012 }
1013 
1014 /**
1015  * sxgbe_init_tx_coalesce: init tx mitigation options.
1016  * @priv: driver private structure
1017  * Description:
1018  * This inits the transmit coalesce parameters: i.e. timer rate,
1019  * timer handler and default threshold used for enabling the
1020  * interrupt on completion bit.
1021  */
1022 static void sxgbe_tx_init_coalesce(struct sxgbe_priv_data *priv)
1023 {
1024 	u8 queue_num;
1025 
1026 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
1027 		struct sxgbe_tx_queue *p = priv->txq[queue_num];
1028 		p->tx_coal_frames =  SXGBE_TX_FRAMES;
1029 		p->tx_coal_timer = SXGBE_COAL_TX_TIMER;
1030 		timer_setup(&p->txtimer, sxgbe_tx_timer, 0);
1031 		p->txtimer.expires = SXGBE_COAL_TIMER(p->tx_coal_timer);
1032 		add_timer(&p->txtimer);
1033 	}
1034 }
1035 
1036 static void sxgbe_tx_del_timer(struct sxgbe_priv_data *priv)
1037 {
1038 	u8 queue_num;
1039 
1040 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
1041 		struct sxgbe_tx_queue *p = priv->txq[queue_num];
1042 		del_timer_sync(&p->txtimer);
1043 	}
1044 }
1045 
1046 /**
1047  *  sxgbe_open - open entry point of the driver
1048  *  @dev : pointer to the device structure.
1049  *  Description:
1050  *  This function is the open entry point of the driver.
1051  *  Return value:
1052  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1053  *  file on failure.
1054  */
1055 static int sxgbe_open(struct net_device *dev)
1056 {
1057 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1058 	int ret, queue_num;
1059 
1060 	clk_prepare_enable(priv->sxgbe_clk);
1061 
1062 	sxgbe_check_ether_addr(priv);
1063 
1064 	/* Init the phy */
1065 	ret = sxgbe_init_phy(dev);
1066 	if (ret) {
1067 		netdev_err(dev, "%s: Cannot attach to PHY (error: %d)\n",
1068 			   __func__, ret);
1069 		goto phy_error;
1070 	}
1071 
1072 	/* Create and initialize the TX/RX descriptors chains. */
1073 	priv->dma_tx_size = SXGBE_ALIGN(DMA_TX_SIZE);
1074 	priv->dma_rx_size = SXGBE_ALIGN(DMA_RX_SIZE);
1075 	priv->dma_buf_sz = SXGBE_ALIGN(DMA_BUFFER_SIZE);
1076 	priv->tx_tc = TC_DEFAULT;
1077 	priv->rx_tc = TC_DEFAULT;
1078 	init_dma_desc_rings(dev);
1079 
1080 	/* DMA initialization and SW reset */
1081 	ret = sxgbe_init_dma_engine(priv);
1082 	if (ret < 0) {
1083 		netdev_err(dev, "%s: DMA initialization failed\n", __func__);
1084 		goto init_error;
1085 	}
1086 
1087 	/*  MTL initialization */
1088 	sxgbe_init_mtl_engine(priv);
1089 
1090 	/* Copy the MAC addr into the HW  */
1091 	priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1092 
1093 	/* Initialize the MAC Core */
1094 	priv->hw->mac->core_init(priv->ioaddr);
1095 	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
1096 		priv->hw->mac->enable_rxqueue(priv->ioaddr, queue_num);
1097 	}
1098 
1099 	/* Request the IRQ lines */
1100 	ret = devm_request_irq(priv->device, priv->irq, sxgbe_common_interrupt,
1101 			       IRQF_SHARED, dev->name, dev);
1102 	if (unlikely(ret < 0)) {
1103 		netdev_err(dev, "%s: ERROR: allocating the IRQ %d (error: %d)\n",
1104 			   __func__, priv->irq, ret);
1105 		goto init_error;
1106 	}
1107 
1108 	/* If the LPI irq is different from the mac irq
1109 	 * register a dedicated handler
1110 	 */
1111 	if (priv->lpi_irq != dev->irq) {
1112 		ret = devm_request_irq(priv->device, priv->lpi_irq,
1113 				       sxgbe_common_interrupt,
1114 				       IRQF_SHARED, dev->name, dev);
1115 		if (unlikely(ret < 0)) {
1116 			netdev_err(dev, "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1117 				   __func__, priv->lpi_irq, ret);
1118 			goto init_error;
1119 		}
1120 	}
1121 
1122 	/* Request TX DMA irq lines */
1123 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
1124 		ret = devm_request_irq(priv->device,
1125 				       (priv->txq[queue_num])->irq_no,
1126 				       sxgbe_tx_interrupt, 0,
1127 				       dev->name, priv->txq[queue_num]);
1128 		if (unlikely(ret < 0)) {
1129 			netdev_err(dev, "%s: ERROR: allocating TX IRQ %d (error: %d)\n",
1130 				   __func__, priv->irq, ret);
1131 			goto init_error;
1132 		}
1133 	}
1134 
1135 	/* Request RX DMA irq lines */
1136 	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
1137 		ret = devm_request_irq(priv->device,
1138 				       (priv->rxq[queue_num])->irq_no,
1139 				       sxgbe_rx_interrupt, 0,
1140 				       dev->name, priv->rxq[queue_num]);
1141 		if (unlikely(ret < 0)) {
1142 			netdev_err(dev, "%s: ERROR: allocating TX IRQ %d (error: %d)\n",
1143 				   __func__, priv->irq, ret);
1144 			goto init_error;
1145 		}
1146 	}
1147 
1148 	/* Enable the MAC Rx/Tx */
1149 	priv->hw->mac->enable_tx(priv->ioaddr, true);
1150 	priv->hw->mac->enable_rx(priv->ioaddr, true);
1151 
1152 	/* Set the HW DMA mode and the COE */
1153 	sxgbe_mtl_operation_mode(priv);
1154 
1155 	/* Extra statistics */
1156 	memset(&priv->xstats, 0, sizeof(struct sxgbe_extra_stats));
1157 
1158 	priv->xstats.tx_threshold = priv->tx_tc;
1159 	priv->xstats.rx_threshold = priv->rx_tc;
1160 
1161 	/* Start the ball rolling... */
1162 	netdev_dbg(dev, "DMA RX/TX processes started...\n");
1163 	priv->hw->dma->start_tx(priv->ioaddr, SXGBE_TX_QUEUES);
1164 	priv->hw->dma->start_rx(priv->ioaddr, SXGBE_RX_QUEUES);
1165 
1166 	if (dev->phydev)
1167 		phy_start(dev->phydev);
1168 
1169 	/* initialise TX coalesce parameters */
1170 	sxgbe_tx_init_coalesce(priv);
1171 
1172 	if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1173 		priv->rx_riwt = SXGBE_MAX_DMA_RIWT;
1174 		priv->hw->dma->rx_watchdog(priv->ioaddr, SXGBE_MAX_DMA_RIWT);
1175 	}
1176 
1177 	priv->tx_lpi_timer = SXGBE_DEFAULT_LPI_TIMER;
1178 	priv->eee_enabled = sxgbe_eee_init(priv);
1179 
1180 	napi_enable(&priv->napi);
1181 	netif_start_queue(dev);
1182 
1183 	return 0;
1184 
1185 init_error:
1186 	free_dma_desc_resources(priv);
1187 	if (dev->phydev)
1188 		phy_disconnect(dev->phydev);
1189 phy_error:
1190 	clk_disable_unprepare(priv->sxgbe_clk);
1191 
1192 	return ret;
1193 }
1194 
1195 /**
1196  *  sxgbe_release - close entry point of the driver
1197  *  @dev : device pointer.
