1 /* 10G controller driver for Samsung SoCs 2 * 3 * Copyright (C) 2013 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 * 6 * Author: Siva Reddy Kallam <siva.kallam@samsung.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/clk.h> 16 #include <linux/crc32.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/etherdevice.h> 19 #include <linux/ethtool.h> 20 #include <linux/if.h> 21 #include <linux/if_ether.h> 22 #include <linux/if_vlan.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/ip.h> 26 #include <linux/kernel.h> 27 #include <linux/mii.h> 28 #include <linux/module.h> 29 #include <linux/net_tstamp.h> 30 #include <linux/netdevice.h> 31 #include <linux/phy.h> 32 #include <linux/platform_device.h> 33 #include <linux/prefetch.h> 34 #include <linux/skbuff.h> 35 #include <linux/slab.h> 36 #include <linux/tcp.h> 37 #include <linux/sxgbe_platform.h> 38 39 #include "sxgbe_common.h" 40 #include "sxgbe_desc.h" 41 #include "sxgbe_dma.h" 42 #include "sxgbe_mtl.h" 43 #include "sxgbe_reg.h" 44 45 #define SXGBE_ALIGN(x) L1_CACHE_ALIGN(x) 46 #define JUMBO_LEN 9000 47 48 /* Module parameters */ 49 #define TX_TIMEO 5000 50 #define DMA_TX_SIZE 512 51 #define DMA_RX_SIZE 1024 52 #define TC_DEFAULT 64 53 #define DMA_BUFFER_SIZE BUF_SIZE_2KiB 54 /* The default timer value as per the sxgbe specification 1 sec(1000 ms) */ 55 #define SXGBE_DEFAULT_LPI_TIMER 1000 56 57 static int debug = -1; 58 static int eee_timer = SXGBE_DEFAULT_LPI_TIMER; 59 60 module_param(eee_timer, int, 0644); 61 62 module_param(debug, int, 0644); 63 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 64 NETIF_MSG_LINK | NETIF_MSG_IFUP | 65 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 66 67 static irqreturn_t sxgbe_common_interrupt(int irq, void *dev_id); 68 static irqreturn_t sxgbe_tx_interrupt(int irq, void *dev_id); 69 static irqreturn_t sxgbe_rx_interrupt(int irq, void *dev_id); 70 71 #define SXGBE_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x)) 72 73 #define SXGBE_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x)) 74 75 /** 76 * sxgbe_verify_args - verify the driver parameters. 77 * Description: it verifies if some wrong parameter is passed to the driver. 78 * Note that wrong parameters are replaced with the default values. 79 */ 80 static void sxgbe_verify_args(void) 81 { 82 if (unlikely(eee_timer < 0)) 83 eee_timer = SXGBE_DEFAULT_LPI_TIMER; 84 } 85 86 static void sxgbe_enable_eee_mode(const struct sxgbe_priv_data *priv) 87 { 88 /* Check and enter in LPI mode */ 89 if (!priv->tx_path_in_lpi_mode) 90 priv->hw->mac->set_eee_mode(priv->ioaddr); 91 } 92 93 void sxgbe_disable_eee_mode(struct sxgbe_priv_data * const priv) 94 { 95 /* Exit and disable EEE in case of we are are in LPI state. */ 96 priv->hw->mac->reset_eee_mode(priv->ioaddr); 97 del_timer_sync(&priv->eee_ctrl_timer); 98 priv->tx_path_in_lpi_mode = false; 99 } 100 101 /** 102 * sxgbe_eee_ctrl_timer 103 * @arg : data hook 104 * Description: 105 * If there is no data transfer and if we are not in LPI state, 106 * then MAC Transmitter can be moved to LPI state. 107 */ 108 static void sxgbe_eee_ctrl_timer(struct timer_list *t) 109 { 110 struct sxgbe_priv_data *priv = from_timer(priv, t, eee_ctrl_timer); 111 112 sxgbe_enable_eee_mode(priv); 113 mod_timer(&priv->eee_ctrl_timer, SXGBE_LPI_TIMER(eee_timer)); 114 } 115 116 /** 117 * sxgbe_eee_init 118 * @priv: private device pointer 119 * Description: 120 * If the EEE support has been enabled while configuring the driver, 121 * if the GMAC actually supports the EEE (from the HW cap reg) and the 122 * phy can also manage EEE, so enable the LPI state and start the timer 123 * to verify if the tx path can enter in LPI state. 124 */ 125 bool sxgbe_eee_init(struct sxgbe_priv_data * const priv) 126 { 127 struct net_device *ndev = priv->dev; 128 bool ret = false; 129 130 /* MAC core supports the EEE feature. */ 131 if (priv->hw_cap.eee) { 132 /* Check if the PHY supports EEE */ 133 if (phy_init_eee(ndev->phydev, 1)) 134 return false; 135 136 priv->eee_active = 1; 137 timer_setup(&priv->eee_ctrl_timer, sxgbe_eee_ctrl_timer, 0); 138 priv->eee_ctrl_timer.expires = SXGBE_LPI_TIMER(eee_timer); 139 add_timer(&priv->eee_ctrl_timer); 140 141 priv->hw->mac->set_eee_timer(priv->ioaddr, 142 SXGBE_DEFAULT_LPI_TIMER, 143 priv->tx_lpi_timer); 144 145 pr_info("Energy-Efficient Ethernet initialized\n"); 146 147 ret = true; 148 } 149 150 return ret; 151 } 152 153 static void sxgbe_eee_adjust(const struct sxgbe_priv_data *priv) 154 { 155 struct net_device *ndev = priv->dev; 156 157 /* When the EEE has been already initialised we have to 158 * modify the PLS bit in the LPI ctrl & status reg according 159 * to the PHY link status. For this reason. 160 */ 161 if (priv->eee_enabled) 162 priv->hw->mac->set_eee_pls(priv->ioaddr, ndev->phydev->link); 163 } 164 165 /** 166 * sxgbe_clk_csr_set - dynamically set the MDC clock 167 * @priv: driver private structure 168 * Description: this is to dynamically set the MDC clock according to the csr 169 * clock input. 170 */ 171 static void sxgbe_clk_csr_set(struct sxgbe_priv_data *priv) 172 { 173 u32 clk_rate = clk_get_rate(priv->sxgbe_clk); 174 175 /* assign the proper divider, this will be used during 176 * mdio communication 177 */ 178 if (clk_rate < SXGBE_CSR_F_150M) 179 priv->clk_csr = SXGBE_CSR_100_150M; 180 else if (clk_rate <= SXGBE_CSR_F_250M) 181 priv->clk_csr = SXGBE_CSR_150_250M; 182 else if (clk_rate <= SXGBE_CSR_F_300M) 183 priv->clk_csr = SXGBE_CSR_250_300M; 184 else if (clk_rate <= SXGBE_CSR_F_350M) 185 priv->clk_csr = SXGBE_CSR_300_350M; 186 else if (clk_rate <= SXGBE_CSR_F_400M) 187 priv->clk_csr = SXGBE_CSR_350_400M; 188 else if (clk_rate <= SXGBE_CSR_F_500M) 189 priv->clk_csr = SXGBE_CSR_400_500M; 190 } 191 192 /* minimum number of free TX descriptors required to wake up TX process */ 193 #define SXGBE_TX_THRESH(x) (x->dma_tx_size/4) 194 195 static inline u32 sxgbe_tx_avail(struct sxgbe_tx_queue *queue, int tx_qsize) 196 { 197 return queue->dirty_tx + tx_qsize - queue->cur_tx - 1; 198 } 199 200 /** 201 * sxgbe_adjust_link 202 * @dev: net device structure 203 * Description: it adjusts the link parameters. 204 */ 205 static void sxgbe_adjust_link(struct net_device *dev) 206 { 207 struct sxgbe_priv_data *priv = netdev_priv(dev); 208 struct phy_device *phydev = dev->phydev; 209 u8 new_state = 0; 210 u8 speed = 0xff; 211 212 if (!phydev) 213 return; 214 215 /* SXGBE is not supporting auto-negotiation and 216 * half duplex mode. so, not handling duplex change 217 * in this function. only handling speed and link status 218 */ 219 if (phydev->link) { 220 if (phydev->speed != priv->speed) { 221 new_state = 1; 222 switch (phydev->speed) { 223 case SPEED_10000: 224 speed = SXGBE_SPEED_10G; 225 break; 226 case SPEED_2500: 227 speed = SXGBE_SPEED_2_5G; 228 break; 229 case SPEED_1000: 230 speed = SXGBE_SPEED_1G; 231 break; 232 default: 233 netif_err(priv, link, dev, 234 "Speed (%d) not supported\n", 235 phydev->speed); 236 } 237 238 priv->speed = phydev->speed; 239 priv->hw->mac->set_speed(priv->ioaddr, speed); 240 } 241 242 if (!priv->oldlink) { 243 new_state = 1; 244 priv->oldlink = 1; 245 } 246 } else if (priv->oldlink) { 247 new_state = 1; 248 priv->oldlink = 0; 249 priv->speed = SPEED_UNKNOWN; 250 } 251 252 if (new_state & netif_msg_link(priv)) 253 phy_print_status(phydev); 254 255 /* Alter the MAC settings for EEE */ 256 sxgbe_eee_adjust(priv); 257 } 258 259 /** 260 * sxgbe_init_phy - PHY initialization 261 * @dev: net device structure 262 * Description: it initializes the driver's PHY state, and attaches the PHY 263 * to the mac driver. 