xref: /linux/drivers/net/ethernet/renesas/sh_eth.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*  SuperH Ethernet device driver
2  *
3  *  Copyright (C) 2014  Renesas Electronics Corporation
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
6  *  Copyright (C) 2013-2014 Cogent Embedded, Inc.
7  *  Copyright (C) 2014 Codethink Limited
8  *
9  *  This program is free software; you can redistribute it and/or modify it
10  *  under the terms and conditions of the GNU General Public License,
11  *  version 2, as published by the Free Software Foundation.
12  *
13  *  This program is distributed in the hope it will be useful, but WITHOUT
14  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  *  more details.
17  *
18  *  The full GNU General Public License is included in this distribution in
19  *  the file called "COPYING".
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
38 #include <linux/io.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/clk.h>
44 #include <linux/sh_eth.h>
45 #include <linux/of_mdio.h>
46 
47 #include "sh_eth.h"
48 
49 #define SH_ETH_DEF_MSG_ENABLE \
50 		(NETIF_MSG_LINK	| \
51 		NETIF_MSG_TIMER	| \
52 		NETIF_MSG_RX_ERR| \
53 		NETIF_MSG_TX_ERR)
54 
55 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
56 	[EDSR]		= 0x0000,
57 	[EDMR]		= 0x0400,
58 	[EDTRR]		= 0x0408,
59 	[EDRRR]		= 0x0410,
60 	[EESR]		= 0x0428,
61 	[EESIPR]	= 0x0430,
62 	[TDLAR]		= 0x0010,
63 	[TDFAR]		= 0x0014,
64 	[TDFXR]		= 0x0018,
65 	[TDFFR]		= 0x001c,
66 	[RDLAR]		= 0x0030,
67 	[RDFAR]		= 0x0034,
68 	[RDFXR]		= 0x0038,
69 	[RDFFR]		= 0x003c,
70 	[TRSCER]	= 0x0438,
71 	[RMFCR]		= 0x0440,
72 	[TFTR]		= 0x0448,
73 	[FDR]		= 0x0450,
74 	[RMCR]		= 0x0458,
75 	[RPADIR]	= 0x0460,
76 	[FCFTR]		= 0x0468,
77 	[CSMR]		= 0x04E4,
78 
79 	[ECMR]		= 0x0500,
80 	[ECSR]		= 0x0510,
81 	[ECSIPR]	= 0x0518,
82 	[PIR]		= 0x0520,
83 	[PSR]		= 0x0528,
84 	[PIPR]		= 0x052c,
85 	[RFLR]		= 0x0508,
86 	[APR]		= 0x0554,
87 	[MPR]		= 0x0558,
88 	[PFTCR]		= 0x055c,
89 	[PFRCR]		= 0x0560,
90 	[TPAUSER]	= 0x0564,
91 	[GECMR]		= 0x05b0,
92 	[BCULR]		= 0x05b4,
93 	[MAHR]		= 0x05c0,
94 	[MALR]		= 0x05c8,
95 	[TROCR]		= 0x0700,
96 	[CDCR]		= 0x0708,
97 	[LCCR]		= 0x0710,
98 	[CEFCR]		= 0x0740,
99 	[FRECR]		= 0x0748,
100 	[TSFRCR]	= 0x0750,
101 	[TLFRCR]	= 0x0758,
102 	[RFCR]		= 0x0760,
103 	[CERCR]		= 0x0768,
104 	[CEECR]		= 0x0770,
105 	[MAFCR]		= 0x0778,
106 	[RMII_MII]	= 0x0790,
107 
108 	[ARSTR]		= 0x0000,
109 	[TSU_CTRST]	= 0x0004,
110 	[TSU_FWEN0]	= 0x0010,
111 	[TSU_FWEN1]	= 0x0014,
112 	[TSU_FCM]	= 0x0018,
113 	[TSU_BSYSL0]	= 0x0020,
114 	[TSU_BSYSL1]	= 0x0024,
115 	[TSU_PRISL0]	= 0x0028,
116 	[TSU_PRISL1]	= 0x002c,
117 	[TSU_FWSL0]	= 0x0030,
118 	[TSU_FWSL1]	= 0x0034,
119 	[TSU_FWSLC]	= 0x0038,
120 	[TSU_QTAG0]	= 0x0040,
121 	[TSU_QTAG1]	= 0x0044,
122 	[TSU_FWSR]	= 0x0050,
123 	[TSU_FWINMK]	= 0x0054,
124 	[TSU_ADQT0]	= 0x0048,
125 	[TSU_ADQT1]	= 0x004c,
126 	[TSU_VTAG0]	= 0x0058,
127 	[TSU_VTAG1]	= 0x005c,
128 	[TSU_ADSBSY]	= 0x0060,
129 	[TSU_TEN]	= 0x0064,
130 	[TSU_POST1]	= 0x0070,
131 	[TSU_POST2]	= 0x0074,
132 	[TSU_POST3]	= 0x0078,
133 	[TSU_POST4]	= 0x007c,
134 	[TSU_ADRH0]	= 0x0100,
135 	[TSU_ADRL0]	= 0x0104,
136 	[TSU_ADRH31]	= 0x01f8,
137 	[TSU_ADRL31]	= 0x01fc,
138 
139 	[TXNLCR0]	= 0x0080,
140 	[TXALCR0]	= 0x0084,
141 	[RXNLCR0]	= 0x0088,
142 	[RXALCR0]	= 0x008c,
143 	[FWNLCR0]	= 0x0090,
144 	[FWALCR0]	= 0x0094,
145 	[TXNLCR1]	= 0x00a0,
146 	[TXALCR1]	= 0x00a0,
147 	[RXNLCR1]	= 0x00a8,
148 	[RXALCR1]	= 0x00ac,
149 	[FWNLCR1]	= 0x00b0,
150 	[FWALCR1]	= 0x00b4,
151 };
152 
153 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
154 	[EDSR]		= 0x0000,
155 	[EDMR]		= 0x0400,
156 	[EDTRR]		= 0x0408,
157 	[EDRRR]		= 0x0410,
158 	[EESR]		= 0x0428,
159 	[EESIPR]	= 0x0430,
160 	[TDLAR]		= 0x0010,
161 	[TDFAR]		= 0x0014,
162 	[TDFXR]		= 0x0018,
163 	[TDFFR]		= 0x001c,
164 	[RDLAR]		= 0x0030,
165 	[RDFAR]		= 0x0034,
166 	[RDFXR]		= 0x0038,
167 	[RDFFR]		= 0x003c,
168 	[TRSCER]	= 0x0438,
169 	[RMFCR]		= 0x0440,
170 	[TFTR]		= 0x0448,
171 	[FDR]		= 0x0450,
172 	[RMCR]		= 0x0458,
173 	[RPADIR]	= 0x0460,
174 	[FCFTR]		= 0x0468,
175 	[CSMR]		= 0x04E4,
176 
177 	[ECMR]		= 0x0500,
178 	[RFLR]		= 0x0508,
179 	[ECSR]		= 0x0510,
180 	[ECSIPR]	= 0x0518,
181 	[PIR]		= 0x0520,
182 	[APR]		= 0x0554,
183 	[MPR]		= 0x0558,
184 	[PFTCR]		= 0x055c,
185 	[PFRCR]		= 0x0560,
186 	[TPAUSER]	= 0x0564,
187 	[MAHR]		= 0x05c0,
188 	[MALR]		= 0x05c8,
189 	[CEFCR]		= 0x0740,
190 	[FRECR]		= 0x0748,
191 	[TSFRCR]	= 0x0750,
192 	[TLFRCR]	= 0x0758,
193 	[RFCR]		= 0x0760,
194 	[MAFCR]		= 0x0778,
195 
196 	[ARSTR]		= 0x0000,
197 	[TSU_CTRST]	= 0x0004,
198 	[TSU_VTAG0]	= 0x0058,
199 	[TSU_ADSBSY]	= 0x0060,
200 	[TSU_TEN]	= 0x0064,
201 	[TSU_ADRH0]	= 0x0100,
202 	[TSU_ADRL0]	= 0x0104,
203 	[TSU_ADRH31]	= 0x01f8,
204 	[TSU_ADRL31]	= 0x01fc,
205 
206 	[TXNLCR0]	= 0x0080,
207 	[TXALCR0]	= 0x0084,
208 	[RXNLCR0]	= 0x0088,
209 	[RXALCR0]	= 0x008C,
210 };
211 
212 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
213 	[ECMR]		= 0x0300,
214 	[RFLR]		= 0x0308,
215 	[ECSR]		= 0x0310,
216 	[ECSIPR]	= 0x0318,
217 	[PIR]		= 0x0320,
218 	[PSR]		= 0x0328,
219 	[RDMLR]		= 0x0340,
220 	[IPGR]		= 0x0350,
221 	[APR]		= 0x0354,
222 	[MPR]		= 0x0358,
223 	[RFCF]		= 0x0360,
224 	[TPAUSER]	= 0x0364,
225 	[TPAUSECR]	= 0x0368,
226 	[MAHR]		= 0x03c0,
227 	[MALR]		= 0x03c8,
228 	[TROCR]		= 0x03d0,
229 	[CDCR]		= 0x03d4,
230 	[LCCR]		= 0x03d8,
231 	[CNDCR]		= 0x03dc,
232 	[CEFCR]		= 0x03e4,
233 	[FRECR]		= 0x03e8,
234 	[TSFRCR]	= 0x03ec,
235 	[TLFRCR]	= 0x03f0,
236 	[RFCR]		= 0x03f4,
237 	[MAFCR]		= 0x03f8,
238 
239 	[EDMR]		= 0x0200,
240 	[EDTRR]		= 0x0208,
241 	[EDRRR]		= 0x0210,
242 	[TDLAR]		= 0x0218,
243 	[RDLAR]		= 0x0220,
244 	[EESR]		= 0x0228,
245 	[EESIPR]	= 0x0230,
246 	[TRSCER]	= 0x0238,
247 	[RMFCR]		= 0x0240,
248 	[TFTR]		= 0x0248,
249 	[FDR]		= 0x0250,
250 	[RMCR]		= 0x0258,
251 	[TFUCR]		= 0x0264,
252 	[RFOCR]		= 0x0268,
253 	[RMIIMODE]      = 0x026c,
254 	[FCFTR]		= 0x0270,
255 	[TRIMD]		= 0x027c,
256 };
257 
258 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
259 	[ECMR]		= 0x0100,
260 	[RFLR]		= 0x0108,
261 	[ECSR]		= 0x0110,
262 	[ECSIPR]	= 0x0118,
263 	[PIR]		= 0x0120,
264 	[PSR]		= 0x0128,
265 	[RDMLR]		= 0x0140,
266 	[IPGR]		= 0x0150,
267 	[APR]		= 0x0154,
268 	[MPR]		= 0x0158,
269 	[TPAUSER]	= 0x0164,
270 	[RFCF]		= 0x0160,
271 	[TPAUSECR]	= 0x0168,
272 	[BCFRR]		= 0x016c,
273 	[MAHR]		= 0x01c0,
274 	[MALR]		= 0x01c8,
275 	[TROCR]		= 0x01d0,
276 	[CDCR]		= 0x01d4,
277 	[LCCR]		= 0x01d8,
278 	[CNDCR]		= 0x01dc,
279 	[CEFCR]		= 0x01e4,
280 	[FRECR]		= 0x01e8,
281 	[TSFRCR]	= 0x01ec,
282 	[TLFRCR]	= 0x01f0,
283 	[RFCR]		= 0x01f4,
284 	[MAFCR]		= 0x01f8,
285 	[RTRATE]	= 0x01fc,
286 
287 	[EDMR]		= 0x0000,
288 	[EDTRR]		= 0x0008,
289 	[EDRRR]		= 0x0010,
290 	[TDLAR]		= 0x0018,
291 	[RDLAR]		= 0x0020,
292 	[EESR]		= 0x0028,
293 	[EESIPR]	= 0x0030,
294 	[TRSCER]	= 0x0038,
295 	[RMFCR]		= 0x0040,
296 	[TFTR]		= 0x0048,
297 	[FDR]		= 0x0050,
298 	[RMCR]		= 0x0058,
299 	[TFUCR]		= 0x0064,
300 	[RFOCR]		= 0x0068,
301 	[FCFTR]		= 0x0070,
302 	[RPADIR]	= 0x0078,
303 	[TRIMD]		= 0x007c,
304 	[RBWAR]		= 0x00c8,
305 	[RDFAR]		= 0x00cc,
306 	[TBRAR]		= 0x00d4,
307 	[TDFAR]		= 0x00d8,
308 };
309 
310 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
311 	[EDMR]		= 0x0000,
312 	[EDTRR]		= 0x0004,
313 	[EDRRR]		= 0x0008,
314 	[TDLAR]		= 0x000c,
315 	[RDLAR]		= 0x0010,
316 	[EESR]		= 0x0014,
317 	[EESIPR]	= 0x0018,
318 	[TRSCER]	= 0x001c,
319 	[RMFCR]		= 0x0020,
320 	[TFTR]		= 0x0024,
321 	[FDR]		= 0x0028,
322 	[RMCR]		= 0x002c,
323 	[EDOCR]		= 0x0030,
324 	[FCFTR]		= 0x0034,
325 	[RPADIR]	= 0x0038,
326 	[TRIMD]		= 0x003c,
327 	[RBWAR]		= 0x0040,
328 	[RDFAR]		= 0x0044,
329 	[TBRAR]		= 0x004c,
330 	[TDFAR]		= 0x0050,
331 
332 	[ECMR]		= 0x0160,
333 	[ECSR]		= 0x0164,
334 	[ECSIPR]	= 0x0168,
335 	[PIR]		= 0x016c,
336 	[MAHR]		= 0x0170,
337 	[MALR]		= 0x0174,
338 	[RFLR]		= 0x0178,
339 	[PSR]		= 0x017c,
340 	[TROCR]		= 0x0180,
341 	[CDCR]		= 0x0184,
342 	[LCCR]		= 0x0188,
343 	[CNDCR]		= 0x018c,
344 	[CEFCR]		= 0x0194,
345 	[FRECR]		= 0x0198,
346 	[TSFRCR]	= 0x019c,
347 	[TLFRCR]	= 0x01a0,
348 	[RFCR]		= 0x01a4,
349 	[MAFCR]		= 0x01a8,
350 	[IPGR]		= 0x01b4,
351 	[APR]		= 0x01b8,
352 	[MPR]		= 0x01bc,
353 	[TPAUSER]	= 0x01c4,
354 	[BCFR]		= 0x01cc,
355 
356 	[ARSTR]		= 0x0000,
