xref: /linux/drivers/net/ethernet/renesas/sh_eth.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*  SuperH Ethernet device driver
3  *
4  *  Copyright (C) 2014 Renesas Electronics Corporation
5  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
6  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
7  *  Copyright (C) 2013-2017 Cogent Embedded, Inc.
8  *  Copyright (C) 2014 Codethink Limited
9  */
10 
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/etherdevice.h>
17 #include <linux/delay.h>
18 #include <linux/platform_device.h>
19 #include <linux/mdio-bitbang.h>
20 #include <linux/netdevice.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_net.h>
25 #include <linux/phy.h>
26 #include <linux/cache.h>
27 #include <linux/io.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/ethtool.h>
31 #include <linux/if_vlan.h>
32 #include <linux/sh_eth.h>
33 #include <linux/of_mdio.h>
34 
35 #include "sh_eth.h"
36 
37 #define SH_ETH_DEF_MSG_ENABLE \
38 		(NETIF_MSG_LINK	| \
39 		NETIF_MSG_TIMER	| \
40 		NETIF_MSG_RX_ERR| \
41 		NETIF_MSG_TX_ERR)
42 
43 #define SH_ETH_OFFSET_INVALID	((u16)~0)
44 
45 #define SH_ETH_OFFSET_DEFAULTS			\
46 	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
47 
48 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
49 	SH_ETH_OFFSET_DEFAULTS,
50 
51 	[EDSR]		= 0x0000,
52 	[EDMR]		= 0x0400,
53 	[EDTRR]		= 0x0408,
54 	[EDRRR]		= 0x0410,
55 	[EESR]		= 0x0428,
56 	[EESIPR]	= 0x0430,
57 	[TDLAR]		= 0x0010,
58 	[TDFAR]		= 0x0014,
59 	[TDFXR]		= 0x0018,
60 	[TDFFR]		= 0x001c,
61 	[RDLAR]		= 0x0030,
62 	[RDFAR]		= 0x0034,
63 	[RDFXR]		= 0x0038,
64 	[RDFFR]		= 0x003c,
65 	[TRSCER]	= 0x0438,
66 	[RMFCR]		= 0x0440,
67 	[TFTR]		= 0x0448,
68 	[FDR]		= 0x0450,
69 	[RMCR]		= 0x0458,
70 	[RPADIR]	= 0x0460,
71 	[FCFTR]		= 0x0468,
72 	[CSMR]		= 0x04E4,
73 
74 	[ECMR]		= 0x0500,
75 	[ECSR]		= 0x0510,
76 	[ECSIPR]	= 0x0518,
77 	[PIR]		= 0x0520,
78 	[PSR]		= 0x0528,
79 	[PIPR]		= 0x052c,
80 	[RFLR]		= 0x0508,
81 	[APR]		= 0x0554,
82 	[MPR]		= 0x0558,
83 	[PFTCR]		= 0x055c,
84 	[PFRCR]		= 0x0560,
85 	[TPAUSER]	= 0x0564,
86 	[GECMR]		= 0x05b0,
87 	[BCULR]		= 0x05b4,
88 	[MAHR]		= 0x05c0,
89 	[MALR]		= 0x05c8,
90 	[TROCR]		= 0x0700,
91 	[CDCR]		= 0x0708,
92 	[LCCR]		= 0x0710,
93 	[CEFCR]		= 0x0740,
94 	[FRECR]		= 0x0748,
95 	[TSFRCR]	= 0x0750,
96 	[TLFRCR]	= 0x0758,
97 	[RFCR]		= 0x0760,
98 	[CERCR]		= 0x0768,
99 	[CEECR]		= 0x0770,
100 	[MAFCR]		= 0x0778,
101 	[RMII_MII]	= 0x0790,
102 
103 	[ARSTR]		= 0x0000,
104 	[TSU_CTRST]	= 0x0004,
105 	[TSU_FWEN0]	= 0x0010,
106 	[TSU_FWEN1]	= 0x0014,
107 	[TSU_FCM]	= 0x0018,
108 	[TSU_BSYSL0]	= 0x0020,
109 	[TSU_BSYSL1]	= 0x0024,
110 	[TSU_PRISL0]	= 0x0028,
111 	[TSU_PRISL1]	= 0x002c,
112 	[TSU_FWSL0]	= 0x0030,
113 	[TSU_FWSL1]	= 0x0034,
114 	[TSU_FWSLC]	= 0x0038,
115 	[TSU_QTAGM0]	= 0x0040,
116 	[TSU_QTAGM1]	= 0x0044,
117 	[TSU_FWSR]	= 0x0050,
118 	[TSU_FWINMK]	= 0x0054,
119 	[TSU_ADQT0]	= 0x0048,
120 	[TSU_ADQT1]	= 0x004c,
121 	[TSU_VTAG0]	= 0x0058,
122 	[TSU_VTAG1]	= 0x005c,
123 	[TSU_ADSBSY]	= 0x0060,
124 	[TSU_TEN]	= 0x0064,
125 	[TSU_POST1]	= 0x0070,
126 	[TSU_POST2]	= 0x0074,
127 	[TSU_POST3]	= 0x0078,
128 	[TSU_POST4]	= 0x007c,
129 	[TSU_ADRH0]	= 0x0100,
130 
131 	[TXNLCR0]	= 0x0080,
132 	[TXALCR0]	= 0x0084,
133 	[RXNLCR0]	= 0x0088,
134 	[RXALCR0]	= 0x008c,
135 	[FWNLCR0]	= 0x0090,
136 	[FWALCR0]	= 0x0094,
137 	[TXNLCR1]	= 0x00a0,
138 	[TXALCR1]	= 0x00a4,
139 	[RXNLCR1]	= 0x00a8,
140 	[RXALCR1]	= 0x00ac,
141 	[FWNLCR1]	= 0x00b0,
142 	[FWALCR1]	= 0x00b4,
143 };
144 
145 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
146 	SH_ETH_OFFSET_DEFAULTS,
147 
148 	[EDSR]		= 0x0000,
149 	[EDMR]		= 0x0400,
150 	[EDTRR]		= 0x0408,
151 	[EDRRR]		= 0x0410,
152 	[EESR]		= 0x0428,
153 	[EESIPR]	= 0x0430,
154 	[TDLAR]		= 0x0010,
155 	[TDFAR]		= 0x0014,
156 	[TDFXR]		= 0x0018,
157 	[TDFFR]		= 0x001c,
158 	[RDLAR]		= 0x0030,
159 	[RDFAR]		= 0x0034,
160 	[RDFXR]		= 0x0038,
161 	[RDFFR]		= 0x003c,
162 	[TRSCER]	= 0x0438,
163 	[RMFCR]		= 0x0440,
164 	[TFTR]		= 0x0448,
165 	[FDR]		= 0x0450,
166 	[RMCR]		= 0x0458,
167 	[RPADIR]	= 0x0460,
168 	[FCFTR]		= 0x0468,
169 	[CSMR]		= 0x04E4,
170 
171 	[ECMR]		= 0x0500,
172 	[RFLR]		= 0x0508,
173 	[ECSR]		= 0x0510,
174 	[ECSIPR]	= 0x0518,
175 	[PIR]		= 0x0520,
176 	[APR]		= 0x0554,
177 	[MPR]		= 0x0558,
178 	[PFTCR]		= 0x055c,
179 	[PFRCR]		= 0x0560,
180 	[TPAUSER]	= 0x0564,
181 	[MAHR]		= 0x05c0,
182 	[MALR]		= 0x05c8,
183 	[CEFCR]		= 0x0740,
184 	[FRECR]		= 0x0748,
185 	[TSFRCR]	= 0x0750,
186 	[TLFRCR]	= 0x0758,
187 	[RFCR]		= 0x0760,
188 	[MAFCR]		= 0x0778,
189 
190 	[ARSTR]		= 0x0000,
191 	[TSU_CTRST]	= 0x0004,
192 	[TSU_FWSLC]	= 0x0038,
193 	[TSU_VTAG0]	= 0x0058,
194 	[TSU_ADSBSY]	= 0x0060,
195 	[TSU_TEN]	= 0x0064,
196 	[TSU_POST1]	= 0x0070,
197 	[TSU_POST2]	= 0x0074,
198 	[TSU_POST3]	= 0x0078,
199 	[TSU_POST4]	= 0x007c,
200 	[TSU_ADRH0]	= 0x0100,
201 
202 	[TXNLCR0]	= 0x0080,
203 	[TXALCR0]	= 0x0084,
204 	[RXNLCR0]	= 0x0088,
205 	[RXALCR0]	= 0x008C,
206 };
207 
208 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
209 	SH_ETH_OFFSET_DEFAULTS,
210 
211 	[ECMR]		= 0x0300,
212 	[RFLR]		= 0x0308,
213 	[ECSR]		= 0x0310,
214 	[ECSIPR]	= 0x0318,
215 	[PIR]		= 0x0320,
216 	[PSR]		= 0x0328,
217 	[RDMLR]		= 0x0340,
218 	[IPGR]		= 0x0350,
219 	[APR]		= 0x0354,
220 	[MPR]		= 0x0358,
221 	[RFCF]		= 0x0360,
222 	[TPAUSER]	= 0x0364,
223 	[TPAUSECR]	= 0x0368,
224 	[MAHR]		= 0x03c0,
225 	[MALR]		= 0x03c8,
226 	[TROCR]		= 0x03d0,
227 	[CDCR]		= 0x03d4,
228 	[LCCR]		= 0x03d8,
229 	[CNDCR]		= 0x03dc,
230 	[CEFCR]		= 0x03e4,
231 	[FRECR]		= 0x03e8,
232 	[TSFRCR]	= 0x03ec,
233 	[TLFRCR]	= 0x03f0,
234 	[RFCR]		= 0x03f4,
235 	[MAFCR]		= 0x03f8,
236 
237 	[EDMR]		= 0x0200,
238 	[EDTRR]		= 0x0208,
239 	[EDRRR]		= 0x0210,
240 	[TDLAR]		= 0x0218,
241 	[RDLAR]		= 0x0220,
242 	[EESR]		= 0x0228,
243 	[EESIPR]	= 0x0230,
244 	[TRSCER]	= 0x0238,
245 	[RMFCR]		= 0x0240,
246 	[TFTR]		= 0x0248,
247 	[FDR]		= 0x0250,
248 	[RMCR]		= 0x0258,
249 	[TFUCR]		= 0x0264,
250 	[RFOCR]		= 0x0268,
251 	[RMIIMODE]      = 0x026c,
252 	[FCFTR]		= 0x0270,
253 	[TRIMD]		= 0x027c,
254 };
255 
256 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
257 	SH_ETH_OFFSET_DEFAULTS,
258 
259 	[ECMR]		= 0x0100,
260 	[RFLR]		= 0x0108,
261 	[ECSR]		= 0x0110,
262 	[ECSIPR]	= 0x0118,
263 	[PIR]		= 0x0120,
264 	[PSR]		= 0x0128,
265 	[RDMLR]		= 0x0140,
266 	[IPGR]		= 0x0150,
267 	[APR]		= 0x0154,
268 	[MPR]		= 0x0158,
269 	[TPAUSER]	= 0x0164,
270 	[RFCF]		= 0x0160,
271 	[TPAUSECR]	= 0x0168,
272 	[BCFRR]		= 0x016c,
273 	[MAHR]		= 0x01c0,
274 	[MALR]		= 0x01c8,
275 	[TROCR]		= 0x01d0,
276 	[CDCR]		= 0x01d4,
277 	[LCCR]		= 0x01d8,
278 	[CNDCR]		= 0x01dc,
279 	[CEFCR]		= 0x01e4,
280 	[FRECR]		= 0x01e8,
281 	[TSFRCR]	= 0x01ec,
282 	[TLFRCR]	= 0x01f0,
283 	[RFCR]		= 0x01f4,
284 	[MAFCR]		= 0x01f8,
285 	[RTRATE]	= 0x01fc,
286 
287 	[EDMR]		= 0x0000,
288 	[EDTRR]		= 0x0008,
289 	[EDRRR]		= 0x0010,
290 	[TDLAR]		= 0x0018,
291 	[RDLAR]		= 0x0020,
292 	[EESR]		= 0x0028,
293 	[EESIPR]	= 0x0030,
294 	[TRSCER]	= 0x0038,
295 	[RMFCR]		= 0x0040,
296 	[TFTR]		= 0x0048,
297 	[FDR]		= 0x0050,
298 	[RMCR]		= 0x0058,
299 	[TFUCR]		= 0x0064,
300 	[RFOCR]		= 0x0068,
301 	[FCFTR]		= 0x0070,
302 	[RPADIR]	= 0x0078,
303 	[TRIMD]		= 0x007c,
304 	[RBWAR]		= 0x00c8,
305 	[RDFAR]		= 0x00cc,
306 	[TBRAR]		= 0x00d4,
307 	[TDFAR]		= 0x00d8,
308 };
309 
310 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
311 	SH_ETH_OFFSET_DEFAULTS,
312 
313 	[EDMR]		= 0x0000,
314 	[EDTRR]		= 0x0004,
315 	[EDRRR]		= 0x0008,
316 	[TDLAR]		= 0x000c,
317 	[RDLAR]		= 0x0010,
318 	[EESR]		= 0x0014,
319 	[EESIPR]	= 0x0018,
320 	[TRSCER]	= 0x001c,
321 	[RMFCR]		= 0x0020,
322 	[TFTR]		= 0x0024,
323 	[FDR]		= 0x0028,
324 	[RMCR]		= 0x002c,
325 	[EDOCR]		= 0x0030,
326 	[FCFTR]		= 0x0034,
327 	[RPADIR]	= 0x0038,
328 	[TRIMD]		= 0x003c,
329 	[RBWAR]		= 0x0040,
330 	[RDFAR]		= 0x0044,
331 	[TBRAR]		= 0x004c,
332 	[TDFAR]		= 0x0050,
333 
334 	[ECMR]		= 0x0160,
335 	[ECSR]		= 0x0164,
336 	[ECSIPR]	= 0x0168,
337 	[PIR]		= 0x016c,
338 	[MAHR]		= 0x0170,
339 	[MALR]		= 0x0174,
340 	[RFLR]		= 0x0178,
341 	[PSR]		= 0x017c,
342 	[TROCR]		= 0x0180,
343 	[CDCR]		= 0x0184,
344 	[LCCR]		= 0x0188,
345 	[CNDCR]		= 0x018c,
346 	[CEFCR]		= 0x0194,
347 	[FRECR]		= 0x0198,
348 	[TSFRCR]	= 0x019c,
349 	[TLFRCR]	= 0x01a0,
350 	[RFCR]		= 0x01a4,
351 	[MAFCR]		= 0x01a8,
352 	[IPGR]		= 0x01b4,
353 	[APR]		= 0x01b8,
354 	[MPR]		= 0x01bc,
355 	[TPAUSER]	= 0x01c4,
356 	[BCFR]		= 0x01cc,
357 
358 	[ARSTR]		= 0x0000,
359 	[TSU_CTRST]	= 0x0004,
360 	[TSU_FWEN0]	= 0x0010,
361 	[TSU_FWEN1]	= 0x0014,
362 	[TSU_FCM]	= 0x0018,
363 	[TSU_BSYSL0]	= 0x0020,
364 	[TSU_BSYSL1]	= 0x0024,
365 	[TSU_PRISL0]	= 0x0028,
366 	[TSU_PRISL1]	= 0x002c,
367 	[TSU_FWSL0]	= 0x0030,
368 	[TSU_FWSL1]	= 0x0034,
369 	[TSU_FWSLC]	= 0x0038,
370 	[TSU_QTAGM0]	= 0x0040,
371 	[TSU_QTAGM1]	= 0x0044,
372 	[TSU_ADQT0]	= 0x0048,
373 	[TSU_ADQT1]	= 0x004c,
374 	[TSU_FWSR]	= 0x0050,
375 	[TSU_FWINMK]	= 0x0054,
376 	[TSU_ADSBSY]	= 0x0060,
377 	[TSU_TEN]	= 0x0064,
378 	[TSU_POST1]	= 0x0070,
379 	[TSU_POST2]	= 0x0074,
380 	[TSU_POST3]	= 0x0078,
381 	[TSU_POST4]	= 0x007c,
382 
383 	[TXNLCR0]	= 0x0080,
384 	[TXALCR0]	= 0x0084,
385 	[RXNLCR0]	= 0x0088,
386 	[RXALCR0]	= 0x008c,
387 	[FWNLCR0]	= 0x0090,
388 	[FWALCR0]	= 0x0094,
389 	[TXNLCR1]	= 0x00a0,
390 	[TXALCR1]	= 0x00a4,
391 	[RXNLCR1]	= 0x00a8,
392 	[RXALCR1]	= 0x00ac,
393 	[FWNLCR1]	= 0x00b0,
394 	[FWALCR1]	= 0x00b4,
395 
396 	[TSU_ADRH0]	= 0x0100,
397 };
398 
399 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
400 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
401 
402 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
403 {
404 	struct sh_eth_private *mdp = netdev_priv(ndev);
405 	u16 offset = mdp->reg_offset[enum_index];
406 
407 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
408 		return;
409 
410 	iowrite32(data, mdp->addr + offset);
411 }
412 
413 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
414 {
415 	struct sh_eth_private *mdp = netdev_priv(ndev);
416 	u16 offset = mdp->reg_offset[enum_index];
417 
418 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
419 		return ~0U;
420 
421 	return ioread32(mdp->addr + offset);
422 }
423 
424 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
425 			  u32 set)
426 {
427 	sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
428 		     enum_index);
429 }
430 
431 static u16 sh_eth_tsu_get_offset(struct sh_eth_private *mdp, int enum_index)
432 {
433 	return mdp->reg_offset[enum_index];
434 }
435 
436 static void sh_eth_tsu_write(struct sh_eth_private *mdp, u32 data,
437 			     int enum_index)
438 {
439 	u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
440 
441 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
442 		return;
443 
444 	iowrite32(data, mdp->tsu_addr + offset);
445 }
446 
447 static u32 sh_eth_tsu_read(struct sh_eth_private *mdp, int enum_index)
448 {
449 	u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
450 
451 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
452 		return ~0U;
453 
454 	return ioread32(mdp->tsu_addr + offset);
455 }
456 
457 static void sh_eth_soft_swap(char *src, int len)
458 {
459 #ifdef __LITTLE_ENDIAN
460 	u32 *p = (u32 *)src;
461 	u32 *maxp = p + DIV_ROUND_UP(len, sizeof(u32));
462 
463 	for (; p < maxp; p++)
464 		*p = swab32(*p);
465 #endif
466 }
467 
468 static void sh_eth_select_mii(struct net_device *ndev)
469 {
470 	struct sh_eth_private *mdp = netdev_priv(ndev);
471 	u32 value;
472 
473 	switch (mdp->phy_interface) {
474 	case PHY_INTERFACE_MODE_RGMII ... PHY_INTERFACE_MODE_RGMII_TXID:
475 		value = 0x3;
476 		break;
477 	case PHY_INTERFACE_MODE_GMII:
478 		value = 0x2;
479 		break;
480 	case PHY_INTERFACE_MODE_MII:
481 		value = 0x1;
482 		break;
483 	case PHY_INTERFACE_MODE_RMII:
484 		value = 0x0;
485 		break;
486 	default:
487 		netdev_warn(ndev,
488 			    "PHY interface mode was not setup. Set to MII.\n");
489 		value = 0x1;
490 		break;
491 	}
492 
493 	sh_eth_write(ndev, value, RMII_MII);
494 }
495 
496 static void sh_eth_set_duplex(struct net_device *ndev)
497 {
498 	struct sh_eth_private *mdp = netdev_priv(ndev);
499 
500 	sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
501 }
502 
503 static void sh_eth_chip_reset(struct net_device *ndev)
504 {
505 	struct sh_eth_private *mdp = netdev_priv(ndev);
506 
507 	/* reset device */
508 	sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
509 	mdelay(1);
510 }
511 
512 static int sh_eth_soft_reset(struct net_device *ndev)
513 {
514 	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
515 	mdelay(3);
516 	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
517 
518 	return 0;
519 }
520 
521 static int sh_eth_check_soft_reset(struct net_device *ndev)
522 {
523 	int cnt;
524 
525 	for (cnt = 100; cnt > 0; cnt--) {
526 		if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
527 			return 0;
528 		mdelay(1);
529 	}
530 
531 	netdev_err(ndev, "Device reset failed\n");
532 	return -ETIMEDOUT;
533 }
534 
535 static int sh_eth_soft_reset_gether(struct net_device *ndev)
536 {
537 	struct sh_eth_private *mdp = netdev_priv(ndev);
538 	int ret;
539 
540 	sh_eth_write(ndev, EDSR_ENALL, EDSR);
541 	sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