264 * Return value: 265 * 0 on success 266 */ 267 static int sxgbe_init_phy(struct net_device *ndev) 268 { 269 char phy_id_fmt[MII_BUS_ID_SIZE + 3]; 270 char bus_id[MII_BUS_ID_SIZE]; 271 struct phy_device *phydev; 272 struct sxgbe_priv_data *priv = netdev_priv(ndev); 273 int phy_iface = priv->plat->interface; 274 275 /* assign default link status */ 276 priv->oldlink = 0; 277 priv->speed = SPEED_UNKNOWN; 278 priv->oldduplex = DUPLEX_UNKNOWN; 279 280 if (priv->plat->phy_bus_name) 281 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x", 282 priv->plat->phy_bus_name, priv->plat->bus_id); 283 else 284 snprintf(bus_id, MII_BUS_ID_SIZE, "sxgbe-%x", 285 priv->plat->bus_id); 286 287 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id, 288 priv->plat->phy_addr); 289 netdev_dbg(ndev, "%s: trying to attach to %s\n", __func__, phy_id_fmt); 290 291 phydev = phy_connect(ndev, phy_id_fmt, &sxgbe_adjust_link, phy_iface); 292 293 if (IS_ERR(phydev)) { 294 netdev_err(ndev, "Could not attach to PHY\n"); 295 return PTR_ERR(phydev); 296 } 297 298 /* Stop Advertising 1000BASE Capability if interface is not GMII */ 299 if ((phy_iface == PHY_INTERFACE_MODE_MII) || 300 (phy_iface == PHY_INTERFACE_MODE_RMII)) 301 phy_set_max_speed(phydev, SPEED_1000); 302 303 if (phydev->phy_id == 0) { 304 phy_disconnect(phydev); 305 return -ENODEV; 306 } 307 308 netdev_dbg(ndev, "%s: attached to PHY (UID 0x%x) Link = %d\n", 309 __func__, phydev->phy_id, phydev->link); 310 311 return 0; 312 } 313 314 /** 315 * sxgbe_clear_descriptors: clear descriptors 316 * @priv: driver private structure 317 * Description: this function is called to clear the tx and rx descriptors 318 * in case of both basic and extended descriptors are used. 319 */ 320 static void sxgbe_clear_descriptors(struct sxgbe_priv_data *priv) 321 { 322 int i, j; 323 unsigned int txsize = priv->dma_tx_size; 324 unsigned int rxsize = priv->dma_rx_size; 325 326 /* Clear the Rx/Tx descriptors */ 327 for (j = 0; j < SXGBE_RX_QUEUES; j++) { 328 for (i = 0; i < rxsize; i++) 329 priv->hw->desc->init_rx_desc(&priv->rxq[j]->dma_rx[i], 330 priv->use_riwt, priv->mode, 331 (i == rxsize - 1)); 332 } 333 334 for (j = 0; j < SXGBE_TX_QUEUES; j++) { 335 for (i = 0; i < txsize; i++) 336 priv->hw->desc->init_tx_desc(&priv->txq[j]->dma_tx[i]); 337 } 338 } 339 340 static int sxgbe_init_rx_buffers(struct net_device *dev, 341 struct sxgbe_rx_norm_desc *p, int i, 342 unsigned int dma_buf_sz, 343 struct sxgbe_rx_queue *rx_ring) 344 { 345 struct sxgbe_priv_data *priv = netdev_priv(dev); 346 struct sk_buff *skb; 347 348 skb = __netdev_alloc_skb_ip_align(dev, dma_buf_sz, GFP_KERNEL); 349 if (!skb) 350 return -ENOMEM; 351 352 rx_ring->rx_skbuff[i] = skb; 353 rx_ring->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data, 354 dma_buf_sz, DMA_FROM_DEVICE); 355 356 if (dma_mapping_error(priv->device, rx_ring->rx_skbuff_dma[i])) { 357 netdev_err(dev, "%s: DMA mapping error\n", __func__); 358 dev_kfree_skb_any(skb); 359 return -EINVAL; 360 } 361 362 p->rdes23.rx_rd_des23.buf2_addr = rx_ring->rx_skbuff_dma[i]; 363 364 return 0; 365 } 366 367 /** 368 * sxgbe_free_rx_buffers - free what sxgbe_init_rx_buffers() allocated 369 * @dev: net device structure 370 * @rx_ring: ring to be freed 371 * @rx_rsize: ring size 372 * Description: this function initializes the DMA RX descriptor 373 */ 374 static void sxgbe_free_rx_buffers(struct net_device *dev, 375 struct sxgbe_rx_norm_desc *p, int i, 376 unsigned int dma_buf_sz, 377 struct sxgbe_rx_queue *rx_ring) 378 { 379 struct sxgbe_priv_data *priv = netdev_priv(dev); 380 381 kfree_skb(rx_ring->rx_skbuff[i]); 382 dma_unmap_single(priv->device, rx_ring->rx_skbuff_dma[i], 383 dma_buf_sz, DMA_FROM_DEVICE); 384 } 385 386 /** 387 * init_tx_ring - init the TX descriptor ring 388 * @dev: net device structure 389 * @tx_ring: ring to be initialised 390 * @tx_rsize: ring size 391 * Description: this function initializes the DMA TX descriptor 392 */ 393 static int init_tx_ring(struct device *dev, u8 queue_no, 394 struct sxgbe_tx_queue *tx_ring, int tx_rsize) 395 { 396 /* TX ring is not allcoated */ 397 if (!tx_ring) { 398 dev_err(dev, "No memory for TX queue of SXGBE\n"); 399 return -ENOMEM; 400 } 401 402 /* allocate memory for TX descriptors */ 403 tx_ring->dma_tx = dma_alloc_coherent(dev, 404 tx_rsize * sizeof(struct sxgbe_tx_norm_desc), 405 &tx_ring->dma_tx_phy, GFP_KERNEL); 406 if (!tx_ring->dma_tx) 407 return -ENOMEM; 408 409 /* allocate memory for TX skbuff array */ 410 tx_ring->tx_skbuff_dma = devm_kcalloc(dev, tx_rsize, 411 sizeof(dma_addr_t), GFP_KERNEL); 412 if (!tx_ring->tx_skbuff_dma) 413 goto dmamem_err; 414 415 tx_ring->tx_skbuff = devm_kcalloc(dev, tx_rsize, 416 sizeof(struct sk_buff *), GFP_KERNEL); 417 418 if (!tx_ring->tx_skbuff) 419 goto dmamem_err; 420 421 /* assign queue number */ 422 tx_ring->queue_no = queue_no; 423 424 /* initialise counters */ 425 tx_ring->dirty_tx = 0; 426 tx_ring->cur_tx = 0; 427 428 return 0; 429 430 dmamem_err: 431 dma_free_coherent(dev, tx_rsize * sizeof(struct sxgbe_tx_norm_desc), 432 tx_ring->dma_tx, tx_ring->dma_tx_phy); 433 return -ENOMEM; 434 } 435 436 /** 437 * free_rx_ring - free the RX descriptor ring 438 * @dev: net device structure 439 * @rx_ring: ring to be initialised 440 * @rx_rsize: ring size 441 * Description: this function initializes the DMA RX descriptor 442 */ 443 static void free_rx_ring(struct device *dev, struct sxgbe_rx_queue *rx_ring, 444 int rx_rsize) 445 { 446 dma_free_coherent(dev, rx_rsize * sizeof(struct sxgbe_rx_norm_desc), 447 rx_ring->dma_rx, rx_ring->dma_rx_phy); 448 kfree(rx_ring->rx_skbuff_dma); 449 kfree(rx_ring->rx_skbuff); 450 } 451 452 /** 453 * init_rx_ring - init the RX descriptor ring 454 * @dev: net device structure 455 * @rx_ring: ring to be initialised 456 * @rx_rsize: ring size 457 * Description: this function initializes the DMA RX descriptor 458 */ 459 static int init_rx_ring(struct net_device *dev, u8 queue_no, 460 struct sxgbe_rx_queue *rx_ring, int rx_rsize) 461 { 462 struct sxgbe_priv_data *priv = netdev_priv(dev); 463 int desc_index; 464 unsigned int bfsize = 0; 465 unsigned int ret = 0; 466 467 /* Set the max buffer size according to the MTU. */ 468 bfsize = ALIGN(dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN, 8); 469 470 netif_dbg(priv, probe, dev, "%s: bfsize %d\n", __func__, bfsize); 471 472 /* RX ring is not allcoated */ 473 if (rx_ring == NULL) { 474 netdev_err(dev, "No memory for RX queue\n"); 475 return -ENOMEM; 476 } 477 478 /* assign queue number */ 479 rx_ring->queue_no = queue_no; 480 481 /* allocate memory for RX descriptors */ 482 rx_ring->dma_rx = dma_alloc_coherent(priv->device, 483 rx_rsize * sizeof(struct sxgbe_rx_norm_desc), 484 &rx_ring->dma_rx_phy, GFP_KERNEL); 485 486 if (rx_ring->dma_rx == NULL) 487 return -ENOMEM; 488 489 /* allocate memory for RX skbuff array */ 490 rx_ring->rx_skbuff_dma = kmalloc_array(rx_rsize, 491 sizeof(dma_addr_t), GFP_KERNEL); 492 if (!rx_ring->rx_skbuff_dma) { 493 ret = -ENOMEM; 494 goto err_free_dma_rx; 495 } 496 497 rx_ring->rx_skbuff = kmalloc_array(rx_rsize, 498 sizeof(struct sk_buff *), GFP_KERNEL); 499 if (!rx_ring->rx_skbuff) { 500 ret = -ENOMEM; 501 goto err_free_skbuff_dma; 502 } 503 504 /* initialise the buffers */ 505 for (desc_index = 0; desc_index < rx_rsize; desc_index++) { 506 struct sxgbe_rx_norm_desc *p; 507 p = rx_ring->dma_rx + desc_index; 508 ret = sxgbe_init_rx_buffers(dev, p, desc_index, 509 bfsize, rx_ring); 510 if (ret) 511 goto err_free_rx_buffers; 512 } 513 514 /* initialise counters */ 515 rx_ring->cur_rx = 0; 516 rx_ring->dirty_rx = (unsigned int)(desc_index - rx_rsize); 517 priv->dma_buf_sz = bfsize; 518 519 return 0; 520 521 err_free_rx_buffers: 522 while (--desc_index >= 0) { 523 struct sxgbe_rx_norm_desc *p; 524 525 p = rx_ring->dma_rx + desc_index; 526 sxgbe_free_rx_buffers(dev, p, desc_index, bfsize, rx_ring); 527 } 528 kfree(rx_ring->rx_skbuff); 529 err_free_skbuff_dma: 530 kfree(rx_ring->rx_skbuff_dma); 531 err_free_dma_rx: 532 dma_free_coherent(priv->device, 533 rx_rsize * sizeof(struct sxgbe_rx_norm_desc), 534 rx_ring->dma_rx, rx_ring->dma_rx_phy); 535 536 return ret; 537 } 538 /** 539 * free_tx_ring - free the TX descriptor ring 540 * @dev: net device structure 541 * @tx_ring: ring to be initialised 542 * @tx_rsize: ring size 543 * Description: this function initializes the DMA TX descriptor 544 */ 545 static void free_tx_ring(struct device *dev, struct sxgbe_tx_queue *tx_ring, 546 int tx_rsize) 547 { 548 dma_free_coherent(dev, tx_rsize * sizeof(struct sxgbe_tx_norm_desc), 549 tx_ring->dma_tx, tx_ring->dma_tx_phy); 550 } 551 552 /** 553 * init_dma_desc_rings - init the RX/TX descriptor rings 554 * @dev: net device structure 555 * Description: this function initializes the DMA RX/TX descriptors 556 * and allocates the socket buffers. It suppors the chained and ring 557 * modes. 558 */ 559 static int init_dma_desc_rings(struct net_device *netd) 560 { 561 int queue_num, ret; 562 struct sxgbe_priv_data *priv = netdev_priv(netd); 563 int tx_rsize = priv->dma_tx_size; 564 int rx_rsize = priv->dma_rx_size; 565 566 /* Allocate memory for queue structures and TX descs */ 567 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 568 ret = init_tx_ring(priv->device, queue_num, 569 priv->txq[queue_num], tx_rsize); 570 if (ret) { 571 dev_err(&netd->dev, "TX DMA ring allocation failed!\n"); 572 goto txalloc_err; 573 } 574 575 /* save private pointer in each ring this 576 * pointer is needed during cleaing TX queue 577 */ 578 priv->txq[queue_num]->priv_ptr = priv; 579 } 580 581 /* Allocate memory for queue structures and RX descs */ 582 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) { 583 ret = init_rx_ring(netd, queue_num, 584 priv->rxq[queue_num], rx_rsize); 585 if (ret) { 586 netdev_err(netd, "RX DMA ring allocation failed!!