1198  *  Description:
1199  *  This is the stop entry point of the driver.
1200  */
1201 static int sxgbe_release(struct net_device *dev)
1202 {
1203 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1204 
1205 	if (priv->eee_enabled)
1206 		del_timer_sync(&priv->eee_ctrl_timer);
1207 
1208 	/* Stop and disconnect the PHY */
1209 	if (dev->phydev) {
1210 		phy_stop(dev->phydev);
1211 		phy_disconnect(dev->phydev);
1212 	}
1213 
1214 	netif_tx_stop_all_queues(dev);
1215 
1216 	napi_disable(&priv->napi);
1217 
1218 	/* delete TX timers */
1219 	sxgbe_tx_del_timer(priv);
1220 
1221 	/* Stop TX/RX DMA and clear the descriptors */
1222 	priv->hw->dma->stop_tx(priv->ioaddr, SXGBE_TX_QUEUES);
1223 	priv->hw->dma->stop_rx(priv->ioaddr, SXGBE_RX_QUEUES);
1224 
1225 	/* disable MTL queue */
1226 	sxgbe_disable_mtl_engine(priv);
1227 
1228 	/* Release and free the Rx/Tx resources */
1229 	free_dma_desc_resources(priv);
1230 
1231 	/* Disable the MAC Rx/Tx */
1232 	priv->hw->mac->enable_tx(priv->ioaddr, false);
1233 	priv->hw->mac->enable_rx(priv->ioaddr, false);
1234 
1235 	clk_disable_unprepare(priv->sxgbe_clk);
1236 
1237 	return 0;
1238 }
1239 /* Prepare first Tx descriptor for doing TSO operation */
1240 static void sxgbe_tso_prepare(struct sxgbe_priv_data *priv,
1241 			      struct sxgbe_tx_norm_desc *first_desc,
1242 			      struct sk_buff *skb)
1243 {
1244 	unsigned int total_hdr_len, tcp_hdr_len;
1245 
1246 	/* Write first Tx descriptor with appropriate value */
1247 	tcp_hdr_len = tcp_hdrlen(skb);
1248 	total_hdr_len = skb_transport_offset(skb) + tcp_hdr_len;
1249 
1250 	first_desc->tdes01 = dma_map_single(priv->device, skb->data,
1251 					    total_hdr_len, DMA_TO_DEVICE);
1252 	if (dma_mapping_error(priv->device, first_desc->tdes01))
1253 		pr_err("%s: TX dma mapping failed!!\n", __func__);
1254 
1255 	first_desc->tdes23.tx_rd_des23.first_desc = 1;
1256 	priv->hw->desc->tx_desc_enable_tse(first_desc, 1, total_hdr_len,
1257 					   tcp_hdr_len,
1258 					   skb->len - total_hdr_len);
1259 }
1260 
1261 /**
1262  *  sxgbe_xmit: Tx entry point of the driver
1263  *  @skb : the socket buffer
1264  *  @dev : device pointer
1265  *  Description : this is the tx entry point of the driver.
1266  *  It programs the chain or the ring and supports oversized frames
1267  *  and SG feature.
1268  */
1269 static netdev_tx_t sxgbe_xmit(struct sk_buff *skb, struct net_device *dev)
1270 {
1271 	unsigned int entry, frag_num;
1272 	int cksum_flag = 0;
1273 	struct netdev_queue *dev_txq;
1274 	unsigned txq_index = skb_get_queue_mapping(skb);
1275 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1276 	unsigned int tx_rsize = priv->dma_tx_size;
1277 	struct sxgbe_tx_queue *tqueue = priv->txq[txq_index];
1278 	struct sxgbe_tx_norm_desc *tx_desc, *first_desc;
1279 	struct sxgbe_tx_ctxt_desc *ctxt_desc = NULL;
1280 	int nr_frags = skb_shinfo(skb)->nr_frags;
1281 	int no_pagedlen = skb_headlen(skb);
1282 	int is_jumbo = 0;
1283 	u16 cur_mss = skb_shinfo(skb)->gso_size;
1284 	u32 ctxt_desc_req = 0;
1285 
1286 	/* get the TX queue handle */
1287 	dev_txq = netdev_get_tx_queue(dev, txq_index);
1288 
1289 	if (unlikely(skb_is_gso(skb) && tqueue->prev_mss != cur_mss))
1290 		ctxt_desc_req = 1;
1291 
1292 	if (unlikely(skb_vlan_tag_present(skb) ||
1293 		     ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1294 		      tqueue->hwts_tx_en)))
1295 		ctxt_desc_req = 1;
1296 
1297 	if (priv->tx_path_in_lpi_mode)
1298 		sxgbe_disable_eee_mode(priv);
1299 
1300 	if (unlikely(sxgbe_tx_avail(tqueue, tx_rsize) < nr_frags + 1)) {
1301 		if (!netif_tx_queue_stopped(dev_txq)) {
1302 			netif_tx_stop_queue(dev_txq);
1303 			netdev_err(dev, "%s: Tx Ring is full when %d queue is awake\n",
1304 				   __func__, txq_index);
1305 		}
1306 		return NETDEV_TX_BUSY;
1307 	}
1308 
1309 	entry = tqueue->cur_tx % tx_rsize;
1310 	tx_desc = tqueue->dma_tx + entry;
1311 
1312 	first_desc = tx_desc;
1313 	if (ctxt_desc_req)
1314 		ctxt_desc = (struct sxgbe_tx_ctxt_desc *)first_desc;
1315 
1316 	/* save the skb address */
1317 	tqueue->tx_skbuff[entry] = skb;
1318 
1319 	if (!is_jumbo) {
1320 		if (likely(skb_is_gso(skb))) {
1321 			/* TSO support */
1322 			if (unlikely(tqueue->prev_mss != cur_mss)) {
1323 				priv->hw->desc->tx_ctxt_desc_set_mss(
1324 						ctxt_desc, cur_mss);
1325 				priv->hw->desc->tx_ctxt_desc_set_tcmssv(
1326 						ctxt_desc);
1327 				priv->hw->desc->tx_ctxt_desc_reset_ostc(
1328 						ctxt_desc);
1329 				priv->hw->desc->tx_ctxt_desc_set_ctxt(
1330 						ctxt_desc);
1331 				priv->hw->desc->tx_ctxt_desc_set_owner(
1332 						ctxt_desc);
1333 
1334 				entry = (++tqueue->cur_tx) % tx_rsize;
