xref: /linux/drivers/net/ethernet/samsung/sxgbe/sxgbe_dma.c (revision a2cce7a9f1b8cc3d4edce106fb971529f1d4d9ce)
1 /* 10G controller driver for Samsung SoCs
2  *
3  * Copyright (C) 2013 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * Author: Siva Reddy Kallam <siva.kallam@samsung.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include <linux/delay.h>
13 #include <linux/export.h>
14 #include <linux/io.h>
15 #include <linux/netdevice.h>
16 #include <linux/phy.h>
17 
18 #include "sxgbe_common.h"
19 #include "sxgbe_dma.h"
20 #include "sxgbe_reg.h"
21 #include "sxgbe_desc.h"
22 
23 /* DMA core initialization */
24 static int sxgbe_dma_init(void __iomem *ioaddr, int fix_burst, int burst_map)
25 {
26 	u32 reg_val;
27 
28 	reg_val = readl(ioaddr + SXGBE_DMA_SYSBUS_MODE_REG);
29 
30 	/* if fix_burst = 0, Set UNDEF = 1 of DMA_Sys_Mode Register.
31 	 * if fix_burst = 1, Set UNDEF = 0 of DMA_Sys_Mode Register.
32 	 * burst_map is bitmap for  BLEN[4, 8, 16, 32, 64, 128 and 256].
33 	 * Set burst_map irrespective of fix_burst value.
34 	 */
35 	if (!fix_burst)
36 		reg_val |= SXGBE_DMA_AXI_UNDEF_BURST;
37 
38 	/* write burst len map */
39 	reg_val |= (burst_map << SXGBE_DMA_BLENMAP_LSHIFT);
40 
41 	writel(reg_val,	ioaddr + SXGBE_DMA_SYSBUS_MODE_REG);
42 
43 	return 0;
44 }
45 
46 static void sxgbe_dma_channel_init(void __iomem *ioaddr, int cha_num,
47 				   int fix_burst, int pbl, dma_addr_t dma_tx,
48 				   dma_addr_t dma_rx, int t_rsize, int r_rsize)
49 {
50 	u32 reg_val;
51 	dma_addr_t dma_addr;
52 
53 	reg_val = readl(ioaddr + SXGBE_DMA_CHA_CTL_REG(cha_num));
54 	/* set the pbl */
55 	if (fix_burst) {
56 		reg_val |= SXGBE_DMA_PBL_X8MODE;
57 		writel(reg_val, ioaddr + SXGBE_DMA_CHA_CTL_REG(cha_num));
58 		/* program the TX pbl */
59 		reg_val = readl(ioaddr + SXGBE_DMA_CHA_TXCTL_REG(cha_num));
60 		reg_val |= (pbl << SXGBE_DMA_TXPBL_LSHIFT);
61 		writel(reg_val, ioaddr + SXGBE_DMA_CHA_TXCTL_REG(cha_num));
62 		/* program the RX pbl */
63 		reg_val = readl(ioaddr + SXGBE_DMA_CHA_RXCTL_REG(cha_num));
64 		reg_val |= (pbl << SXGBE_DMA_RXPBL_LSHIFT);
65 		writel(reg_val, ioaddr + SXGBE_DMA_CHA_RXCTL_REG(cha_num));
66 	}
67 
68 	/* program desc registers */
69 	writel(upper_32_bits(dma_tx),
70 	       ioaddr + SXGBE_DMA_CHA_TXDESC_HADD_REG(cha_num));
71 	writel(lower_32_bits(dma_tx),
72 	       ioaddr + SXGBE_DMA_CHA_TXDESC_LADD_REG(cha_num));
73 
74 	writel(upper_32_bits(dma_rx),
75 	       ioaddr + SXGBE_DMA_CHA_RXDESC_HADD_REG(cha_num));
76 	writel(lower_32_bits(dma_rx),
77 	       ioaddr + SXGBE_DMA_CHA_RXDESC_LADD_REG(cha_num));
78 
79 	/* program tail pointers */
80 	/* assumption: upper 32 bits are constant and
81 	 * same as TX/RX desc list
82 	 */
83 	dma_addr = dma_tx + ((t_rsize - 1) * SXGBE_DESC_SIZE_BYTES);
84 	writel(lower_32_bits(dma_addr),
85 	       ioaddr + SXGBE_DMA_CHA_TXDESC_TAILPTR_REG(cha_num));
86 
87 	dma_addr = dma_rx + ((r_rsize - 1) * SXGBE_DESC_SIZE_BYTES);