\n"); 587 goto rxalloc_err; 588 } 589 590 /* save private pointer in each ring this 591 * pointer is needed during cleaing TX queue 592 */ 593 priv->rxq[queue_num]->priv_ptr = priv; 594 } 595 596 sxgbe_clear_descriptors(priv); 597 598 return 0; 599 600 txalloc_err: 601 while (queue_num--) 602 free_tx_ring(priv->device, priv->txq[queue_num], tx_rsize); 603 return ret; 604 605 rxalloc_err: 606 while (queue_num--) 607 free_rx_ring(priv->device, priv->rxq[queue_num], rx_rsize); 608 return ret; 609 } 610 611 static void tx_free_ring_skbufs(struct sxgbe_tx_queue *txqueue) 612 { 613 int dma_desc; 614 struct sxgbe_priv_data *priv = txqueue->priv_ptr; 615 int tx_rsize = priv->dma_tx_size; 616 617 for (dma_desc = 0; dma_desc < tx_rsize; dma_desc++) { 618 struct sxgbe_tx_norm_desc *tdesc = txqueue->dma_tx + dma_desc; 619 620 if (txqueue->tx_skbuff_dma[dma_desc]) 621 dma_unmap_single(priv->device, 622 txqueue->tx_skbuff_dma[dma_desc], 623 priv->hw->desc->get_tx_len(tdesc), 624 DMA_TO_DEVICE); 625 626 dev_kfree_skb_any(txqueue->tx_skbuff[dma_desc]); 627 txqueue->tx_skbuff[dma_desc] = NULL; 628 txqueue->tx_skbuff_dma[dma_desc] = 0; 629 } 630 } 631 632 633 static void dma_free_tx_skbufs(struct sxgbe_priv_data *priv) 634 { 635 int queue_num; 636 637 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 638 struct sxgbe_tx_queue *tqueue = priv->txq[queue_num]; 639 tx_free_ring_skbufs(tqueue); 640 } 641 } 642 643 static void free_dma_desc_resources(struct sxgbe_priv_data *priv) 644 { 645 int queue_num; 646 int tx_rsize = priv->dma_tx_size; 647 int rx_rsize = priv->dma_rx_size; 648 649 /* Release the DMA TX buffers */ 650 dma_free_tx_skbufs(priv); 651 652 /* Release the TX ring memory also */ 653 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 654 free_tx_ring(priv->device, priv->txq[queue_num], tx_rsize); 655 } 656 657 /* Release the RX ring memory also */ 658 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) { 659 free_rx_ring(priv->device, priv->rxq[queue_num], rx_rsize); 660 } 661 } 662 663 static int txring_mem_alloc(struct sxgbe_priv_data *priv) 664 { 665 int queue_num; 666 667 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 668 priv->txq[queue_num] = devm_kmalloc(priv->device, 669 sizeof(struct sxgbe_tx_queue), GFP_KERNEL); 670 if (!priv->txq[queue_num]) 671 return -ENOMEM; 672 } 673 674 return 0; 675 } 676 677 static int rxring_mem_alloc(struct sxgbe_priv_data *priv) 678 { 679 int queue_num; 680 681 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) { 682 priv->rxq[queue_num] = devm_kmalloc(priv->device, 683 sizeof(struct sxgbe_rx_queue), GFP_KERNEL); 684 if (!priv->rxq[queue_num]) 685 return -ENOMEM; 686 } 687 688 return 0; 689 } 690 691 /** 692 * sxgbe_mtl_operation_mode - HW MTL operation mode 693 * @priv: driver private structure 694 * Description: it sets the MTL operation mode: tx/rx MTL thresholds 695 * or Store-And-Forward capability. 696 */ 697 static void sxgbe_mtl_operation_mode(struct sxgbe_priv_data *priv) 698 { 699 int queue_num; 700 701 /* TX/RX threshold control */ 702 if (likely(priv->plat->force_sf_dma_mode)) { 703 /* set TC mode for TX QUEUES */ 704 SXGBE_FOR_EACH_QUEUE(priv->hw_cap.tx_mtl_queues, queue_num) 705 priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, queue_num, 706 SXGBE_MTL_SFMODE); 707 priv->tx_tc = SXGBE_MTL_SFMODE; 708 709 /* set TC mode for RX QUEUES */ 710 SXGBE_FOR_EACH_QUEUE(priv->hw_cap.rx_mtl_queues, queue_num) 711 priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, queue_num, 712 SXGBE_MTL_SFMODE); 713 priv->rx_tc = SXGBE_MTL_SFMODE; 714 } else if (unlikely(priv->plat->force_thresh_dma_mode)) { 715 /* set TC mode for TX QUEUES */ 716 SXGBE_FOR_EACH_QUEUE(priv->hw_cap.tx_mtl_queues, queue_num) 717 priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, queue_num, 718 priv->tx_tc); 719 /* set TC mode for RX QUEUES */ 720 SXGBE_FOR_EACH_QUEUE(priv->hw_cap.rx_mtl_queues, queue_num) 721 priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, queue_num, 722 priv->rx_tc); 723 } else { 724 pr_err("ERROR: %s: Invalid TX threshold mode\n", __func__); 725 } 726 } 727 728 /** 729 * sxgbe_tx_queue_clean: 730 * @priv: driver private structure 731 * Description: it reclaims resources after transmission completes. 732 */ 733 static void sxgbe_tx_queue_clean(struct sxgbe_tx_queue *tqueue) 734 { 735 struct sxgbe_priv_data *priv = tqueue->priv_ptr; 736 unsigned int tx_rsize = priv->dma_tx_size; 737 struct netdev_queue *dev_txq; 738 u8 queue_no = tqueue->queue_no; 739 740 dev_txq = netdev_get_tx_queue(priv->dev, queue_no); 741 742 __netif_tx_lock(dev_txq, smp_processor_id()); 743 744 priv->xstats.tx_clean++; 745 while (tqueue->dirty_tx != tqueue->cur_tx) { 746 unsigned int entry = tqueue->dirty_tx % tx_rsize; 747 struct sk_buff *skb = tqueue->tx_skbuff[entry]; 748 struct sxgbe_tx_norm_desc *p; 749 750 p = tqueue->dma_tx + entry; 751 752 /* Check if the descriptor is owned by the DMA. */ 753 if (priv->hw->desc->get_tx_owner(p)) 754 break; 755 756 if (netif_msg_tx_done(priv)) 757 pr_debug("%s: curr %d, dirty %d\n", 758 __func__, tqueue->cur_tx, tqueue->dirty_tx); 759 760 if (likely(tqueue->tx_skbuff_dma[entry])) { 761 dma_unmap_single(priv->device, 762 tqueue->tx_skbuff_dma[entry], 763 priv->hw->desc->get_tx_len(p), 764 DMA_TO_DEVICE); 765 tqueue->tx_skbuff_dma[entry] = 0; 766 } 767 768 if (likely(skb)) { 769 dev_kfree_skb(skb); 770 tqueue->tx_skbuff[entry] = NULL; 771 } 772 773 priv->hw->desc->release_tx_desc(p); 774 775 tqueue->dirty_tx++; 776 } 777 778 /* wake up queue */ 779 if (unlikely(netif_tx_queue_stopped(dev_txq) && 780 sxgbe_tx_avail(tqueue, tx_rsize) > SXGBE_TX_THRESH(priv))) { 781 if (netif_msg_tx_done(priv)) 782 pr_debug("%s: restart transmit\n", __func__); 783 netif_tx_wake_queue(dev_txq); 784 } 785 786 __netif_tx_unlock(dev_txq); 787 } 788 789 /** 790 * sxgbe_tx_clean: 791 * @priv: driver private structure 792 * Description: it reclaims resources after transmission completes. 793 */ 794 static void sxgbe_tx_all_clean(struct sxgbe_priv_data * const priv) 795 { 796 u8 queue_num; 797 798 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 799 struct sxgbe_tx_queue *tqueue = priv->txq[queue_num]; 800 801 sxgbe_tx_queue_clean(tqueue); 802 } 803 804 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) { 805 sxgbe_enable_eee_mode(priv); 806 mod_timer(&priv->eee_ctrl_timer, SXGBE_LPI_TIMER(eee_timer)); 807 } 808 } 809 810 /** 811 * sxgbe_restart_tx_queue: irq tx error mng function 812 * @priv: driver private structure 813 * Description: it cleans the descriptors and restarts the transmission 814 * in case of errors. 815 */ 816 static void sxgbe_restart_tx_queue(struct sxgbe_priv_data *priv, int queue_num) 817 { 818 struct sxgbe_tx_queue *tx_ring = priv->txq[queue_num]; 819 struct netdev_queue *dev_txq = netdev_get_tx_queue(priv->dev, 820 queue_num); 821 822 /* stop the queue */ 823 netif_tx_stop_queue(dev_txq); 824 825 /* stop the tx dma */ 826 priv->hw->dma->stop_tx_queue(priv->ioaddr, queue_num); 827 828 /* free the skbuffs of the ring */ 829 tx_free_ring_skbufs(tx_ring); 830 831 /* initialise counters */ 832 tx_ring->cur_tx = 0; 833 tx_ring->dirty_tx = 0; 834 835 /* start the tx dma */ 836 priv->hw->dma->start_tx_queue(priv->ioaddr, queue_num); 837 838 priv->dev->stats.tx_errors++; 839 840 /* wakeup the queue */ 841 netif_tx_wake_queue(dev_txq); 842 } 843 844 /** 845 * sxgbe_reset_all_tx_queues: irq tx error mng function 846 * @priv: driver private structure 847 * Description: it cleans all the descriptors and 848 * restarts the transmission on all queues in case of errors. 849 */ 850 static void sxgbe_reset_all_tx_queues(struct sxgbe_priv_data *priv) 851 { 852 int queue_num; 853 854 /* On TX timeout of net device, resetting of all queues 855 * may not be proper way, revisit this later if needed 856 */ 857 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) 858 sxgbe_restart_tx_queue(priv, queue_num); 859 } 860 861 /** 862 * sxgbe_get_hw_features: get XMAC capabilities from the HW cap. register. 863 * @priv: driver private structure 864 * Description: 865 * new GMAC chip generations have a new register to indicate the 866 * presence of the optional feature/functions. 867 * This can be also used to override the value passed through the 868 * platform and necessary for old MAC10/100 and GMAC chips. 