357 	[TSU_CTRST]	= 0x0004,
358 	[TSU_FWEN0]	= 0x0010,
359 	[TSU_FWEN1]	= 0x0014,
360 	[TSU_FCM]	= 0x0018,
361 	[TSU_BSYSL0]	= 0x0020,
362 	[TSU_BSYSL1]	= 0x0024,
363 	[TSU_PRISL0]	= 0x0028,
364 	[TSU_PRISL1]	= 0x002c,
365 	[TSU_FWSL0]	= 0x0030,
366 	[TSU_FWSL1]	= 0x0034,
367 	[TSU_FWSLC]	= 0x0038,
368 	[TSU_QTAGM0]	= 0x0040,
369 	[TSU_QTAGM1]	= 0x0044,
370 	[TSU_ADQT0]	= 0x0048,
371 	[TSU_ADQT1]	= 0x004c,
372 	[TSU_FWSR]	= 0x0050,
373 	[TSU_FWINMK]	= 0x0054,
374 	[TSU_ADSBSY]	= 0x0060,
375 	[TSU_TEN]	= 0x0064,
376 	[TSU_POST1]	= 0x0070,
377 	[TSU_POST2]	= 0x0074,
378 	[TSU_POST3]	= 0x0078,
379 	[TSU_POST4]	= 0x007c,
380 
381 	[TXNLCR0]	= 0x0080,
382 	[TXALCR0]	= 0x0084,
383 	[RXNLCR0]	= 0x0088,
384 	[RXALCR0]	= 0x008c,
385 	[FWNLCR0]	= 0x0090,
386 	[FWALCR0]	= 0x0094,
387 	[TXNLCR1]	= 0x00a0,
388 	[TXALCR1]	= 0x00a0,
389 	[RXNLCR1]	= 0x00a8,
390 	[RXALCR1]	= 0x00ac,
391 	[FWNLCR1]	= 0x00b0,
392 	[FWALCR1]	= 0x00b4,
393 
394 	[TSU_ADRH0]	= 0x0100,
395 	[TSU_ADRL0]	= 0x0104,
396 	[TSU_ADRL31]	= 0x01fc,
397 };
398 
399 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
400 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
401 
402 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
403 {
404 	return mdp->reg_offset == sh_eth_offset_gigabit;
405 }
406 
407 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
408 {
409 	return mdp->reg_offset == sh_eth_offset_fast_rz;
410 }
411 
412 static void sh_eth_select_mii(struct net_device *ndev)
413 {
414 	u32 value = 0x0;
415 	struct sh_eth_private *mdp = netdev_priv(ndev);
416 
417 	switch (mdp->phy_interface) {
418 	case PHY_INTERFACE_MODE_GMII:
419 		value = 0x2;
420 		break;
421 	case PHY_INTERFACE_MODE_MII:
422 		value = 0x1;
423 		break;
424 	case PHY_INTERFACE_MODE_RMII:
425 		value = 0x0;
426 		break;
427 	default:
428 		netdev_warn(ndev,
429 			    "PHY interface mode was not setup. Set to MII.\n");
430 		value = 0x1;
431 		break;
432 	}
433 
434 	sh_eth_write(ndev, value, RMII_MII);
435 }
436 
437 static void sh_eth_set_duplex(struct net_device *ndev)
438 {
439 	struct sh_eth_private *mdp = netdev_priv(ndev);
440 
441 	if (mdp->duplex) /* Full */
442 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
443 	else		/* Half */
444 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
445 }
446 
447 /* There is CPU dependent code */
448 static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
449 {
450 	struct sh_eth_private *mdp = netdev_priv(ndev);
451 
452 	switch (mdp->speed) {
453 	case 10: /* 10BASE */
454 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_ELB, ECMR);
455 		break;
456 	case 100:/* 100BASE */
457 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_ELB, ECMR);
458 		break;
459 	default:
460 		break;
461 	}
462 }
463 
464 /* R8A7778/9 */
465 static struct sh_eth_cpu_data r8a777x_data = {
466 	.set_duplex	= sh_eth_set_duplex,
467 	.set_rate	= sh_eth_set_rate_r8a777x,
468 
469 	.register_type	= SH_ETH_REG_FAST_RCAR,
470 
471 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
472 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
473 	.eesipr_value	= 0x01ff009f,
474 
475 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
476 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
477 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
478 			  EESR_ECI,
479 	.fdr_value	= 0x00000f0f,
480 
481 	.apr		= 1,
482 	.mpr		= 1,
483 	.tpauser	= 1,
484 	.hw_swap	= 1,
485 };
486 
487 /* R8A7790/1 */
488 static struct sh_eth_cpu_data r8a779x_data = {
489 	.set_duplex	= sh_eth_set_duplex,
490 	.set_rate	= sh_eth_set_rate_r8a777x,
491 
492 	.register_type	= SH_ETH_REG_FAST_RCAR,
493 
494 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
495 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
496 	.eesipr_value	= 0x01ff009f,
497 
498 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
499 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
500 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
501 			  EESR_ECI,
502 	.fdr_value	= 0x00000f0f,
503 
504 	.trscer_err_mask = DESC_I_RINT8,
505 
506 	.apr		= 1,
507 	.mpr		= 1,
508 	.tpauser	= 1,
509 	.hw_swap	= 1,
510 	.rmiimode	= 1,
511 };
512 
513 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
514 {
515 	struct sh_eth_private *mdp = netdev_priv(ndev);
516 
517 	switch (mdp->speed) {
518 	case 10: /* 10BASE */
519 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
520 		break;
521 	case 100:/* 100BASE */
522 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
523 		break;
524 	default:
525 		break;
526 	}
527 }
528 
529 /* SH7724 */
530 static struct sh_eth_cpu_data sh7724_data = {
531 	.set_duplex	= sh_eth_set_duplex,
532 	.set_rate	= sh_eth_set_rate_sh7724,
533 
534 	.register_type	= SH_ETH_REG_FAST_SH4,
535 
536 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
537 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
538 	.eesipr_value	= 0x01ff009f,
539 
540 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
541 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
542 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
543 			  EESR_ECI,
544 
545 	.apr		= 1,
546 	.mpr		= 1,
547 	.tpauser	= 1,
548 	.hw_swap	= 1,
549 	.rpadir		= 1,
550 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
551 };
552 
553 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
554 {
555 	struct sh_eth_private *mdp = netdev_priv(ndev);
556 
557 	switch (mdp->speed) {
558 	case 10: /* 10BASE */
559 		sh_eth_write(ndev, 0, RTRATE);
560 		break;
561 	case 100:/* 100BASE */
562 		sh_eth_write(ndev, 1, RTRATE);
563 		break;
564 	default:
565 		break;
566 	}
567 }
568 
569 /* SH7757 */
570 static struct sh_eth_cpu_data sh7757_data = {
571 	.set_duplex	= sh_eth_set_duplex,
572 	.set_rate	= sh_eth_set_rate_sh7757,
573 
574 	.register_type	= SH_ETH_REG_FAST_SH4,
575 
576 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
577 
578 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
579 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
580 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
581 			  EESR_ECI,
582 
583 	.irq_flags	= IRQF_SHARED,
584 	.apr		= 1,
585 	.mpr		= 1,
586 	.tpauser	= 1,
587 	.hw_swap	= 1,
588 	.no_ade		= 1,
589 	.rpadir		= 1,
590 	.rpadir_value   = 2 << 16,
591 };
592 
593 #define SH_GIGA_ETH_BASE	0xfee00000UL
594 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
595 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
596 static void sh_eth_chip_reset_giga(struct net_device *ndev)
597 {
598 	int i;
599 	u32 mahr[2], malr[2];
600 
601 	/* save MAHR and MALR */
602 	for (i = 0; i < 2; i++) {
603 		malr[i] = ioread32((void *)GIGA_MALR(i));
604 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
605 	}
606 
607 	/* reset device */
608 	iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
609 	mdelay(1);
610 
611 	/* restore MAHR and MALR */
612 	for (i = 0; i < 2; i++) {
613 		iowrite32(malr[i], (void *)GIGA_MALR(i));
614 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
615 	}
616 }
617 
618 static void sh_eth_set_rate_giga(struct net_device *ndev)
619 {
620 	struct sh_eth_private *mdp = netdev_priv(ndev);
621 
622 	switch (mdp->speed) {
623 	case 10: /* 10BASE */
624 		sh_eth_write(ndev, 0x00000000, GECMR);
625 		break;
626 	case 100:/* 100BASE */
627 		sh_eth_write(ndev, 0x00000010, GECMR);
628 		break;
629 	case 1000: /* 1000BASE */
630 		sh_eth_write(ndev, 0x00000020, GECMR);
631 		break;
632 	default:
633 		break;
634 	}
635 }
636 
637 /* SH7757(GETHERC) */
638 static struct sh_eth_cpu_data sh7757_data_giga = {
639 	.chip_reset	= sh_eth_chip_reset_giga,
640 	.set_duplex	= sh_eth_set_duplex,
641 	.set_rate	= sh_eth_set_rate_giga,
642 
643 	.register_type	= SH_ETH_REG_GIGABIT,
644 
645 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
646 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
647 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
648 
649 	.tx_check	= EESR_TC1 | EESR_FTC,
650 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
651 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
652 			  EESR_TDE | EESR_ECI,
653 	.fdr_value	= 0x0000072f,
654 
655 	.irq_flags	= IRQF_SHARED,
656 	.apr		= 1,
657 	.mpr		= 1,
658 	.tpauser	= 1,
659 	.bculr		= 1,
660 	.hw_swap	= 1,
661 	.rpadir		= 1,
662 	.rpadir_value   = 2 << 16,
663 	.no_trimd	= 1,