1335 				first_desc = tqueue->dma_tx + entry;
1336 
1337 				tqueue->prev_mss = cur_mss;
1338 			}
1339 			sxgbe_tso_prepare(priv, first_desc, skb);
1340 		} else {
1341 			tx_desc->tdes01 = dma_map_single(priv->device,
1342 							 skb->data, no_pagedlen, DMA_TO_DEVICE);
1343 			if (dma_mapping_error(priv->device, tx_desc->tdes01))
1344 				netdev_err(dev, "%s: TX dma mapping failed!!\n",
1345 					   __func__);
1346 
1347 			priv->hw->desc->prepare_tx_desc(tx_desc, 1, no_pagedlen,
1348 							no_pagedlen, cksum_flag);
1349 		}
1350 	}
1351 
1352 	for (frag_num = 0; frag_num < nr_frags; frag_num++) {
1353 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_num];
1354 		int len = skb_frag_size(frag);
1355 
1356 		entry = (++tqueue->cur_tx) % tx_rsize;
1357 		tx_desc = tqueue->dma_tx + entry;
1358 		tx_desc->tdes01 = skb_frag_dma_map(priv->device, frag, 0, len,
1359 						   DMA_TO_DEVICE);
1360 
1361 		tqueue->tx_skbuff_dma[entry] = tx_desc->tdes01;
1362 		tqueue->tx_skbuff[entry] = NULL;
1363 
1364 		/* prepare the descriptor */
1365 		priv->hw->desc->prepare_tx_desc(tx_desc, 0, len,
1366 						len, cksum_flag);
1367 		/* memory barrier to flush descriptor */
1368 		wmb();
1369 
1370 		/* set the owner */
1371 		priv->hw->desc->set_tx_owner(tx_desc);
1372 	}
1373 
1374 	/* close the descriptors */
1375 	priv->hw->desc->close_tx_desc(tx_desc);
1376 
1377 	/* memory barrier to flush descriptor */
1378 	wmb();
1379 
1380 	tqueue->tx_count_frames += nr_frags + 1;
1381 	if (tqueue->tx_count_frames > tqueue->tx_coal_frames) {
1382 		priv->hw->desc->clear_tx_ic(tx_desc);
1383 		priv->xstats.tx_reset_ic_bit++;
1384 		mod_timer(&tqueue->txtimer,
1385 			  SXGBE_COAL_TIMER(tqueue->tx_coal_timer));
1386 	} else {
1387 		tqueue->tx_count_frames = 0;
1388 	}
1389 
1390 	/* set owner for first desc */
1391 	priv->hw->desc->set_tx_owner(first_desc);
1392 
1393 	/* memory barrier to flush descriptor */
1394 	wmb();
1395 
1396 	tqueue->cur_tx++;
1397 
1398 	/* display current ring */
1399 	netif_dbg(priv, pktdata, dev, "%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d\n",
1400 		  __func__, tqueue->cur_tx % tx_rsize,
1401 		  tqueue->dirty_tx % tx_rsize, entry,
1402 		  first_desc, nr_frags);
1403 
1404 	if (unlikely(sxgbe_tx_avail(tqueue, tx_rsize) <= (MAX_SKB_FRAGS + 1))) {
1405 		netif_dbg(priv, hw, dev, "%s: stop transmitted packets\n",
1406 			  __func__);
1407 		netif_tx_stop_queue(dev_txq);
1408 	}
1409 
1410 	dev->stats.tx_bytes += skb->len;
1411 
1412 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1413 		     tqueue->hwts_tx_en)) {
1414 		/* declare that device is doing timestamping */
1415 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1416 		priv->hw->desc->tx_enable_tstamp(first_desc);
1417 	}
1418 
1419 	skb_tx_timestamp(skb);
1420 
1421 	priv->hw->dma->enable_dma_transmission(priv->ioaddr, txq_index);
1422 
1423 	return NETDEV_TX_OK;
1424 }
1425 
1426 /**
1427  * sxgbe_rx_refill: refill used skb preallocated buffers
1428  * @priv: driver private structure
1429  * Description : this is to reallocate the skb for the reception process
1430  * that is based on zero-copy.
1431  */
1432 static void sxgbe_rx_refill(struct sxgbe_priv_data *priv)
1433 {
1434 	unsigned int rxsize = priv->dma_rx_size;
1435 	int bfsize = priv->dma_buf_sz;
1436 	u8 qnum = priv->cur_rx_qnum;
1437 
1438 	for (; priv->rxq[qnum]->cur_rx - priv->rxq[qnum]->dirty_rx > 0;
1439 	     priv->rxq[qnum]->dirty_rx++) {
1440 		unsigned int entry = priv->rxq[qnum]->dirty_rx % rxsize;
1441 		struct sxgbe_rx_norm_desc *p;
1442 
1443 		p = priv->rxq[qnum]->dma_rx + entry;
1444 
1445 		if (likely(priv->rxq[qnum]->rx_skbuff[entry] == NULL)) {
1446 			struct sk_buff *skb;
1447 
1448 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
1449 
1450 			if (unlikely(skb == NULL))
1451 				break;
1452 
1453 			priv->rxq[qnum]->rx_skbuff[entry] = skb;
1454 			priv->rxq[qnum]->rx_skbuff_dma[entry] =
1455 				dma_map_single(priv->device, skb->data, bfsize,
1456 					       DMA_FROM_DEVICE);
1457 
1458 			p->rdes23.rx_rd_des23.buf2_addr =
1459 				priv->rxq[qnum]->rx_skbuff_dma[entry];
1460 		}
1461 
1462 		/* Added memory barrier for RX descriptor modification */
1463 		wmb();
1464 		priv->hw->desc->set_rx_owner(p);
1465 		priv->hw->desc->set_rx_int_on_com(p);
1466 		/* Added memory barrier for RX descriptor modification */
1467 		wmb();
1468 	}
1469 }
1470 
1471 /**
1472  * sxgbe_rx: receive the frames from the remote host
1473  * @priv: driver private structure
1474  * @limit: napi bugget.
1475  * Description :  this the function called by the napi poll method.
1476  * It gets all the frames inside the ring.