869 */ 870 static int sxgbe_get_hw_features(struct sxgbe_priv_data * const priv) 871 { 872 int rval = 0; 873 struct sxgbe_hw_features *features = &priv->hw_cap; 874 875 /* Read First Capability Register CAP[0] */ 876 rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 0); 877 if (rval) { 878 features->pmt_remote_wake_up = 879 SXGBE_HW_FEAT_PMT_TEMOTE_WOP(rval); 880 features->pmt_magic_frame = SXGBE_HW_FEAT_PMT_MAGIC_PKT(rval); 881 features->atime_stamp = SXGBE_HW_FEAT_IEEE1500_2008(rval); 882 features->tx_csum_offload = 883 SXGBE_HW_FEAT_TX_CSUM_OFFLOAD(rval); 884 features->rx_csum_offload = 885 SXGBE_HW_FEAT_RX_CSUM_OFFLOAD(rval); 886 features->multi_macaddr = SXGBE_HW_FEAT_MACADDR_COUNT(rval); 887 features->tstamp_srcselect = SXGBE_HW_FEAT_TSTMAP_SRC(rval); 888 features->sa_vlan_insert = SXGBE_HW_FEAT_SRCADDR_VLAN(rval); 889 features->eee = SXGBE_HW_FEAT_EEE(rval); 890 } 891 892 /* Read First Capability Register CAP[1] */ 893 rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 1); 894 if (rval) { 895 features->rxfifo_size = SXGBE_HW_FEAT_RX_FIFO_SIZE(rval); 896 features->txfifo_size = SXGBE_HW_FEAT_TX_FIFO_SIZE(rval); 897 features->atstmap_hword = SXGBE_HW_FEAT_TX_FIFO_SIZE(rval); 898 features->dcb_enable = SXGBE_HW_FEAT_DCB(rval); 899 features->splithead_enable = SXGBE_HW_FEAT_SPLIT_HDR(rval); 900 features->tcpseg_offload = SXGBE_HW_FEAT_TSO(rval); 901 features->debug_mem = SXGBE_HW_FEAT_DEBUG_MEM_IFACE(rval); 902 features->rss_enable = SXGBE_HW_FEAT_RSS(rval); 903 features->hash_tsize = SXGBE_HW_FEAT_HASH_TABLE_SIZE(rval); 904 features->l3l4_filer_size = SXGBE_HW_FEAT_L3L4_FILTER_NUM(rval); 905 } 906 907 /* Read First Capability Register CAP[2] */ 908 rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 2); 909 if (rval) { 910 features->rx_mtl_queues = SXGBE_HW_FEAT_RX_MTL_QUEUES(rval); 911 features->tx_mtl_queues = SXGBE_HW_FEAT_TX_MTL_QUEUES(rval); 912 features->rx_dma_channels = SXGBE_HW_FEAT_RX_DMA_CHANNELS(rval); 913 features->tx_dma_channels = SXGBE_HW_FEAT_TX_DMA_CHANNELS(rval); 914 features->pps_output_count = SXGBE_HW_FEAT_PPS_OUTPUTS(rval); 915 features->aux_input_count = SXGBE_HW_FEAT_AUX_SNAPSHOTS(rval); 916 } 917 918 return rval; 919 } 920 921 /** 922 * sxgbe_check_ether_addr: check if the MAC addr is valid 923 * @priv: driver private structure 924 * Description: 925 * it is to verify if the MAC address is valid, in case of failures it 926 * generates a random MAC address 927 */ 928 static void sxgbe_check_ether_addr(struct sxgbe_priv_data *priv) 929 { 930 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 931 priv->hw->mac->get_umac_addr((void __iomem *) 932 priv->ioaddr, 933 priv->dev->dev_addr, 0); 934 if (!is_valid_ether_addr(priv->dev->dev_addr)) 935 eth_hw_addr_random(priv->dev); 936 } 937 dev_info(priv->device, "device MAC address %pM\n", 938 priv->dev->dev_addr); 939 } 940 941 /** 942 * sxgbe_init_dma_engine: DMA init. 943 * @priv: driver private structure 944 * Description: 945 * It inits the DMA invoking the specific SXGBE callback. 946 * Some DMA parameters can be passed from the platform; 947 * in case of these are not passed a default is kept for the MAC or GMAC. 948 */ 949 static int sxgbe_init_dma_engine(struct sxgbe_priv_data *priv) 950 { 951 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_map = 0; 952 int queue_num; 953 954 if (priv->plat->dma_cfg) { 955 pbl = priv->plat->dma_cfg->pbl; 956 fixed_burst = priv->plat->dma_cfg->fixed_burst; 957 burst_map = priv->plat->dma_cfg->burst_map; 958 } 959 960 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) 961 priv->hw->dma->cha_init(priv->ioaddr, queue_num, 962 fixed_burst, pbl, 963 (priv->txq[queue_num])->dma_tx_phy, 964 (priv->rxq[queue_num])->dma_rx_phy, 965 priv->dma_tx_size, priv->dma_rx_size); 966 967 return priv->hw->dma->init(priv->ioaddr, fixed_burst, burst_map); 968 } 969 970 /** 971 * sxgbe_init_mtl_engine: MTL init. 972 * @priv: driver private structure 973 * Description: 974 * It inits the MTL invoking the specific SXGBE callback. 975 */ 976 static void sxgbe_init_mtl_engine(struct sxgbe_priv_data *priv) 977 { 978 int queue_num; 979 980 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 981 priv->hw->mtl->mtl_set_txfifosize(priv->ioaddr, queue_num, 982 priv->hw_cap.tx_mtl_qsize); 983 priv->hw->mtl->mtl_enable_txqueue(priv->ioaddr, queue_num); 984 } 985 } 986 987 /** 988 * sxgbe_disable_mtl_engine: MTL disable. 989 * @priv: driver private structure 990 * Description: 991 * It disables the MTL queues by invoking the specific SXGBE callback. 992 */ 993 static void sxgbe_disable_mtl_engine(struct sxgbe_priv_data *priv) 994 { 995 int queue_num; 996 997 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) 998 priv->hw->mtl->mtl_disable_txqueue(priv->ioaddr, queue_num); 999 } 1000 1001 1002 /** 1003 * sxgbe_tx_timer: mitigation sw timer for tx. 1004 * @t: timer pointer 1005 * Description: 1006 * This is the timer handler to directly invoke the sxgbe_tx_clean. 1007 */ 1008 static void sxgbe_tx_timer(struct timer_list *t) 1009 { 1010 struct sxgbe_tx_queue *p = from_timer(p, t, txtimer); 1011 sxgbe_tx_queue_clean(p); 1012 } 1013 1014 /** 1015 * sxgbe_init_tx_coalesce: init tx mitigation options. 1016 * @priv: driver private structure 1017 * Description: 1018 * This inits the transmit coalesce parameters: i.e. timer rate, 1019 * timer handler and default threshold used for enabling the 1020 * interrupt on completion bit. 1021 */ 1022 static void sxgbe_tx_init_coalesce(struct sxgbe_priv_data *priv) 1023 { 1024 u8 queue_num; 1025 1026 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 1027 struct sxgbe_tx_queue *p = priv->txq[queue_num]; 1028 p->tx_coal_frames = SXGBE_TX_FRAMES; 1029 p->tx_coal_timer = SXGBE_COAL_TX_TIMER; 1030 timer_setup(&p->txtimer, sxgbe_tx_timer, 0); 1031 p->txtimer.expires = SXGBE_COAL_TIMER(p->tx_coal_timer); 1032 add_timer(&p->txtimer); 1033 } 1034 } 1035 1036 static void sxgbe_tx_del_timer(struct sxgbe_priv_data *priv) 1037 { 1038 u8 queue_num; 1039 1040 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 1041 struct sxgbe_tx_queue *p = priv->txq[queue_num]; 1042 del_timer_sync(&p->txtimer); 1043 } 1044 } 1045 1046 /** 1047 * sxgbe_open - open entry point of the driver 1048 * @dev : pointer to the device structure. 1049 * Description: 1050 * This function is the open entry point of the driver. 1051 * Return value: 1052 * 0 on success and an appropriate (-)ve integer as defined in errno.h 1053 * file on failure. 1054 */ 1055 static int sxgbe_open(struct net_device *dev) 1056 { 1057 struct sxgbe_priv_data *priv = netdev_priv(dev); 1058 int ret, queue_num; 1059 1060 clk_prepare_enable(priv->sxgbe_clk); 1061 1062 sxgbe_check_ether_addr(priv); 1063 1064 /* Init the phy */ 1065 ret = sxgbe_init_phy(dev); 1066 if (ret) { 1067 netdev_err(dev, "%s: Cannot attach to PHY (error: %d)\n", 1068 __func__, ret); 1069 goto phy_error; 1070 } 1071 1072 /* Create and initialize the TX/RX descriptors chains. */ 1073 priv->dma_tx_size = SXGBE_ALIGN(DMA_TX_SIZE); 1074 priv->dma_rx_size = SXGBE_ALIGN(DMA_RX_SIZE); 1075 priv->dma_buf_sz = SXGBE_ALIGN(DMA_BUFFER_SIZE); 1076 priv->tx_tc = TC_DEFAULT; 1077 priv->rx_tc = TC_DEFAULT; 1078 init_dma_desc_rings(dev); 1079 1080 /* DMA initialization and SW reset */ 1081 ret = sxgbe_init_dma_engine(priv); 1082 if (ret < 0) { 1083 netdev_err(dev, "%s: DMA initialization failed\n", __func__); 1084 goto init_error; 1085 } 1086 1087 /* MTL initialization */ 1088 sxgbe_init_mtl_engine(priv); 1089 1090 /* Copy the MAC addr into the HW */ 1091 priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0); 1092 1093 /* Initialize the MAC Core */ 1094 priv->hw->mac->core_init(priv->ioaddr); 1095 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) { 1096 priv->hw->mac->enable_rxqueue(priv->ioaddr, queue_num); 1097 } 1098 1099 /* Request the IRQ lines */ 1100 ret = devm_request_irq(priv->device, priv->irq, sxgbe_common_interrupt, 1101 IRQF_SHARED, dev->name, dev); 1102 if (unlikely(ret < 0)) { 1103 netdev_err(dev, "%s: ERROR: allocating the IRQ %d (error: %d)\n", 1104 __func__, priv->irq, ret); 1105 goto init_error; 1106 } 1107 1108 /* If the LPI irq is different from the mac irq 1109 * register a dedicated handler 1110 */ 1111 if (priv->lpi_irq != dev->irq) { 1112 ret = devm_request_irq(priv->device, priv->lpi_irq, 1113 sxgbe_common_interrupt, 1114 IRQF_SHARED, dev->name, dev); 1115 if (unlikely(ret < 0)) { 1116 netdev_err(dev, "%s: ERROR: allocating the LPI IRQ %d (%d)\n", 1117 __func__, priv->lpi_irq, ret); 1118 goto init_error; 1119 } 1120 } 1121 1122 /* Request TX DMA irq lines */ 1123 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 1124 ret = devm_request_irq(priv->device, 1125 (priv->txq[queue_num])->irq_no, 1126 sxgbe_tx_interrupt, 0, 1127 dev->name, priv->txq[queue_num]); 1128 if (unlikely(ret < 0)) { 1129 netdev_err(dev, "%s: ERROR: allocating TX IRQ %d (error: %d)\n", 1130 __func__, priv->irq, ret); 1131 goto init_error; 1132 } 1133 } 1134 1135 /* Request RX DMA irq lines */ 1136 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) { 1137 ret = devm_request_irq(priv->device, 1138 (priv->rxq[queue_num])->irq_no, 1139 sxgbe_rx_interrupt, 0, 1140 dev->name, priv->rxq[queue_num]); 1141 if (unlikely(ret < 0)) { 1142 netdev_err(dev, "%s: ERROR: allocating TX IRQ %d (error: %d)\n", 1143 __func__, priv->irq, ret); 1144 goto init_error; 1145 } 1146 } 1147 1148 /* Enable the MAC Rx/Tx */ 1149 priv->hw->mac->enable_tx(priv->ioaddr, true); 1150 priv->hw->mac->enable_rx(priv->ioaddr, true); 1151 1152 /* Set the HW DMA mode and the COE */ 1153 sxgbe_mtl_operation_mode(priv); 1154 1155 /* Extra statistics */ 1156 memset(&priv->xstats, 0, sizeof(struct sxgbe_extra_stats)); 1157 1158 priv->xstats.tx_threshold = priv->tx_tc; 1159 priv->xstats.rx_threshold = priv->rx_tc; 1160 1161 /* Start the ball rolling... */ 1162 netdev_dbg(dev, "DMA RX/TX processes started...