542 
543 	ret = sh_eth_check_soft_reset(ndev);
544 	if (ret)
545 		return ret;
546 
547 	/* Table Init */
548 	sh_eth_write(ndev, 0, TDLAR);
549 	sh_eth_write(ndev, 0, TDFAR);
550 	sh_eth_write(ndev, 0, TDFXR);
551 	sh_eth_write(ndev, 0, TDFFR);
552 	sh_eth_write(ndev, 0, RDLAR);
553 	sh_eth_write(ndev, 0, RDFAR);
554 	sh_eth_write(ndev, 0, RDFXR);
555 	sh_eth_write(ndev, 0, RDFFR);
556 
557 	/* Reset HW CRC register */
558 	if (mdp->cd->hw_checksum)
559 		sh_eth_write(ndev, 0, CSMR);
560 
561 	/* Select MII mode */
562 	if (mdp->cd->select_mii)
563 		sh_eth_select_mii(ndev);
564 
565 	return ret;
566 }
567 
568 static void sh_eth_set_rate_gether(struct net_device *ndev)
569 {
570 	struct sh_eth_private *mdp = netdev_priv(ndev);
571 
572 	switch (mdp->speed) {
573 	case 10: /* 10BASE */
574 		sh_eth_write(ndev, GECMR_10, GECMR);
575 		break;
576 	case 100:/* 100BASE */
577 		sh_eth_write(ndev, GECMR_100, GECMR);
578 		break;
579 	case 1000: /* 1000BASE */
580 		sh_eth_write(ndev, GECMR_1000, GECMR);
581 		break;
582 	}
583 }
584 
585 #ifdef CONFIG_OF
586 /* R7S72100 */
587 static struct sh_eth_cpu_data r7s72100_data = {
588 	.soft_reset	= sh_eth_soft_reset_gether,
589 
590 	.chip_reset	= sh_eth_chip_reset,
591 	.set_duplex	= sh_eth_set_duplex,
592 
593 	.register_type	= SH_ETH_REG_FAST_RZ,
594 
595 	.edtrr_trns	= EDTRR_TRNS_GETHER,
596 	.ecsr_value	= ECSR_ICD,
597 	.ecsipr_value	= ECSIPR_ICDIP,
598 	.eesipr_value	= EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP |
599 			  EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP |
600 			  EESIPR_ECIIP |
601 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
602 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
603 			  EESIPR_RMAFIP | EESIPR_RRFIP |
604 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
605 			  EESIPR_PREIP | EESIPR_CERFIP,
606 
607 	.tx_check	= EESR_TC1 | EESR_FTC,
608 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
609 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
610 			  EESR_TDE,
611 	.fdr_value	= 0x0000070f,
612 
613 	.no_psr		= 1,
614 	.apr		= 1,
615 	.mpr		= 1,
616 	.tpauser	= 1,
617 	.hw_swap	= 1,
618 	.rpadir		= 1,
619 	.no_trimd	= 1,
620 	.no_ade		= 1,
621 	.xdfar_rw	= 1,
622 	.hw_checksum	= 1,
623 	.tsu		= 1,
624 	.no_tx_cntrs	= 1,
625 };
626 
627 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
628 {
629 	sh_eth_chip_reset(ndev);
630 
631 	sh_eth_select_mii(ndev);
632 }
633 
634 /* R8A7740 */
635 static struct sh_eth_cpu_data r8a7740_data = {
636 	.soft_reset	= sh_eth_soft_reset_gether,
637 
638 	.chip_reset	= sh_eth_chip_reset_r8a7740,
639 	.set_duplex	= sh_eth_set_duplex,
640 	.set_rate	= sh_eth_set_rate_gether,
641 
642 	.register_type	= SH_ETH_REG_GIGABIT,
643 
644 	.edtrr_trns	= EDTRR_TRNS_GETHER,
645 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
646 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
647 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
648 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
649 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
650 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
651 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
652 			  EESIPR_CEEFIP | EESIPR_CELFIP |
653 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
654 			  EESIPR_PREIP | EESIPR_CERFIP,
655 
656 	.tx_check	= EESR_TC1 | EESR_FTC,
657 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
658 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
659 			  EESR_TDE,
660 	.fdr_value	= 0x0000070f,
661 
662 	.apr		= 1,
663 	.mpr		= 1,
664 	.tpauser	= 1,
665 	.bculr		= 1,
666 	.hw_swap	= 1,
667 	.rpadir		= 1,
668 	.no_trimd	= 1,
669 	.no_ade		= 1,
670 	.xdfar_rw	= 1,
671 	.hw_checksum	= 1,
672 	.tsu		= 1,
673 	.select_mii	= 1,
674 	.magic		= 1,
675 	.cexcr		= 1,
676 };
677 
678 /* There is CPU dependent code */
679 static void sh_eth_set_rate_rcar(struct net_device *ndev)
680 {
681 	struct sh_eth_private *mdp = netdev_priv(ndev);
682 
683 	switch (mdp->speed) {
684 	case 10: /* 10BASE */
685 		sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
686 		break;
687 	case 100:/* 100BASE */
688 		sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
689 		break;
690 	}
691 }
692 
693 /* R-Car Gen1 */
694 static struct sh_eth_cpu_data rcar_gen1_data = {
695 	.soft_reset	= sh_eth_soft_reset,
696 
697 	.set_duplex	= sh_eth_set_duplex,
698 	.set_rate	= sh_eth_set_rate_rcar,
699 
700 	.register_type	= SH_ETH_REG_FAST_RCAR,
701 
702 	.edtrr_trns	= EDTRR_TRNS_ETHER,
703 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
704 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
705 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
706 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
707 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
708 			  EESIPR_RMAFIP | EESIPR_RRFIP |
709 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
710 			  EESIPR_PREIP | EESIPR_CERFIP,
711 
712 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
713 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
714 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
715 	.fdr_value	= 0x00000f0f,
716 
717 	.apr		= 1,
718 	.mpr		= 1,
719 	.tpauser	= 1,
720 	.hw_swap	= 1,
721 	.no_xdfar	= 1,
722 };
723 
724 /* R-Car Gen2 and RZ/G1 */
725 static struct sh_eth_cpu_data rcar_gen2_data = {
726 	.soft_reset	= sh_eth_soft_reset,
727 
728 	.set_duplex	= sh_eth_set_duplex,
729 	.set_rate	= sh_eth_set_rate_rcar,
730 
731 	.register_type	= SH_ETH_REG_FAST_RCAR,
732 
733 	.edtrr_trns	= EDTRR_TRNS_ETHER,
734 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
735 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
736 			  ECSIPR_MPDIP,
737 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
738 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
739 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
740 			  EESIPR_RMAFIP | EESIPR_RRFIP |
741 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
742 			  EESIPR_PREIP | EESIPR_CERFIP,
743 
744 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
745 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
746 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
747 	.fdr_value	= 0x00000f0f,
748 
749 	.trscer_err_mask = DESC_I_RINT8,
750 
751 	.apr		= 1,
752 	.mpr		= 1,
753 	.tpauser	= 1,
754 	.hw_swap	= 1,
755 	.no_xdfar	= 1,
756 	.rmiimode	= 1,
757 	.magic		= 1,
758 };
759 
760 /* R8A77980 */
761 static struct sh_eth_cpu_data r8a77980_data = {
762 	.soft_reset	= sh_eth_soft_reset_gether,
763 
764 	.set_duplex	= sh_eth_set_duplex,
765 	.set_rate	= sh_eth_set_rate_gether,
766 
767 	.register_type  = SH_ETH_REG_GIGABIT,
768 
769 	.edtrr_trns	= EDTRR_TRNS_GETHER,
770 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
771 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
772 			  ECSIPR_MPDIP,
773 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
774 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
775 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
776 			  EESIPR_RMAFIP | EESIPR_RRFIP |
777 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
778 			  EESIPR_PREIP | EESIPR_CERFIP,
779 
780 	.tx_check       = EESR_FTC | EESR_CD | EESR_TRO,
781 	.eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
782 			  EESR_RFE | EESR_RDE | EESR_RFRMER |
783 			  EESR_TFE | EESR_TDE | EESR_ECI,
784 	.fdr_value	= 0x0000070f,
785 
786 	.apr		= 1,
787 	.mpr		= 1,
788 	.tpauser	= 1,
789 	.bculr		= 1,
790 	.hw_swap	= 1,
791 	.nbst		= 1,
792 	.rpadir		= 1,
793 	.no_trimd	= 1,
794 	.no_ade		= 1,
795 	.xdfar_rw	= 1,
796 	.hw_checksum	= 1,
797 	.select_mii	= 1,
798 	.magic		= 1,
799 	.cexcr		= 1,
800 };
801 #endif /* CONFIG_OF */
802 
803 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
804 {
805 	struct sh_eth_private *mdp = netdev_priv(ndev);
806 
807 	switch (mdp->speed) {
808 	case 10: /* 10BASE */
809 		sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
810 		break;
811 	case 100:/* 100BASE */
812 		sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
813 		break;
814 	}
815 }
816 
817 /* SH7724 */
818 static struct sh_eth_cpu_data sh7724_data = {
819 	.soft_reset	= sh_eth_soft_reset,
820 
821 	.set_duplex	= sh_eth_set_duplex,
822 	.set_rate	= sh_eth_set_rate_sh7724,
823 
824 	.register_type	= SH_ETH_REG_FAST_SH4,
825 
826 	.edtrr_trns	= EDTRR_TRNS_ETHER,
827 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
828 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
829 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
830 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
831 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
832 			  EESIPR_RMAFIP | EESIPR_RRFIP |
833 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
834 			  EESIPR_PREIP | EESIPR_CERFIP,
835 
836 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
837 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
838 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
839 
840 	.apr		= 1,
841 	.mpr		= 1,
842 	.tpauser	= 1,
843 	.hw_swap	= 1,
844 	.rpadir		= 1,
845 };
846 
847 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
848 {
849 	struct sh_eth_private *mdp = netdev_priv(ndev);
850 
851 	switch (mdp->speed) {
852 	case 10: /* 10BASE */
853 		sh_eth_write(ndev, 0, RTRATE);
854 		break;
855 	case 100:/* 100BASE */
856 		sh_eth_write(ndev, 1, RTRATE);
857 		break;
858 	}
859 }
860 
861 /* SH7757 */
862 static struct sh_eth_cpu_data sh7757_data = {
863 	.soft_reset	= sh_eth_soft_reset,
864 
865 	.set_duplex	= sh_eth_set_duplex,
866 	.set_rate	= sh_eth_set_rate_sh7757,
867 
868 	.register_type	= SH_ETH_REG_FAST_SH4,
869 
870 	.edtrr_trns	= EDTRR_TRNS_ETHER,
871 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
872 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
873 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
874 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
875 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
876 			  EESIPR_CEEFIP | EESIPR_CELFIP |
877 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
878 			  EESIPR_PREIP | EESIPR_CERFIP,
879 
880 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
881 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
882 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
883 
884 	.irq_flags	= IRQF_SHARED,
885 	.apr		= 1,
886 	.mpr		= 1,
887 	.tpauser	= 1,
888 	.hw_swap	= 1,
889 	.no_ade		= 1,
890 	.rpadir		= 1,
891 	.rtrate		= 1,
892 	.dual_port	= 1,
893 };
894 
895 #define SH_GIGA_ETH_BASE	0xfee00000UL
896 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
897 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
898 static void sh_eth_chip_reset_giga(struct net_device *ndev)
899 {
900 	u32 mahr[2], malr[2];
901 	int i;
902 
903 	/* save MAHR and MALR */
904 	for (i = 0; i < 2; i++) {
905 		malr[i] = ioread32((void *)GIGA_MALR(i));
906 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
907 	}
908 
909 	sh_eth_chip_reset(ndev);
910 
911 	/* restore MAHR and MALR */
912 	for (i = 0; i < 2; i++) {
913 		iowrite32(malr[i], (void *)GIGA_MALR(i));
914 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
915 	}
916 }
917 
918 static void sh_eth_set_rate_giga(struct net_device *ndev)
919 {
920 	struct sh_eth_private *mdp = netdev_priv(ndev);
921 
922 	switch (mdp->speed) {
923 	case 10: /* 10BASE */
924 		sh_eth_write(ndev, 0x00000000, GECMR);
925 		break;
926 	case 100:/* 100BASE */
927 		sh_eth_write(ndev, 0x00000010, GECMR);
928 		break;
929 	case 1000: /* 1000BASE */
930 		sh_eth_write(ndev, 0x00000020, GECMR);
931 		break;
932 	}
933 }
934 
935 /* SH7757(GETHERC) */
936 static struct sh_eth_cpu_data sh7757_data_giga = {
937 	.soft_reset	= sh_eth_soft_reset_gether,
938 
939 	.chip_reset	= sh_eth_chip_reset_giga,
940 	.set_duplex	= sh_eth_set_duplex,
941 	.set_rate	= sh_eth_set_rate_giga,
942 
943 	.register_type	= SH_ETH_REG_GIGABIT,
944 
945 	.edtrr_trns	= EDTRR_TRNS_GETHER,
946 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
947 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
948 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
949 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
950 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
951 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
952 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
953 			  EESIPR_CEEFIP | EESIPR_CELFIP |
954 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
955 			  EESIPR_PREIP | EESIPR_CERFIP,
956 
957 	.tx_check	= EESR_TC1 | EESR_FTC,
958 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
959 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
960 			  EESR_TDE,
961 	.fdr_value	= 0x0000072f,
962 
963 	.irq_flags	= IRQF_SHARED,
964 	.apr		= 1,
965 	.mpr		= 1,
966 	.tpauser	= 1,
967 	.bculr		= 1,
968 	.hw_swap	= 1,
969 	.rpadir		= 1,
970 	.no_trimd	= 1,
971 	.no_ade		= 1,
972 	.xdfar_rw	= 1,
973 	.tsu		= 1,
974 	.cexcr		= 1,
975 	.dual_port	= 1,
976 };
977 
978 /* SH7734 */
979 static struct sh_eth_cpu_data sh7734_data = {
980 	.soft_reset	= sh_eth_soft_reset_gether,
981 
982 	.chip_reset	= sh_eth_chip_reset,
983 	.set_duplex	= sh_eth_set_duplex,
984 	.set_rate	= sh_eth_set_rate_gether,
985 
986 	.register_type	= SH_ETH_REG_GIGABIT,