664 	.no_ade		= 1,
665 	.tsu		= 1,
666 };
667 
668 static void sh_eth_chip_reset(struct net_device *ndev)
669 {
670 	struct sh_eth_private *mdp = netdev_priv(ndev);
671 
672 	/* reset device */
673 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
674 	mdelay(1);
675 }
676 
677 static void sh_eth_set_rate_gether(struct net_device *ndev)
678 {
679 	struct sh_eth_private *mdp = netdev_priv(ndev);
680 
681 	switch (mdp->speed) {
682 	case 10: /* 10BASE */
683 		sh_eth_write(ndev, GECMR_10, GECMR);
684 		break;
685 	case 100:/* 100BASE */
686 		sh_eth_write(ndev, GECMR_100, GECMR);
687 		break;
688 	case 1000: /* 1000BASE */
689 		sh_eth_write(ndev, GECMR_1000, GECMR);
690 		break;
691 	default:
692 		break;
693 	}
694 }
695 
696 /* SH7734 */
697 static struct sh_eth_cpu_data sh7734_data = {
698 	.chip_reset	= sh_eth_chip_reset,
699 	.set_duplex	= sh_eth_set_duplex,
700 	.set_rate	= sh_eth_set_rate_gether,
701 
702 	.register_type	= SH_ETH_REG_GIGABIT,
703 
704 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
705 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
706 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
707 
708 	.tx_check	= EESR_TC1 | EESR_FTC,
709 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
710 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
711 			  EESR_TDE | EESR_ECI,
712 
713 	.apr		= 1,
714 	.mpr		= 1,
715 	.tpauser	= 1,
716 	.bculr		= 1,
717 	.hw_swap	= 1,
718 	.no_trimd	= 1,
719 	.no_ade		= 1,
720 	.tsu		= 1,
721 	.hw_crc		= 1,
722 	.select_mii	= 1,
723 };
724 
725 /* SH7763 */
726 static struct sh_eth_cpu_data sh7763_data = {
727 	.chip_reset	= sh_eth_chip_reset,
728 	.set_duplex	= sh_eth_set_duplex,
729 	.set_rate	= sh_eth_set_rate_gether,
730 
731 	.register_type	= SH_ETH_REG_GIGABIT,
732 
733 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
734 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
735 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
736 
737 	.tx_check	= EESR_TC1 | EESR_FTC,
738 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
739 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
740 			  EESR_ECI,
741 
742 	.apr		= 1,
743 	.mpr		= 1,
744 	.tpauser	= 1,
745 	.bculr		= 1,
746 	.hw_swap	= 1,
747 	.no_trimd	= 1,
748 	.no_ade		= 1,
749 	.tsu		= 1,
750 	.irq_flags	= IRQF_SHARED,
751 };
752 
753 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
754 {
755 	struct sh_eth_private *mdp = netdev_priv(ndev);
756 
757 	/* reset device */
758 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
759 	mdelay(1);
760 
761 	sh_eth_select_mii(ndev);
762 }
763 
764 /* R8A7740 */
765 static struct sh_eth_cpu_data r8a7740_data = {
766 	.chip_reset	= sh_eth_chip_reset_r8a7740,
767 	.set_duplex	= sh_eth_set_duplex,
768 	.set_rate	= sh_eth_set_rate_gether,
769 
770 	.register_type	= SH_ETH_REG_GIGABIT,
771 
772 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
773 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
774 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
775 
776 	.tx_check	= EESR_TC1 | EESR_FTC,
777 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
778 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
779 			  EESR_TDE | EESR_ECI,
780 	.fdr_value	= 0x0000070f,
781 
782 	.apr		= 1,
783 	.mpr		= 1,
784 	.tpauser	= 1,
785 	.bculr		= 1,
786 	.hw_swap	= 1,
787 	.rpadir		= 1,
788 	.rpadir_value   = 2 << 16,
789 	.no_trimd	= 1,
790 	.no_ade		= 1,
791 	.tsu		= 1,
792 	.select_mii	= 1,
793 	.shift_rd0	= 1,
794 };
795 
796 /* R7S72100 */
797 static struct sh_eth_cpu_data r7s72100_data = {
798 	.chip_reset	= sh_eth_chip_reset,
799 	.set_duplex	= sh_eth_set_duplex,
800 
801 	.register_type	= SH_ETH_REG_FAST_RZ,
802 
803 	.ecsr_value	= ECSR_ICD,
804 	.ecsipr_value	= ECSIPR_ICDIP,
805 	.eesipr_value	= 0xff7f009f,
806 
807 	.tx_check	= EESR_TC1 | EESR_FTC,
808 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
809 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
810 			  EESR_TDE | EESR_ECI,
811 	.fdr_value	= 0x0000070f,
812 
813 	.no_psr		= 1,
814 	.apr		= 1,
815 	.mpr		= 1,
816 	.tpauser	= 1,
817 	.hw_swap	= 1,
818 	.rpadir		= 1,
819 	.rpadir_value   = 2 << 16,
820 	.no_trimd	= 1,
821 	.no_ade		= 1,
822 	.hw_crc		= 1,
823 	.tsu		= 1,
824 	.shift_rd0	= 1,
825 };
826 
827 static struct sh_eth_cpu_data sh7619_data = {
828 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
829 
830 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
831 
832 	.apr		= 1,
833 	.mpr		= 1,
834 	.tpauser	= 1,
835 	.hw_swap	= 1,
836 };
837 
838 static struct sh_eth_cpu_data sh771x_data = {
839 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
840 
841 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
842 	.tsu		= 1,
843 };
844 
845 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
846 {
847 	if (!cd->ecsr_value)
848 		cd->ecsr_value = DEFAULT_ECSR_INIT;
849 
850 	if (!cd->ecsipr_value)
851 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
852 
853 	if (!cd->fcftr_value)
854 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
855 				  DEFAULT_FIFO_F_D_RFD;
856 
857 	if (!cd->fdr_value)
858 		cd->fdr_value = DEFAULT_FDR_INIT;
859 
860 	if (!cd->tx_check)
861 		cd->tx_check = DEFAULT_TX_CHECK;
862 
863 	if (!cd->eesr_err_check)
864 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
865 
866 	if (!cd->trscer_err_mask)
867 		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
868 }
869 
870 static int sh_eth_check_reset(struct net_device *ndev)
871 {
872 	int ret = 0;
873 	int cnt = 100;
874 
875 	while (cnt > 0) {
876 		if (!(sh_eth_read(ndev, EDMR) & 0x3))
877 			break;
878 		mdelay(1);
879 		cnt--;
880 	}
881 	if (cnt <= 0) {
882 		netdev_err(ndev, "Device reset failed\n");
883 		ret = -ETIMEDOUT;
884 	}
885 	return ret;
886 }
887 
888 static int sh_eth_reset(struct net_device *ndev)
889 {
890 	struct sh_eth_private *mdp = netdev_priv(ndev);
891 	int ret = 0;
892 
893 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
894 		sh_eth_write(ndev, EDSR_ENALL, EDSR);
895 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
896 			     EDMR);
897 
898 		ret = sh_eth_check_reset(ndev);
899 		if (ret)
900 			return ret;
901 
902 		/* Table Init */
903 		sh_eth_write(ndev, 0x0, TDLAR);
904 		sh_eth_write(ndev, 0x0, TDFAR);
905 		sh_eth_write(ndev, 0x0, TDFXR);
906 		sh_eth_write(ndev, 0x0, TDFFR);
907 		sh_eth_write(ndev, 0x0, RDLAR);
908 		sh_eth_write(ndev, 0x0, RDFAR);
909 		sh_eth_write(ndev, 0x0, RDFXR);
910 		sh_eth_write(ndev, 0x0, RDFFR);
911 
912 		/* Reset HW CRC register */
913 		if (mdp->cd->hw_crc)
914 			sh_eth_write(ndev, 0x0, CSMR);
915 
916 		/* Select MII mode */
917 		if (mdp->cd->select_mii)
918 			sh_eth_select_mii(ndev);
919 	} else {
920 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
921 			     EDMR);
922 		mdelay(3);
923 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
924 			     EDMR);
925 	}
926 
927 	return ret;
928 }
929 
930 static void sh_eth_set_receive_align(struct sk_buff *skb)
931 {
932 	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
933 
934 	if (reserve)
935 		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
936 }
937 
938 
939 /* CPU <-> EDMAC endian convert */
940 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
941 {
942 	switch (mdp->edmac_endian) {
943 	case EDMAC_LITTLE_ENDIAN:
944 		return cpu_to_le32(x);
945 	case EDMAC_BIG_ENDIAN:
946 		return cpu_to_be32(x);
947 	}
948 	return x;
949 }
950 
951 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
952 {
953 	switch (mdp->edmac_endian) {
954 	case EDMAC_LITTLE_ENDIAN:
955 		return le32_to_cpu(x);
956 	case EDMAC_BIG_ENDIAN:
957 		return be32_to_cpu(x);
958 	}
959 	return x;
960 }
961 
962 /* Program the hardware MAC address from dev->dev_addr. */
963 static void update_mac_address(struct net_device *ndev)
964 {
965 	sh_eth_write(ndev,
966 		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
967 		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
968 	sh_eth_write(ndev,
969 		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
970 }
971 
972 /* Get MAC address from SuperH MAC address register
973  *
974  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
975  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
976  * When you want use this device, you must set MAC address in bootloader.