88 	writel(lower_32_bits(dma_addr),
89 	       ioaddr + SXGBE_DMA_CHA_RXDESC_LADD_REG(cha_num));
90 	/* program the ring sizes */
91 	writel(t_rsize - 1, ioaddr + SXGBE_DMA_CHA_TXDESC_RINGLEN_REG(cha_num));
92 	writel(r_rsize - 1, ioaddr + SXGBE_DMA_CHA_RXDESC_RINGLEN_REG(cha_num));
93 
94 	/* Enable TX/RX interrupts */
95 	writel(SXGBE_DMA_ENA_INT,
96 	       ioaddr + SXGBE_DMA_CHA_INT_ENABLE_REG(cha_num));
97 }
98 
99 static void sxgbe_enable_dma_transmission(void __iomem *ioaddr, int cha_num)
100 {
101 	u32 tx_config;
102 
103 	tx_config = readl(ioaddr + SXGBE_DMA_CHA_TXCTL_REG(cha_num));
104 	tx_config |= SXGBE_TX_START_DMA;
105 	writel(tx_config, ioaddr + SXGBE_DMA_CHA_TXCTL_REG(cha_num));
106 }
107 
108 static void sxgbe_enable_dma_irq(void __iomem *ioaddr, int dma_cnum)
109 {
110 	/* Enable TX/RX interrupts */
111 	writel(SXGBE_DMA_ENA_INT,
112 	       ioaddr + SXGBE_DMA_CHA_INT_ENABLE_REG(dma_cnum));
113 }
114 
115 static void sxgbe_disable_dma_irq(void __iomem *ioaddr, int dma_cnum)
116 {
117 	/* Disable TX/RX interrupts */
118 	writel(0, ioaddr + SXGBE_DMA_CHA_INT_ENABLE_REG(dma_cnum));
119 }
120 
121 static void sxgbe_dma_start_tx(void __iomem *ioaddr, int tchannels)
122 {
123 	int cnum;
124 	u32 tx_ctl_reg;
125 
126 	for (cnum = 0; cnum < tchannels; cnum++) {
127 		tx_ctl_reg = readl(ioaddr + SXGBE_DMA_CHA_TXCTL_REG(cnum));
128 		tx_ctl_reg |= SXGBE_TX_ENABLE;
129 		writel(tx_ctl_reg,
130 		       ioaddr + SXGBE_DMA_CHA_TXCTL_REG(cnum));
131 	}
132 }
133 
134 static void sxgbe_dma_start_tx_queue(void __iomem *ioaddr, int dma_cnum)
135 {
136 	u32 tx_ctl_reg;
137 
138 	tx_ctl_reg = readl(ioaddr + SXGBE_DMA_CHA_TXCTL_REG(dma_cnum));
139 	tx_ctl_reg |= SXGBE_TX_ENABLE;
140 	writel(tx_ctl_reg, ioaddr + SXGBE_DMA_CHA_TXCTL_REG(dma_cnum));
141 }
142 
143 static void sxgbe_dma_stop_tx_queue(void __iomem *ioaddr, int dma_cnum)
144 {
145 	u32 tx_ctl_reg;
146 
147 	tx_ctl_reg = readl(ioaddr + SXGBE_DMA_CHA_TXCTL_REG(dma_cnum));
148 	tx_ctl_reg &= ~(SXGBE_TX_ENABLE);
149 	writel(tx_ctl_reg, ioaddr + SXGBE_DMA_CHA_TXCTL_REG(dma_cnum));
150 }
151 
152 static void sxgbe_dma_stop_tx(void __iomem *ioaddr, int tchannels)
153 {
154 	int cnum;
155 	u32 tx_ctl_reg;
156 
157 	for (cnum = 0; cnum < tchannels; cnum++) {
158 		tx_ctl_reg = readl(ioaddr + SXGBE_DMA_CHA_TXCTL_REG(cnum));
159 		tx_ctl_reg &= ~(SXGBE_TX_ENABLE);
160 		writel(tx_ctl_reg, ioaddr + SXGBE_DMA_CHA_TXCTL_REG(cnum));
161 	}
162 }
163 
164 static void sxgbe_dma_start_rx(void __iomem *ioaddr, int rchannels)
165 {
166 	int cnum;
167 	u32 rx_ctl_reg;
168 
169 	for (cnum = 0; cnum < rchannels; cnum++) {
170 		rx_ctl_reg = readl(ioaddr + SXGBE_DMA_CHA_RXCTL_REG(cnum));
171 		rx_ctl_reg |= SXGBE_RX_ENABLE;
172 		writel(rx_ctl_reg,
173 		       ioaddr + SXGBE_DMA_CHA_RXCTL_REG(cnum));
174 	}
175 }
176 
177 static void sxgbe_dma_stop_rx(void __iomem *ioaddr, int rchannels)
178 {
179 	int cnum;
180 	u32 rx_ctl_reg;
181 