987 
988 	.edtrr_trns	= EDTRR_TRNS_GETHER,
989 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
990 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
991 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
992 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
993 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
994 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
995 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
996 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
997 			  EESIPR_PREIP | EESIPR_CERFIP,
998 
999 	.tx_check	= EESR_TC1 | EESR_FTC,
1000 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
1001 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
1002 			  EESR_TDE,
1003 
1004 	.apr		= 1,
1005 	.mpr		= 1,
1006 	.tpauser	= 1,
1007 	.bculr		= 1,
1008 	.hw_swap	= 1,
1009 	.no_trimd	= 1,
1010 	.no_ade		= 1,
1011 	.xdfar_rw	= 1,
1012 	.tsu		= 1,
1013 	.hw_checksum	= 1,
1014 	.select_mii	= 1,
1015 	.magic		= 1,
1016 	.cexcr		= 1,
1017 };
1018 
1019 /* SH7763 */
1020 static struct sh_eth_cpu_data sh7763_data = {
1021 	.soft_reset	= sh_eth_soft_reset_gether,
1022 
1023 	.chip_reset	= sh_eth_chip_reset,
1024 	.set_duplex	= sh_eth_set_duplex,
1025 	.set_rate	= sh_eth_set_rate_gether,
1026 
1027 	.register_type	= SH_ETH_REG_GIGABIT,
1028 
1029 	.edtrr_trns	= EDTRR_TRNS_GETHER,
1030 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
1031 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
1032 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1033 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1034 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1035 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
1036 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
1037 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1038 			  EESIPR_PREIP | EESIPR_CERFIP,
1039 
1040 	.tx_check	= EESR_TC1 | EESR_FTC,
1041 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
1042 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
1043 
1044 	.apr		= 1,
1045 	.mpr		= 1,
1046 	.tpauser	= 1,
1047 	.bculr		= 1,
1048 	.hw_swap	= 1,
1049 	.no_trimd	= 1,
1050 	.no_ade		= 1,
1051 	.xdfar_rw	= 1,
1052 	.tsu		= 1,
1053 	.irq_flags	= IRQF_SHARED,
1054 	.magic		= 1,
1055 	.cexcr		= 1,
1056 	.dual_port	= 1,
1057 };
1058 
1059 static struct sh_eth_cpu_data sh7619_data = {
1060 	.soft_reset	= sh_eth_soft_reset,
1061 
1062 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1063 
1064 	.edtrr_trns	= EDTRR_TRNS_ETHER,
1065 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1066 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1067 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1068 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1069 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1070 			  EESIPR_CEEFIP | EESIPR_CELFIP |
1071 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1072 			  EESIPR_PREIP | EESIPR_CERFIP,
1073 
1074 	.apr		= 1,
1075 	.mpr		= 1,
1076 	.tpauser	= 1,
1077 	.hw_swap	= 1,
1078 };
1079 
1080 static struct sh_eth_cpu_data sh771x_data = {
1081 	.soft_reset	= sh_eth_soft_reset,
1082 
1083 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1084 
1085 	.edtrr_trns	= EDTRR_TRNS_ETHER,
1086 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1087 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1088 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1089 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1090 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1091 			  EESIPR_CEEFIP | EESIPR_CELFIP |
1092 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1093 			  EESIPR_PREIP | EESIPR_CERFIP,
1094 	.tsu		= 1,
1095 	.dual_port	= 1,
1096 };
1097 
1098 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
1099 {
1100 	if (!cd->ecsr_value)
1101 		cd->ecsr_value = DEFAULT_ECSR_INIT;
1102 
1103 	if (!cd->ecsipr_value)
1104 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
1105 
1106 	if (!cd->fcftr_value)
1107 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
1108 				  DEFAULT_FIFO_F_D_RFD;
1109 
1110 	if (!cd->fdr_value)
1111 		cd->fdr_value = DEFAULT_FDR_INIT;
1112 
1113 	if (!cd->tx_check)
1114 		cd->tx_check = DEFAULT_TX_CHECK;
1115 
1116 	if (!cd->eesr_err_check)
1117 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
1118 
1119 	if (!cd->trscer_err_mask)
1120 		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
1121 }
1122 
1123 static void sh_eth_set_receive_align(struct sk_buff *skb)
1124 {
1125 	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
1126 
1127 	if (reserve)
1128 		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
1129 }
1130 
1131 /* Program the hardware MAC address from dev->dev_addr. */
1132 static void update_mac_address(struct net_device *ndev)
1133 {
1134 	sh_eth_write(ndev,
1135 		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
1136 		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
1137 	sh_eth_write(ndev,
1138 		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1139 }
1140 
1141 /* Get MAC address from SuperH MAC address register
1142  *
1143  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1144  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1145  * When you want use this device, you must set MAC address in bootloader.
1146  *
1147  */
1148 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1149 {
1150 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1151 		memcpy(ndev->dev_addr, mac, ETH_ALEN);
1152 	} else {
1153 		u32 mahr = sh_eth_read(ndev, MAHR);
1154 		u32 malr = sh_eth_read(ndev, MALR);
1155 
1156 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
1157 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
1158 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
1159 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
1160 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
1161 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
1162 	}
1163 }
1164 
1165 struct bb_info {
1166 	void (*set_gate)(void *addr);
1167 	struct mdiobb_ctrl ctrl;
1168 	void *addr;
1169 };
1170 
1171 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1172 {
1173 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1174 	u32 pir;
1175 
1176 	if (bitbang->set_gate)
1177 		bitbang->set_gate(bitbang->addr);
1178 
1179 	pir = ioread32(bitbang->addr);
1180 	if (set)
1181 		pir |=  mask;
1182 	else
1183 		pir &= ~mask;
1184 	iowrite32(pir, bitbang->addr);
1185 }
1186 
1187 /* Data I/O pin control */
1188 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1189 {
1190 	sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1191 }
1192 
1193 /* Set bit data*/
1194 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1195 {
1196 	sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1197 }
1198 
1199 /* Get bit data*/
1200 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1201 {
1202 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1203 
1204 	if (bitbang->set_gate)
1205 		bitbang->set_gate(bitbang->addr);
1206 
1207 	return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1208 }
1209 
1210 /* MDC pin control */
1211 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1212 {
1213 	sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1214 }
1215 
1216 /* mdio bus control struct */
1217 static struct mdiobb_ops bb_ops = {
1218 	.owner = THIS_MODULE,
1219 	.set_mdc = sh_mdc_ctrl,
1220 	.set_mdio_dir = sh_mmd_ctrl,
1221 	.set_mdio_data = sh_set_mdio,
1222 	.get_mdio_data = sh_get_mdio,
1223 };
1224 
1225 /* free Tx skb function */
1226 static int sh_eth_tx_free(struct net_device *ndev, bool sent_only)
1227 {
1228 	struct sh_eth_private *mdp = netdev_priv(ndev);
1229 	struct sh_eth_txdesc *txdesc;
1230 	int free_num = 0;
1231 	int entry;
1232 	bool sent;
1233 
1234 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1235 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1236 		txdesc = &mdp->tx_ring[entry];
1237 		sent = !(txdesc->status & cpu_to_le32(TD_TACT));
1238 		if (sent_only && !sent)
1239 			break;
1240 		/* TACT bit must be checked before all the following reads */
1241 		dma_rmb();
1242 		netif_info(mdp, tx_done, ndev,
1243 			   "tx entry %d status 0x%08x\n",
1244 			   entry, le32_to_cpu(txdesc->status));
1245 		/* Free the original skb. */
1246 		if (mdp->tx_skbuff[entry]) {
1247 			dma_unmap_single(&mdp->pdev->dev,
1248 					 le32_to_cpu(txdesc->addr),
1249 					 le32_to_cpu(txdesc->len) >> 16,
1250 					 DMA_TO_DEVICE);
1251 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1252 			mdp->tx_skbuff[entry] = NULL;
1253 			free_num++;
1254 		}
1255 		txdesc->status = cpu_to_le32(TD_TFP);
1256 		if (entry >= mdp->num_tx_ring - 1)
1257 			txdesc->status |= cpu_to_le32(TD_TDLE);
1258 
1259 		if (sent) {
1260 			ndev->stats.tx_packets++;
1261 			ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1262 		}
1263 	}
1264 	return free_num;
1265 }
1266 
1267 /* free skb and descriptor buffer */
1268 static void sh_eth_ring_free(struct net_device *ndev)
1269 {
1270 	struct sh_eth_private *mdp = netdev_priv(ndev);
1271 	int ringsize, i;
1272 
1273 	if (mdp->rx_ring) {
1274 		for (i = 0; i < mdp->num_rx_ring; i++) {
1275 			if (mdp->rx_skbuff[i]) {
1276 				struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i];
1277 
1278 				dma_unmap_single(&mdp->pdev->dev,
1279 						 le32_to_cpu(rxdesc->addr),
1280 						 ALIGN(mdp->rx_buf_sz, 32),
1281 						 DMA_FROM_DEVICE);
1282 			}
1283 		}
1284 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1285 		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->rx_ring,
1286 				  mdp->rx_desc_dma);
1287 		mdp->rx_ring = NULL;
1288 	}
1289 
1290 	/* Free Rx skb ringbuffer */
1291 	if (mdp->rx_skbuff) {
1292 		for (i = 0; i < mdp->num_rx_ring; i++)
1293 			dev_kfree_skb(mdp->rx_skbuff[i]);
1294 	}
1295 	kfree(mdp->rx_skbuff);
1296 	mdp->rx_skbuff = NULL;
1297 
1298 	if (mdp->tx_ring) {
1299 		sh_eth_tx_free(ndev, false);
1300 
1301 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1302 		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->tx_ring,
1303 				  mdp->tx_desc_dma);
1304 		mdp->tx_ring = NULL;
1305 	}
1306 
1307 	/* Free Tx skb ringbuffer */
1308 	kfree(mdp->tx_skbuff);
1309 	mdp->tx_skbuff = NULL;
1310 }
1311 
1312 /* format skb and descriptor buffer */
1313 static void sh_eth_ring_format(struct net_device *ndev)
1314 {
1315 	struct sh_eth_private *mdp = netdev_priv(ndev);
1316 	int i;
1317 	struct sk_buff *skb;
1318 	struct sh_eth_rxdesc *rxdesc = NULL;
1319 	struct sh_eth_txdesc *txdesc = NULL;
1320 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1321 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1322 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1323 	dma_addr_t dma_addr;
1324 	u32 buf_len;
1325 
1326 	mdp->cur_rx = 0;
1327 	mdp->cur_tx = 0;
1328 	mdp->dirty_rx = 0;
1329 	mdp->dirty_tx = 0;
1330 
1331 	memset(mdp->rx_ring, 0, rx_ringsize);
1332 
1333 	/* build Rx ring buffer */
1334 	for (i = 0; i < mdp->num_rx_ring; i++) {
1335 		/* skb */
1336 		mdp->rx_skbuff[i] = NULL;
1337 		skb = netdev_alloc_skb(ndev, skbuff_size);
1338 		if (skb == NULL)
1339 			break;
1340 		sh_eth_set_receive_align(skb);
1341 
1342 		/* The size of the buffer is a multiple of 32 bytes. */
1343 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1344 		dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len,
1345 					  DMA_FROM_DEVICE);
1346 		if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1347 			kfree_skb(skb);
1348 			break;
1349 		}
1350 		mdp->rx_skbuff[i] = skb;
1351 
1352 		/* RX descriptor */
1353 		rxdesc = &mdp->rx_ring[i];
1354 		rxdesc->len = cpu_to_le32(buf_len << 16);
1355 		rxdesc->addr = cpu_to_le32(dma_addr);
1356 		rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1357 
1358 		/* Rx descriptor address set */
1359 		if (i == 0) {
1360 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1361 			if (mdp->cd->xdfar_rw)
1362 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1363 		}
1364 	}
1365 
1366 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1367 
1368 	/* Mark the last entry as wrapping the ring. */
1369 	if (rxdesc)
1370 		rxdesc->status |= cpu_to_le32(RD_RDLE);
1371 
1372 	memset(mdp->tx_ring, 0, tx_ringsize);
1373 
1374 	/* build Tx ring buffer */
1375 	for (i = 0; i < mdp->num_tx_ring; i++) {
1376 		mdp->tx_skbuff[i] = NULL;
1377 		txdesc = &mdp->tx_ring[i];
1378 		txdesc->status = cpu_to_le32(TD_TFP);
1379 		txdesc->len = cpu_to_le32(0);
1380 		if (i == 0) {
1381 			/* Tx descriptor address set */
1382 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1383 			if (mdp->cd->xdfar_rw)
1384 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1385 		}
1386 	}
1387 
1388 	txdesc->status |= cpu_to_le32(TD_TDLE);
1389 }
1390 
1391 /* Get skb and descriptor buffer */
1392 static int sh_eth_ring_init(struct net_device *ndev)
1393 {
1394 	struct sh_eth_private *mdp = netdev_priv(ndev);
1395 	int rx_ringsize, tx_ringsize;
1396 
1397 	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1398 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1399 	 * the first 2 bytes, and +16 gets room for the status word from the
1400 	 * card.