977  *
978  */
979 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
980 {
981 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
982 		memcpy(ndev->dev_addr, mac, ETH_ALEN);
983 	} else {
984 		ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
985 		ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
986 		ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
987 		ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
988 		ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
989 		ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
990 	}
991 }
992 
993 static u32 sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
994 {
995 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
996 		return EDTRR_TRNS_GETHER;
997 	else
998 		return EDTRR_TRNS_ETHER;
999 }
1000 
1001 struct bb_info {
1002 	void (*set_gate)(void *addr);
1003 	struct mdiobb_ctrl ctrl;
1004 	void *addr;
1005 	u32 mmd_msk;/* MMD */
1006 	u32 mdo_msk;
1007 	u32 mdi_msk;
1008 	u32 mdc_msk;
1009 };
1010 
1011 /* PHY bit set */
1012 static void bb_set(void *addr, u32 msk)
1013 {
1014 	iowrite32(ioread32(addr) | msk, addr);
1015 }
1016 
1017 /* PHY bit clear */
1018 static void bb_clr(void *addr, u32 msk)
1019 {
1020 	iowrite32((ioread32(addr) & ~msk), addr);
1021 }
1022 
1023 /* PHY bit read */
1024 static int bb_read(void *addr, u32 msk)
1025 {
1026 	return (ioread32(addr) & msk) != 0;
1027 }
1028 
1029 /* Data I/O pin control */
1030 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1031 {
1032 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1033 
1034 	if (bitbang->set_gate)
1035 		bitbang->set_gate(bitbang->addr);
1036 
1037 	if (bit)
1038 		bb_set(bitbang->addr, bitbang->mmd_msk);
1039 	else
1040 		bb_clr(bitbang->addr, bitbang->mmd_msk);
1041 }
1042 
1043 /* Set bit data*/
1044 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1045 {
1046 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1047 
1048 	if (bitbang->set_gate)
1049 		bitbang->set_gate(bitbang->addr);
1050 
1051 	if (bit)
1052 		bb_set(bitbang->addr, bitbang->mdo_msk);
1053 	else
1054 		bb_clr(bitbang->addr, bitbang->mdo_msk);
1055 }
1056 
1057 /* Get bit data*/
1058 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1059 {
1060 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1061 
1062 	if (bitbang->set_gate)
1063 		bitbang->set_gate(bitbang->addr);
1064 
1065 	return bb_read(bitbang->addr, bitbang->mdi_msk);
1066 }
1067 
1068 /* MDC pin control */
1069 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1070 {
1071 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1072 
1073 	if (bitbang->set_gate)
1074 		bitbang->set_gate(bitbang->addr);
1075 
1076 	if (bit)
1077 		bb_set(bitbang->addr, bitbang->mdc_msk);
1078 	else
1079 		bb_clr(bitbang->addr, bitbang->mdc_msk);
1080 }
1081 
1082 /* mdio bus control struct */
1083 static struct mdiobb_ops bb_ops = {
1084 	.owner = THIS_MODULE,
1085 	.set_mdc = sh_mdc_ctrl,
1086 	.set_mdio_dir = sh_mmd_ctrl,
1087 	.set_mdio_data = sh_set_mdio,
1088 	.get_mdio_data = sh_get_mdio,
1089 };
1090 
1091 /* free skb and descriptor buffer */
1092 static void sh_eth_ring_free(struct net_device *ndev)
1093 {
1094 	struct sh_eth_private *mdp = netdev_priv(ndev);
1095 	int i;
1096 
1097 	/* Free Rx skb ringbuffer */
1098 	if (mdp->rx_skbuff) {
1099 		for (i = 0; i < mdp->num_rx_ring; i++)
1100 			dev_kfree_skb(mdp->rx_skbuff[i]);
1101 	}
1102 	kfree(mdp->rx_skbuff);
1103 	mdp->rx_skbuff = NULL;
1104 
1105 	/* Free Tx skb ringbuffer */
1106 	if (mdp->tx_skbuff) {
1107 		for (i = 0; i < mdp->num_tx_ring; i++)
1108 			dev_kfree_skb(mdp->tx_skbuff[i]);
1109 	}
1110 	kfree(mdp->tx_skbuff);
1111 	mdp->tx_skbuff = NULL;
1112 }
1113 
1114 /* format skb and descriptor buffer */
1115 static void sh_eth_ring_format(struct net_device *ndev)
1116 {
1117 	struct sh_eth_private *mdp = netdev_priv(ndev);
1118 	int i;
1119 	struct sk_buff *skb;
1120 	struct sh_eth_rxdesc *rxdesc = NULL;
1121 	struct sh_eth_txdesc *txdesc = NULL;
1122 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1123 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1124 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN - 1;
1125 	dma_addr_t dma_addr;
1126 
1127 	mdp->cur_rx = 0;
1128 	mdp->cur_tx = 0;
1129 	mdp->dirty_rx = 0;
1130 	mdp->dirty_tx = 0;
1131 
1132 	memset(mdp->rx_ring, 0, rx_ringsize);
1133 
1134 	/* build Rx ring buffer */
1135 	for (i = 0; i < mdp->num_rx_ring; i++) {
1136 		/* skb */
1137 		mdp->rx_skbuff[i] = NULL;
1138 		skb = netdev_alloc_skb(ndev, skbuff_size);
1139 		if (skb == NULL)
1140 			break;
1141 		sh_eth_set_receive_align(skb);
1142 
1143 		/* RX descriptor */
1144 		rxdesc = &mdp->rx_ring[i];
1145 		/* The size of the buffer is a multiple of 16 bytes. */
1146 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1147 		dma_addr = dma_map_single(&ndev->dev, skb->data,
1148 					  rxdesc->buffer_length,
1149 					  DMA_FROM_DEVICE);
1150 		if (dma_mapping_error(&ndev->dev, dma_addr)) {
1151 			kfree_skb(skb);
1152 			break;
1153 		}
1154 		mdp->rx_skbuff[i] = skb;
1155 		rxdesc->addr = dma_addr;
1156 		rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1157 
1158 		/* Rx descriptor address set */
1159 		if (i == 0) {
1160 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1161 			if (sh_eth_is_gether(mdp) ||
1162 			    sh_eth_is_rz_fast_ether(mdp))
1163 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1164 		}
1165 	}
1166 
1167 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1168 
1169 	/* Mark the last entry as wrapping the ring. */
1170 	rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
1171 
1172 	memset(mdp->tx_ring, 0, tx_ringsize);
1173 
1174 	/* build Tx ring buffer */
1175 	for (i = 0; i < mdp->num_tx_ring; i++) {
1176 		mdp->tx_skbuff[i] = NULL;
1177 		txdesc = &mdp->tx_ring[i];
1178 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1179 		txdesc->buffer_length = 0;
1180 		if (i == 0) {
1181 			/* Tx descriptor address set */
1182 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1183 			if (sh_eth_is_gether(mdp) ||
1184 			    sh_eth_is_rz_fast_ether(mdp))
1185 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1186 		}
1187 	}
1188 
1189 	txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1190 }
1191 
1192 /* Get skb and descriptor buffer */
1193 static int sh_eth_ring_init(struct net_device *ndev)
1194 {
1195 	struct sh_eth_private *mdp = netdev_priv(ndev);
1196 	int rx_ringsize, tx_ringsize, ret = 0;
1197 
1198 	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1199 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1200 	 * the first 2 bytes, and +16 gets room for the status word from the
1201 	 * card.
1202 	 */
1203 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1204 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1205 	if (mdp->cd->rpadir)
1206 		mdp->rx_buf_sz += NET_IP_ALIGN;
1207 
1208 	/* Allocate RX and TX skb rings */
1209 	mdp->rx_skbuff = kmalloc_array(mdp->num_rx_ring,
1210 				       sizeof(*mdp->rx_skbuff), GFP_KERNEL);
1211 	if (!mdp->rx_skbuff) {
1212 		ret = -ENOMEM;
1213 		return ret;
1214 	}
1215 
1216 	mdp->tx_skbuff = kmalloc_array(mdp->num_tx_ring,
1217 				       sizeof(*mdp->tx_skbuff), GFP_KERNEL);
1218 	if (!mdp->tx_skbuff) {
1219 		ret = -ENOMEM;
1220 		goto skb_ring_free;
1221 	}
1222 
1223 	/* Allocate all Rx descriptors. */
1224 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1225 	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1226 					  GFP_KERNEL);
1227 	if (!mdp->rx_ring) {
1228 		ret = -ENOMEM;
1229 		goto desc_ring_free;
1230 	}
1231 
1232 	mdp->dirty_rx = 0;
1233 
1234 	/* Allocate all Tx descriptors. */
1235 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1236 	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1237 					  GFP_KERNEL);
1238 	if (!mdp->tx_ring) {
1239 		ret = -ENOMEM;
1240 		goto desc_ring_free;
1241 	}
1242 	return ret;
1243 
1244 desc_ring_free:
1245 	/* free DMA buffer */
1246 	dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
1247 
1248 skb_ring_free:
1249 	/* Free Rx and Tx skb ring buffer */
1250 	sh_eth_ring_free(ndev);
1251 	mdp->tx_ring = NULL;
1252 	mdp->rx_ring = NULL;
1253 
1254 	return ret;
1255 }
1256 
1257 static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp)
1258 {
1259 	int ringsize;
1260 
1261 	if (mdp->rx_ring) {
1262 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1263 		dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1264 				  mdp->rx_desc_dma);
1265 		mdp->rx_ring = NULL;
1266 	}
1267 
1268 	if (mdp->tx_ring) {
1269 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1270 		dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1271 				  mdp->tx_desc_dma);
1272 		mdp->tx_ring = NULL;
1273 	}
1274 }
1275 
1276 static int sh_eth_dev_init(struct net_device *ndev, bool start)
1277 {
1278 	int ret = 0;
1279 	struct sh_eth_private *mdp = netdev_priv(ndev);
1280 	u32 val;
1281 
1282 	/* Soft Reset */
1283 	ret = sh_eth_reset(ndev);
1284 	if (ret)
1285 		return ret;
1286 
1287 	if (mdp->cd->rmiimode)
1288 		sh_eth_write(ndev, 0x1, RMIIMODE);
1289 
1290 	/* Descriptor format */
1291 	sh_eth_ring_format(ndev);
1292 	if (mdp->cd->rpadir)
1293 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1294 
1295 	/* all sh_eth int mask */
1296 	sh_eth_write(ndev, 0, EESIPR);
1297 
1298 #if defined(__LITTLE_ENDIAN)
1299 	if (mdp->cd->hw_swap)
1300 		sh_eth_write(ndev, EDMR_EL, EDMR);
1301 	else
1302 #endif
1303 		sh_eth_write(ndev, 0, EDMR);
1304 
1305 	/* FIFO size set */
1306 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1307 	sh_eth_write(ndev, 0, TFTR);
1308 
1309 	/* Frame recv control (enable multiple-packets per rx irq) */
1310 	sh_eth_write(ndev, RMCR_RNC, RMCR);
1311 
1312 	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1313 
1314 	if (mdp->cd->bculr)
1315 		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1316 
1317 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1318 
1319 	if (!mdp->cd->no_trimd)
1320 		sh_eth_write(ndev, 0, TRIMD);
1321 
1322 	/* Recv frame limit set register */
1323 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1324 		     RFLR);
1325 
1326 	sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1327 	if (start) {
1328 		mdp->irq_enabled = true;
1329 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1330 	}
1331 
1332 	/* PAUSE Prohibition */
1333 	val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1334 		ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1335 
1336 	sh_eth_write(ndev, val, ECMR);
1337 
1338 	if (mdp->cd->set_rate)
1339 		mdp->cd->set_rate(ndev);
1340 
1341 	/* E-MAC Status Register clear */
1342 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1343 
1344 	/* E-MAC Interrupt Enable register */
1345 	if (start)
1346 		sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1347 
1348 	/* Set MAC address */
1349 	update_mac_address(ndev);
1350 
1351 	/* mask reset */
1352 	if (mdp->cd->apr)
1353 		sh_eth_write(ndev, APR_AP, APR);
1354 	if (mdp->cd->mpr)
1355 		sh_eth_write(ndev, MPR_MP, MPR);
1356 	if (mdp->cd->tpauser)
1357 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1358 
1359 	if (start) {
1360 		/* Setting the Rx mode will start the Rx process. */
1361 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1362 
1363 		netif_start_queue(ndev);
1364 	}
1365 
1366 	return ret;
1367 }
1368 
1369 static void sh_eth_dev_exit(struct net_device *ndev)
1370 {
1371 	struct sh_eth_private *mdp = netdev_priv(ndev);
1372 	int i;
1373 
1374 	/* Deactivate all TX descriptors, so DMA should stop at next
1375 	 * packet boundary if it's currently running
1376 	 */
1377 	for (i = 0; i < mdp->num_tx_ring; i++)
1378 		mdp->tx_ring[i].status &= ~cpu_to_edmac(mdp, TD_TACT);
1379 
1380 	/* Disable TX FIFO egress to MAC */
1381 	sh_eth_rcv_snd_disable(ndev);
1382 
1383 	/* Stop RX DMA at next packet boundary */
1384 	sh_eth_write(ndev, 0, EDRRR);
1385 
1386 	/* Aside from TX DMA, we can't tell when the hardware is
1387 	 * really stopped, so we need to reset to make sure.