\n"); 1163 priv->hw->dma->start_tx(priv->ioaddr, SXGBE_TX_QUEUES); 1164 priv->hw->dma->start_rx(priv->ioaddr, SXGBE_RX_QUEUES); 1165 1166 if (dev->phydev) 1167 phy_start(dev->phydev); 1168 1169 /* initialise TX coalesce parameters */ 1170 sxgbe_tx_init_coalesce(priv); 1171 1172 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) { 1173 priv->rx_riwt = SXGBE_MAX_DMA_RIWT; 1174 priv->hw->dma->rx_watchdog(priv->ioaddr, SXGBE_MAX_DMA_RIWT); 1175 } 1176 1177 priv->tx_lpi_timer = SXGBE_DEFAULT_LPI_TIMER; 1178 priv->eee_enabled = sxgbe_eee_init(priv); 1179 1180 napi_enable(&priv->napi); 1181 netif_start_queue(dev); 1182 1183 return 0; 1184 1185 init_error: 1186 free_dma_desc_resources(priv); 1187 if (dev->phydev) 1188 phy_disconnect(dev->phydev); 1189 phy_error: 1190 clk_disable_unprepare(priv->sxgbe_clk); 1191 1192 return ret; 1193 } 1194 1195 /** 1196 * sxgbe_release - close entry point of the driver 1197 * @dev : device pointer. 1198 * Description: 1199 * This is the stop entry point of the driver. 1200 */ 1201 static int sxgbe_release(struct net_device *dev) 1202 { 1203 struct sxgbe_priv_data *priv = netdev_priv(dev); 1204 1205 if (priv->eee_enabled) 1206 del_timer_sync(&priv->eee_ctrl_timer); 1207 1208 /* Stop and disconnect the PHY */ 1209 if (dev->phydev) { 1210 phy_stop(dev->phydev); 1211 phy_disconnect(dev->phydev); 1212 } 1213 1214 netif_tx_stop_all_queues(dev); 1215 1216 napi_disable(&priv->napi); 1217 1218 /* delete TX timers */ 1219 sxgbe_tx_del_timer(priv); 1220 1221 /* Stop TX/RX DMA and clear the descriptors */ 1222 priv->hw->dma->stop_tx(priv->ioaddr, SXGBE_TX_QUEUES); 1223 priv->hw->dma->stop_rx(priv->ioaddr, SXGBE_RX_QUEUES); 1224 1225 /* disable MTL queue */ 1226 sxgbe_disable_mtl_engine(priv); 1227 1228 /* Release and free the Rx/Tx resources */ 1229 free_dma_desc_resources(priv); 1230 1231 /* Disable the MAC Rx/Tx */ 1232 priv->hw->mac->enable_tx(priv->ioaddr, false); 1233 priv->hw->mac->enable_rx(priv->ioaddr, false); 1234 1235 clk_disable_unprepare(priv->sxgbe_clk); 1236 1237 return 0; 1238 } 1239 /* Prepare first Tx descriptor for doing TSO operation */ 1240 static void sxgbe_tso_prepare(struct sxgbe_priv_data *priv, 1241 struct sxgbe_tx_norm_desc *first_desc, 1242 struct sk_buff *skb) 1243 { 1244 unsigned int total_hdr_len, tcp_hdr_len; 1245 1246 /* Write first Tx descriptor with appropriate value */ 1247 tcp_hdr_len = tcp_hdrlen(skb); 1248 total_hdr_len = skb_transport_offset(skb) + tcp_hdr_len; 1249 1250 first_desc->tdes01 = dma_map_single(priv->device, skb->data, 1251 total_hdr_len, DMA_TO_DEVICE); 1252 if (dma_mapping_error(priv->device, first_desc->tdes01)) 1253 pr_err("%s: TX dma mapping failed!!\n", __func__); 1254 1255 first_desc->tdes23.tx_rd_des23.first_desc = 1; 1256 priv->hw->desc->tx_desc_enable_tse(first_desc, 1, total_hdr_len, 1257 tcp_hdr_len, 1258 skb->len - total_hdr_len); 1259 } 1260 1261 /** 1262 * sxgbe_xmit: Tx entry point of the driver 1263 * @skb : the socket buffer 1264 * @dev : device pointer 1265 * Description : this is the tx entry point of the driver. 1266 * It programs the chain or the ring and supports oversized frames 1267 * and SG feature. 1268 */ 1269 static netdev_tx_t sxgbe_xmit(struct sk_buff *skb, struct net_device *dev) 1270 { 1271 unsigned int entry, frag_num; 1272 int cksum_flag = 0; 1273 struct netdev_queue *dev_txq; 1274 unsigned txq_index = skb_get_queue_mapping(skb); 1275 struct sxgbe_priv_data *priv = netdev_priv(dev); 1276 unsigned int tx_rsize = priv->dma_tx_size; 1277 struct sxgbe_tx_queue *tqueue = priv->txq[txq_index]; 1278 struct sxgbe_tx_norm_desc *tx_desc, *first_desc; 1279 struct sxgbe_tx_ctxt_desc *ctxt_desc = NULL; 1280 int nr_frags = skb_shinfo(skb)->nr_frags; 1281 int no_pagedlen = skb_headlen(skb); 1282 int is_jumbo = 0; 1283 u16 cur_mss = skb_shinfo(skb)->gso_size; 1284 u32 ctxt_desc_req = 0; 1285 1286 /* get the TX queue handle */ 1287 dev_txq = netdev_get_tx_queue(dev, txq_index); 1288 1289 if (unlikely(skb_is_gso(skb) && tqueue->prev_mss != cur_mss)) 1290 ctxt_desc_req = 1; 1291 1292 if (unlikely(skb_vlan_tag_present(skb) || 1293 ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 1294 tqueue->hwts_tx_en))) 1295 ctxt_desc_req = 1; 1296 1297 if (priv->tx_path_in_lpi_mode) 1298 sxgbe_disable_eee_mode(priv); 1299 1300 if (unlikely(sxgbe_tx_avail(tqueue, tx_rsize) < nr_frags + 1)) { 1301 if (!netif_tx_queue_stopped(dev_txq)) { 1302 netif_tx_stop_queue(dev_txq); 1303 netdev_err(dev, "%s: Tx Ring is full when %d queue is awake\n", 1304 __func__, txq_index); 1305 } 1306 return NETDEV_TX_BUSY; 1307 } 1308 1309 entry = tqueue->cur_tx % tx_rsize; 1310 tx_desc = tqueue->dma_tx + entry; 1311 1312 first_desc = tx_desc; 1313 if (ctxt_desc_req) 1314 ctxt_desc = (struct sxgbe_tx_ctxt_desc *)first_desc; 1315 1316 /* save the skb address */ 1317 tqueue->tx_skbuff[entry] = skb; 1318 1319 if (!is_jumbo) { 1320 if (likely(skb_is_gso(skb))) { 1321 /* TSO support */ 1322 if (unlikely(tqueue->prev_mss != cur_mss)) { 1323 priv->hw->desc->tx_ctxt_desc_set_mss( 1324 ctxt_desc, cur_mss); 1325 priv->hw->desc->tx_ctxt_desc_set_tcmssv( 1326 ctxt_desc); 1327 priv->hw->desc->tx_ctxt_desc_reset_ostc( 1328 ctxt_desc); 1329 priv->hw->desc->tx_ctxt_desc_set_ctxt( 1330 ctxt_desc); 1331 priv->hw->desc->tx_ctxt_desc_set_owner( 1332 ctxt_desc); 1333 1334 entry = (++tqueue->cur_tx) % tx_rsize; 1335 first_desc = tqueue->dma_tx + entry; 1336 1337 tqueue->prev_mss = cur_mss; 1338 } 1339 sxgbe_tso_prepare(priv, first_desc, skb); 1340 } else { 1341 tx_desc->tdes01 = dma_map_single(priv->device, 1342 skb->data, no_pagedlen, DMA_TO_DEVICE); 1343 if (dma_mapping_error(priv->device, tx_desc->tdes01)) 1344 netdev_err(dev, "%s: TX dma mapping failed!!\n", 1345 __func__); 1346 1347 priv->hw->desc->prepare_tx_desc(tx_desc, 1, no_pagedlen, 1348 no_pagedlen, cksum_flag); 1349 } 1350 } 1351 1352 for (frag_num = 0; frag_num < nr_frags; frag_num++) { 1353 const skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_num]; 1354 int len = skb_frag_size(frag); 1355 1356 entry = (++tqueue->cur_tx) % tx_rsize; 1357 tx_desc = tqueue->dma_tx + entry; 1358 tx_desc->tdes01 = skb_frag_dma_map(priv->device, frag, 0, len, 1359 DMA_TO_DEVICE); 1360 1361 tqueue->tx_skbuff_dma[entry] = tx_desc->tdes01; 1362 tqueue->tx_skbuff[entry] = NULL; 1363 1364 /* prepare the descriptor */ 1365 priv->hw->desc->prepare_tx_desc(tx_desc, 0, len, 1366 len, cksum_flag); 1367 /* memory barrier to flush descriptor */ 1368 wmb(); 1369 1370 /* set the owner */ 1371 priv->hw->desc->set_tx_owner(tx_desc); 1372 } 1373 1374 /* close the descriptors */ 1375 priv->hw->desc->close_tx_desc(tx_desc); 1376 1377 /* memory barrier to flush descriptor */ 1378 wmb(); 1379 1380 tqueue->tx_count_frames += nr_frags + 1; 1381 if (tqueue->tx_count_frames > tqueue->tx_coal_frames) { 1382 priv->hw->desc->clear_tx_ic(tx_desc); 1383 priv->xstats.tx_reset_ic_bit++; 1384 mod_timer(&tqueue->txtimer, 1385 SXGBE_COAL_TIMER(tqueue->tx_coal_timer)); 1386 } else { 1387 tqueue->tx_count_frames = 0; 1388 } 1389 1390 /* set owner for first desc */ 1391 priv->hw->desc->set_tx_owner(first_desc); 1392 1393 /* memory barrier to flush descriptor */ 1394 wmb(); 1395 1396 tqueue->cur_tx++; 1397 1398 /* display current ring */ 1399 netif_dbg(priv, pktdata, dev, "%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d\n", 1400 __func__, tqueue->cur_tx % tx_rsize, 1401 tqueue->dirty_tx % tx_rsize, entry, 1402 first_desc, nr_frags); 1403 1404 if (unlikely(sxgbe_tx_avail(tqueue, tx_rsize) <= (MAX_SKB_FRAGS + 1))) { 1405 netif_dbg(priv, hw, dev, "%s: stop transmitted packets\n", 1406 __func__); 1407 netif_tx_stop_queue(dev_txq); 1408 } 1409 1410 dev->stats.tx_bytes += skb->len; 1411 1412 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 1413 tqueue->hwts_tx_en)) { 1414 /* declare that device is doing timestamping */ 1415 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1416 priv->hw->desc->tx_enable_tstamp(first_desc); 1417 } 1418 1419 skb_tx_timestamp(skb); 1420 1421 priv->hw->dma->enable_dma_transmission(priv->ioaddr, txq_index); 1422 1423 return NETDEV_TX_OK; 1424 } 1425 1426 /** 1427 * sxgbe_rx_refill: refill used skb preallocated buffers 1428 * @priv: driver private structure 1429 * Description : this is to reallocate the skb for the reception process 1430 * that is based on zero-copy. 1431 */ 1432 static void sxgbe_rx_refill(struct sxgbe_priv_data *priv) 1433 { 1434 unsigned int rxsize = priv->dma_rx_size; 1435 int bfsize = priv->dma_buf_sz; 1436 u8 qnum = priv->cur_rx_qnum; 1437 1438 for (; priv->rxq[qnum]->cur_rx - priv->rxq[qnum]->dirty_rx > 0; 1439 priv->rxq[qnum]->dirty_rx++) { 1440 unsigned int entry = priv->rxq[qnum]->dirty_rx % rxsize; 1441 struct sxgbe_rx_norm_desc *p; 1442 1443 p = priv->rxq[qnum]->dma_rx + entry; 1444 1445 if (likely(priv->rxq[qnum]->rx_skbuff[entry] == NULL)) { 1446 struct sk_buff *skb; 1447 1448 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize); 1449 1450 if (unlikely(skb == NULL)) 1451 break; 1452 1453 priv->rxq[qnum]->rx_skbuff[entry] = skb; 1454 priv->rxq[qnum]->rx_skbuff_dma[entry] = 1455 dma_map_single(priv->device, skb->data, bfsize, 1456 DMA_FROM_DEVICE); 1457 1458 p->rdes23.rx_rd_des23.buf2_addr = 1459 priv->rxq[qnum]->rx_skbuff_dma[entry]; 1460 } 1461 1462 /* Added memory barrier for RX descriptor modification */ 1463 wmb(); 1464 priv->hw->desc->set_rx_owner(p); 1465 priv->hw->desc->set_rx_int_on_com(p); 1466 /* Added memory barrier for RX descriptor modification */ 1467 wmb(); 1468 } 1469 } 1470 1471 /** 1472 * sxgbe_rx: receive the frames from the remote host 1473 * @priv: driver private structure 1474 * @limit: napi bugget. 