1477  */
1478 static int sxgbe_rx(struct sxgbe_priv_data *priv, int limit)
1479 {
1480 	u8 qnum = priv->cur_rx_qnum;
1481 	unsigned int rxsize = priv->dma_rx_size;
1482 	unsigned int entry = priv->rxq[qnum]->cur_rx;
1483 	unsigned int next_entry = 0;
1484 	unsigned int count = 0;
1485 	int checksum;
1486 	int status;
1487 
1488 	while (count < limit) {
1489 		struct sxgbe_rx_norm_desc *p;
1490 		struct sk_buff *skb;
1491 		int frame_len;
1492 
1493 		p = priv->rxq[qnum]->dma_rx + entry;
1494 
1495 		if (priv->hw->desc->get_rx_owner(p))
1496 			break;
1497 
1498 		count++;
1499 
1500 		next_entry = (++priv->rxq[qnum]->cur_rx) % rxsize;
1501 		prefetch(priv->rxq[qnum]->dma_rx + next_entry);
1502 
1503 		/* Read the status of the incoming frame and also get checksum
1504 		 * value based on whether it is enabled in SXGBE hardware or
1505 		 * not.
1506 		 */
1507 		status = priv->hw->desc->rx_wbstatus(p, &priv->xstats,
1508 						     &checksum);
1509 		if (unlikely(status < 0)) {
1510 			entry = next_entry;
1511 			continue;
1512 		}
1513 		if (unlikely(!priv->rxcsum_insertion))
1514 			checksum = CHECKSUM_NONE;
1515 
1516 		skb = priv->rxq[qnum]->rx_skbuff[entry];
1517 
1518 		if (unlikely(!skb))
1519 			netdev_err(priv->dev, "rx descriptor is not consistent\n");
1520 
1521 		prefetch(skb->data - NET_IP_ALIGN);
1522 		priv->rxq[qnum]->rx_skbuff[entry] = NULL;
1523 
1524 		frame_len = priv->hw->desc->get_rx_frame_len(p);
1525 
1526 		skb_put(skb, frame_len);
1527 
1528 		skb->ip_summed = checksum;
1529 		if (checksum == CHECKSUM_NONE)
1530 			netif_receive_skb(skb);
1531 		else
1532 			napi_gro_receive(&priv->napi, skb);
1533 
1534 		entry = next_entry;
1535 	}
1536 
1537 	sxgbe_rx_refill(priv);
1538 
1539 	return count;
1540 }
1541 
1542 /**
1543  *  sxgbe_poll - sxgbe poll method (NAPI)
1544  *  @napi : pointer to the napi structure.
1545  *  @budget : maximum number of packets that the current CPU can receive from
1546  *	      all interfaces.
1547  *  Description :
1548  *  To look at the incoming frames and clear the tx resources.
1549  */
1550 static int sxgbe_poll(struct napi_struct *napi, int budget)
1551 {
1552 	struct sxgbe_priv_data *priv = container_of(napi,
1553 						    struct sxgbe_priv_data, napi);
1554 	int work_done = 0;
1555 	u8 qnum = priv->cur_rx_qnum;
1556 
1557 	priv->xstats.napi_poll++;
1558 	/* first, clean the tx queues */
1559 	sxgbe_tx_all_clean(priv);
1560 
1561 	work_done = sxgbe_rx(priv, budget);
1562 	if (work_done < budget) {
1563 		napi_complete_done(napi, work_done);
1564 		priv->hw->dma->enable_dma_irq(priv->ioaddr, qnum);
1565 	}
1566 
1567 	return work_done;
1568 }
1569 
1570 /**
1571  *  sxgbe_tx_timeout
1572  *  @dev : Pointer to net device structure
1573  *  Description: this function is called when a packet transmission fails to
1574  *   complete within a reasonable time. The driver will mark the error in the
1575  *   netdev structure and arrange for the device to be reset to a sane state
1576  *   in order to transmit a new packet.
1577  */
1578 static void sxgbe_tx_timeout(struct net_device *dev)
1579 {
1580 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1581 
1582 	sxgbe_reset_all_tx_queues(priv);
1583 }
1584 
1585 /**
1586  *  sxgbe_common_interrupt - main ISR
1587  *  @irq: interrupt number.
1588  *  @dev_id: to pass the net device pointer.
1589  *  Description: this is the main driver interrupt service routine.
1590  *  It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI
1591  *  interrupts.
1592  */
1593 static irqreturn_t sxgbe_common_interrupt(int irq, void *dev_id)
1594 {
1595 	struct net_device *netdev = (struct net_device *)dev_id;
1596 	struct sxgbe_priv_data *priv = netdev_priv(netdev);
1597 	int status;
1598 
1599 	status = priv->hw->mac->host_irq_status(priv->ioaddr, &priv->xstats);
1600 	/* For LPI we need to save the tx status */
1601 	if (status & TX_ENTRY_LPI_MODE) {
1602 		priv->xstats.tx_lpi_entry_n++;
1603 		priv->tx_path_in_lpi_mode = true;
1604 	}
1605 	if (status & TX_EXIT_LPI_MODE) {
1606 		priv->xstats.tx_lpi_exit_n++;
1607 		priv->tx_path_in_lpi_mode = false;
1608 	}
1609 	if (status & RX_ENTRY_LPI_MODE)
1610 		priv->xstats.rx_lpi_entry_n++;
1611 	if (status & RX_EXIT_LPI_MODE)
1612 		priv->xstats.rx_lpi_exit_n++;
1613 
1614 	return IRQ_HANDLED;
1615 }
1616 
1617 /**
1618  *  sxgbe_tx_interrupt - TX DMA ISR
1619  *  @irq: interrupt number.
1620  *  @dev_id: to pass the net device pointer.
1621  *  Description: this is the tx dma interrupt service routine.
1622  */
1623 static irqreturn_t sxgbe_tx_interrupt(int irq, void *dev_id)
1624 {
1625 	int status;
1626 	struct sxgbe_tx_queue *txq = (struct sxgbe_tx_queue *)dev_id;
1627 	struct sxgbe_priv_data *priv = txq->priv_ptr;
1628 
1629 	/* get the channel status */
1630 	status = priv->hw->dma->tx_dma_int_status(priv->ioaddr, txq->queue_no,
1631 						  &priv->xstats);
1632 	/* check for normal path */
1633 	if (likely((status & handle_tx)))
1634 		napi_schedule(&priv->napi);
1635 
1636 	/* check for unrecoverable error */
1637 	if (unlikely((status & tx_hard_error)))
1638 		sxgbe_restart_tx_queue(priv, txq->queue_no);
1639 
1640 	/* check for TC configuration change */
1641 	if (unlikely((status & tx_bump_tc) &&
1642 		     (priv->tx_tc != SXGBE_MTL_SFMODE) &&
1643 		     (priv->tx_tc < 512))) {
1644 		/* step of TX TC is 32 till 128, otherwise 64 */
1645 		priv->tx_tc += (priv->tx_tc < 128) ? 32 : 64;
1646 		priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr,
1647 					       txq->queue_no, priv->tx_tc);
1648 		priv->xstats.tx_threshold = priv->tx_tc;
1649 	}
1650 
1651 	return IRQ_HANDLED;
1652 }
1653 
1654 /**
1655  *  sxgbe_rx_interrupt - RX DMA ISR
1656  *  @irq: interrupt number.