1388 	 * Before doing that, wait for long enough to *probably*
1389 	 * finish transmitting the last packet and poll stats.
1390 	 */
1391 	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1392 	sh_eth_get_stats(ndev);
1393 	sh_eth_reset(ndev);
1394 
1395 	/* Set MAC address again */
1396 	update_mac_address(ndev);
1397 }
1398 
1399 /* free Tx skb function */
1400 static int sh_eth_txfree(struct net_device *ndev)
1401 {
1402 	struct sh_eth_private *mdp = netdev_priv(ndev);
1403 	struct sh_eth_txdesc *txdesc;
1404 	int free_num = 0;
1405 	int entry = 0;
1406 
1407 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1408 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1409 		txdesc = &mdp->tx_ring[entry];
1410 		if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1411 			break;
1412 		/* TACT bit must be checked before all the following reads */
1413 		rmb();
1414 		/* Free the original skb. */
1415 		if (mdp->tx_skbuff[entry]) {
1416 			dma_unmap_single(&ndev->dev, txdesc->addr,
1417 					 txdesc->buffer_length, DMA_TO_DEVICE);
1418 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1419 			mdp->tx_skbuff[entry] = NULL;
1420 			free_num++;
1421 		}
1422 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1423 		if (entry >= mdp->num_tx_ring - 1)
1424 			txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1425 
1426 		ndev->stats.tx_packets++;
1427 		ndev->stats.tx_bytes += txdesc->buffer_length;
1428 	}
1429 	return free_num;
1430 }
1431 
1432 /* Packet receive function */
1433 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1434 {
1435 	struct sh_eth_private *mdp = netdev_priv(ndev);
1436 	struct sh_eth_rxdesc *rxdesc;
1437 
1438 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1439 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1440 	int limit;
1441 	struct sk_buff *skb;
1442 	u16 pkt_len = 0;
1443 	u32 desc_status;
1444 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN - 1;
1445 	dma_addr_t dma_addr;
1446 
1447 	boguscnt = min(boguscnt, *quota);
1448 	limit = boguscnt;
1449 	rxdesc = &mdp->rx_ring[entry];
1450 	while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1451 		/* RACT bit must be checked before all the following reads */
1452 		rmb();
1453 		desc_status = edmac_to_cpu(mdp, rxdesc->status);
1454 		pkt_len = rxdesc->frame_length;
1455 
1456 		if (--boguscnt < 0)
1457 			break;
1458 
1459 		if (!(desc_status & RDFEND))
1460 			ndev->stats.rx_length_errors++;
1461 
1462 		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1463 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1464 		 * bit 0. However, in case of the R8A7740 and R7S72100
1465 		 * the RFS bits are from bit 25 to bit 16. So, the
1466 		 * driver needs right shifting by 16.
1467 		 */
1468 		if (mdp->cd->shift_rd0)
1469 			desc_status >>= 16;
1470 
1471 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1472 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1473 			ndev->stats.rx_errors++;
1474 			if (desc_status & RD_RFS1)
1475 				ndev->stats.rx_crc_errors++;
1476 			if (desc_status & RD_RFS2)
1477 				ndev->stats.rx_frame_errors++;
1478 			if (desc_status & RD_RFS3)
1479 				ndev->stats.rx_length_errors++;
1480 			if (desc_status & RD_RFS4)
1481 				ndev->stats.rx_length_errors++;
1482 			if (desc_status & RD_RFS6)
1483 				ndev->stats.rx_missed_errors++;
1484 			if (desc_status & RD_RFS10)
1485 				ndev->stats.rx_over_errors++;
1486 		} else {
1487 			if (!mdp->cd->hw_swap)
1488 				sh_eth_soft_swap(
1489 					phys_to_virt(ALIGN(rxdesc->addr, 4)),
1490 					pkt_len + 2);
1491 			skb = mdp->rx_skbuff[entry];
1492 			mdp->rx_skbuff[entry] = NULL;
1493 			if (mdp->cd->rpadir)
1494 				skb_reserve(skb, NET_IP_ALIGN);
1495 			dma_unmap_single(&ndev->dev, rxdesc->addr,
1496 					 ALIGN(mdp->rx_buf_sz, 16),
1497 					 DMA_FROM_DEVICE);
1498 			skb_put(skb, pkt_len);
1499 			skb->protocol = eth_type_trans(skb, ndev);
1500 			netif_receive_skb(skb);
1501 			ndev->stats.rx_packets++;
1502 			ndev->stats.rx_bytes += pkt_len;
1503 		}
1504 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1505 		rxdesc = &mdp->rx_ring[entry];
1506 	}
1507 
1508 	/* Refill the Rx ring buffers. */
1509 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1510 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1511 		rxdesc = &mdp->rx_ring[entry];
1512 		/* The size of the buffer is 16 byte boundary. */
1513 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1514 
1515 		if (mdp->rx_skbuff[entry] == NULL) {
1516 			skb = netdev_alloc_skb(ndev, skbuff_size);
1517 			if (skb == NULL)
1518 				break;	/* Better luck next round. */
1519 			sh_eth_set_receive_align(skb);
1520 			dma_addr = dma_map_single(&ndev->dev, skb->data,
1521 						  rxdesc->buffer_length,
1522 						  DMA_FROM_DEVICE);
1523 			if (dma_mapping_error(&ndev->dev, dma_addr)) {
1524 				kfree_skb(skb);
1525 				break;
1526 			}
1527 			mdp->rx_skbuff[entry] = skb;
1528 
1529 			skb_checksum_none_assert(skb);
1530 			rxdesc->addr = dma_addr;
1531 		}
1532 		wmb(); /* RACT bit must be set after all the above writes */
1533 		if (entry >= mdp->num_rx_ring - 1)
1534 			rxdesc->status |=
1535 				cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
1536 		else
1537 			rxdesc->status |=
1538 				cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1539 	}
1540 
1541 	/* Restart Rx engine if stopped. */
1542 	/* If we don't need to check status, don't. -KDU */
1543 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1544 		/* fix the values for the next receiving if RDE is set */
1545 		if (intr_status & EESR_RDE && mdp->reg_offset[RDFAR] != 0) {
1546 			u32 count = (sh_eth_read(ndev, RDFAR) -
1547 				     sh_eth_read(ndev, RDLAR)) >> 4;
1548 
1549 			mdp->cur_rx = count;
1550 			mdp->dirty_rx = count;
1551 		}
1552 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1553 	}
1554 
1555 	*quota -= limit - boguscnt - 1;
1556 
1557 	return *quota <= 0;
1558 }
1559 
1560 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1561 {
1562 	/* disable tx and rx */
1563 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1564 		~(ECMR_RE | ECMR_TE), ECMR);
1565 }
1566 
1567 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1568 {
1569 	/* enable tx and rx */
1570 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1571 		(ECMR_RE | ECMR_TE), ECMR);
1572 }
1573 
1574 /* error control function */
1575 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1576 {
1577 	struct sh_eth_private *mdp = netdev_priv(ndev);
1578 	u32 felic_stat;
1579 	u32 link_stat;
1580 	u32 mask;
1581 
1582 	if (intr_status & EESR_ECI) {
1583 		felic_stat = sh_eth_read(ndev, ECSR);
1584 		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1585 		if (felic_stat & ECSR_ICD)
1586 			ndev->stats.tx_carrier_errors++;
1587 		if (felic_stat & ECSR_LCHNG) {
1588 			/* Link Changed */
1589 			if (mdp->cd->no_psr || mdp->no_ether_link) {
1590 				goto ignore_link;
1591 			} else {
1592 				link_stat = (sh_eth_read(ndev, PSR));
1593 				if (mdp->ether_link_active_low)
1594 					link_stat = ~link_stat;
1595 			}
1596 			if (!(link_stat & PHY_ST_LINK)) {
1597 				sh_eth_rcv_snd_disable(ndev);
1598 			} else {
1599 				/* Link Up */
1600 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1601 						   ~DMAC_M_ECI, EESIPR);
1602 				/* clear int */
1603 				sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1604 					     ECSR);
1605 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1606 						   DMAC_M_ECI, EESIPR);
1607 				/* enable tx and rx */
1608 				sh_eth_rcv_snd_enable(ndev);
1609 			}
1610 		}
1611 	}
1612 
1613 ignore_link:
1614 	if (intr_status & EESR_TWB) {
1615 		/* Unused write back interrupt */
1616 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1617 			ndev->stats.tx_aborted_errors++;
1618 			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1619 		}
1620 	}
1621 
1622 	if (intr_status & EESR_RABT) {
1623 		/* Receive Abort int */
1624 		if (intr_status & EESR_RFRMER) {
1625 			/* Receive Frame Overflow int */
1626 			ndev->stats.rx_frame_errors++;
1627 		}
1628 	}
1629 
1630 	if (intr_status & EESR_TDE) {
1631 		/* Transmit Descriptor Empty int */
1632 		ndev->stats.tx_fifo_errors++;
1633 		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1634 	}
1635 
1636 	if (intr_status & EESR_TFE) {
1637 		/* FIFO under flow */
1638 		ndev->stats.tx_fifo_errors++;
1639 		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1640 	}
1641 
1642 	if (intr_status & EESR_RDE) {
1643 		/* Receive Descriptor Empty int */
1644 		ndev->stats.rx_over_errors++;
1645 	}
1646 
1647 	if (intr_status & EESR_RFE) {
1648 		/* Receive FIFO Overflow int */
1649 		ndev->stats.rx_fifo_errors++;
1650 	}
1651 
1652 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1653 		/* Address Error */
1654 		ndev->stats.tx_fifo_errors++;
1655 		netif_err(mdp, tx_err, ndev, "Address Error\n");
1656 	}
1657 
1658 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1659 	if (mdp->cd->no_ade)
1660 		mask &= ~EESR_ADE;
1661 	if (intr_status & mask) {
1662 		/* Tx error */
1663 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1664 
1665 		/* dmesg */
1666 		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1667 			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1668 			   (u32)ndev->state, edtrr);
1669 		/* dirty buffer free */
1670 		sh_eth_txfree(ndev);
1671 
1672 		/* SH7712 BUG */
1673 		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1674 			/* tx dma start */
1675 			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1676 		}
1677 		/* wakeup */
1678 		netif_wake_queue(ndev);
1679 	}
1680 }