1475 * Description : this the function called by the napi poll method. 1476 * It gets all the frames inside the ring. 1477 */ 1478 static int sxgbe_rx(struct sxgbe_priv_data *priv, int limit) 1479 { 1480 u8 qnum = priv->cur_rx_qnum; 1481 unsigned int rxsize = priv->dma_rx_size; 1482 unsigned int entry = priv->rxq[qnum]->cur_rx; 1483 unsigned int next_entry = 0; 1484 unsigned int count = 0; 1485 int checksum; 1486 int status; 1487 1488 while (count < limit) { 1489 struct sxgbe_rx_norm_desc *p; 1490 struct sk_buff *skb; 1491 int frame_len; 1492 1493 p = priv->rxq[qnum]->dma_rx + entry; 1494 1495 if (priv->hw->desc->get_rx_owner(p)) 1496 break; 1497 1498 count++; 1499 1500 next_entry = (++priv->rxq[qnum]->cur_rx) % rxsize; 1501 prefetch(priv->rxq[qnum]->dma_rx + next_entry); 1502 1503 /* Read the status of the incoming frame and also get checksum 1504 * value based on whether it is enabled in SXGBE hardware or 1505 * not. 1506 */ 1507 status = priv->hw->desc->rx_wbstatus(p, &priv->xstats, 1508 &checksum); 1509 if (unlikely(status < 0)) { 1510 entry = next_entry; 1511 continue; 1512 } 1513 if (unlikely(!priv->rxcsum_insertion)) 1514 checksum = CHECKSUM_NONE; 1515 1516 skb = priv->rxq[qnum]->rx_skbuff[entry]; 1517 1518 if (unlikely(!skb)) 1519 netdev_err(priv->dev, "rx descriptor is not consistent\n"); 1520 1521 prefetch(skb->data - NET_IP_ALIGN); 1522 priv->rxq[qnum]->rx_skbuff[entry] = NULL; 1523 1524 frame_len = priv->hw->desc->get_rx_frame_len(p); 1525 1526 skb_put(skb, frame_len); 1527 1528 skb->ip_summed = checksum; 1529 if (checksum == CHECKSUM_NONE) 1530 netif_receive_skb(skb); 1531 else 1532 napi_gro_receive(&priv->napi, skb); 1533 1534 entry = next_entry; 1535 } 1536 1537 sxgbe_rx_refill(priv); 1538 1539 return count; 1540 } 1541 1542 /** 1543 * sxgbe_poll - sxgbe poll method (NAPI) 1544 * @napi : pointer to the napi structure. 1545 * @budget : maximum number of packets that the current CPU can receive from 1546 * all interfaces. 1547 * Description : 1548 * To look at the incoming frames and clear the tx resources. 1549 */ 1550 static int sxgbe_poll(struct napi_struct *napi, int budget) 1551 { 1552 struct sxgbe_priv_data *priv = container_of(napi, 1553 struct sxgbe_priv_data, napi); 1554 int work_done = 0; 1555 u8 qnum = priv->cur_rx_qnum; 1556 1557 priv->xstats.napi_poll++; 1558 /* first, clean the tx queues */ 1559 sxgbe_tx_all_clean(priv); 1560 1561 work_done = sxgbe_rx(priv, budget); 1562 if (work_done < budget) { 1563 napi_complete_done(napi, work_done); 1564 priv->hw->dma->enable_dma_irq(priv->ioaddr, qnum); 1565 } 1566 1567 return work_done; 1568 } 1569 1570 /** 1571 * sxgbe_tx_timeout 1572 * @dev : Pointer to net device structure 1573 * Description: this function is called when a packet transmission fails to 1574 * complete within a reasonable time. The driver will mark the error in the 1575 * netdev structure and arrange for the device to be reset to a sane state 1576 * in order to transmit a new packet. 1577 */ 1578 static void sxgbe_tx_timeout(struct net_device *dev) 1579 { 1580 struct sxgbe_priv_data *priv = netdev_priv(dev); 1581 1582 sxgbe_reset_all_tx_queues(priv); 1583 } 1584 1585 /** 1586 * sxgbe_common_interrupt - main ISR 1587 * @irq: interrupt number. 1588 * @dev_id: to pass the net device pointer. 1589 * Description: this is the main driver interrupt service routine. 1590 * It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI 1591 * interrupts. 1592 */ 1593 static irqreturn_t sxgbe_common_interrupt(int irq, void *dev_id) 1594 { 1595 struct net_device *netdev = (struct net_device *)dev_id; 1596 struct sxgbe_priv_data *priv = netdev_priv(netdev); 1597 int status; 1598 1599 status = priv->hw->mac->host_irq_status(priv->ioaddr, &priv->xstats); 1600 /* For LPI we need to save the tx status */ 1601 if (status & TX_ENTRY_LPI_MODE) { 1602 priv->xstats.tx_lpi_entry_n++; 1603 priv->tx_path_in_lpi_mode = true; 1604 } 1605 if (status & TX_EXIT_LPI_MODE) { 1606 priv->xstats.tx_lpi_exit_n++; 1607 priv->tx_path_in_lpi_mode = false; 1608 } 1609 if (status & RX_ENTRY_LPI_MODE) 1610 priv->xstats.rx_lpi_entry_n++; 1611 if (status & RX_EXIT_LPI_MODE) 1612 priv->xstats.rx_lpi_exit_n++; 1613 1614 return IRQ_HANDLED; 1615 } 1616 1617 /** 1618 * sxgbe_tx_interrupt - TX DMA ISR 1619 * @irq: interrupt number. 1620 * @dev_id: to pass the net device pointer. 1621 * Description: this is the tx dma interrupt service routine. 1622 */ 1623 static irqreturn_t sxgbe_tx_interrupt(int irq, void *dev_id) 1624 { 1625 int status; 1626 struct sxgbe_tx_queue *txq = (struct sxgbe_tx_queue *)dev_id; 1627 struct sxgbe_priv_data *priv = txq->priv_ptr; 1628 1629 /* get the channel status */ 1630 status = priv->hw->dma->tx_dma_int_status(priv->ioaddr, txq->queue_no, 1631 &priv->xstats); 1632 /* check for normal path */ 1633 if (likely((status & handle_tx))) 1634 napi_schedule(&priv->napi); 1635 1636 /* check for unrecoverable error */ 1637 if (unlikely((status & tx_hard_error))) 1638 sxgbe_restart_tx_queue(priv, txq->queue_no); 1639 1640 /* check for TC configuration change */ 1641 if (unlikely((status & tx_bump_tc) && 1642 (priv->tx_tc != SXGBE_MTL_SFMODE) && 1643 (priv->tx_tc < 512))) { 1644 /* step of TX TC is 32 till 128, otherwise 64 */ 1645 priv->tx_tc += (priv->tx_tc < 128) ? 32 : 64; 1646 priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, 1647 txq->queue_no, priv->tx_tc); 1648 priv->xstats.tx_threshold = priv->tx_tc; 1649 } 1650 1651 return IRQ_HANDLED; 1652 } 1653 1654 /** 1655 * sxgbe_rx_interrupt - RX DMA ISR 1656 * @irq: interrupt number. 1657 * @dev_id: to pass the net device pointer. 1658 * Description: this is the rx dma interrupt service routine. 1659 */ 1660 static irqreturn_t sxgbe_rx_interrupt(int irq, void *dev_id) 1661 { 1662 int status; 1663 struct sxgbe_rx_queue *rxq = (struct sxgbe_rx_queue *)dev_id; 1664 struct sxgbe_priv_data *priv = rxq->priv_ptr; 1665 1666 /* get the channel status */ 1667 status = priv->hw->dma->rx_dma_int_status(priv->ioaddr, rxq->queue_no, 1668 &priv->xstats); 1669 1670 if (likely((status & handle_rx) && (napi_schedule_prep(&priv->napi)))) { 1671 priv->hw->dma->disable_dma_irq(priv->ioaddr, rxq->queue_no); 1672 __napi_schedule(&priv->napi); 1673 } 1674 1675 /* check for TC configuration change */ 1676 if (unlikely((status & rx_bump_tc) && 1677 (priv->rx_tc != SXGBE_MTL_SFMODE) && 1678 (priv->rx_tc < 128))) { 1679 /* step of TC is 32 */ 1680 priv->rx_tc += 32; 1681 priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, 1682 rxq->queue_no, priv->rx_tc); 1683 priv->xstats.rx_threshold = priv->rx_tc; 1684 } 1685 1686 return IRQ_HANDLED; 1687 } 1688 1689 static inline u64 sxgbe_get_stat64(void __iomem *ioaddr, int reg_lo, int reg_hi) 1690 { 1691 u64 val = readl(ioaddr + reg_lo); 1692 1693 val |= ((u64)readl(ioaddr + reg_hi)) << 32; 1694 1695 return val; 1696 } 1697 1698 1699 /* sxgbe_get_stats64 - entry point to see statistical information of device 1700 * @dev : device pointer. 1701 * @stats : pointer to hold all the statistical information of device. 