182 	for (cnum = 0; cnum < rchannels; cnum++) {
183 		rx_ctl_reg = readl(ioaddr + SXGBE_DMA_CHA_RXCTL_REG(cnum));
184 		rx_ctl_reg &= ~(SXGBE_RX_ENABLE);
185 		writel(rx_ctl_reg, ioaddr + SXGBE_DMA_CHA_RXCTL_REG(cnum));
186 	}
187 }
188 
189 static int sxgbe_tx_dma_int_status(void __iomem *ioaddr, int channel_no,
190 				   struct sxgbe_extra_stats *x)
191 {
192 	u32 int_status = readl(ioaddr + SXGBE_DMA_CHA_STATUS_REG(channel_no));
193 	u32 clear_val = 0;
194 	u32 ret_val = 0;
195 
196 	/* TX Normal Interrupt Summary */
197 	if (likely(int_status & SXGBE_DMA_INT_STATUS_NIS)) {
198 		x->normal_irq_n++;
199 		if (int_status & SXGBE_DMA_INT_STATUS_TI) {
200 			ret_val |= handle_tx;
201 			x->tx_normal_irq_n++;
202 			clear_val |= SXGBE_DMA_INT_STATUS_TI;
203 		}
204 
205 		if (int_status & SXGBE_DMA_INT_STATUS_TBU) {
206 			x->tx_underflow_irq++;
207 			ret_val |= tx_bump_tc;
208 			clear_val |= SXGBE_DMA_INT_STATUS_TBU;
209 		}
210 	} else if (unlikely(int_status & SXGBE_DMA_INT_STATUS_AIS)) {
211 		/* TX Abnormal Interrupt Summary */
212 		if (int_status & SXGBE_DMA_INT_STATUS_TPS) {
213 			ret_val |= tx_hard_error;
214 			clear_val |= SXGBE_DMA_INT_STATUS_TPS;
215 			x->tx_process_stopped_irq++;
216 		}
217 
218 		if (int_status & SXGBE_DMA_INT_STATUS_FBE) {
219 			ret_val |= tx_hard_error;
220 			x->fatal_bus_error_irq++;
221 
222 			/* Assumption: FBE bit is the combination of
223 			 * all the bus access erros and cleared when
224 			 * the respective error bits cleared
225 			 */
226 
227 			/* check for actual cause */
228 			if (int_status & SXGBE_DMA_INT_STATUS_TEB0) {
229 				x->tx_read_transfer_err++;
230 				clear_val |= SXGBE_DMA_INT_STATUS_TEB0;
231 			} else {
232 				x->tx_write_transfer_err++;
233 			}
234 
235 			if (int_status & SXGBE_DMA_INT_STATUS_TEB1) {
236 				x->tx_desc_access_err++;
237 				clear_val |= SXGBE_DMA_INT_STATUS_TEB1;
238 			} else {
239 				x->tx_buffer_access_err++;
240 			}
241 
242 			if (int_status & SXGBE_DMA_INT_STATUS_TEB2) {
243 				x->tx_data_transfer_err++;
244 				clear_val |= SXGBE_DMA_INT_STATUS_TEB2;
245 			}
246 		}
247 
248 		/* context descriptor error */
249 		if (int_status & SXGBE_DMA_INT_STATUS_CTXTERR) {
250 			x->tx_ctxt_desc_err++;
251 			clear_val |= SXGBE_DMA_INT_STATUS_CTXTERR;
252 		}
253 	}
254 
255 	/* clear the served bits */
256 	writel(clear_val, ioaddr + SXGBE_DMA_CHA_STATUS_REG(channel_no));
257 
258 	return ret_val;
259 }
260 
261 static int sxgbe_rx_dma_int_status(void __iomem *ioaddr, int channel_no,
262 				   struct sxgbe_extra_stats *x)
263 {
264 	u32 int_status = readl(ioaddr + SXGBE_DMA_CHA_STATUS_REG(channel_no));
265 	u32 clear_val = 0;
266 	u32 ret_val = 0;
267 
268 	/* RX Normal Interrupt Summary */
269 	if (likely(int_status & SXGBE_DMA_INT_STATUS_NIS)) {
270 		x->normal_irq_n++;
271 		if (int_status & SXGBE_DMA_INT_STATUS_RI) {
272 			ret_val |= handle_rx;
273 			x->rx_normal_irq_n++;
274 			clear_val |= SXGBE_DMA_INT_STATUS_RI;