1681 
1682 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1683 {
1684 	struct net_device *ndev = netdev;
1685 	struct sh_eth_private *mdp = netdev_priv(ndev);
1686 	struct sh_eth_cpu_data *cd = mdp->cd;
1687 	irqreturn_t ret = IRQ_NONE;
1688 	u32 intr_status, intr_enable;
1689 
1690 	spin_lock(&mdp->lock);
1691 
1692 	/* Get interrupt status */
1693 	intr_status = sh_eth_read(ndev, EESR);
1694 	/* Mask it with the interrupt mask, forcing ECI interrupt to be always
1695 	 * enabled since it's the one that  comes thru regardless of the mask,
1696 	 * and we need to fully handle it in sh_eth_error() in order to quench
1697 	 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1698 	 */
1699 	intr_enable = sh_eth_read(ndev, EESIPR);
1700 	intr_status &= intr_enable | DMAC_M_ECI;
1701 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1702 		ret = IRQ_HANDLED;
1703 	else
1704 		goto out;
1705 
1706 	if (!likely(mdp->irq_enabled)) {
1707 		sh_eth_write(ndev, 0, EESIPR);
1708 		goto out;
1709 	}
1710 
1711 	if (intr_status & EESR_RX_CHECK) {
1712 		if (napi_schedule_prep(&mdp->napi)) {
1713 			/* Mask Rx interrupts */
1714 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1715 				     EESIPR);
1716 			__napi_schedule(&mdp->napi);
1717 		} else {
1718 			netdev_warn(ndev,
1719 				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1720 				    intr_status, intr_enable);
1721 		}
1722 	}
1723 
1724 	/* Tx Check */
1725 	if (intr_status & cd->tx_check) {
1726 		/* Clear Tx interrupts */
1727 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1728 
1729 		sh_eth_txfree(ndev);
1730 		netif_wake_queue(ndev);
1731 	}
1732 
1733 	if (intr_status & cd->eesr_err_check) {
1734 		/* Clear error interrupts */
1735 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1736 
1737 		sh_eth_error(ndev, intr_status);
1738 	}
1739 
1740 out:
1741 	spin_unlock(&mdp->lock);
1742 
1743 	return ret;
1744 }
1745 
1746 static int sh_eth_poll(struct napi_struct *napi, int budget)
1747 {
1748 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1749 						  napi);
1750 	struct net_device *ndev = napi->dev;
1751 	int quota = budget;
1752 	u32 intr_status;
1753 
1754 	for (;;) {
1755 		intr_status = sh_eth_read(ndev, EESR);
1756 		if (!(intr_status & EESR_RX_CHECK))
1757 			break;
1758 		/* Clear Rx interrupts */
1759 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1760 
1761 		if (sh_eth_rx(ndev, intr_status, &quota))
1762 			goto out;
1763 	}
1764 
1765 	napi_complete(napi);
1766 
1767 	/* Reenable Rx interrupts */
1768 	if (mdp->irq_enabled)
1769 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1770 out:
1771 	return budget - quota;
1772 }
1773 
1774 /* PHY state control function */
1775 static void sh_eth_adjust_link(struct net_device *ndev)
1776 {
1777 	struct sh_eth_private *mdp = netdev_priv(ndev);
1778 	struct phy_device *phydev = mdp->phydev;
1779 	int new_state = 0;
1780 
1781 	if (phydev->link) {
1782 		if (phydev->duplex != mdp->duplex) {
1783 			new_state = 1;
1784 			mdp->duplex = phydev->duplex;
1785 			if (mdp->cd->set_duplex)
1786 				mdp->cd->set_duplex(ndev);
1787 		}
1788 
1789 		if (phydev->speed != mdp->speed) {
1790 			new_state = 1;
1791 			mdp->speed = phydev->speed;
1792 			if (mdp->cd->set_rate)
1793 				mdp->cd->set_rate(ndev);
1794 		}
1795 		if (!mdp->link) {
1796 			sh_eth_write(ndev,
1797 				     sh_eth_read(ndev, ECMR) & ~ECMR_TXF,
1798 				     ECMR);
1799 			new_state = 1;
1800 			mdp->link = phydev->link;
1801 			if (mdp->cd->no_psr || mdp->no_ether_link)
1802 				sh_eth_rcv_snd_enable(ndev);
1803 		}
1804 	} else if (mdp->link) {
1805 		new_state = 1;
1806 		mdp->link = 0;
1807 		mdp->speed = 0;
1808 		mdp->duplex = -1;
1809 		if (mdp->cd->no_psr || mdp->no_ether_link)
1810 			sh_eth_rcv_snd_disable(ndev);
1811 	}
1812 
1813 	if (new_state && netif_msg_link(mdp))
1814 		phy_print_status(phydev);
1815 }
1816 
1817 /* PHY init function */
1818 static int sh_eth_phy_init(struct net_device *ndev)
1819 {
1820 	struct device_node *np = ndev->dev.parent->of_node;
1821 	struct sh_eth_private *mdp = netdev_priv(ndev);
1822 	struct phy_device *phydev = NULL;
1823 
1824 	mdp->link = 0;
1825 	mdp->speed = 0;
1826 	mdp->duplex = -1;
1827 
1828 	/* Try connect to PHY */
1829 	if (np) {
1830 		struct device_node *pn;
1831 
1832 		pn = of_parse_phandle(np, "phy-handle", 0);
1833 		phydev = of_phy_connect(ndev, pn,
1834 					sh_eth_adjust_link, 0,
1835 					mdp->phy_interface);
1836 
1837 		if (!phydev)
1838 			phydev = ERR_PTR(-ENOENT);
1839 	} else {
1840 		char phy_id[MII_BUS_ID_SIZE + 3];
1841 
1842 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1843 			 mdp->mii_bus->id, mdp->phy_id);
1844 
1845 		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1846 				     mdp->phy_interface);
1847 	}
1848 
1849 	if (IS_ERR(phydev)) {
1850 		netdev_err(ndev, "failed to connect PHY\n");
1851 		return PTR_ERR(phydev);
1852 	}
1853 
1854 	netdev_info(ndev, "attached PHY %d (IRQ %d) to driver %s\n",
1855 		    phydev->addr, phydev->irq, phydev->drv->name);
1856 
1857 	mdp->phydev = phydev;
1858 
1859 	return 0;
1860 }
1861 
1862 /* PHY control start function */
1863 static int sh_eth_phy_start(struct net_device *ndev)
1864 {
1865 	struct sh_eth_private *mdp = netdev_priv(ndev);
1866 	int ret;
1867 
1868 	ret = sh_eth_phy_init(ndev);
1869 	if (ret)
1870 		return ret;
1871 
1872 	phy_start(mdp->phydev);
1873 
1874 	return 0;
1875 }
1876 
1877 static int sh_eth_get_settings(struct net_device *ndev,
1878 			       struct ethtool_cmd *ecmd)
1879 {
1880 	struct sh_eth_private *mdp = netdev_priv(ndev);
1881 	unsigned long flags;
1882 	int ret;
1883 
1884 	if (!mdp->phydev)
1885 		return -ENODEV;
1886 
1887 	spin_lock_irqsave(&mdp->lock, flags);
1888 	ret = phy_ethtool_gset(mdp->phydev, ecmd);
1889 	spin_unlock_irqrestore(&mdp->lock, flags);
1890 
1891 	return ret;
1892 }
1893 
1894 static int sh_eth_set_settings(struct net_device *ndev,
1895 			       struct ethtool_cmd *ecmd)
1896 {
1897 	struct sh_eth_private *mdp = netdev_priv(ndev);
1898 	unsigned long flags;
1899 	int ret;
1900 
1901 	if (!mdp->phydev)
1902 		return -ENODEV;
1903 
1904 	spin_lock_irqsave(&mdp->lock, flags);
1905 
1906 	/* disable tx and rx */
1907 	sh_eth_rcv_snd_disable(ndev);
1908 
1909 	ret = phy_ethtool_sset(mdp->phydev, ecmd);
1910 	if (ret)
1911 		goto error_exit;
1912 
1913 	if (ecmd->duplex == DUPLEX_FULL)
1914 		mdp->duplex = 1;
1915 	else
1916 		mdp->duplex = 0;
1917 
1918 	if (mdp->cd->set_duplex)
1919 		mdp->cd->set_duplex(ndev);
1920 
1921 error_exit:
1922 	mdelay(1);
1923 
1924 	/* enable tx and rx */
1925 	sh_eth_rcv_snd_enable(ndev);
1926 
1927 	spin_unlock_irqrestore(&mdp->lock, flags);
1928 
1929 	return ret;
1930 }
1931 
1932 static int sh_eth_nway_reset(struct net_device *ndev)
1933 {
1934 	struct sh_eth_private *mdp = netdev_priv(ndev);
1935 	unsigned long flags;
1936 	int ret;
1937 
1938 	if (!mdp->phydev)
1939 		return -ENODEV;
1940 
1941 	spin_lock_irqsave(&mdp->lock, flags);
1942 	ret = phy_start_aneg(mdp->phydev);
1943 	spin_unlock_irqrestore(&mdp->lock, flags);
1944 
1945 	return ret;
1946 }
1947 
1948 static u32 sh_eth_get_msglevel(struct net_device *ndev)
1949 {
1950 	struct sh_eth_private *mdp = netdev_priv(ndev);
1951 	return mdp->msg_enable;
1952 }
1953 
1954 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1955 {
1956 	struct sh_eth_private *mdp = netdev_priv(ndev);
1957 	mdp->msg_enable = value;
1958 }
1959 
1960 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1961 	"rx_current", "tx_current",
1962 	"rx_dirty", "tx_dirty",
1963 };
1964 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
1965 
1966 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1967 {
1968 	switch (sset) {
1969 	case ETH_SS_STATS:
1970 		return SH_ETH_STATS_LEN;
1971 	default:
1972 		return -EOPNOTSUPP;
1973 	}
1974 }
1975 
1976 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1977 				     struct ethtool_stats *stats, u64 *data)
1978 {
1979 	struct sh_eth_private *mdp = netdev_priv(ndev);
1980 	int i = 0;
1981 
1982 	/* device-specific stats */
1983 	data[i++] = mdp->cur_rx;
1984 	data[i++] = mdp->cur_tx;
1985 	data[i++] = mdp->dirty_rx;
1986 	data[i++] = mdp->dirty_tx;
1987 }
1988 
1989 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1990 {
1991 	switch (stringset) {
1992 	case ETH_SS_STATS:
1993 		memcpy(data, *sh_eth_gstrings_stats,
1994 		       sizeof(sh_eth_gstrings_stats));
1995 		break;
1996 	}
1997 }
1998 
1999 static void sh_eth_get_ringparam(struct net_device *ndev,
2000 				 struct ethtool_ringparam *ring)
2001 {
2002 	struct sh_eth_private *mdp = netdev_priv(ndev);
2003 
2004 	ring->rx_max_pending = RX_RING_MAX;
2005 	ring->tx_max_pending = TX_RING_MAX;
2006 	ring->rx_pending = mdp->num_rx_ring;
2007 	ring->tx_pending = mdp->num_tx_ring;
2008 }
2009 
2010 static int sh_eth_set_ringparam(struct net_device *ndev,
2011 				struct ethtool_ringparam *ring)
2012 {
2013 	struct sh_eth_private *mdp = netdev_priv(ndev);
2014 	int ret;
2015 
2016 	if (ring->tx_pending > TX_RING_MAX ||
2017 	    ring->rx_pending > RX_RING_MAX ||
2018 	    ring->tx_pending < TX_RING_MIN ||
2019 	    ring->rx_pending < RX_RING_MIN)
2020 		return -EINVAL;
2021 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2022 		return -EINVAL;
2023 
2024 	if (netif_running(ndev)) {
2025 		netif_device_detach(ndev);
2026 		netif_tx_disable(ndev);
2027 
2028 		/* Serialise with the interrupt handler and NAPI, then
2029 		 * disable interrupts.  We have to clear the
2030 		 * irq_enabled flag first to ensure that interrupts
2031 		 * won't be re-enabled.