1401 	 */
1402 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1403 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1404 	if (mdp->cd->rpadir)
1405 		mdp->rx_buf_sz += NET_IP_ALIGN;
1406 
1407 	/* Allocate RX and TX skb rings */
1408 	mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1409 				 GFP_KERNEL);
1410 	if (!mdp->rx_skbuff)
1411 		return -ENOMEM;
1412 
1413 	mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1414 				 GFP_KERNEL);
1415 	if (!mdp->tx_skbuff)
1416 		goto ring_free;
1417 
1418 	/* Allocate all Rx descriptors. */
1419 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1420 	mdp->rx_ring = dma_alloc_coherent(&mdp->pdev->dev, rx_ringsize,
1421 					  &mdp->rx_desc_dma, GFP_KERNEL);
1422 	if (!mdp->rx_ring)
1423 		goto ring_free;
1424 
1425 	mdp->dirty_rx = 0;
1426 
1427 	/* Allocate all Tx descriptors. */
1428 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1429 	mdp->tx_ring = dma_alloc_coherent(&mdp->pdev->dev, tx_ringsize,
1430 					  &mdp->tx_desc_dma, GFP_KERNEL);
1431 	if (!mdp->tx_ring)
1432 		goto ring_free;
1433 	return 0;
1434 
1435 ring_free:
1436 	/* Free Rx and Tx skb ring buffer and DMA buffer */
1437 	sh_eth_ring_free(ndev);
1438 
1439 	return -ENOMEM;
1440 }
1441 
1442 static int sh_eth_dev_init(struct net_device *ndev)
1443 {
1444 	struct sh_eth_private *mdp = netdev_priv(ndev);
1445 	int ret;
1446 
1447 	/* Soft Reset */
1448 	ret = mdp->cd->soft_reset(ndev);
1449 	if (ret)
1450 		return ret;
1451 
1452 	if (mdp->cd->rmiimode)
1453 		sh_eth_write(ndev, 0x1, RMIIMODE);
1454 
1455 	/* Descriptor format */
1456 	sh_eth_ring_format(ndev);
1457 	if (mdp->cd->rpadir)
1458 		sh_eth_write(ndev, NET_IP_ALIGN << 16, RPADIR);
1459 
1460 	/* all sh_eth int mask */
1461 	sh_eth_write(ndev, 0, EESIPR);
1462 
1463 #if defined(__LITTLE_ENDIAN)
1464 	if (mdp->cd->hw_swap)
1465 		sh_eth_write(ndev, EDMR_EL, EDMR);
1466 	else
1467 #endif
1468 		sh_eth_write(ndev, 0, EDMR);
1469 
1470 	/* FIFO size set */
1471 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1472 	sh_eth_write(ndev, 0, TFTR);
1473 
1474 	/* Frame recv control (enable multiple-packets per rx irq) */
1475 	sh_eth_write(ndev, RMCR_RNC, RMCR);
1476 
1477 	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1478 
1479 	/* DMA transfer burst mode */
1480 	if (mdp->cd->nbst)
1481 		sh_eth_modify(ndev, EDMR, EDMR_NBST, EDMR_NBST);
1482 
1483 	/* Burst cycle count upper-limit */
1484 	if (mdp->cd->bculr)
1485 		sh_eth_write(ndev, 0x800, BCULR);
1486 
1487 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1488 
1489 	if (!mdp->cd->no_trimd)
1490 		sh_eth_write(ndev, 0, TRIMD);
1491 
1492 	/* Recv frame limit set register */
1493 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1494 		     RFLR);
1495 
1496 	sh_eth_modify(ndev, EESR, 0, 0);
1497 	mdp->irq_enabled = true;
1498 	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1499 
1500 	/* PAUSE Prohibition */
1501 	sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1502 		     ECMR_TE | ECMR_RE, ECMR);
1503 
1504 	if (mdp->cd->set_rate)
1505 		mdp->cd->set_rate(ndev);
1506 
1507 	/* E-MAC Status Register clear */
1508 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1509 
1510 	/* E-MAC Interrupt Enable register */
1511 	sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1512 
1513 	/* Set MAC address */
1514 	update_mac_address(ndev);
1515 
1516 	/* mask reset */
1517 	if (mdp->cd->apr)
1518 		sh_eth_write(ndev, 1, APR);
1519 	if (mdp->cd->mpr)
1520 		sh_eth_write(ndev, 1, MPR);
1521 	if (mdp->cd->tpauser)
1522 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1523 
1524 	/* Setting the Rx mode will start the Rx process. */
1525 	sh_eth_write(ndev, EDRRR_R, EDRRR);
1526 
1527 	return ret;
1528 }
1529 
1530 static void sh_eth_dev_exit(struct net_device *ndev)
1531 {
1532 	struct sh_eth_private *mdp = netdev_priv(ndev);
1533 	int i;
1534 
1535 	/* Deactivate all TX descriptors, so DMA should stop at next
1536 	 * packet boundary if it's currently running
1537 	 */
1538 	for (i = 0; i < mdp->num_tx_ring; i++)
1539 		mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1540 
1541 	/* Disable TX FIFO egress to MAC */
1542 	sh_eth_rcv_snd_disable(ndev);
1543 
1544 	/* Stop RX DMA at next packet boundary */
1545 	sh_eth_write(ndev, 0, EDRRR);
1546 
1547 	/* Aside from TX DMA, we can't tell when the hardware is
1548 	 * really stopped, so we need to reset to make sure.
1549 	 * Before doing that, wait for long enough to *probably*
1550 	 * finish transmitting the last packet and poll stats.
1551 	 */
1552 	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1553 	sh_eth_get_stats(ndev);
1554 	mdp->cd->soft_reset(ndev);
1555 
1556 	/* Set MAC address again */
1557 	update_mac_address(ndev);
1558 }
1559 
1560 /* Packet receive function */
1561 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1562 {
1563 	struct sh_eth_private *mdp = netdev_priv(ndev);
1564 	struct sh_eth_rxdesc *rxdesc;
1565 
1566 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1567 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1568 	int limit;
1569 	struct sk_buff *skb;
1570 	u32 desc_status;
1571 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1572 	dma_addr_t dma_addr;
1573 	u16 pkt_len;
1574 	u32 buf_len;
1575 
1576 	boguscnt = min(boguscnt, *quota);
1577 	limit = boguscnt;
1578 	rxdesc = &mdp->rx_ring[entry];
1579 	while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1580 		/* RACT bit must be checked before all the following reads */
1581 		dma_rmb();
1582 		desc_status = le32_to_cpu(rxdesc->status);
1583 		pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1584 
1585 		if (--boguscnt < 0)
1586 			break;
1587 
1588 		netif_info(mdp, rx_status, ndev,
1589 			   "rx entry %d status 0x%08x len %d\n",
1590 			   entry, desc_status, pkt_len);
1591 
1592 		if (!(desc_status & RDFEND))
1593 			ndev->stats.rx_length_errors++;
1594 
1595 		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1596 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1597 		 * bit 0. However, in case of the R8A7740 and R7S72100
1598 		 * the RFS bits are from bit 25 to bit 16. So, the
1599 		 * driver needs right shifting by 16.