1657  *  @dev_id: to pass the net device pointer.
1658  *  Description: this is the rx dma interrupt service routine.
1659  */
1660 static irqreturn_t sxgbe_rx_interrupt(int irq, void *dev_id)
1661 {
1662 	int status;
1663 	struct sxgbe_rx_queue *rxq = (struct sxgbe_rx_queue *)dev_id;
1664 	struct sxgbe_priv_data *priv = rxq->priv_ptr;
1665 
1666 	/* get the channel status */
1667 	status = priv->hw->dma->rx_dma_int_status(priv->ioaddr, rxq->queue_no,
1668 						  &priv->xstats);
1669 
1670 	if (likely((status & handle_rx) && (napi_schedule_prep(&priv->napi)))) {
1671 		priv->hw->dma->disable_dma_irq(priv->ioaddr, rxq->queue_no);
1672 		__napi_schedule(&priv->napi);
1673 	}
1674 
1675 	/* check for TC configuration change */
1676 	if (unlikely((status & rx_bump_tc) &&
1677 		     (priv->rx_tc != SXGBE_MTL_SFMODE) &&
1678 		     (priv->rx_tc < 128))) {
1679 		/* step of TC is 32 */
1680 		priv->rx_tc += 32;
1681 		priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr,
1682 					       rxq->queue_no, priv->rx_tc);
1683 		priv->xstats.rx_threshold = priv->rx_tc;
1684 	}
1685 
1686 	return IRQ_HANDLED;
1687 }
1688 
1689 static inline u64 sxgbe_get_stat64(void __iomem *ioaddr, int reg_lo, int reg_hi)
1690 {
1691 	u64 val = readl(ioaddr + reg_lo);
1692 
1693 	val |= ((u64)readl(ioaddr + reg_hi)) << 32;
1694 
1695 	return val;
1696 }
1697 
1698 
1699 /*  sxgbe_get_stats64 - entry point to see statistical information of device
1700  *  @dev : device pointer.
1701  *  @stats : pointer to hold all the statistical information of device.
1702  *  Description:
1703  *  This function is a driver entry point whenever ifconfig command gets
1704  *  executed to see device statistics. Statistics are number of
1705  *  bytes sent or received, errors occurred etc.
1706  */
1707 static void sxgbe_get_stats64(struct net_device *dev,
1708 			      struct rtnl_link_stats64 *stats)
1709 {
1710 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1711 	void __iomem *ioaddr = priv->ioaddr;
1712 	u64 count;
1713 
1714 	spin_lock(&priv->stats_lock);
1715 	/* Freeze the counter registers before reading value otherwise it may
1716 	 * get updated by hardware while we are reading them
1717 	 */
1718 	writel(SXGBE_MMC_CTRL_CNT_FRZ, ioaddr + SXGBE_MMC_CTL_REG);
1719 
1720 	stats->rx_bytes = sxgbe_get_stat64(ioaddr,
1721 					   SXGBE_MMC_RXOCTETLO_GCNT_REG,
1722 					   SXGBE_MMC_RXOCTETHI_GCNT_REG);
1723 
1724 	stats->rx_packets = sxgbe_get_stat64(ioaddr,
1725 					     SXGBE_MMC_RXFRAMELO_GBCNT_REG,
1726 					     SXGBE_MMC_RXFRAMEHI_GBCNT_REG);
1727 
1728 	stats->multicast = sxgbe_get_stat64(ioaddr,
1729 					    SXGBE_MMC_RXMULTILO_GCNT_REG,
1730 					    SXGBE_MMC_RXMULTIHI_GCNT_REG);
1731 
1732 	stats->rx_crc_errors = sxgbe_get_stat64(ioaddr,
1733 						SXGBE_MMC_RXCRCERRLO_REG,
1734 						SXGBE_MMC_RXCRCERRHI_REG);
1735 
1736 	stats->rx_length_errors = sxgbe_get_stat64(ioaddr,
1737 						  SXGBE_MMC_RXLENERRLO_REG,
1738 						  SXGBE_MMC_RXLENERRHI_REG);
1739 
1740 	stats->rx_missed_errors = sxgbe_get_stat64(ioaddr,
1741 						   SXGBE_MMC_RXFIFOOVERFLOWLO_GBCNT_REG,
1742 						   SXGBE_MMC_RXFIFOOVERFLOWHI_GBCNT_REG);
1743 
1744 	stats->tx_bytes = sxgbe_get_stat64(ioaddr,
1745 					   SXGBE_MMC_TXOCTETLO_GCNT_REG,
1746 					   SXGBE_MMC_TXOCTETHI_GCNT_REG);
1747 
1748 	count = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXFRAMELO_GBCNT_REG,
1749 				 SXGBE_MMC_TXFRAMEHI_GBCNT_REG);
1750 
1751 	stats->tx_errors = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXFRAMELO_GCNT_REG,
1752 					    SXGBE_MMC_TXFRAMEHI_GCNT_REG);
1753 	stats->tx_errors = count - stats->tx_errors;
1754 	stats->tx_packets = count;
1755 	stats->tx_fifo_errors = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXUFLWLO_GBCNT_REG,
1756 						 SXGBE_MMC_TXUFLWHI_GBCNT_REG);
1757 	writel(0, ioaddr + SXGBE_MMC_CTL_REG);
1758 	spin_unlock(&priv->stats_lock);
1759 }
1760 
1761 /*  sxgbe_set_features - entry point to set offload features of the device.
1762  *  @dev : device pointer.
1763  *  @features : features which are required to be set.
1764  *  Description:
1765  *  This function is a driver entry point and called by Linux kernel whenever
1766  *  any device features are set or reset by user.
1767  *  Return value:
1768  *  This function returns 0 after setting or resetting device features.
1769  */
1770 static int sxgbe_set_features(struct net_device *dev,
1771 			      netdev_features_t features)
1772 {
1773 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1774 	netdev_features_t changed = dev->features ^ features;
1775 
1776 	if (changed & NETIF_F_RXCSUM) {
1777 		if (features & NETIF_F_RXCSUM) {
1778 			priv->hw->mac->enable_rx_csum(priv->ioaddr);
1779 			priv->rxcsum_insertion = true;
1780 		} else {
1781 			priv->hw->mac->disable_rx_csum(priv->ioaddr);
1782 			priv->rxcsum_insertion = false;
1783 		}
1784 	}
1785 
1786 	return 0;
1787 }
1788 
1789 /*  sxgbe_change_mtu - entry point to change MTU size for the device.
1790  *  @dev : device pointer.
1791  *  @new_mtu : the new MTU size for the device.
1792  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
1793  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
1794  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
1795  *  Return value:
1796  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1797  *  file on failure.