2032 		 */
2033 		mdp->irq_enabled = false;
2034 		synchronize_irq(ndev->irq);
2035 		napi_synchronize(&mdp->napi);
2036 		sh_eth_write(ndev, 0x0000, EESIPR);
2037 
2038 		sh_eth_dev_exit(ndev);
2039 
2040 		/* Free all the skbuffs in the Rx queue. */
2041 		sh_eth_ring_free(ndev);
2042 		/* Free DMA buffer */
2043 		sh_eth_free_dma_buffer(mdp);
2044 	}
2045 
2046 	/* Set new parameters */
2047 	mdp->num_rx_ring = ring->rx_pending;
2048 	mdp->num_tx_ring = ring->tx_pending;
2049 
2050 	if (netif_running(ndev)) {
2051 		ret = sh_eth_ring_init(ndev);
2052 		if (ret < 0) {
2053 			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2054 				   __func__);
2055 			return ret;
2056 		}
2057 		ret = sh_eth_dev_init(ndev, false);
2058 		if (ret < 0) {
2059 			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2060 				   __func__);
2061 			return ret;
2062 		}
2063 
2064 		mdp->irq_enabled = true;
2065 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
2066 		/* Setting the Rx mode will start the Rx process. */
2067 		sh_eth_write(ndev, EDRRR_R, EDRRR);
2068 		netif_device_attach(ndev);
2069 	}
2070 
2071 	return 0;
2072 }
2073 
2074 static const struct ethtool_ops sh_eth_ethtool_ops = {
2075 	.get_settings	= sh_eth_get_settings,
2076 	.set_settings	= sh_eth_set_settings,
2077 	.nway_reset	= sh_eth_nway_reset,
2078 	.get_msglevel	= sh_eth_get_msglevel,
2079 	.set_msglevel	= sh_eth_set_msglevel,
2080 	.get_link	= ethtool_op_get_link,
2081 	.get_strings	= sh_eth_get_strings,
2082 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2083 	.get_sset_count     = sh_eth_get_sset_count,
2084 	.get_ringparam	= sh_eth_get_ringparam,
2085 	.set_ringparam	= sh_eth_set_ringparam,
2086 };
2087 
2088 /* network device open function */
2089 static int sh_eth_open(struct net_device *ndev)
2090 {
2091 	int ret = 0;
2092 	struct sh_eth_private *mdp = netdev_priv(ndev);
2093 
2094 	pm_runtime_get_sync(&mdp->pdev->dev);
2095 
2096 	napi_enable(&mdp->napi);
2097 
2098 	ret = request_irq(ndev->irq, sh_eth_interrupt,
2099 			  mdp->cd->irq_flags, ndev->name, ndev);
2100 	if (ret) {
2101 		netdev_err(ndev, "Can not assign IRQ number\n");
2102 		goto out_napi_off;
2103 	}
2104 
2105 	/* Descriptor set */
2106 	ret = sh_eth_ring_init(ndev);
2107 	if (ret)
2108 		goto out_free_irq;
2109 
2110 	/* device init */
2111 	ret = sh_eth_dev_init(ndev, true);
2112 	if (ret)
2113 		goto out_free_irq;
2114 
2115 	/* PHY control start*/
2116 	ret = sh_eth_phy_start(ndev);
2117 	if (ret)
2118 		goto out_free_irq;
2119 
2120 	mdp->is_opened = 1;
2121 
2122 	return ret;
2123 
2124 out_free_irq:
2125 	free_irq(ndev->irq, ndev);
2126 out_napi_off:
2127 	napi_disable(&mdp->napi);
2128 	pm_runtime_put_sync(&mdp->pdev->dev);
2129 	return ret;
2130 }
2131 
2132 /* Timeout function */
2133 static void sh_eth_tx_timeout(struct net_device *ndev)
2134 {
2135 	struct sh_eth_private *mdp = netdev_priv(ndev);
2136 	struct sh_eth_rxdesc *rxdesc;
2137 	int i;
2138 
2139 	netif_stop_queue(ndev);
2140 
2141 	netif_err(mdp, timer, ndev,
2142 		  "transmit timed out, status %8.8x, resetting...\n",
2143 		  sh_eth_read(ndev, EESR));
2144 
2145 	/* tx_errors count up */
2146 	ndev->stats.tx_errors++;
2147 
2148 	/* Free all the skbuffs in the Rx queue. */
2149 	for (i = 0; i < mdp->num_rx_ring; i++) {
2150 		rxdesc = &mdp->rx_ring[i];
2151 		rxdesc->status = 0;
2152 		rxdesc->addr = 0xBADF00D0;
2153 		dev_kfree_skb(mdp->rx_skbuff[i]);
2154 		mdp->rx_skbuff[i] = NULL;
2155 	}
2156 	for (i = 0; i < mdp->num_tx_ring; i++) {
2157 		dev_kfree_skb(mdp->tx_skbuff[i]);
2158 		mdp->tx_skbuff[i] = NULL;
2159 	}
2160 
2161 	/* device init */
2162 	sh_eth_dev_init(ndev, true);
2163 }
2164 
2165 /* Packet transmit function */
2166 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2167 {
2168 	struct sh_eth_private *mdp = netdev_priv(ndev);
2169 	struct sh_eth_txdesc *txdesc;
2170 	u32 entry;
2171 	unsigned long flags;
2172 
2173 	spin_lock_irqsave(&mdp->lock, flags);
2174 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2175 		if (!sh_eth_txfree(ndev)) {
2176 			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2177 			netif_stop_queue(ndev);
2178 			spin_unlock_irqrestore(&mdp->lock, flags);
2179 			return NETDEV_TX_BUSY;
2180 		}
2181 	}
2182 	spin_unlock_irqrestore(&mdp->lock, flags);
2183 
2184 	if (skb_put_padto(skb, ETH_ZLEN))
2185 		return NETDEV_TX_OK;
2186 
2187 	entry = mdp->cur_tx % mdp->num_tx_ring;
2188 	mdp->tx_skbuff[entry] = skb;
2189 	txdesc = &mdp->tx_ring[entry];
2190 	/* soft swap. */
2191 	if (!mdp->cd->hw_swap)
2192 		sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
2193 				 skb->len + 2);
2194 	txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2195 				      DMA_TO_DEVICE);
2196 	if (dma_mapping_error(&ndev->dev, txdesc->addr)) {
2197 		kfree_skb(skb);
2198 		return NETDEV_TX_OK;
2199 	}
2200 	txdesc->buffer_length = skb->len;
2201 
2202 	wmb(); /* TACT bit must be set after all the above writes */
2203 	if (entry >= mdp->num_tx_ring - 1)
2204 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
2205 	else
2206 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
2207 
2208 	mdp->cur_tx++;
2209 
2210 	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2211 		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2212 
2213 	return NETDEV_TX_OK;
2214 }
2215 
2216 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2217 {
2218 	struct sh_eth_private *mdp = netdev_priv(ndev);
2219 
2220 	if (sh_eth_is_rz_fast_ether(mdp))
2221 		return &ndev->stats;
2222 
2223 	if (!mdp->is_opened)
2224 		return &ndev->stats;
2225 
2226 	ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
2227 	sh_eth_write(ndev, 0, TROCR);	/* (write clear) */
2228 	ndev->stats.collisions += sh_eth_read(ndev, CDCR);
2229 	sh_eth_write(ndev, 0, CDCR);	/* (write clear) */
2230 	ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
2231 	sh_eth_write(ndev, 0, LCCR);	/* (write clear) */
2232 
2233 	if (sh_eth_is_gether(mdp)) {
2234 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
2235 		sh_eth_write(ndev, 0, CERCR);	/* (write clear) */
2236 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
2237 		sh_eth_write(ndev, 0, CEECR);	/* (write clear) */
2238 	} else {
2239 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
2240 		sh_eth_write(ndev, 0, CNDCR);	/* (write clear) */
2241 	}
2242 
2243 	return &ndev->stats;
2244 }
2245 
2246 /* device close function */
2247 static int sh_eth_close(struct net_device *ndev)
2248 {
2249 	struct sh_eth_private *mdp = netdev_priv(ndev);
2250 
2251 	netif_stop_queue(ndev);
2252 
2253 	/* Serialise with the interrupt handler and NAPI, then disable
2254 	 * interrupts.  We have to clear the irq_enabled flag first to
2255 	 * ensure that interrupts won't be re-enabled.