1600 		 */
1601 		if (mdp->cd->hw_checksum)
1602 			desc_status >>= 16;
1603 
1604 		skb = mdp->rx_skbuff[entry];
1605 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1606 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1607 			ndev->stats.rx_errors++;
1608 			if (desc_status & RD_RFS1)
1609 				ndev->stats.rx_crc_errors++;
1610 			if (desc_status & RD_RFS2)
1611 				ndev->stats.rx_frame_errors++;
1612 			if (desc_status & RD_RFS3)
1613 				ndev->stats.rx_length_errors++;
1614 			if (desc_status & RD_RFS4)
1615 				ndev->stats.rx_length_errors++;
1616 			if (desc_status & RD_RFS6)
1617 				ndev->stats.rx_missed_errors++;
1618 			if (desc_status & RD_RFS10)
1619 				ndev->stats.rx_over_errors++;
1620 		} else	if (skb) {
1621 			dma_addr = le32_to_cpu(rxdesc->addr);
1622 			if (!mdp->cd->hw_swap)
1623 				sh_eth_soft_swap(
1624 					phys_to_virt(ALIGN(dma_addr, 4)),
1625 					pkt_len + 2);
1626 			mdp->rx_skbuff[entry] = NULL;
1627 			if (mdp->cd->rpadir)
1628 				skb_reserve(skb, NET_IP_ALIGN);
1629 			dma_unmap_single(&mdp->pdev->dev, dma_addr,
1630 					 ALIGN(mdp->rx_buf_sz, 32),
1631 					 DMA_FROM_DEVICE);
1632 			skb_put(skb, pkt_len);
1633 			skb->protocol = eth_type_trans(skb, ndev);
1634 			netif_receive_skb(skb);
1635 			ndev->stats.rx_packets++;
1636 			ndev->stats.rx_bytes += pkt_len;
1637 			if (desc_status & RD_RFS8)
1638 				ndev->stats.multicast++;
1639 		}
1640 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1641 		rxdesc = &mdp->rx_ring[entry];
1642 	}
1643 
1644 	/* Refill the Rx ring buffers. */
1645 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1646 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1647 		rxdesc = &mdp->rx_ring[entry];
1648 		/* The size of the buffer is 32 byte boundary. */
1649 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1650 		rxdesc->len = cpu_to_le32(buf_len << 16);
1651 
1652 		if (mdp->rx_skbuff[entry] == NULL) {
1653 			skb = netdev_alloc_skb(ndev, skbuff_size);
1654 			if (skb == NULL)
1655 				break;	/* Better luck next round. */
1656 			sh_eth_set_receive_align(skb);
1657 			dma_addr = dma_map_single(&mdp->pdev->dev, skb->data,
1658 						  buf_len, DMA_FROM_DEVICE);
1659 			if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1660 				kfree_skb(skb);
1661 				break;
1662 			}
1663 			mdp->rx_skbuff[entry] = skb;
1664 
1665 			skb_checksum_none_assert(skb);
1666 			rxdesc->addr = cpu_to_le32(dma_addr);
1667 		}
1668 		dma_wmb(); /* RACT bit must be set after all the above writes */
1669 		if (entry >= mdp->num_rx_ring - 1)
1670 			rxdesc->status |=
1671 				cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1672 		else
1673 			rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1674 	}
1675 
1676 	/* Restart Rx engine if stopped. */
1677 	/* If we don't need to check status, don't. -KDU */
1678 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1679 		/* fix the values for the next receiving if RDE is set */
1680 		if (intr_status & EESR_RDE && !mdp->cd->no_xdfar) {
1681 			u32 count = (sh_eth_read(ndev, RDFAR) -
1682 				     sh_eth_read(ndev, RDLAR)) >> 4;
1683 
1684 			mdp->cur_rx = count;
1685 			mdp->dirty_rx = count;
1686 		}
1687 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1688 	}
1689 
1690 	*quota -= limit - boguscnt - 1;
1691 
1692 	return *quota <= 0;
1693 }
1694 
1695 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1696 {
1697 	/* disable tx and rx */
1698 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1699 }
1700 
1701 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1702 {
1703 	/* enable tx and rx */
1704 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1705 }
1706 
1707 /* E-MAC interrupt handler */
1708 static void sh_eth_emac_interrupt(struct net_device *ndev)
1709 {
1710 	struct sh_eth_private *mdp = netdev_priv(ndev);
1711 	u32 felic_stat;
1712 	u32 link_stat;
1713 
1714 	felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR);
1715 	sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1716 	if (felic_stat & ECSR_ICD)
1717 		ndev->stats.tx_carrier_errors++;
1718 	if (felic_stat & ECSR_MPD)
1719 		pm_wakeup_event(&mdp->pdev->dev, 0);
1720 	if (felic_stat & ECSR_LCHNG) {
1721 		/* Link Changed */
1722 		if (mdp->cd->no_psr || mdp->no_ether_link)
1723 			return;
1724 		link_stat = sh_eth_read(ndev, PSR);
1725 		if (mdp->ether_link_active_low)
1726 			link_stat = ~link_stat;
1727 		if (!(link_stat & PHY_ST_LINK)) {
1728 			sh_eth_rcv_snd_disable(ndev);
1729 		} else {
1730 			/* Link Up */
1731 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0);
1732 			/* clear int */
1733 			sh_eth_modify(ndev, ECSR, 0, 0);
1734 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP);
1735 			/* enable tx and rx */
1736 			sh_eth_rcv_snd_enable(ndev);
1737 		}
1738 	}
1739 }
1740 
1741 /* error control function */
1742 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1743 {
1744 	struct sh_eth_private *mdp = netdev_priv(ndev);
1745 	u32 mask;
1746 
1747 	if (intr_status & EESR_TWB) {
1748 		/* Unused write back interrupt */
1749 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1750 			ndev->stats.tx_aborted_errors++;
1751 			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1752 		}
1753 	}
1754 
1755 	if (intr_status & EESR_RABT) {
1756 		/* Receive Abort int */
1757 		if (intr_status & EESR_RFRMER) {
1758 			/* Receive Frame Overflow int */
1759 			ndev->stats.rx_frame_errors++;
1760 		}
1761 	}
1762 
1763 	if (intr_status & EESR_TDE) {
1764 		/* Transmit Descriptor Empty int */
1765 		ndev->stats.tx_fifo_errors++;
1766 		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1767 	}
1768 
1769 	if (intr_status & EESR_TFE) {
1770 		/* FIFO under flow */
1771 		ndev->stats.tx_fifo_errors++;
1772 		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1773 	}
1774 
1775 	if (intr_status & EESR_RDE) {
1776 		/* Receive Descriptor Empty int */
1777 		ndev->stats.rx_over_errors++;
1778 	}
1779 
1780 	if (intr_status & EESR_RFE) {
1781 		/* Receive FIFO Overflow int */
1782 		ndev->stats.rx_fifo_errors++;
1783 	}
1784 
1785 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1786 		/* Address Error */
1787 		ndev->stats.tx_fifo_errors++;
1788 		netif_err(mdp, tx_err, ndev, "Address Error\n");
1789 	}
1790 
1791 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1792 	if (mdp->cd->no_ade)
1793 		mask &= ~EESR_ADE;
1794 	if (intr_status & mask) {
1795 		/* Tx error */
1796 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1797 
1798 		/* dmesg */
1799 		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1800 			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1801 			   (u32)ndev->state, edtrr);
1802 		/* dirty buffer free */
1803 		sh_eth_tx_free(ndev, true);
1804 
1805 		/* SH7712 BUG */
1806 		if (edtrr ^ mdp->cd->edtrr_trns) {
1807 			/* tx dma start */
1808 			sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
1809 		}
1810 		/* wakeup */
1811 		netif_wake_queue(ndev);
1812 	}
1813 }
1814 
1815 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1816 {
1817 	struct net_device *ndev = netdev;
1818 	struct sh_eth_private *mdp = netdev_priv(ndev);
1819 	struct sh_eth_cpu_data *cd = mdp->cd;
1820 	irqreturn_t ret = IRQ_NONE;
1821 	u32 intr_status, intr_enable;
1822 
1823 	spin_lock(&mdp->lock);
1824 
1825 	/* Get interrupt status */
1826 	intr_status = sh_eth_read(ndev, EESR);
1827 	/* Mask it with the interrupt mask, forcing ECI interrupt  to be always
1828 	 * enabled since it's the one that  comes  thru regardless of the mask,
1829 	 * and  we need to fully handle it  in sh_eth_emac_interrupt() in order
1830 	 * to quench it as it doesn't get cleared by just writing 1 to the  ECI
1831 	 * bit...
1832 	 */
1833 	intr_enable = sh_eth_read(ndev, EESIPR);
1834 	intr_status &= intr_enable | EESIPR_ECIIP;
1835 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI |
1836 			   cd->eesr_err_check))
1837 		ret = IRQ_HANDLED;
1838 	else
1839 		goto out;
1840 
1841 	if (unlikely(!mdp->irq_enabled)) {
1842 		sh_eth_write(ndev, 0, EESIPR);
1843 		goto out;
1844 	}
1845 
1846 	if (intr_status & EESR_RX_CHECK) {
1847 		if (napi_schedule_prep(&mdp->napi)) {
1848 			/* Mask Rx interrupts */
1849 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1850 				     EESIPR);
1851 			__napi_schedule(&mdp->napi);
1852 		} else {
1853 			netdev_warn(ndev,
1854 				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1855 				    intr_status, intr_enable);
1856 		}
1857 	}
1858 
1859 	/* Tx Check */
1860 	if (intr_status & cd->tx_check) {
1861 		/* Clear Tx interrupts */
1862 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1863 
1864 		sh_eth_tx_free(ndev, true);
1865 		netif_wake_queue(ndev);
1866 	}
1867 
1868 	/* E-MAC interrupt */
1869 	if (intr_status & EESR_ECI)
1870 		sh_eth_emac_interrupt(ndev);
1871 
1872 	if (intr_status & cd->eesr_err_check) {
1873 		/* Clear error interrupts */
1874 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1875 
1876 		sh_eth_error(ndev, intr_status);
1877 	}
1878 
1879 out:
1880 	spin_unlock(&mdp->lock);
1881 
1882 	return ret;
1883 }
1884 
1885 static int sh_eth_poll(struct napi_struct *napi, int budget)
1886 {
1887 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1888 						  napi);
1889 	struct net_device *ndev = napi->dev;
1890 	int quota = budget;
1891 	u32 intr_status;
1892 
1893 	for (;;) {
1894 		intr_status = sh_eth_read(ndev, EESR);
1895 		if (!(intr_status & EESR_RX_CHECK))
1896 			break;
1897 		/* Clear Rx interrupts */
1898 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1899 
1900 		if (sh_eth_rx(ndev, intr_status, &quota))
1901 			goto out;
1902 	}
1903 
1904 	napi_complete(napi);
1905 
1906 	/* Reenable Rx interrupts */
1907 	if (mdp->irq_enabled)
1908 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1909 out:
1910 	return budget - quota;
1911 }
1912 
1913 /* PHY state control function */
1914 static void sh_eth_adjust_link(struct net_device *ndev)
1915 {
1916 	struct sh_eth_private *mdp = netdev_priv(ndev);
1917 	struct phy_device *phydev = ndev->phydev;
1918 	unsigned long flags;
1919 	int new_state = 0;
1920 
1921 	spin_lock_irqsave(&mdp->lock, flags);
1922 
1923 	/* Disable TX and RX right over here, if E-MAC change is ignored */
1924 	if (mdp->cd->no_psr || mdp->no_ether_link)
1925 		sh_eth_rcv_snd_disable(ndev);
1926 
1927 	if (phydev->link) {
1928 		if (phydev->duplex != mdp->duplex) {
1929 			new_state = 1;
1930 			mdp->duplex = phydev->duplex;
1931 			if (mdp->cd->set_duplex)
1932 				mdp->cd->set_duplex(ndev);
1933 		}
1934 
1935 		if (phydev->speed != mdp->speed) {
1936 			new_state = 1;
1937 			mdp->speed = phydev->speed;
1938 			if (mdp->cd->set_rate)
1939 				mdp->cd->set_rate(ndev);
1940 		}
1941 		if (!mdp->link) {
1942 			sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1943 			new_state = 1;
1944 			mdp->link = phydev->link;
1945 		}
1946 	} else if (mdp->link) {
1947 		new_state = 1;
1948 		mdp->link = 0;
1949 		mdp->speed = 0;
1950 		mdp->duplex = -1;
1951 	}
1952 
1953 	/* Enable TX and RX right over here, if E-MAC change is ignored */
1954 	if ((mdp->cd->no_psr || mdp->no_ether_link) && phydev->link)
1955 		sh_eth_rcv_snd_enable(ndev);
1956 
1957 	mmiowb();
1958 	spin_unlock_irqrestore(&mdp->lock, flags);
1959 
1960 	if (new_state && netif_msg_link(mdp))
1961 		phy_print_status(phydev);
1962 }
1963 
1964 /* PHY init function */
1965 static int sh_eth_phy_init(struct net_device *ndev)
1966 {
1967 	struct device_node *np = ndev->dev.parent->of_node;
1968 	struct sh_eth_private *mdp = netdev_priv(ndev);
1969 	struct phy_device *phydev;
1970 
1971 	mdp->link = 0;
1972 	mdp->speed = 0;
1973 	mdp->duplex = -1;
1974 
1975 	/* Try connect to PHY */
1976 	if (np) {
1977 		struct device_node *pn;
1978 
1979 		pn = of_parse_phandle(np, "phy-handle", 0);
1980 		phydev = of_phy_connect(ndev, pn,
1981 					sh_eth_adjust_link, 0,
1982 					mdp->phy_interface);
1983 
1984 		of_node_put(pn);
1985 		if (!phydev)
1986 			phydev = ERR_PTR(-ENOENT);
1987 	} else {
1988 		char phy_id[MII_BUS_ID_SIZE + 3];
1989 
1990 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1991 			 mdp->mii_bus->id, mdp->phy_id);
1992 
1993 		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1994 				     mdp->phy_interface);
1995 	}
1996 
1997 	if (IS_ERR(phydev)) {
1998 		netdev_err(ndev, "failed to connect PHY\n");
1999 		return PTR_ERR(phydev);
2000 	}
2001 
2002 	/* mask with MAC supported features */
2003 	if (mdp->cd->register_type != SH_ETH_REG_GIGABIT) {
2004 		int err = phy_set_max_speed(phydev, SPEED_100);
2005 		if (err) {
2006 			netdev_err(ndev, "failed to limit PHY to 100 Mbit/s\n");
2007 			phy_disconnect(phydev);
2008 			return err;
2009 		}
2010 	}
2011 
2012 	phy_attached_info(phydev);
2013 
2014 	return 0;
2015 }
2016 
2017 /* PHY control start function */
2018 static int sh_eth_phy_start(struct net_device *ndev)
2019 {
2020 	int ret;
2021 
2022 	ret = sh_eth_phy_init(ndev);
2023 	if (ret)
2024 		return ret;
2025 
2026 	phy_start(ndev->phydev);
2027 
2028 	return 0;
2029 }
2030 
2031 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
2032  * version must be bumped as well.  Just adding registers up to that
2033  * limit is fine, as long as the existing register indices don't
2034  * change.
2035  */
2036 #define SH_ETH_REG_DUMP_VERSION		1
2037 #define SH_ETH_REG_DUMP_MAX_REGS	256
2038 
2039 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
2040 {
2041 	struct sh_eth_private *mdp = netdev_priv(ndev);
2042 	struct sh_eth_cpu_data *cd = mdp->cd;
2043 	u32 *valid_map;
2044 	size_t len;
2045 
2046 	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
2047 
2048 	/* Dump starts with a bitmap that tells ethtool which
2049 	 * registers are defined for this chip.
2050 	 */
2051 	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
2052 	if (buf) {
2053 		valid_map = buf;
2054 		buf += len;
2055 	} else {
2056 		valid_map = NULL;
2057 	}
2058 
2059 	/* Add a register to the dump, if it has a defined offset.
2060 	 * This automatically skips most undefined registers, but for
2061 	 * some it is also necessary to check a capability flag in
2062 	 * struct sh_eth_cpu_data.