1702 * Description: 1703 * This function is a driver entry point whenever ifconfig command gets 1704 * executed to see device statistics. Statistics are number of 1705 * bytes sent or received, errors occurred etc. 1706 */ 1707 static void sxgbe_get_stats64(struct net_device *dev, 1708 struct rtnl_link_stats64 *stats) 1709 { 1710 struct sxgbe_priv_data *priv = netdev_priv(dev); 1711 void __iomem *ioaddr = priv->ioaddr; 1712 u64 count; 1713 1714 spin_lock(&priv->stats_lock); 1715 /* Freeze the counter registers before reading value otherwise it may 1716 * get updated by hardware while we are reading them 1717 */ 1718 writel(SXGBE_MMC_CTRL_CNT_FRZ, ioaddr + SXGBE_MMC_CTL_REG); 1719 1720 stats->rx_bytes = sxgbe_get_stat64(ioaddr, 1721 SXGBE_MMC_RXOCTETLO_GCNT_REG, 1722 SXGBE_MMC_RXOCTETHI_GCNT_REG); 1723 1724 stats->rx_packets = sxgbe_get_stat64(ioaddr, 1725 SXGBE_MMC_RXFRAMELO_GBCNT_REG, 1726 SXGBE_MMC_RXFRAMEHI_GBCNT_REG); 1727 1728 stats->multicast = sxgbe_get_stat64(ioaddr, 1729 SXGBE_MMC_RXMULTILO_GCNT_REG, 1730 SXGBE_MMC_RXMULTIHI_GCNT_REG); 1731 1732 stats->rx_crc_errors = sxgbe_get_stat64(ioaddr, 1733 SXGBE_MMC_RXCRCERRLO_REG, 1734 SXGBE_MMC_RXCRCERRHI_REG); 1735 1736 stats->rx_length_errors = sxgbe_get_stat64(ioaddr, 1737 SXGBE_MMC_RXLENERRLO_REG, 1738 SXGBE_MMC_RXLENERRHI_REG); 1739 1740 stats->rx_missed_errors = sxgbe_get_stat64(ioaddr, 1741 SXGBE_MMC_RXFIFOOVERFLOWLO_GBCNT_REG, 1742 SXGBE_MMC_RXFIFOOVERFLOWHI_GBCNT_REG); 1743 1744 stats->tx_bytes = sxgbe_get_stat64(ioaddr, 1745 SXGBE_MMC_TXOCTETLO_GCNT_REG, 1746 SXGBE_MMC_TXOCTETHI_GCNT_REG); 1747 1748 count = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXFRAMELO_GBCNT_REG, 1749 SXGBE_MMC_TXFRAMEHI_GBCNT_REG); 1750 1751 stats->tx_errors = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXFRAMELO_GCNT_REG, 1752 SXGBE_MMC_TXFRAMEHI_GCNT_REG); 1753 stats->tx_errors = count - stats->tx_errors; 1754 stats->tx_packets = count; 1755 stats->tx_fifo_errors = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXUFLWLO_GBCNT_REG, 1756 SXGBE_MMC_TXUFLWHI_GBCNT_REG); 1757 writel(0, ioaddr + SXGBE_MMC_CTL_REG); 1758 spin_unlock(&priv->stats_lock); 1759 } 1760 1761 /* sxgbe_set_features - entry point to set offload features of the device. 1762 * @dev : device pointer. 1763 * @features : features which are required to be set. 1764 * Description: 1765 * This function is a driver entry point and called by Linux kernel whenever 1766 * any device features are set or reset by user. 1767 * Return value: 1768 * This function returns 0 after setting or resetting device features. 1769 */ 1770 static int sxgbe_set_features(struct net_device *dev, 1771 netdev_features_t features) 1772 { 1773 struct sxgbe_priv_data *priv = netdev_priv(dev); 1774 netdev_features_t changed = dev->features ^ features; 1775 1776 if (changed & NETIF_F_RXCSUM) { 1777 if (features & NETIF_F_RXCSUM) { 1778 priv->hw->mac->enable_rx_csum(priv->ioaddr); 1779 priv->rxcsum_insertion = true; 1780 } else { 1781 priv->hw->mac->disable_rx_csum(priv->ioaddr); 1782 priv->rxcsum_insertion = false; 1783 } 1784 } 1785 1786 return 0; 1787 } 1788 1789 /* sxgbe_change_mtu - entry point to change MTU size for the device. 1790 * @dev : device pointer. 1791 * @new_mtu : the new MTU size for the device. 1792 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 1793 * to drive packet transmission. Ethernet has an MTU of 1500 octets 1794 * (ETH_DATA_LEN). This value can be changed with ifconfig. 1795 * Return value: 1796 * 0 on success and an appropriate (-)ve integer as defined in errno.h 1797 * file on failure. 1798 */ 1799 static int sxgbe_change_mtu(struct net_device *dev, int new_mtu) 1800 { 1801 dev->mtu = new_mtu; 1802 1803 if (!netif_running(dev)) 1804 return 0; 1805 1806 /* Recevice ring buffer size is needed to be set based on MTU. If MTU is 1807 * changed then reinitilisation of the receive ring buffers need to be 1808 * done. Hence bring interface down and bring interface back up 1809 */ 1810 sxgbe_release(dev); 1811 return sxgbe_open(dev); 1812 } 1813 1814 static void sxgbe_set_umac_addr(void __iomem *ioaddr, unsigned char *addr, 1815 unsigned int reg_n) 1816 { 1817 unsigned long data; 1818 1819 data = (addr[5] << 8) | addr[4]; 1820 /* For MAC Addr registers se have to set the Address Enable (AE) 1821 * bit that has no effect on the High Reg 0 where the bit 31 (MO) 1822 * is RO. 1823 */ 1824 writel(data | SXGBE_HI_REG_AE, ioaddr + SXGBE_ADDR_HIGH(reg_n)); 1825 data = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0]; 1826 writel(data, ioaddr + SXGBE_ADDR_LOW(reg_n)); 1827 } 1828 1829 /** 1830 * sxgbe_set_rx_mode - entry point for setting different receive mode of 1831 * a device. unicast, multicast addressing 1832 * @dev : pointer to the device structure 1833 * Description: 1834 * This function is a driver entry point which gets called by the kernel 1835 * whenever different receive mode like unicast, multicast and promiscuous 1836 * must be enabled/disabled. 1837 * Return value: 1838 * void. 1839 */ 1840 static void sxgbe_set_rx_mode(struct net_device *dev) 1841 { 1842 struct sxgbe_priv_data *priv = netdev_priv(dev); 1843 void __iomem *ioaddr = (void __iomem *)priv->ioaddr; 1844 unsigned int value = 0; 1845 u32 mc_filter[2]; 1846 struct netdev_hw_addr *ha; 1847 int reg = 1; 1848 1849 netdev_dbg(dev, "%s: # mcasts %d, # unicast %d\n", 1850 __func__, netdev_mc_count(dev), netdev_uc_count(dev)); 1851 1852 if (dev->flags & IFF_PROMISC) { 1853 value = SXGBE_FRAME_FILTER_PR; 1854 1855 } else if ((netdev_mc_count(dev) > SXGBE_HASH_TABLE_SIZE) || 1856 (dev->flags & IFF_ALLMULTI)) { 1857 value = SXGBE_FRAME_FILTER_PM; /* pass all multi */ 1858 writel(0xffffffff, ioaddr + SXGBE_HASH_HIGH); 1859 writel(0xffffffff, ioaddr + SXGBE_HASH_LOW); 1860 1861 } else if (!netdev_mc_empty(dev)) { 1862 /* Hash filter for multicast */ 1863 value = SXGBE_FRAME_FILTER_HMC; 1864 1865 memset(mc_filter, 0, sizeof(mc_filter)); 1866 netdev_for_each_mc_addr(ha, dev) { 1867 /* The upper 6 bits of the calculated CRC are used to 1868 * index the contens of the hash table 1869 */ 1870 int bit_nr = bitrev32(~crc32_le(~0, ha->addr, 6)) >> 26; 1871 1872 /* The most significant bit determines the register to 1873 * use (H/L) while the other 5 bits determine the bit 1874 * within the register. 1875 */ 1876 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); 1877 } 1878 writel(mc_filter[0], ioaddr + SXGBE_HASH_LOW); 1879 writel(mc_filter[1], ioaddr + SXGBE_HASH_HIGH); 1880 } 1881 1882 /* Handle multiple unicast addresses (perfect filtering) */ 1883 if (netdev_uc_count(dev) > SXGBE_MAX_PERFECT_ADDRESSES) 1884 /* Switch to promiscuous mode if more than 16 addrs 1885 * are required 1886 */ 1887 value |= SXGBE_FRAME_FILTER_PR; 1888 else { 1889 netdev_for_each_uc_addr(ha, dev) { 1890 sxgbe_set_umac_addr(ioaddr, ha->addr, reg); 1891 reg++; 1892 } 1893 } 1894 #ifdef FRAME_FILTER_DEBUG 1895 /* Enable Receive all mode (to debug filtering_fail errors) */ 1896 value |= SXGBE_FRAME_FILTER_RA; 1897 #endif 1898 writel(value, ioaddr + SXGBE_FRAME_FILTER); 1899 1900 netdev_dbg(dev, "Filter: 0x%08x\n\tHash: HI 0x%08x, LO 0x%08x\n", 1901 readl(ioaddr + SXGBE_FRAME_FILTER), 1902 readl(ioaddr + SXGBE_HASH_HIGH), 1903 readl(ioaddr + SXGBE_HASH_LOW)); 1904 } 1905 1906 #ifdef CONFIG_NET_POLL_CONTROLLER 1907 /** 1908 * sxgbe_poll_controller - entry point for polling receive by device 1909 * @dev : pointer to the device structure 1910 * Description: 1911 * This function is used by NETCONSOLE and other diagnostic tools 1912 * to allow network I/O with interrupts disabled. 1913 * Return value: 1914 * Void. 1915 */ 1916 static void sxgbe_poll_controller(struct net_device *dev) 1917 { 1918 struct sxgbe_priv_data *priv = netdev_priv(dev); 1919 1920 disable_irq(priv->irq); 1921 sxgbe_rx_interrupt(priv->irq, dev); 1922 enable_irq(priv->irq); 1923 } 1924 #endif 1925 1926 /* sxgbe_ioctl - Entry point for the Ioctl 1927 * @dev: Device pointer. 1928 * @rq: An IOCTL specefic structure, that can contain a pointer to 1929 * a proprietary structure used to pass information to the driver. 1930 * @cmd: IOCTL command 1931 * Description: 1932 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 1933 */ 1934 static int sxgbe_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1935 { 1936 int ret = -EOPNOTSUPP; 1937 1938 if (!netif_running(dev)) 1939 return -EINVAL; 1940 1941 switch (cmd) { 1942 case SIOCGMIIPHY: 1943 case SIOCGMIIREG: 1944 case SIOCSMIIREG: 1945 if (!dev->phydev) 1946 return -EINVAL; 1947 ret = phy_mii_ioctl(dev->phydev, rq, cmd); 1948 break; 1949 default: 1950 break; 1951 } 1952 1953 return ret; 1954 } 1955 1956 static const struct net_device_ops sxgbe_netdev_ops = { 1957 .ndo_open = sxgbe_open, 1958 .ndo_start_xmit = sxgbe_xmit, 1959 .ndo_stop = sxgbe_release, 1960 .ndo_get_stats64 = sxgbe_get_stats64, 1961 .ndo_change_mtu = sxgbe_change_mtu, 1962 .ndo_set_features = sxgbe_set_features, 1963 .ndo_set_rx_mode = sxgbe_set_rx_mode, 1964 .ndo_tx_timeout = sxgbe_tx_timeout, 1965 .ndo_do_ioctl = sxgbe_ioctl, 1966 #ifdef CONFIG_NET_POLL_CONTROLLER 1967 .ndo_poll_controller = sxgbe_poll_controller, 1968 #endif 1969 .ndo_set_mac_address = eth_mac_addr, 1970 }; 1971 1972 /* Get the hardware ops */ 1973 static void sxgbe_get_ops(struct sxgbe_ops * const ops_ptr) 1974 { 1975 ops_ptr->mac = sxgbe_get_core_ops(); 1976 ops_ptr->desc = sxgbe_get_desc_ops(); 1977 ops_ptr->dma = sxgbe_get_dma_ops(); 1978 ops_ptr->mtl = sxgbe_get_mtl_ops(); 1979 1980 /* set the MDIO communication Address/Data regisers */ 1981 ops_ptr->mii.addr = SXGBE_MDIO_SCMD_ADD_REG; 1982 ops_ptr->mii.data = SXGBE_MDIO_SCMD_DATA_REG; 1983 1984 /* Assigning the default link settings 1985 * no SXGBE defined default values to be set in registers, 1986 * so assigning as 0 for port and duplex 1987 */ 1988 ops_ptr->link.port = 0; 1989 ops_ptr->link.duplex = 0; 1990 ops_ptr->link.speed = SXGBE_SPEED_10G; 1991 } 1992 1993 /** 1994 * sxgbe_hw_init - Init the GMAC device 1995 * @priv: driver private structure 1996 * Description: this function checks the HW capability 1997 * (if supported) and sets the driver's features. 