275 		}
276 	} else if (unlikely(int_status & SXGBE_DMA_INT_STATUS_AIS)) {
277 		/* RX Abnormal Interrupt Summary */
278 		if (int_status & SXGBE_DMA_INT_STATUS_RBU) {
279 			ret_val |= rx_bump_tc;
280 			clear_val |= SXGBE_DMA_INT_STATUS_RBU;
281 			x->rx_underflow_irq++;
282 		}
283 
284 		if (int_status & SXGBE_DMA_INT_STATUS_RPS) {
285 			ret_val |= rx_hard_error;
286 			clear_val |= SXGBE_DMA_INT_STATUS_RPS;
287 			x->rx_process_stopped_irq++;
288 		}
289 
290 		if (int_status & SXGBE_DMA_INT_STATUS_FBE) {
291 			ret_val |= rx_hard_error;
292 			x->fatal_bus_error_irq++;
293 
294 			/* Assumption: FBE bit is the combination of
295 			 * all the bus access erros and cleared when
296 			 * the respective error bits cleared
297 			 */
298 
299 			/* check for actual cause */
300 			if (int_status & SXGBE_DMA_INT_STATUS_REB0) {
301 				x->rx_read_transfer_err++;
302 				clear_val |= SXGBE_DMA_INT_STATUS_REB0;
303 			} else {
304 				x->rx_write_transfer_err++;
305 			}
306 
307 			if (int_status & SXGBE_DMA_INT_STATUS_REB1) {
308 				x->rx_desc_access_err++;
309 				clear_val |= SXGBE_DMA_INT_STATUS_REB1;
310 			} else {
311 				x->rx_buffer_access_err++;
312 			}
313 
314 			if (int_status & SXGBE_DMA_INT_STATUS_REB2) {
315 				x->rx_data_transfer_err++;
316 				clear_val |= SXGBE_DMA_INT_STATUS_REB2;
317 			}
318 		}
319 	}
320 
321 	/* clear the served bits */
322 	writel(clear_val, ioaddr + SXGBE_DMA_CHA_STATUS_REG(channel_no));
323 
324 	return ret_val;
325 }
326 
327 /* Program the HW RX Watchdog */
328 static void sxgbe_dma_rx_watchdog(void __iomem *ioaddr, u32 riwt)
329 {
330 	u32 que_num;
331 
332 	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, que_num) {
333 		writel(riwt,
334 		       ioaddr + SXGBE_DMA_CHA_INT_RXWATCHTMR_REG(que_num));
335 	}
336 }
337 
338 static void sxgbe_enable_tso(void __iomem *ioaddr, u8 chan_num)
339 {
340 	u32 ctrl;
341 
342 	ctrl = readl(ioaddr + SXGBE_DMA_CHA_TXCTL_REG(chan_num));
343 	ctrl |= SXGBE_DMA_CHA_TXCTL_TSE_ENABLE;
344 	writel(ctrl, ioaddr + SXGBE_DMA_CHA_TXCTL_REG(chan_num));
345 }
346 
347 static const struct sxgbe_dma_ops sxgbe_dma_ops = {
348 	.init				= sxgbe_dma_init,
349 	.cha_init			= sxgbe_dma_channel_init,
350 	.enable_dma_transmission	= sxgbe_enable_dma_transmission,
351 	.enable_dma_irq			= sxgbe_enable_dma_irq,
352 	.disable_dma_irq		= sxgbe_disable_dma_irq,
353 	.start_tx			= sxgbe_dma_start_tx,
354 	.start_tx_queue			= sxgbe_dma_start_tx_queue,
355 	.stop_tx			= sxgbe_dma_stop_tx,
356 	.stop_tx_queue			= sxgbe_dma_stop_tx_queue,
357 	.start_rx			= sxgbe_dma_start_rx,
358 	.stop_rx			= sxgbe_dma_stop_rx,
359 	.tx_dma_int_status		= sxgbe_tx_dma_int_status,
360 	.rx_dma_int_status		= sxgbe_rx_dma_int_status,
361 	.rx_watchdog			= sxgbe_dma_rx_watchdog,
362 	.enable_tso			= sxgbe_enable_tso,
363 };
364 
365 const struct sxgbe_dma_ops *sxgbe_get_dma_ops(void)
366 {
367 	return &sxgbe_dma_ops;
368 }
369