1798  */
1799 static int sxgbe_change_mtu(struct net_device *dev, int new_mtu)
1800 {
1801 	dev->mtu = new_mtu;
1802 
1803 	if (!netif_running(dev))
1804 		return 0;
1805 
1806 	/* Recevice ring buffer size is needed to be set based on MTU. If MTU is
1807 	 * changed then reinitilisation of the receive ring buffers need to be
1808 	 * done. Hence bring interface down and bring interface back up
1809 	 */
1810 	sxgbe_release(dev);
1811 	return sxgbe_open(dev);
1812 }
1813 
1814 static void sxgbe_set_umac_addr(void __iomem *ioaddr, unsigned char *addr,
1815 				unsigned int reg_n)
1816 {
1817 	unsigned long data;
1818 
1819 	data = (addr[5] << 8) | addr[4];
1820 	/* For MAC Addr registers se have to set the Address Enable (AE)
1821 	 * bit that has no effect on the High Reg 0 where the bit 31 (MO)
1822 	 * is RO.
1823 	 */
1824 	writel(data | SXGBE_HI_REG_AE, ioaddr + SXGBE_ADDR_HIGH(reg_n));
1825 	data = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
1826 	writel(data, ioaddr + SXGBE_ADDR_LOW(reg_n));
1827 }
1828 
1829 /**
1830  * sxgbe_set_rx_mode - entry point for setting different receive mode of
1831  * a device. unicast, multicast addressing
1832  * @dev : pointer to the device structure
1833  * Description:
1834  * This function is a driver entry point which gets called by the kernel
1835  * whenever different receive mode like unicast, multicast and promiscuous
1836  * must be enabled/disabled.
1837  * Return value:
1838  * void.
1839  */
1840 static void sxgbe_set_rx_mode(struct net_device *dev)
1841 {
1842 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1843 	void __iomem *ioaddr = (void __iomem *)priv->ioaddr;
1844 	unsigned int value = 0;
1845 	u32 mc_filter[2];
1846 	struct netdev_hw_addr *ha;
1847 	int reg = 1;
1848 
1849 	netdev_dbg(dev, "%s: # mcasts %d, # unicast %d\n",
1850 		   __func__, netdev_mc_count(dev), netdev_uc_count(dev));
1851 
1852 	if (dev->flags & IFF_PROMISC) {
1853 		value = SXGBE_FRAME_FILTER_PR;
1854 
1855 	} else if ((netdev_mc_count(dev) > SXGBE_HASH_TABLE_SIZE) ||
1856 		   (dev->flags & IFF_ALLMULTI)) {
1857 		value = SXGBE_FRAME_FILTER_PM;	/* pass all multi */
1858 		writel(0xffffffff, ioaddr + SXGBE_HASH_HIGH);
1859 		writel(0xffffffff, ioaddr + SXGBE_HASH_LOW);
1860 
1861 	} else if (!netdev_mc_empty(dev)) {
1862 		/* Hash filter for multicast */
1863 		value = SXGBE_FRAME_FILTER_HMC;
1864 
1865 		memset(mc_filter, 0, sizeof(mc_filter));
1866 		netdev_for_each_mc_addr(ha, dev) {
1867 			/* The upper 6 bits of the calculated CRC are used to
1868 			 * index the contens of the hash table
1869 			 */
1870 			int bit_nr = bitrev32(~crc32_le(~0, ha->addr, 6)) >> 26;
1871 
1872 			/* The most significant bit determines the register to
1873 			 * use (H/L) while the other 5 bits determine the bit
1874 			 * within the register.
1875 			 */
1876 			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1877 		}
1878 		writel(mc_filter[0], ioaddr + SXGBE_HASH_LOW);
1879 		writel(mc_filter[1], ioaddr + SXGBE_HASH_HIGH);
1880 	}
1881 
1882 	/* Handle multiple unicast addresses (perfect filtering) */
1883 	if (netdev_uc_count(dev) > SXGBE_MAX_PERFECT_ADDRESSES)
1884 		/* Switch to promiscuous mode if more than 16 addrs
1885 		 * are required
1886 		 */
1887 		value |= SXGBE_FRAME_FILTER_PR;
1888 	else {
1889 		netdev_for_each_uc_addr(ha, dev) {
1890 			sxgbe_set_umac_addr(ioaddr, ha->addr, reg);
1891 			reg++;
1892 		}
1893 	}
1894 #ifdef FRAME_FILTER_DEBUG
1895 	/* Enable Receive all mode (to debug filtering_fail errors) */
1896 	value |= SXGBE_FRAME_FILTER_RA;
1897 #endif
1898 	writel(value, ioaddr + SXGBE_FRAME_FILTER);
1899 
1900 	netdev_dbg(dev, "Filter: 0x%08x\n\tHash: HI 0x%08x, LO 0x%08x\n",
1901 		   readl(ioaddr + SXGBE_FRAME_FILTER),
1902 		   readl(ioaddr + SXGBE_HASH_HIGH),
1903 		   readl(ioaddr + SXGBE_HASH_LOW));
1904 }
1905 
1906 #ifdef CONFIG_NET_POLL_CONTROLLER
1907 /**
1908  * sxgbe_poll_controller - entry point for polling receive by device
1909  * @dev : pointer to the device structure
1910  * Description:
1911  * This function is used by NETCONSOLE and other diagnostic tools
1912  * to allow network I/O with interrupts disabled.
1913  * Return value:
1914  * Void.
1915  */
1916 static void sxgbe_poll_controller(struct net_device *dev)
1917 {
1918 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1919 
1920 	disable_irq(priv->irq);
1921 	sxgbe_rx_interrupt(priv->irq, dev);
1922 	enable_irq(priv->irq);
1923 }
1924 #endif
1925 
1926 /*  sxgbe_ioctl - Entry point for the Ioctl
1927  *  @dev: Device pointer.
1928  *  @rq: An IOCTL specefic structure, that can contain a pointer to
1929  *  a proprietary structure used to pass information to the driver.