2063 	 */
2064 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
2065 #define add_reg_from(reg, read_expr) do {				\
2066 		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
2067 			if (buf) {					\
2068 				mark_reg_valid(reg);			\
2069 				*buf++ = read_expr;			\
2070 			}						\
2071 			++len;						\
2072 		}							\
2073 	} while (0)
2074 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2075 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2076 
2077 	add_reg(EDSR);
2078 	add_reg(EDMR);
2079 	add_reg(EDTRR);
2080 	add_reg(EDRRR);
2081 	add_reg(EESR);
2082 	add_reg(EESIPR);
2083 	add_reg(TDLAR);
2084 	add_reg(TDFAR);
2085 	add_reg(TDFXR);
2086 	add_reg(TDFFR);
2087 	add_reg(RDLAR);
2088 	add_reg(RDFAR);
2089 	add_reg(RDFXR);
2090 	add_reg(RDFFR);
2091 	add_reg(TRSCER);
2092 	add_reg(RMFCR);
2093 	add_reg(TFTR);
2094 	add_reg(FDR);
2095 	add_reg(RMCR);
2096 	add_reg(TFUCR);
2097 	add_reg(RFOCR);
2098 	if (cd->rmiimode)
2099 		add_reg(RMIIMODE);
2100 	add_reg(FCFTR);
2101 	if (cd->rpadir)
2102 		add_reg(RPADIR);
2103 	if (!cd->no_trimd)
2104 		add_reg(TRIMD);
2105 	add_reg(ECMR);
2106 	add_reg(ECSR);
2107 	add_reg(ECSIPR);
2108 	add_reg(PIR);
2109 	if (!cd->no_psr)
2110 		add_reg(PSR);
2111 	add_reg(RDMLR);
2112 	add_reg(RFLR);
2113 	add_reg(IPGR);
2114 	if (cd->apr)
2115 		add_reg(APR);
2116 	if (cd->mpr)
2117 		add_reg(MPR);
2118 	add_reg(RFCR);
2119 	add_reg(RFCF);
2120 	if (cd->tpauser)
2121 		add_reg(TPAUSER);
2122 	add_reg(TPAUSECR);
2123 	add_reg(GECMR);
2124 	if (cd->bculr)
2125 		add_reg(BCULR);
2126 	add_reg(MAHR);
2127 	add_reg(MALR);
2128 	add_reg(TROCR);
2129 	add_reg(CDCR);
2130 	add_reg(LCCR);
2131 	add_reg(CNDCR);
2132 	add_reg(CEFCR);
2133 	add_reg(FRECR);
2134 	add_reg(TSFRCR);
2135 	add_reg(TLFRCR);
2136 	add_reg(CERCR);
2137 	add_reg(CEECR);
2138 	add_reg(MAFCR);
2139 	if (cd->rtrate)
2140 		add_reg(RTRATE);
2141 	if (cd->hw_checksum)
2142 		add_reg(CSMR);
2143 	if (cd->select_mii)
2144 		add_reg(RMII_MII);
2145 	if (cd->tsu) {
2146 		add_tsu_reg(ARSTR);
2147 		add_tsu_reg(TSU_CTRST);
2148 		add_tsu_reg(TSU_FWEN0);
2149 		add_tsu_reg(TSU_FWEN1);
2150 		add_tsu_reg(TSU_FCM);
2151 		add_tsu_reg(TSU_BSYSL0);
2152 		add_tsu_reg(TSU_BSYSL1);
2153 		add_tsu_reg(TSU_PRISL0);
2154 		add_tsu_reg(TSU_PRISL1);
2155 		add_tsu_reg(TSU_FWSL0);
2156 		add_tsu_reg(TSU_FWSL1);
2157 		add_tsu_reg(TSU_FWSLC);
2158 		add_tsu_reg(TSU_QTAGM0);
2159 		add_tsu_reg(TSU_QTAGM1);
2160 		add_tsu_reg(TSU_FWSR);
2161 		add_tsu_reg(TSU_FWINMK);
2162 		add_tsu_reg(TSU_ADQT0);
2163 		add_tsu_reg(TSU_ADQT1);
2164 		add_tsu_reg(TSU_VTAG0);
2165 		add_tsu_reg(TSU_VTAG1);
2166 		add_tsu_reg(TSU_ADSBSY);
2167 		add_tsu_reg(TSU_TEN);
2168 		add_tsu_reg(TSU_POST1);
2169 		add_tsu_reg(TSU_POST2);
2170 		add_tsu_reg(TSU_POST3);
2171 		add_tsu_reg(TSU_POST4);
2172 		/* This is the start of a table, not just a single register. */
2173 		if (buf) {
2174 			unsigned int i;
2175 
2176 			mark_reg_valid(TSU_ADRH0);
2177 			for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2178 				*buf++ = ioread32(mdp->tsu_addr +
2179 						  mdp->reg_offset[TSU_ADRH0] +
2180 						  i * 4);
2181 		}
2182 		len += SH_ETH_TSU_CAM_ENTRIES * 2;
2183 	}
2184 
2185 #undef mark_reg_valid
2186 #undef add_reg_from
2187 #undef add_reg
2188 #undef add_tsu_reg
2189 
2190 	return len * 4;
2191 }
2192 
2193 static int sh_eth_get_regs_len(struct net_device *ndev)
2194 {
2195 	return __sh_eth_get_regs(ndev, NULL);
2196 }
2197 
2198 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2199 			    void *buf)
2200 {
2201 	struct sh_eth_private *mdp = netdev_priv(ndev);
2202 
2203 	regs->version = SH_ETH_REG_DUMP_VERSION;
2204 
2205 	pm_runtime_get_sync(&mdp->pdev->dev);
2206 	__sh_eth_get_regs(ndev, buf);
2207 	pm_runtime_put_sync(&mdp->pdev->dev);
2208 }
2209 
2210 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2211 {
2212 	struct sh_eth_private *mdp = netdev_priv(ndev);
2213 	return mdp->msg_enable;
2214 }
2215 
2216 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2217 {
2218 	struct sh_eth_private *mdp = netdev_priv(ndev);
2219 	mdp->msg_enable = value;
2220 }
2221 
2222 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2223 	"rx_current", "tx_current",
2224 	"rx_dirty", "tx_dirty",
2225 };
2226 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2227 
2228 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2229 {
2230 	switch (sset) {
2231 	case ETH_SS_STATS:
2232 		return SH_ETH_STATS_LEN;
2233 	default:
2234 		return -EOPNOTSUPP;
2235 	}
2236 }
2237 
2238 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2239 				     struct ethtool_stats *stats, u64 *data)
2240 {
2241 	struct sh_eth_private *mdp = netdev_priv(ndev);
2242 	int i = 0;
2243 
2244 	/* device-specific stats */
2245 	data[i++] = mdp->cur_rx;
2246 	data[i++] = mdp->cur_tx;
2247 	data[i++] = mdp->dirty_rx;
2248 	data[i++] = mdp->dirty_tx;
2249 }
2250 
2251 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2252 {
2253 	switch (stringset) {
2254 	case ETH_SS_STATS:
2255 		memcpy(data, *sh_eth_gstrings_stats,
2256 		       sizeof(sh_eth_gstrings_stats));
2257 		break;
2258 	}
2259 }
2260 
2261 static void sh_eth_get_ringparam(struct net_device *ndev,
2262 				 struct ethtool_ringparam *ring)
2263 {
2264 	struct sh_eth_private *mdp = netdev_priv(ndev);
2265 
2266 	ring->rx_max_pending = RX_RING_MAX;
2267 	ring->tx_max_pending = TX_RING_MAX;
2268 	ring->rx_pending = mdp->num_rx_ring;
2269 	ring->tx_pending = mdp->num_tx_ring;
2270 }
2271 
2272 static int sh_eth_set_ringparam(struct net_device *ndev,
2273 				struct ethtool_ringparam *ring)
2274 {
2275 	struct sh_eth_private *mdp = netdev_priv(ndev);
2276 	int ret;
2277 
2278 	if (ring->tx_pending > TX_RING_MAX ||
2279 	    ring->rx_pending > RX_RING_MAX ||
2280 	    ring->tx_pending < TX_RING_MIN ||
2281 	    ring->rx_pending < RX_RING_MIN)
2282 		return -EINVAL;
2283 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2284 		return -EINVAL;
2285 
2286 	if (netif_running(ndev)) {
2287 		netif_device_detach(ndev);
2288 		netif_tx_disable(ndev);
2289 
2290 		/* Serialise with the interrupt handler and NAPI, then
2291 		 * disable interrupts.  We have to clear the
2292 		 * irq_enabled flag first to ensure that interrupts
2293 		 * won't be re-enabled.
2294 		 */
2295 		mdp->irq_enabled = false;
2296 		synchronize_irq(ndev->irq);
2297 		napi_synchronize(&mdp->napi);
2298 		sh_eth_write(ndev, 0x0000, EESIPR);
2299 
2300 		sh_eth_dev_exit(ndev);
2301 
2302 		/* Free all the skbuffs in the Rx queue and the DMA buffers. */
2303 		sh_eth_ring_free(ndev);
2304 	}
2305 
2306 	/* Set new parameters */
2307 	mdp->num_rx_ring = ring->rx_pending;
2308 	mdp->num_tx_ring = ring->tx_pending;
2309 
2310 	if (netif_running(ndev)) {
2311 		ret = sh_eth_ring_init(ndev);
2312 		if (ret < 0) {
2313 			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2314 				   __func__);
2315 			return ret;
2316 		}
2317 		ret = sh_eth_dev_init(ndev);
2318 		if (ret < 0) {
2319 			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2320 				   __func__);
2321 			return ret;
2322 		}
2323 
2324 		netif_device_attach(ndev);
2325 	}
2326 
2327 	return 0;
2328 }
2329 
2330 static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2331 {
2332 	struct sh_eth_private *mdp = netdev_priv(ndev);
2333 
2334 	wol->supported = 0;
2335 	wol->wolopts = 0;
2336 
2337 	if (mdp->cd->magic) {
2338 		wol->supported = WAKE_MAGIC;
2339 		wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0;
2340 	}
2341 }
2342 
2343 static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2344 {
2345 	struct sh_eth_private *mdp = netdev_priv(ndev);
2346 
2347 	if (!mdp->cd->magic || wol->wolopts & ~WAKE_MAGIC)
2348 		return -EOPNOTSUPP;
2349 
2350 	mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
2351 
2352 	device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled);
2353 
2354 	return 0;
2355 }
2356 
2357 static const struct ethtool_ops sh_eth_ethtool_ops = {
2358 	.get_regs_len	= sh_eth_get_regs_len,
2359 	.get_regs	= sh_eth_get_regs,
2360 	.nway_reset	= phy_ethtool_nway_reset,
2361 	.get_msglevel	= sh_eth_get_msglevel,
2362 	.set_msglevel	= sh_eth_set_msglevel,
2363 	.get_link	= ethtool_op_get_link,
2364 	.get_strings	= sh_eth_get_strings,
2365 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2366 	.get_sset_count     = sh_eth_get_sset_count,
2367 	.get_ringparam	= sh_eth_get_ringparam,
2368 	.set_ringparam	= sh_eth_set_ringparam,
2369 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
2370 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
2371 	.get_wol	= sh_eth_get_wol,
2372 	.set_wol	= sh_eth_set_wol,
2373 };
2374 
2375 /* network device open function */
2376 static int sh_eth_open(struct net_device *ndev)
2377 {
2378 	struct sh_eth_private *mdp = netdev_priv(ndev);
2379 	int ret;
2380 
2381 	pm_runtime_get_sync(&mdp->pdev->dev);
2382 
2383 	napi_enable(&mdp->napi);
2384 
2385 	ret = request_irq(ndev->irq, sh_eth_interrupt,
2386 			  mdp->cd->irq_flags, ndev->name, ndev);
2387 	if (ret) {
2388 		netdev_err(ndev, "Can not assign IRQ number\n");
2389 		goto out_napi_off;
2390 	}
2391 
2392 	/* Descriptor set */
2393 	ret = sh_eth_ring_init(ndev);
2394 	if (ret)
2395 		goto out_free_irq;
2396 
2397 	/* device init */
2398 	ret = sh_eth_dev_init(ndev);
2399 	if (ret)
2400 		goto out_free_irq;
2401 
2402 	/* PHY control start*/
2403 	ret = sh_eth_phy_start(ndev);
2404 	if (ret)
2405 		goto out_free_irq;
2406 
2407 	netif_start_queue(ndev);
2408 
2409 	mdp->is_opened = 1;
2410 
2411 	return ret;
2412 
2413 out_free_irq:
2414 	free_irq(ndev->irq, ndev);
2415 out_napi_off:
2416 	napi_disable(&mdp->napi);
2417 	pm_runtime_put_sync(&mdp->pdev->dev);
2418 	return ret;
2419 }
2420 
2421 /* Timeout function */
2422 static void sh_eth_tx_timeout(struct net_device *ndev)
2423 {
2424 	struct sh_eth_private *mdp = netdev_priv(ndev);
2425 	struct sh_eth_rxdesc *rxdesc;
2426 	int i;
2427 
2428 	netif_stop_queue(ndev);
2429 
2430 	netif_err(mdp, timer, ndev,
2431 		  "transmit timed out, status %8.8x, resetting...\n",
2432 		  sh_eth_read(ndev, EESR));
2433 
2434 	/* tx_errors count up */
2435 	ndev->stats.tx_errors++;
2436 
2437 	/* Free all the skbuffs in the Rx queue. */
2438 	for (i = 0; i < mdp->num_rx_ring; i++) {
2439 		rxdesc = &mdp->rx_ring[i];
2440 		rxdesc->status = cpu_to_le32(0);
2441 		rxdesc->addr = cpu_to_le32(0xBADF00D0);
2442 		dev_kfree_skb(mdp->rx_skbuff[i]);
2443 		mdp->rx_skbuff[i] = NULL;
2444 	}
2445 	for (i = 0; i < mdp->num_tx_ring; i++) {
2446 		dev_kfree_skb(mdp->tx_skbuff[i]);
2447 		mdp->tx_skbuff[i] = NULL;
2448 	}
2449 
2450 	/* device init */
2451 	sh_eth_dev_init(ndev);
2452 
2453 	netif_start_queue(ndev);
2454 }
2455 
2456 /* Packet transmit function */
2457 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2458 {
2459 	struct sh_eth_private *mdp = netdev_priv(ndev);
2460 	struct sh_eth_txdesc *txdesc;
2461 	dma_addr_t dma_addr;
2462 	u32 entry;
2463 	unsigned long flags;
2464 
2465 	spin_lock_irqsave(&mdp->lock, flags);
2466 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2467 		if (!sh_eth_tx_free(ndev, true)) {
2468 			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2469 			netif_stop_queue(ndev);
2470 			spin_unlock_irqrestore(&mdp->lock, flags);
2471 			return NETDEV_TX_BUSY;
2472 		}
2473 	}
2474 	spin_unlock_irqrestore(&mdp->lock, flags);
2475 
2476 	if (skb_put_padto(skb, ETH_ZLEN))
2477 		return NETDEV_TX_OK;
2478 
2479 	entry = mdp->cur_tx % mdp->num_tx_ring;
2480 	mdp->tx_skbuff[entry] = skb;
2481 	txdesc = &mdp->tx_ring[entry];
2482 	/* soft swap. */
2483 	if (!mdp->cd->hw_swap)
2484 		sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2485 	dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, skb->len,
2486 				  DMA_TO_DEVICE);
2487 	if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
2488 		kfree_skb(skb);
2489 		return NETDEV_TX_OK;
2490 	}
2491 	txdesc->addr = cpu_to_le32(dma_addr);
2492 	txdesc->len  = cpu_to_le32(skb->len << 16);
2493 
2494 	dma_wmb(); /* TACT bit must be set after all the above writes */
2495 	if (entry >= mdp->num_tx_ring - 1)
2496 		txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2497 	else
2498 		txdesc->status |= cpu_to_le32(TD_TACT);
2499 
2500 	mdp->cur_tx++;
2501 
2502 	if (!(sh_eth_read(ndev, EDTRR) & mdp->cd->edtrr_trns))
2503 		sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
2504 
2505 	return NETDEV_TX_OK;
2506 }
2507 
2508 /* The statistics registers have write-clear behaviour, which means we
2509  * will lose any increment between the read and write.  We mitigate
2510  * this by only clearing when we read a non-zero value, so we will
2511  * never falsely report a total of zero.