1998 */ 1999 static int sxgbe_hw_init(struct sxgbe_priv_data * const priv) 2000 { 2001 u32 ctrl_ids; 2002 2003 priv->hw = kmalloc(sizeof(*priv->hw), GFP_KERNEL); 2004 if(!priv->hw) 2005 return -ENOMEM; 2006 2007 /* get the hardware ops */ 2008 sxgbe_get_ops(priv->hw); 2009 2010 /* get the controller id */ 2011 ctrl_ids = priv->hw->mac->get_controller_version(priv->ioaddr); 2012 priv->hw->ctrl_uid = (ctrl_ids & 0x00ff0000) >> 16; 2013 priv->hw->ctrl_id = (ctrl_ids & 0x000000ff); 2014 pr_info("user ID: 0x%x, Controller ID: 0x%x\n", 2015 priv->hw->ctrl_uid, priv->hw->ctrl_id); 2016 2017 /* get the H/W features */ 2018 if (!sxgbe_get_hw_features(priv)) 2019 pr_info("Hardware features not found\n"); 2020 2021 if (priv->hw_cap.tx_csum_offload) 2022 pr_info("TX Checksum offload supported\n"); 2023 2024 if (priv->hw_cap.rx_csum_offload) 2025 pr_info("RX Checksum offload supported\n"); 2026 2027 return 0; 2028 } 2029 2030 static int sxgbe_sw_reset(void __iomem *addr) 2031 { 2032 int retry_count = 10; 2033 2034 writel(SXGBE_DMA_SOFT_RESET, addr + SXGBE_DMA_MODE_REG); 2035 while (retry_count--) { 2036 if (!(readl(addr + SXGBE_DMA_MODE_REG) & 2037 SXGBE_DMA_SOFT_RESET)) 2038 break; 2039 mdelay(10); 2040 } 2041 2042 if (retry_count < 0) 2043 return -EBUSY; 2044 2045 return 0; 2046 } 2047 2048 /** 2049 * sxgbe_drv_probe 2050 * @device: device pointer 2051 * @plat_dat: platform data pointer 2052 * @addr: iobase memory address 2053 * Description: this is the main probe function used to 2054 * call the alloc_etherdev, allocate the priv structure. 2055 */ 2056 struct sxgbe_priv_data *sxgbe_drv_probe(struct device *device, 2057 struct sxgbe_plat_data *plat_dat, 2058 void __iomem *addr) 2059 { 2060 struct sxgbe_priv_data *priv; 2061 struct net_device *ndev; 2062 int ret; 2063 u8 queue_num; 2064 2065 ndev = alloc_etherdev_mqs(sizeof(struct sxgbe_priv_data), 2066 SXGBE_TX_QUEUES, SXGBE_RX_QUEUES); 2067 if (!ndev) 2068 return NULL; 2069 2070 SET_NETDEV_DEV(ndev, device); 2071 2072 priv = netdev_priv(ndev); 2073 priv->device = device; 2074 priv->dev = ndev; 2075 2076 sxgbe_set_ethtool_ops(ndev); 2077 priv->plat = plat_dat; 2078 priv->ioaddr = addr; 2079 2080 ret = sxgbe_sw_reset(priv->ioaddr); 2081 if (ret) 2082 goto error_free_netdev; 2083 2084 /* Verify driver arguments */ 2085 sxgbe_verify_args(); 2086 2087 /* Init MAC and get the capabilities */ 2088 ret = sxgbe_hw_init(priv); 2089 if (ret) 2090 goto error_free_netdev; 2091 2092 /* allocate memory resources for Descriptor rings */ 2093 ret = txring_mem_alloc(priv); 2094 if (ret) 2095 goto error_free_hw; 2096 2097 ret = rxring_mem_alloc(priv); 2098 if (ret) 2099 goto error_free_hw; 2100 2101 ndev->netdev_ops = &sxgbe_netdev_ops; 2102 2103 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2104 NETIF_F_RXCSUM | NETIF_F_TSO | NETIF_F_TSO6 | 2105 NETIF_F_GRO; 2106 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 2107 ndev->watchdog_timeo = msecs_to_jiffies(TX_TIMEO); 2108 2109 /* assign filtering support */ 2110 ndev->priv_flags |= IFF_UNICAST_FLT; 2111 2112 /* MTU range: 68 - 9000 */ 2113 ndev->min_mtu = MIN_MTU; 2114 ndev->max_mtu = MAX_MTU; 2115 2116 priv->msg_enable = netif_msg_init(debug, default_msg_level); 2117 2118 /* Enable TCP segmentation offload for all DMA channels */ 2119 if (priv->hw_cap.tcpseg_offload) { 2120 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) { 2121 priv->hw->dma->enable_tso(priv->ioaddr, queue_num); 2122 } 2123 } 2124 2125 /* Enable Rx checksum offload */ 2126 if (priv->hw_cap.rx_csum_offload) { 2127 priv->hw->mac->enable_rx_csum(priv->ioaddr); 2128 priv->rxcsum_insertion = true; 2129 } 2130 2131 /* Initialise pause frame settings */ 2132 priv->rx_pause = 1; 2133 priv->tx_pause = 1; 2134 2135 /* Rx Watchdog is available, enable depend on platform data */ 2136 if (!priv->plat->riwt_off) { 2137 priv->use_riwt = 1; 2138 pr_info("Enable RX Mitigation via HW Watchdog Timer\n"); 2139 } 2140 2141 netif_napi_add(ndev, &priv->napi, sxgbe_poll, 64); 2142 2143 spin_lock_init(&priv->stats_lock); 2144 2145 priv->sxgbe_clk = clk_get(priv->device, SXGBE_RESOURCE_NAME); 2146 if (IS_ERR(priv->sxgbe_clk)) { 2147 netdev_warn(ndev, "%s: warning: cannot get CSR clock\n", 2148 __func__); 2149 goto error_napi_del; 2150 } 2151 2152 /* If a specific clk_csr value is passed from the platform 2153 * this means that the CSR Clock Range selection cannot be 2154 * changed at run-time and it is fixed. Viceversa the driver'll try to 2155 * set the MDC clock dynamically according to the csr actual 2156 * clock input. 2157 */ 2158 if (!priv->plat->clk_csr) 2159 sxgbe_clk_csr_set(priv); 2160 else 2161 priv->clk_csr = priv->plat->clk_csr; 2162 2163 /* MDIO bus Registration */ 2164 ret = sxgbe_mdio_register(ndev); 2165 if (ret < 0) { 2166 netdev_dbg(ndev, "%s: MDIO bus (id: %d) registration failed\n", 2167 __func__, priv->plat->bus_id); 2168 goto error_clk_put; 2169 } 2170 2171 ret = register_netdev(ndev); 2172 if (ret) { 2173 pr_err("%s: ERROR %i registering the device\n", __func__, ret); 2174 goto error_mdio_unregister; 2175 } 2176 2177 sxgbe_check_ether_addr(priv); 2178 2179 return priv; 2180 2181 error_mdio_unregister: 2182 sxgbe_mdio_unregister(ndev); 2183 error_clk_put: 2184 clk_put(priv->sxgbe_clk); 2185 error_napi_del: 2186 netif_napi_del(&priv->napi); 2187 error_free_hw: 2188 kfree(priv->hw); 2189 error_free_netdev: 2190 free_netdev(ndev); 2191 2192 return NULL; 2193 } 2194 2195 /** 2196 * sxgbe_drv_remove 2197 * @ndev: net device pointer 2198 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 2199 * changes the link status, releases the DMA descriptor rings. 2200 */ 2201 int sxgbe_drv_remove(struct net_device *ndev) 2202 { 2203 struct sxgbe_priv_data *priv = netdev_priv(ndev); 2204 u8 queue_num; 2205 2206 netdev_info(ndev, "%s: removing driver\n", __func__); 2207 2208 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) { 2209 priv->hw->mac->disable_rxqueue(priv->ioaddr, queue_num); 2210 } 2211 2212 priv->hw->dma->stop_rx(priv->ioaddr, SXGBE_RX_QUEUES); 2213 priv->hw->dma->stop_tx(priv->ioaddr, SXGBE_TX_QUEUES); 2214 2215 priv->hw->mac->enable_tx(priv->ioaddr, false); 2216 priv->hw->mac->enable_rx(priv->ioaddr, false); 2217 2218 unregister_netdev(ndev); 2219 2220 sxgbe_mdio_unregister(ndev); 2221 2222 clk_put(priv->sxgbe_clk); 2223 2224 netif_napi_del(&priv->napi); 2225 2226 kfree(priv->hw); 2227 2228 free_netdev(ndev); 2229 2230 return 0; 2231 } 2232 2233 #ifdef CONFIG_PM 2234 int sxgbe_suspend(struct net_device *ndev) 2235 { 2236 return 0; 2237 } 2238 2239 int sxgbe_resume(struct net_device *ndev) 2240 { 2241 return 0; 2242 } 2243 2244 int sxgbe_freeze(struct net_device *ndev) 2245 { 2246 return -ENOSYS; 2247 } 2248 2249 int sxgbe_restore(struct net_device *ndev) 2250 { 2251 return -ENOSYS; 2252 } 2253 #endif /* CONFIG_PM */ 2254 2255 /* Driver is configured as Platform driver */ 2256 static int __init sxgbe_init(void) 2257 { 2258 int ret; 2259 2260 ret = sxgbe_register_platform(); 2261 if (ret) 2262 goto err; 2263 return 0; 2264 err: 2265 pr_err("driver registration failed\n"); 2266 return ret; 2267 } 2268 2269 static void __exit sxgbe_exit(void) 2270 { 2271 sxgbe_unregister_platform(); 2272 } 2273 2274 module_init(sxgbe_init); 2275 module_exit(sxgbe_exit); 2276 2277 #ifndef MODULE 2278 static int __init sxgbe_cmdline_opt(char *str) 2279 { 2280 char *opt; 2281 2282 if (!str || !*str) 2283 return -EINVAL; 2284 while ((opt = strsep(&str, ",")) != NULL) { 2285 if (!strncmp(opt, "eee_timer:", 6)) { 2286 if (kstrtoint(opt + 10, 0, &eee_timer)) 2287 goto err; 2288 } 2289 } 2290 return 0; 2291 2292 err: 2293 pr_err("%s: ERROR broken module parameter conversion\n", __func__); 2294 return -EINVAL; 2295 } 2296 2297 __setup("sxgbeeth=", sxgbe_cmdline_opt); 2298 #endif /* MODULE */ 2299 2300 2301 2302 MODULE_DESCRIPTION("SAMSUNG 10G/2.5G/1G Ethernet PLATFORM driver"); 2303 2304 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 2305 MODULE_PARM_DESC(eee_timer, "EEE-LPI Default LS timer value"); 2306 2307 MODULE_AUTHOR("Siva Reddy Kallam <siva.kallam@samsung.com>"); 2308 MODULE_AUTHOR("ByungHo An <bh74.an@samsung.com>"); 2309 MODULE_AUTHOR("Girish K S <ks.giri@samsung.com>"); 2310 MODULE_AUTHOR("Vipul Pandya <vipul.pandya@samsung.com>"); 2311 2312 MODULE_LICENSE("GPL"); 2313