1930  *  @cmd: IOCTL command
1931  *  Description:
1932  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
1933  */
1934 static int sxgbe_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1935 {
1936 	int ret = -EOPNOTSUPP;
1937 
1938 	if (!netif_running(dev))
1939 		return -EINVAL;
1940 
1941 	switch (cmd) {
1942 	case SIOCGMIIPHY:
1943 	case SIOCGMIIREG:
1944 	case SIOCSMIIREG:
1945 		if (!dev->phydev)
1946 			return -EINVAL;
1947 		ret = phy_mii_ioctl(dev->phydev, rq, cmd);
1948 		break;
1949 	default:
1950 		break;
1951 	}
1952 
1953 	return ret;
1954 }
1955 
1956 static const struct net_device_ops sxgbe_netdev_ops = {
1957 	.ndo_open		= sxgbe_open,
1958 	.ndo_start_xmit		= sxgbe_xmit,
1959 	.ndo_stop		= sxgbe_release,
1960 	.ndo_get_stats64	= sxgbe_get_stats64,
1961 	.ndo_change_mtu		= sxgbe_change_mtu,
1962 	.ndo_set_features	= sxgbe_set_features,
1963 	.ndo_set_rx_mode	= sxgbe_set_rx_mode,
1964 	.ndo_tx_timeout		= sxgbe_tx_timeout,
1965 	.ndo_do_ioctl		= sxgbe_ioctl,
1966 #ifdef CONFIG_NET_POLL_CONTROLLER
1967 	.ndo_poll_controller	= sxgbe_poll_controller,
1968 #endif
1969 	.ndo_set_mac_address	= eth_mac_addr,
1970 };
1971 
1972 /* Get the hardware ops */
1973 static void sxgbe_get_ops(struct sxgbe_ops * const ops_ptr)
1974 {
1975 	ops_ptr->mac		= sxgbe_get_core_ops();
1976 	ops_ptr->desc		= sxgbe_get_desc_ops();
1977 	ops_ptr->dma		= sxgbe_get_dma_ops();
1978 	ops_ptr->mtl		= sxgbe_get_mtl_ops();
1979 
1980 	/* set the MDIO communication Address/Data regisers */
1981 	ops_ptr->mii.addr	= SXGBE_MDIO_SCMD_ADD_REG;
1982 	ops_ptr->mii.data	= SXGBE_MDIO_SCMD_DATA_REG;
1983 
1984 	/* Assigning the default link settings
1985 	 * no SXGBE defined default values to be set in registers,
1986 	 * so assigning as 0 for port and duplex
1987 	 */
1988 	ops_ptr->link.port	= 0;
1989 	ops_ptr->link.duplex	= 0;
1990 	ops_ptr->link.speed	= SXGBE_SPEED_10G;
1991 }
1992 
1993 /**
1994  *  sxgbe_hw_init - Init the GMAC device
1995  *  @priv: driver private structure
1996  *  Description: this function checks the HW capability
1997  *  (if supported) and sets the driver's features.
1998  */
1999 static int sxgbe_hw_init(struct sxgbe_priv_data * const priv)
2000 {
2001 	u32 ctrl_ids;
2002 
2003 	priv->hw = kmalloc(sizeof(*priv->hw), GFP_KERNEL);
2004 	if(!priv->hw)
2005 		return -ENOMEM;
2006 
2007 	/* get the hardware ops */
2008 	sxgbe_get_ops(priv->hw);
2009 
2010 	/* get the controller id */
2011 	ctrl_ids = priv->hw->mac->get_controller_version(priv->ioaddr);
2012 	priv->hw->ctrl_uid = (ctrl_ids & 0x00ff0000) >> 16;
2013 	priv->hw->ctrl_id = (ctrl_ids & 0x000000ff);
2014 	pr_info("user ID: 0x%x, Controller ID: 0x%x\n",
2015 		priv->hw->ctrl_uid, priv->hw->ctrl_id);
2016 
2017 	/* get the H/W features */
2018 	if (!sxgbe_get_hw_features(priv))
2019 		pr_info("Hardware features not found\n");
2020 
2021 	if (priv->hw_cap.tx_csum_offload)
2022 		pr_info("TX Checksum offload supported\n");
2023 
2024 	if (priv->hw_cap.rx_csum_offload)
2025 		pr_info("RX Checksum offload supported\n");
2026 
2027 	return 0;
2028 }
2029 
2030 static int sxgbe_sw_reset(void __iomem *addr)
2031 {
2032 	int retry_count = 10;
2033 
2034 	writel(SXGBE_DMA_SOFT_RESET, addr + SXGBE_DMA_MODE_REG);
2035 	while (retry_count--) {
2036 		if (!(readl(addr + SXGBE_DMA_MODE_REG) &
2037 		      SXGBE_DMA_SOFT_RESET))
2038 			break;
2039 		mdelay(10);
2040 	}
2041 
2042 	if (retry_count < 0)
2043 		return -EBUSY;
2044 
2045 	return 0;
2046 }
2047 
2048 /**
2049  * sxgbe_drv_probe
2050  * @device: device pointer
2051  * @plat_dat: platform data pointer
2052  * @addr: iobase memory address
2053  * Description: this is the main probe function used to
2054  * call the alloc_etherdev, allocate the priv structure.
2055  */
2056 struct sxgbe_priv_data *sxgbe_drv_probe(struct device *device,
2057 					struct sxgbe_plat_data *plat_dat,
2058 					void __iomem *addr)
2059 {
2060 	struct sxgbe_priv_data *priv;
2061 	struct net_device *ndev;
2062 	int ret;
2063 	u8 queue_num;
2064 
2065 	ndev = alloc_etherdev_mqs(sizeof(struct sxgbe_priv_data),
2066 				  SXGBE_TX_QUEUES, SXGBE_RX_QUEUES);
2067 	if (!ndev)
2068 		return NULL;
2069 
2070 	SET_NETDEV_DEV(ndev, device);
2071 
2072 	priv = netdev_priv(ndev);
2073 	priv->device = device;
2074 	priv->dev = ndev;
2075 
2076 	sxgbe_set_ethtool_ops(ndev);
2077 	priv->plat = plat_dat;
2078 	priv->ioaddr = addr;
2079 
2080 	ret = sxgbe_sw_reset(priv->ioaddr);
2081 	if (ret)
2082 		goto error_free_netdev;
2083 
2084 	/* Verify driver arguments */
2085 	sxgbe_verify_args();
2086 
2087 	/* Init MAC and get the capabilities */
2088 	ret = sxgbe_hw_init(priv);
2089 	if (ret)
2090 		goto error_free_netdev;
2091 
2092 	/* allocate memory resources for Descriptor rings */
2093 	ret = txring_mem_alloc(priv);
2094 	if (ret)
2095 		goto error_free_hw;
2096 
2097 	ret = rxring_mem_alloc(priv);
2098 	if (ret)
2099 		goto error_free_hw;
2100 
2101 	ndev->netdev_ops = &sxgbe_netdev_ops;
2102 
2103 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2104 		NETIF_F_RXCSUM | NETIF_F_TSO | NETIF_F_TSO6 |
2105 		NETIF_F_GRO;
2106 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2107 	ndev->watchdog_timeo = msecs_to_jiffies(TX_TIMEO);
2108 
2109 	/* assign filtering support */
2110 	ndev->priv_flags |= IFF_UNICAST_FLT;
2111 
2112 	/* MTU range: 68 - 9000 */
2113 	ndev->min_mtu = MIN_MTU;
2114 	ndev->max_mtu = MAX_MTU;
2115 
2116 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
2117 
2118 	/* Enable TCP segmentation offload for all DMA channels */
2119 	if (priv->hw_cap.tcpseg_offload) {
2120 		SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
2121 			priv->hw->dma->enable_tso(priv->ioaddr, queue_num);
2122 		}
2123 	}
2124 
2125 	/* Enable Rx checksum offload */
2126 	if (priv->hw_cap.rx_csum_offload) {
2127 		priv->hw->mac->enable_rx_csum(priv->ioaddr);
2128 		priv->rxcsum_insertion = true;
2129 	}
2130 
2131 	/* Initialise pause frame settings */
2132 	priv->rx_pause = 1;
2133 	priv->tx_pause = 1;
2134 
2135 	/* Rx Watchdog is available, enable depend on platform data */
2136 	if (!priv->plat->riwt_off) {
2137 		priv->use_riwt = 1;
2138 		pr_info("Enable RX Mitigation via HW Watchdog Timer\n");
2139 	}
2140 
2141 	netif_napi_add(ndev, &priv->napi, sxgbe_poll, 64);
2142 
2143 	spin_lock_init(&priv->stats_lock);
2144 
2145 	priv->sxgbe_clk = clk_get(priv->device, SXGBE_RESOURCE_NAME);
2146 	if (IS_ERR(priv->sxgbe_clk)) {
2147 		netdev_warn(ndev, "%s: warning: cannot get CSR clock\n",
2148 			    __func__);
2149 		goto error_napi_del;
2150 	}
2151 
2152 	/* If a specific clk_csr value is passed from the platform
2153 	 * this means that the CSR Clock Range selection cannot be
2154 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
2155 	 * set the MDC clock dynamically according to the csr actual
2156 	 * clock input.