2512  */
2513 static void
2514 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2515 {
2516 	u32 delta = sh_eth_read(ndev, reg);
2517 
2518 	if (delta) {
2519 		*stat += delta;
2520 		sh_eth_write(ndev, 0, reg);
2521 	}
2522 }
2523 
2524 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2525 {
2526 	struct sh_eth_private *mdp = netdev_priv(ndev);
2527 
2528 	if (mdp->cd->no_tx_cntrs)
2529 		return &ndev->stats;
2530 
2531 	if (!mdp->is_opened)
2532 		return &ndev->stats;
2533 
2534 	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2535 	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2536 	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2537 
2538 	if (mdp->cd->cexcr) {
2539 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2540 				   CERCR);
2541 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2542 				   CEECR);
2543 	} else {
2544 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2545 				   CNDCR);
2546 	}
2547 
2548 	return &ndev->stats;
2549 }
2550 
2551 /* device close function */
2552 static int sh_eth_close(struct net_device *ndev)
2553 {
2554 	struct sh_eth_private *mdp = netdev_priv(ndev);
2555 
2556 	netif_stop_queue(ndev);
2557 
2558 	/* Serialise with the interrupt handler and NAPI, then disable
2559 	 * interrupts.  We have to clear the irq_enabled flag first to
2560 	 * ensure that interrupts won't be re-enabled.
2561 	 */
2562 	mdp->irq_enabled = false;
2563 	synchronize_irq(ndev->irq);
2564 	napi_disable(&mdp->napi);
2565 	sh_eth_write(ndev, 0x0000, EESIPR);
2566 
2567 	sh_eth_dev_exit(ndev);
2568 
2569 	/* PHY Disconnect */
2570 	if (ndev->phydev) {
2571 		phy_stop(ndev->phydev);
2572 		phy_disconnect(ndev->phydev);
2573 	}
2574 
2575 	free_irq(ndev->irq, ndev);
2576 
2577 	/* Free all the skbuffs in the Rx queue and the DMA buffer. */
2578 	sh_eth_ring_free(ndev);
2579 
2580 	pm_runtime_put_sync(&mdp->pdev->dev);
2581 
2582 	mdp->is_opened = 0;
2583 
2584 	return 0;
2585 }
2586 
2587 /* ioctl to device function */
2588 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2589 {
2590 	struct phy_device *phydev = ndev->phydev;
2591 
2592 	if (!netif_running(ndev))
2593 		return -EINVAL;
2594 
2595 	if (!phydev)
2596 		return -ENODEV;
2597 
2598 	return phy_mii_ioctl(phydev, rq, cmd);
2599 }
2600 
2601 static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu)
2602 {
2603 	if (netif_running(ndev))
2604 		return -EBUSY;
2605 
2606 	ndev->mtu = new_mtu;
2607 	netdev_update_features(ndev);
2608 
2609 	return 0;
2610 }
2611 
2612 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2613 static u32 sh_eth_tsu_get_post_mask(int entry)
2614 {
2615 	return 0x0f << (28 - ((entry % 8) * 4));
2616 }
2617 
2618 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2619 {
2620 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2621 }
2622 
2623 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2624 					     int entry)
2625 {
2626 	struct sh_eth_private *mdp = netdev_priv(ndev);
2627 	int reg = TSU_POST1 + entry / 8;
2628 	u32 tmp;
2629 
2630 	tmp = sh_eth_tsu_read(mdp, reg);
2631 	sh_eth_tsu_write(mdp, tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg);
2632 }
2633 
2634 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2635 					      int entry)
2636 {
2637 	struct sh_eth_private *mdp = netdev_priv(ndev);
2638 	int reg = TSU_POST1 + entry / 8;
2639 	u32 post_mask, ref_mask, tmp;
2640 
2641 	post_mask = sh_eth_tsu_get_post_mask(entry);
2642 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2643 
2644 	tmp = sh_eth_tsu_read(mdp, reg);
2645 	sh_eth_tsu_write(mdp, tmp & ~post_mask, reg);
2646 
2647 	/* If other port enables, the function returns "true" */
2648 	return tmp & ref_mask;
2649 }
2650 
2651 static int sh_eth_tsu_busy(struct net_device *ndev)
2652 {
2653 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2654 	struct sh_eth_private *mdp = netdev_priv(ndev);
2655 
2656 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2657 		udelay(10);
2658 		timeout--;
2659 		if (timeout <= 0) {
2660 			netdev_err(ndev, "%s: timeout\n", __func__);
2661 			return -ETIMEDOUT;
2662 		}
2663 	}
2664 
2665 	return 0;
2666 }
2667 
2668 static int sh_eth_tsu_write_entry(struct net_device *ndev, u16 offset,
2669 				  const u8 *addr)
2670 {
2671 	struct sh_eth_private *mdp = netdev_priv(ndev);
2672 	u32 val;
2673 
2674 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2675 	iowrite32(val, mdp->tsu_addr + offset);
2676 	if (sh_eth_tsu_busy(ndev) < 0)
2677 		return -EBUSY;
2678 
2679 	val = addr[4] << 8 | addr[5];
2680 	iowrite32(val, mdp->tsu_addr + offset + 4);
2681 	if (sh_eth_tsu_busy(ndev) < 0)
2682 		return -EBUSY;
2683 
2684 	return 0;
2685 }
2686 
2687 static void sh_eth_tsu_read_entry(struct net_device *ndev, u16 offset, u8 *addr)
2688 {
2689 	struct sh_eth_private *mdp = netdev_priv(ndev);
2690 	u32 val;
2691 
2692 	val = ioread32(mdp->tsu_addr + offset);
2693 	addr[0] = (val >> 24) & 0xff;
2694 	addr[1] = (val >> 16) & 0xff;
2695 	addr[2] = (val >> 8) & 0xff;
2696 	addr[3] = val & 0xff;
2697 	val = ioread32(mdp->tsu_addr + offset + 4);
2698 	addr[4] = (val >> 8) & 0xff;
2699 	addr[5] = val & 0xff;
2700 }
2701 
2702 
2703 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2704 {
2705 	struct sh_eth_private *mdp = netdev_priv(ndev);
2706 	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2707 	int i;
2708 	u8 c_addr[ETH_ALEN];
2709 
2710 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2711 		sh_eth_tsu_read_entry(ndev, reg_offset, c_addr);
2712 		if (ether_addr_equal(addr, c_addr))
2713 			return i;
2714 	}
2715 
2716 	return -ENOENT;
2717 }
2718 
2719 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2720 {
2721 	u8 blank[ETH_ALEN];
2722 	int entry;
2723 
2724 	memset(blank, 0, sizeof(blank));
2725 	entry = sh_eth_tsu_find_entry(ndev, blank);
2726 	return (entry < 0) ? -ENOMEM : entry;
2727 }
2728 
2729 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2730 					      int entry)
2731 {
2732 	struct sh_eth_private *mdp = netdev_priv(ndev);
2733 	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2734 	int ret;
2735 	u8 blank[ETH_ALEN];
2736 
2737 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2738 			 ~(1 << (31 - entry)), TSU_TEN);
2739 
2740 	memset(blank, 0, sizeof(blank));
2741 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2742 	if (ret < 0)
2743 		return ret;
2744 	return 0;
2745 }
2746 
2747 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2748 {
2749 	struct sh_eth_private *mdp = netdev_priv(ndev);
2750 	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2751 	int i, ret;
2752 
2753 	if (!mdp->cd->tsu)
2754 		return 0;
2755 
2756 	i = sh_eth_tsu_find_entry(ndev, addr);
2757 	if (i < 0) {
2758 		/* No entry found, create one */
2759 		i = sh_eth_tsu_find_empty(ndev);
2760 		if (i < 0)
2761 			return -ENOMEM;
2762 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2763 		if (ret < 0)
2764 			return ret;
2765 
2766 		/* Enable the entry */
2767 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2768 				 (1 << (31 - i)), TSU_TEN);
2769 	}
2770 
2771 	/* Entry found or created, enable POST */
2772 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2773 
2774 	return 0;
2775 }
2776 
2777 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2778 {
2779 	struct sh_eth_private *mdp = netdev_priv(ndev);
2780 	int i, ret;
2781 
2782 	if (!mdp->cd->tsu)
2783 		return 0;
2784 
2785 	i = sh_eth_tsu_find_entry(ndev, addr);
2786 	if (i) {
2787 		/* Entry found */
2788 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2789 			goto done;
2790 
2791 		/* Disable the entry if both ports was disabled */
2792 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2793 		if (ret < 0)
2794 			return ret;
2795 	}
2796 done:
2797 	return 0;
2798 }
2799 
2800 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2801 {
2802 	struct sh_eth_private *mdp = netdev_priv(ndev);
2803 	int i, ret;
2804 
2805 	if (!mdp->cd->tsu)
2806 		return 0;
2807 
2808 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2809 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2810 			continue;
2811 
2812 		/* Disable the entry if both ports was disabled */
2813 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2814 		if (ret < 0)
2815 			return ret;
2816 	}
2817 
2818 	return 0;
2819 }
2820 
2821 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2822 {
2823 	struct sh_eth_private *mdp = netdev_priv(ndev);
2824 	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2825 	u8 addr[ETH_ALEN];
2826 	int i;
2827 
2828 	if (!mdp->cd->tsu)
2829 		return;
2830 
2831 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2832 		sh_eth_tsu_read_entry(ndev, reg_offset, addr);
2833 		if (is_multicast_ether_addr(addr))
2834 			sh_eth_tsu_del_entry(ndev, addr);
2835 	}
2836 }
2837 
2838 /* Update promiscuous flag and multicast filter */
2839 static void sh_eth_set_rx_mode(struct net_device *ndev)
2840 {
2841 	struct sh_eth_private *mdp = netdev_priv(ndev);
2842 	u32 ecmr_bits;
2843 	int mcast_all = 0;
2844 	unsigned long flags;
2845 
2846 	spin_lock_irqsave(&mdp->lock, flags);
2847 	/* Initial condition is MCT = 1, PRM = 0.
2848 	 * Depending on ndev->flags, set PRM or clear MCT
2849 	 */
2850 	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2851 	if (mdp->cd->tsu)
2852 		ecmr_bits |= ECMR_MCT;
2853 
2854 	if (!(ndev->flags & IFF_MULTICAST)) {
2855 		sh_eth_tsu_purge_mcast(ndev);
2856 		mcast_all = 1;
2857 	}
2858 	if (ndev->flags & IFF_ALLMULTI) {
2859 		sh_eth_tsu_purge_mcast(ndev);
2860 		ecmr_bits &= ~ECMR_MCT;
2861 		mcast_all = 1;
2862 	}
2863 
2864 	if (ndev->flags & IFF_PROMISC) {
2865 		sh_eth_tsu_purge_all(ndev);
2866 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2867 	} else if (mdp->cd->tsu) {
2868 		struct netdev_hw_addr *ha;
2869 		netdev_for_each_mc_addr(ha, ndev) {
2870 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2871 				continue;
2872 
2873 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2874 				if (!mcast_all) {
2875 					sh_eth_tsu_purge_mcast(ndev);
2876 					ecmr_bits &= ~ECMR_MCT;
2877 					mcast_all = 1;
2878 				}
2879 			}
2880 		}
2881 	}
2882 
2883 	/* update the ethernet mode */
2884 	sh_eth_write(ndev, ecmr_bits, ECMR);
2885 
2886 	spin_unlock_irqrestore(&mdp->lock, flags);
2887 }
2888 
2889 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2890 {
2891 	if (!mdp->port)
2892 		return TSU_VTAG0;
2893 	else
2894 		return TSU_VTAG1;
2895 }
2896 
2897 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2898 				  __be16 proto, u16 vid)
2899 {
2900 	struct sh_eth_private *mdp = netdev_priv(ndev);
2901 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2902 
2903 	if (unlikely(!mdp->cd->tsu))
2904 		return -EPERM;
2905 
2906 	/* No filtering if vid = 0 */
2907 	if (!vid)
2908 		return 0;
2909 
2910 	mdp->vlan_num_ids++;
2911 
2912 	/* The controller has one VLAN tag HW filter. So, if the filter is
2913 	 * already enabled, the driver disables it and the filte
2914 	 */
2915 	if (mdp->vlan_num_ids > 1) {
2916 		/* disable VLAN filter */
2917 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2918 		return 0;
2919 	}
2920 
2921 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2922 			 vtag_reg_index);
2923 
2924 	return 0;
2925 }
2926 
2927 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2928 				   __be16 proto, u16 vid)
2929 {
2930 	struct sh_eth_private *mdp = netdev_priv(ndev);
2931 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2932 
2933 	if (unlikely(!mdp->cd->tsu))
2934 		return -EPERM;
2935 
2936 	/* No filtering if vid = 0 */
2937 	if (!vid)
2938 		return 0;
2939 
2940 	mdp->vlan_num_ids--;
2941 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2942 
2943 	return 0;
2944 }
2945 
2946 /* SuperH's TSU register init function */
2947 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2948 {
2949 	if (!mdp->cd->dual_port) {
2950 		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2951 		sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
2952 				 TSU_FWSLC);	/* Enable POST registers */
2953 		return;
2954 	}
2955 
2956 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2957 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2958 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2959 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2960 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2961 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2962 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2963 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2964 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2965 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2966 	sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2967 	sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2968 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2969 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2970 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2971 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2972 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2973 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2974 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2975 }
2976 
2977 /* MDIO bus release function */
2978 static int sh_mdio_release(struct sh_eth_private *mdp)
2979 {
2980 	/* unregister mdio bus */
2981 	mdiobus_unregister(mdp->mii_bus);
2982 
2983 	/* free bitbang info */
2984 	free_mdio_bitbang(mdp->mii_bus);
2985 
2986 	return 0;
2987 }
2988 
2989 /* MDIO bus init function */
2990 static int sh_mdio_init(struct sh_eth_private *mdp,
2991 			struct sh_eth_plat_data *pd)
2992 {
2993 	int ret;
2994 	struct bb_info *bitbang;
2995 	struct platform_device *pdev = mdp->pdev;
2996 	struct device *dev = &mdp->pdev->dev;
2997 
2998 	/* create bit control struct for PHY */
2999 	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
3000 	if (!bitbang)
3001 		return -ENOMEM;
3002 
3003 	/* bitbang init */
3004 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
3005 	bitbang->set_gate = pd->set_mdio_gate;
3006 	bitbang->ctrl.ops = &bb_ops;
3007 
3008 	/* MII controller setting */
3009 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
3010 	if (!mdp->mii_bus)
3011 		return -ENOMEM;
3012 
3013 	/* Hook up MII support for ethtool */
3014 	mdp->mii_bus->name = "sh_mii";
3015 	mdp->mii_bus->parent = dev;
3016 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
3017 		 pdev->name, pdev->id);
3018 
3019 	/* register MDIO bus */
3020 	if (pd->phy_irq > 0)
3021 		mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
3022 
3023 	ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
3024 	if (ret)
3025 		goto out_free_bus;
3026 
3027 	return 0;
3028 
3029 out_free_bus:
3030 	free_mdio_bitbang(mdp->mii_bus);
3031 	return ret;
3032 }
3033 
3034 static const u16 *sh_eth_get_register_offset(int register_type)
3035 {
3036 	const u16 *reg_offset = NULL;
3037 
3038 	switch (register_type) {
3039 	case SH_ETH_REG_GIGABIT:
3040 		reg_offset = sh_eth_offset_gigabit;
3041 		break;
3042 	case SH_ETH_REG_FAST_RZ:
3043 		reg_offset = sh_eth_offset_fast_rz;
3044 		break;
3045 	case SH_ETH_REG_FAST_RCAR:
3046 		reg_offset = sh_eth_offset_fast_rcar;
3047 		break;
3048 	case SH_ETH_REG_FAST_SH4:
3049 		reg_offset = sh_eth_offset_fast_sh4;
3050 		break;
3051 	case SH_ETH_REG_FAST_SH3_SH2:
3052 		reg_offset = sh_eth_offset_fast_sh3_sh2;
3053 		break;
3054 	}
3055 
3056 	return reg_offset;
3057 }
3058 
3059 static const struct net_device_ops sh_eth_netdev_ops = {
3060 	.ndo_open		= sh_eth_open,
3061 	.ndo_stop		= sh_eth_close,
3062 	.ndo_start_xmit		= sh_eth_start_xmit,
3063 	.ndo_get_stats		= sh_eth_get_stats,
3064 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3065 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3066 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3067 	.ndo_change_mtu		= sh_eth_change_mtu,
3068 	.ndo_validate_addr	= eth_validate_addr,
3069 	.ndo_set_mac_address	= eth_mac_addr,
3070 };
3071 
3072 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3073 	.ndo_open		= sh_eth_open,
3074 	.ndo_stop		= sh_eth_close,
3075 	.ndo_start_xmit		= sh_eth_start_xmit,
3076 	.ndo_get_stats		= sh_eth_get_stats,
3077 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3078 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
3079 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
3080 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3081 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3082 	.ndo_change_mtu		= sh_eth_change_mtu,
3083 	.ndo_validate_addr	= eth_validate_addr,
3084 	.ndo_set_mac_address	= eth_mac_addr,
3085 };
3086 
3087 #ifdef CONFIG_OF
3088 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3089 {
3090 	struct device_node *np = dev->of_node;
3091 	struct sh_eth_plat_data *pdata;
3092 	const char *mac_addr;
3093 
3094 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3095 	if (!pdata)
3096 		return NULL;
3097 
3098 	pdata->phy_interface = of_get_phy_mode(np);
3099 
3100 	mac_addr = of_get_mac_address(np);
3101 	if (mac_addr)
3102 		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
3103 
3104 	pdata->no_ether_link =
3105 		of_property_read_bool(np, "renesas,no-ether-link");
3106 	pdata->ether_link_active_low =
3107 		of_property_read_bool(np, "renesas,ether-link-active-low");
3108 
3109 	return pdata;
3110 }
3111 
3112 static const struct of_device_id sh_eth_match_table[] = {
3113 	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3114 	{ .compatible = "renesas,ether-r8a7743", .data = &rcar_gen2_data },
3115 	{ .compatible = "renesas,ether-r8a7745", .data = &rcar_gen2_data },
3116 	{ .compatible = "renesas,ether-r8a7778", .data = &rcar_gen1_data },
3117 	{ .compatible = "renesas,ether-r8a7779", .data = &rcar_gen1_data },
3118 	{ .compatible = "renesas,ether-r8a7790", .data = &rcar_gen2_data },
3119 	{ .compatible = "renesas,ether-r8a7791", .data = &rcar_gen2_data },
3120 	{ .compatible = "renesas,ether-r8a7793", .data = &rcar_gen2_data },
3121 	{ .compatible = "renesas,ether-r8a7794", .data = &rcar_gen2_data },
3122 	{ .compatible = "renesas,gether-r8a77980", .data = &r8a77980_data },
3123 	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3124 	{ .compatible = "renesas,rcar-gen1-ether", .data = &rcar_gen1_data },
3125 	{ .compatible = "renesas,rcar-gen2-ether", .data = &rcar_gen2_data },
3126 	{ }
3127 };
3128 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3129 #else
3130 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3131 {
3132 	return NULL;
3133 }
3134 #endif
3135 
3136 static int sh_eth_drv_probe(struct platform_device *pdev)
3137 {
3138 	struct resource *res;
3139 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3140 	const struct platform_device_id *id = platform_get_device_id(pdev);
3141 	struct sh_eth_private *mdp;
3142 	struct net_device *ndev;
3143 	int ret;
3144 
3145 	/* get base addr */
3146 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3147 
3148 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3149 	if (!ndev)
3150 		return -ENOMEM;
3151 
3152 	pm_runtime_enable(&pdev->dev);
3153 	pm_runtime_get_sync(&pdev->dev);
3154 
3155 	ret = platform_get_irq(pdev, 0);
3156 	if (ret < 0)
3157 		goto out_release;
3158 	ndev->irq = ret;
3159 
3160 	SET_NETDEV_DEV(ndev, &pdev->dev);
3161 
3162 	mdp = netdev_priv(ndev);
3163 	mdp->num_tx_ring = TX_RING_SIZE;
3164 	mdp->num_rx_ring = RX_RING_SIZE;
3165 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3166 	if (IS_ERR(mdp->addr)) {
3167 		ret = PTR_ERR(mdp->addr);
3168 		goto out_release;
3169 	}
3170 
3171 	ndev->base_addr = res->start;
3172 
3173 	spin_lock_init(&mdp->lock);
3174 	mdp->pdev = pdev;
3175 
3176 	if (pdev->dev.of_node)
3177 		pd = sh_eth_parse_dt(&pdev->dev);
3178 	if (!pd) {
3179 		dev_err(&pdev->dev, "no platform data\n");
3180 		ret = -EINVAL;
3181 		goto out_release;
3182 	}
3183 
3184 	/* get PHY ID */
3185 	mdp->phy_id = pd->phy;
3186 	mdp->phy_interface = pd->phy_interface;
3187 	mdp->no_ether_link = pd->no_ether_link;
3188 	mdp->ether_link_active_low = pd->ether_link_active_low;
3189 
3190 	/* set cpu data */
3191 	if (id)
3192 		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3193 	else
3194 		mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3195 
3196 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3197 	if (!mdp->reg_offset) {
3198 		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3199 			mdp->cd->register_type);
3200 		ret = -EINVAL;
3201 		goto out_release;
3202 	}
3203 	sh_eth_set_default_cpu_data(mdp->cd);
3204 
3205 	/* User's manual states max MTU should be 2048 but due to the
3206 	 * alignment calculations in sh_eth_ring_init() the practical
3207 	 * MTU is a bit less. Maybe this can be optimized some more.
3208 	 */
3209 	ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3210 	ndev->min_mtu = ETH_MIN_MTU;
3211 
3212 	/* set function */
3213 	if (mdp->cd->tsu)
3214 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3215 	else
3216 		ndev->netdev_ops = &sh_eth_netdev_ops;
3217 	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3218 	ndev->watchdog_timeo = TX_TIMEOUT;
3219 
3220 	/* debug message level */
3221 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3222 
3223 	/* read and set MAC address */
3224 	read_mac_address(ndev, pd->mac_addr);
3225 	if (!is_valid_ether_addr(ndev->dev_addr)) {
3226 		dev_warn(&pdev->dev,
3227 			 "no valid MAC address supplied, using a random one.\n");
3228 		eth_hw_addr_random(ndev);
3229 	}
3230 
3231 	if (mdp->cd->tsu) {
3232 		int port = pdev->id < 0 ? 0 : pdev->id % 2;
3233 		struct resource *rtsu;
3234 
3235 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3236 		if (!rtsu) {
3237 			dev_err(&pdev->dev, "no TSU resource\n");
3238 			ret = -ENODEV;
3239 			goto out_release;
3240 		}
3241 		/* We can only request the  TSU region  for the first port
3242 		 * of the two  sharing this TSU for the probe to succeed...
3243 		 */
3244 		if (port == 0 &&
3245 		    !devm_request_mem_region(&pdev->dev, rtsu->start,
3246 					     resource_size(rtsu),
3247 					     dev_name(&pdev->dev))) {
3248 			dev_err(&pdev->dev, "can't request TSU resource.\n");
3249 			ret = -EBUSY;
3250 			goto out_release;
3251 		}
3252 		/* ioremap the TSU registers */
3253 		mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start,
3254 					     resource_size(rtsu));
3255 		if (!mdp->tsu_addr) {
3256 			dev_err(&pdev->dev, "TSU region ioremap() failed.\n");
3257 			ret = -ENOMEM;
3258 			goto out_release;
3259 		}
3260 		mdp->port = port;
3261 		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3262 
3263 		/* Need to init only the first port of the two sharing a TSU */
3264 		if (port == 0) {
3265 			if (mdp->cd->chip_reset)
3266 				mdp->cd->chip_reset(ndev);
3267 
3268 			/* TSU init (Init only)*/
3269 			sh_eth_tsu_init(mdp);
3270 		}
3271 	}
3272 
3273 	if (mdp->cd->rmiimode)
3274 		sh_eth_write(ndev, 0x1, RMIIMODE);
3275 
3276 	/* MDIO bus init */
3277 	ret = sh_mdio_init(mdp, pd);
3278 	if (ret) {
3279 		if (ret != -EPROBE_DEFER)
3280 			dev_err(&pdev->dev, "MDIO init failed: %d\n", ret);
3281 		goto out_release;
3282 	}
3283 
3284 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3285 
3286 	/* network device register */
3287 	ret = register_netdev(ndev);
3288 	if (ret)
3289 		goto out_napi_del;
3290 
3291 	if (mdp->cd->magic)
3292 		device_set_wakeup_capable(&pdev->dev, 1);
3293 
3294 	/* print device information */
3295 	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3296 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3297 
3298 	pm_runtime_put(&pdev->dev);
3299 	platform_set_drvdata(pdev, ndev);
3300 
3301 	return ret;
3302 
3303 out_napi_del:
3304 	netif_napi_del(&mdp->napi);
3305 	sh_mdio_release(mdp);
3306 
3307 out_release:
3308 	/* net_dev free */
3309 	free_netdev(ndev);
3310 
3311 	pm_runtime_put(&pdev->dev);
3312 	pm_runtime_disable(&pdev->dev);
3313 	return ret;
3314 }
3315 
3316 static int sh_eth_drv_remove(struct platform_device *pdev)
3317 {
3318 	struct net_device *ndev = platform_get_drvdata(pdev);
3319 	struct sh_eth_private *mdp = netdev_priv(ndev);
3320 
3321 	unregister_netdev(ndev);
3322 	netif_napi_del(&mdp->napi);
3323 	sh_mdio_release(mdp);
3324 	pm_runtime_disable(&pdev->dev);
3325 	free_netdev(ndev);
3326 
3327 	return 0;
3328 }
3329 
3330 #ifdef CONFIG_PM
3331 #ifdef CONFIG_PM_SLEEP
3332 static int sh_eth_wol_setup(struct net_device *ndev)
3333 {
3334 	struct sh_eth_private *mdp = netdev_priv(ndev);
3335 
3336 	/* Only allow ECI interrupts */
3337 	synchronize_irq(ndev->irq);
3338 	napi_disable(&mdp->napi);
3339 	sh_eth_write(ndev, EESIPR_ECIIP, EESIPR);
3340 
3341 	/* Enable MagicPacket */
3342 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3343 
3344 	return enable_irq_wake(ndev->irq);
3345 }
3346 
3347 static int sh_eth_wol_restore(struct net_device *ndev)
3348 {
3349 	struct sh_eth_private *mdp = netdev_priv(ndev);
3350 	int ret;
3351 
3352 	napi_enable(&mdp->napi);
3353 
3354 	/* Disable MagicPacket */
3355 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0);
3356 
3357 	/* The device needs to be reset to restore MagicPacket logic
3358 	 * for next wakeup. If we close and open the device it will
3359 	 * both be reset and all registers restored. This is what
3360 	 * happens during suspend and resume without WoL enabled.
3361 	 */
3362 	ret = sh_eth_close(ndev);
3363 	if (ret < 0)
3364 		return ret;
3365 	ret = sh_eth_open(ndev);
3366 	if (ret < 0)
3367 		return ret;
3368 
3369 	return disable_irq_wake(ndev->irq);
3370 }
3371 
3372 static int sh_eth_suspend(struct device *dev)
3373 {
3374 	struct net_device *ndev = dev_get_drvdata(dev);
3375 	struct sh_eth_private *mdp = netdev_priv(ndev);
3376 	int ret = 0;
3377 
3378 	if (!netif_running(ndev))
3379 		return 0;
3380 
3381 	netif_device_detach(ndev);
3382 
3383 	if (mdp->wol_enabled)
3384 		ret = sh_eth_wol_setup(ndev);
3385 	else
3386 		ret = sh_eth_close(ndev);
3387 
3388 	return ret;
3389 }
3390 
3391 static int sh_eth_resume(struct device *dev)
3392 {
3393 	struct net_device *ndev = dev_get_drvdata(dev);
3394 	struct sh_eth_private *mdp = netdev_priv(ndev);
3395 	int ret = 0;
3396 
3397 	if (!netif_running(ndev))
3398 		return 0;
3399 
3400 	if (mdp->wol_enabled)
3401 		ret = sh_eth_wol_restore(ndev);
3402 	else
3403 		ret = sh_eth_open(ndev);
3404 
3405 	if (ret < 0)
3406 		return ret;
3407 
3408 	netif_device_attach(ndev);
3409 
3410 	return ret;
3411 }
3412 #endif
3413 
3414 static int sh_eth_runtime_nop(struct device *dev)
3415 {
3416 	/* Runtime PM callback shared between ->runtime_suspend()
3417 	 * and ->runtime_resume(). Simply returns success.
3418 	 *
3419 	 * This driver re-initializes all registers after
3420 	 * pm_runtime_get_sync() anyway so there is no need
3421 	 * to save and restore registers here.
3422 	 */
3423 	return 0;
3424 }
3425 
3426 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3427 	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3428 	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3429 };
3430 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3431 #else
3432 #define SH_ETH_PM_OPS NULL
3433 #endif
3434 
3435 static const struct platform_device_id sh_eth_id_table[] = {
3436 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3437 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3438 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3439 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3440 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3441 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3442 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3443 	{ }
3444 };
3445 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3446 
3447 static struct platform_driver sh_eth_driver = {
3448 	.probe = sh_eth_drv_probe,
3449 	.remove = sh_eth_drv_remove,
3450 	.id_table = sh_eth_id_table,
3451 	.driver = {
3452 		   .name = CARDNAME,
3453 		   .pm = SH_ETH_PM_OPS,
3454 		   .of_match_table = of_match_ptr(sh_eth_match_table),
3455 	},
3456 };
3457 
3458 module_platform_driver(sh_eth_driver);
3459 
3460 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3461 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3462 MODULE_LICENSE("GPL v2");
3463