2157 	 */
2158 	if (!priv->plat->clk_csr)
2159 		sxgbe_clk_csr_set(priv);
2160 	else
2161 		priv->clk_csr = priv->plat->clk_csr;
2162 
2163 	/* MDIO bus Registration */
2164 	ret = sxgbe_mdio_register(ndev);
2165 	if (ret < 0) {
2166 		netdev_dbg(ndev, "%s: MDIO bus (id: %d) registration failed\n",
2167 			   __func__, priv->plat->bus_id);
2168 		goto error_clk_put;
2169 	}
2170 
2171 	ret = register_netdev(ndev);
2172 	if (ret) {
2173 		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2174 		goto error_mdio_unregister;
2175 	}
2176 
2177 	sxgbe_check_ether_addr(priv);
2178 
2179 	return priv;
2180 
2181 error_mdio_unregister:
2182 	sxgbe_mdio_unregister(ndev);
2183 error_clk_put:
2184 	clk_put(priv->sxgbe_clk);
2185 error_napi_del:
2186 	netif_napi_del(&priv->napi);
2187 error_free_hw:
2188 	kfree(priv->hw);
2189 error_free_netdev:
2190 	free_netdev(ndev);
2191 
2192 	return NULL;
2193 }
2194 
2195 /**
2196  * sxgbe_drv_remove
2197  * @ndev: net device pointer
2198  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2199  * changes the link status, releases the DMA descriptor rings.
2200  */
2201 int sxgbe_drv_remove(struct net_device *ndev)
2202 {
2203 	struct sxgbe_priv_data *priv = netdev_priv(ndev);
2204 	u8 queue_num;
2205 
2206 	netdev_info(ndev, "%s: removing driver\n", __func__);
2207 
2208 	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
2209 		priv->hw->mac->disable_rxqueue(priv->ioaddr, queue_num);
2210 	}
2211 
2212 	priv->hw->dma->stop_rx(priv->ioaddr, SXGBE_RX_QUEUES);
2213 	priv->hw->dma->stop_tx(priv->ioaddr, SXGBE_TX_QUEUES);
2214 
2215 	priv->hw->mac->enable_tx(priv->ioaddr, false);
2216 	priv->hw->mac->enable_rx(priv->ioaddr, false);
2217 
2218 	unregister_netdev(ndev);
2219 
2220 	sxgbe_mdio_unregister(ndev);
2221 
2222 	clk_put(priv->sxgbe_clk);
2223 
2224 	netif_napi_del(&priv->napi);
2225 
2226 	kfree(priv->hw);
2227 
2228 	free_netdev(ndev);
2229 
2230 	return 0;
2231 }
2232 
2233 #ifdef CONFIG_PM
2234 int sxgbe_suspend(struct net_device *ndev)
2235 {
2236 	return 0;
2237 }
2238 
2239 int sxgbe_resume(struct net_device *ndev)
2240 {
2241 	return 0;
2242 }
2243 
2244 int sxgbe_freeze(struct net_device *ndev)
2245 {
2246 	return -ENOSYS;
2247 }
2248 
2249 int sxgbe_restore(struct net_device *ndev)
2250 {
2251 	return -ENOSYS;
2252 }
2253 #endif /* CONFIG_PM */
2254 
2255 /* Driver is configured as Platform driver */
2256 static int __init sxgbe_init(void)
2257 {
2258 	int ret;
2259 
2260 	ret = sxgbe_register_platform();
2261 	if (ret)
2262 		goto err;
2263 	return 0;
2264 err:
2265 	pr_err("driver registration failed\n");
2266 	return ret;
2267 }
2268 
2269 static void __exit sxgbe_exit(void)
2270 {
2271 	sxgbe_unregister_platform();
2272 }
2273 
2274 module_init(sxgbe_init);
2275 module_exit(sxgbe_exit);
2276 
2277 #ifndef MODULE
2278 static int __init sxgbe_cmdline_opt(char *str)
2279 {
2280 	char *opt;
2281 
2282 	if (!str || !*str)
2283 		return -EINVAL;
2284 	while ((opt = strsep(&str, ",")) != NULL) {
2285 		if (!strncmp(opt, "eee_timer:", 6)) {
2286 			if (kstrtoint(opt + 10, 0, &eee_timer))
2287 				goto err;
2288 		}
2289 	}
2290 	return 0;
2291 
2292 err:
2293 	pr_err("%s: ERROR broken module parameter conversion\n", __func__);
2294 	return -EINVAL;
2295 }
2296 
2297 __setup("sxgbeeth=", sxgbe_cmdline_opt);
2298 #endif /* MODULE */
2299 
2300 
2301 
2302 MODULE_DESCRIPTION("SAMSUNG 10G/2.5G/1G Ethernet PLATFORM driver");
2303 
2304 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
2305 MODULE_PARM_DESC(eee_timer, "EEE-LPI Default LS timer value");
2306 
2307 MODULE_AUTHOR("Siva Reddy Kallam <siva.kallam@samsung.com>");
2308 MODULE_AUTHOR("ByungHo An <bh74.an@samsung.com>");
2309 MODULE_AUTHOR("Girish K S <ks.giri@samsung.com>");
2310 MODULE_AUTHOR("Vipul Pandya <vipul.pandya@samsung.com>");
2311 
2312 MODULE_LICENSE("GPL");
2313