2256 	 */
2257 	mdp->irq_enabled = false;
2258 	synchronize_irq(ndev->irq);
2259 	napi_disable(&mdp->napi);
2260 	sh_eth_write(ndev, 0x0000, EESIPR);
2261 
2262 	sh_eth_dev_exit(ndev);
2263 
2264 	/* PHY Disconnect */
2265 	if (mdp->phydev) {
2266 		phy_stop(mdp->phydev);
2267 		phy_disconnect(mdp->phydev);
2268 		mdp->phydev = NULL;
2269 	}
2270 
2271 	free_irq(ndev->irq, ndev);
2272 
2273 	/* Free all the skbuffs in the Rx queue. */
2274 	sh_eth_ring_free(ndev);
2275 
2276 	/* free DMA buffer */
2277 	sh_eth_free_dma_buffer(mdp);
2278 
2279 	pm_runtime_put_sync(&mdp->pdev->dev);
2280 
2281 	mdp->is_opened = 0;
2282 
2283 	return 0;
2284 }
2285 
2286 /* ioctl to device function */
2287 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2288 {
2289 	struct sh_eth_private *mdp = netdev_priv(ndev);
2290 	struct phy_device *phydev = mdp->phydev;
2291 
2292 	if (!netif_running(ndev))
2293 		return -EINVAL;
2294 
2295 	if (!phydev)
2296 		return -ENODEV;
2297 
2298 	return phy_mii_ioctl(phydev, rq, cmd);
2299 }
2300 
2301 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2302 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2303 					    int entry)
2304 {
2305 	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2306 }
2307 
2308 static u32 sh_eth_tsu_get_post_mask(int entry)
2309 {
2310 	return 0x0f << (28 - ((entry % 8) * 4));
2311 }
2312 
2313 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2314 {
2315 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2316 }
2317 
2318 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2319 					     int entry)
2320 {
2321 	struct sh_eth_private *mdp = netdev_priv(ndev);
2322 	u32 tmp;
2323 	void *reg_offset;
2324 
2325 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2326 	tmp = ioread32(reg_offset);
2327 	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2328 }
2329 
2330 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2331 					      int entry)
2332 {
2333 	struct sh_eth_private *mdp = netdev_priv(ndev);
2334 	u32 post_mask, ref_mask, tmp;
2335 	void *reg_offset;
2336 
2337 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2338 	post_mask = sh_eth_tsu_get_post_mask(entry);
2339 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2340 
2341 	tmp = ioread32(reg_offset);
2342 	iowrite32(tmp & ~post_mask, reg_offset);
2343 
2344 	/* If other port enables, the function returns "true" */
2345 	return tmp & ref_mask;
2346 }
2347 
2348 static int sh_eth_tsu_busy(struct net_device *ndev)
2349 {
2350 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2351 	struct sh_eth_private *mdp = netdev_priv(ndev);
2352 
2353 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2354 		udelay(10);
2355 		timeout--;
2356 		if (timeout <= 0) {
2357 			netdev_err(ndev, "%s: timeout\n", __func__);
2358 			return -ETIMEDOUT;
2359 		}
2360 	}
2361 
2362 	return 0;
2363 }
2364 
2365 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2366 				  const u8 *addr)
2367 {
2368 	u32 val;
2369 
2370 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2371 	iowrite32(val, reg);
2372 	if (sh_eth_tsu_busy(ndev) < 0)
2373 		return -EBUSY;
2374 
2375 	val = addr[4] << 8 | addr[5];
2376 	iowrite32(val, reg + 4);
2377 	if (sh_eth_tsu_busy(ndev) < 0)
2378 		return -EBUSY;
2379 
2380 	return 0;
2381 }
2382 
2383 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2384 {
2385 	u32 val;
2386 
2387 	val = ioread32(reg);
2388 	addr[0] = (val >> 24) & 0xff;
2389 	addr[1] = (val >> 16) & 0xff;
2390 	addr[2] = (val >> 8) & 0xff;
2391 	addr[3] = val & 0xff;
2392 	val = ioread32(reg + 4);
2393 	addr[4] = (val >> 8) & 0xff;
2394 	addr[5] = val & 0xff;
2395 }
2396 
2397 
2398 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2399 {
2400 	struct sh_eth_private *mdp = netdev_priv(ndev);
2401 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2402 	int i;
2403 	u8 c_addr[ETH_ALEN];
2404 
2405 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2406 		sh_eth_tsu_read_entry(reg_offset, c_addr);
2407 		if (ether_addr_equal(addr, c_addr))
2408 			return i;
2409 	}
2410 
2411 	return -ENOENT;
2412 }
2413 
2414 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2415 {
2416 	u8 blank[ETH_ALEN];
2417 	int entry;
2418 
2419 	memset(blank, 0, sizeof(blank));
2420 	entry = sh_eth_tsu_find_entry(ndev, blank);
2421 	return (entry < 0) ? -ENOMEM : entry;
2422 }
2423 
2424 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2425 					      int entry)
2426 {
2427 	struct sh_eth_private *mdp = netdev_priv(ndev);
2428 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2429 	int ret;
2430 	u8 blank[ETH_ALEN];
2431 
2432 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2433 			 ~(1 << (31 - entry)), TSU_TEN);
2434 
2435 	memset(blank, 0, sizeof(blank));
2436 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2437 	if (ret < 0)
2438 		return ret;
2439 	return 0;
2440 }
2441 
2442 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2443 {
2444 	struct sh_eth_private *mdp = netdev_priv(ndev);
2445 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2446 	int i, ret;
2447 
2448 	if (!mdp->cd->tsu)
2449 		return 0;
2450 
2451 	i = sh_eth_tsu_find_entry(ndev, addr);
2452 	if (i < 0) {
2453 		/* No entry found, create one */
2454 		i = sh_eth_tsu_find_empty(ndev);
2455 		if (i < 0)
2456 			return -ENOMEM;
2457 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2458 		if (ret < 0)
2459 			return ret;
2460 
2461 		/* Enable the entry */
2462 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2463 				 (1 << (31 - i)), TSU_TEN);
2464 	}
2465 
2466 	/* Entry found or created, enable POST */
2467 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2468 
2469 	return 0;
2470 }
2471 
2472 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2473 {
2474 	struct sh_eth_private *mdp = netdev_priv(ndev);
2475 	int i, ret;
2476 
2477 	if (!mdp->cd->tsu)
2478 		return 0;
2479 
2480 	i = sh_eth_tsu_find_entry(ndev, addr);
2481 	if (i) {
2482 		/* Entry found */
2483 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2484 			goto done;
2485 
2486 		/* Disable the entry if both ports was disabled */
2487 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2488 		if (ret < 0)
2489 			return ret;
2490 	}
2491 done:
2492 	return 0;
2493 }
2494 
2495 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2496 {
2497 	struct sh_eth_private *mdp = netdev_priv(ndev);
2498 	int i, ret;
2499 
2500 	if (!mdp->cd->tsu)
2501 		return 0;
2502 
2503 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2504 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2505 			continue;
2506 
2507 		/* Disable the entry if both ports was disabled */
2508 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2509 		if (ret < 0)
2510 			return ret;
2511 	}
2512 
2513 	return 0;
2514 }
2515 
2516 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2517 {
2518 	struct sh_eth_private *mdp = netdev_priv(ndev);
2519 	u8 addr[ETH_ALEN];
2520 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2521 	int i;
2522 
2523 	if (!mdp->cd->tsu)
2524 		return;
2525 
2526 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2527 		sh_eth_tsu_read_entry(reg_offset, addr);
2528 		if (is_multicast_ether_addr(addr))
2529 			sh_eth_tsu_del_entry(ndev, addr);
2530 	}
2531 }
2532 
2533 /* Update promiscuous flag and multicast filter */
2534 static void sh_eth_set_rx_mode(struct net_device *ndev)
2535 {
2536 	struct sh_eth_private *mdp = netdev_priv(ndev);
2537 	u32 ecmr_bits;
2538 	int mcast_all = 0;
2539 	unsigned long flags;
2540 
2541 	spin_lock_irqsave(&mdp->lock, flags);
2542 	/* Initial condition is MCT = 1, PRM = 0.
2543 	 * Depending on ndev->flags, set PRM or clear MCT
2544 	 */
2545 	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2546 	if (mdp->cd->tsu)
2547 		ecmr_bits |= ECMR_MCT;
2548 
2549 	if (!(ndev->flags & IFF_MULTICAST)) {
2550 		sh_eth_tsu_purge_mcast(ndev);
2551 		mcast_all = 1;
2552 	}
2553 	if (ndev->flags & IFF_ALLMULTI) {
2554 		sh_eth_tsu_purge_mcast(ndev);
2555 		ecmr_bits &= ~ECMR_MCT;
2556 		mcast_all = 1;
2557 	}
2558 
2559 	if (ndev->flags & IFF_PROMISC) {
2560 		sh_eth_tsu_purge_all(ndev);
2561 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2562 	} else if (mdp->cd->tsu) {
2563 		struct netdev_hw_addr *ha;
2564 		netdev_for_each_mc_addr(ha, ndev) {
2565 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2566 				continue;
2567 
2568 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2569 				if (!mcast_all) {
2570 					sh_eth_tsu_purge_mcast(ndev);
2571 					ecmr_bits &= ~ECMR_MCT;
2572 					mcast_all = 1;
2573 				}
2574 			}
2575 		}
2576 	}
2577 
2578 	/* update the ethernet mode */
2579 	sh_eth_write(ndev, ecmr_bits, ECMR);
2580 
2581 	spin_unlock_irqrestore(&mdp->lock, flags);
2582 }
2583 
2584 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2585 {
2586 	if (!mdp->port)
2587 		return TSU_VTAG0;
2588 	else
2589 		return TSU_VTAG1;
2590 }
2591 
2592 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2593 				  __be16 proto, u16 vid)
2594 {
2595 	struct sh_eth_private *mdp = netdev_priv(ndev);
2596 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2597 
2598 	if (unlikely(!mdp->cd->tsu))
2599 		return -EPERM;
2600 
2601 	/* No filtering if vid = 0 */
2602 	if (!vid)
2603 		return 0;
2604 
2605 	mdp->vlan_num_ids++;
2606 
2607 	/* The controller has one VLAN tag HW filter. So, if the filter is
2608 	 * already enabled, the driver disables it and the filte
2609 	 */
2610 	if (mdp->vlan_num_ids > 1) {
2611 		/* disable VLAN filter */
2612 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2613 		return 0;
2614 	}
2615 
2616 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2617 			 vtag_reg_index);
2618 
2619 	return 0;
2620 }
2621 
2622 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2623 				   __be16 proto, u16 vid)
2624 {
2625 	struct sh_eth_private *mdp = netdev_priv(ndev);
2626 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2627 
2628 	if (unlikely(!mdp->cd->tsu))
2629 		return -EPERM;
2630 
2631 	/* No filtering if vid = 0 */
2632 	if (!vid)
2633 		return 0;
2634 
2635 	mdp->vlan_num_ids--;
2636 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2637 
2638 	return 0;
2639 }
2640 
2641 /* SuperH's TSU register init function */
2642 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2643 {
2644 	if (sh_eth_is_rz_fast_ether(mdp)) {
2645 		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2646 		return;
2647 	}
2648 
2649 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2650 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2651 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2652 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2653 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2654 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2655 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2656 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2657 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2658 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2659 	if (sh_eth_is_gether(mdp)) {
2660 		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2661 		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2662 	} else {
2663 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2664 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2665 	}
2666 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2667 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2668 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2669 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2670 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2671 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2672 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2673 }
2674 
2675 /* MDIO bus release function */
2676 static int sh_mdio_release(struct sh_eth_private *mdp)
2677 {
2678 	/* unregister mdio bus */
2679 	mdiobus_unregister(mdp->mii_bus);
2680 
2681 	/* free bitbang info */
2682 	free_mdio_bitbang(mdp->mii_bus);
2683 
2684 	return 0;
2685 }
2686 
2687 /* MDIO bus init function */
2688 static int sh_mdio_init(struct sh_eth_private *mdp,
2689 			struct sh_eth_plat_data *pd)
2690 {
2691 	int ret, i;
2692 	struct bb_info *bitbang;
2693 	struct platform_device *pdev = mdp->pdev;
2694 	struct device *dev = &mdp->pdev->dev;
2695 
2696 	/* create bit control struct for PHY */
2697 	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2698 	if (!bitbang)
2699 		return -ENOMEM;
2700 
2701 	/* bitbang init */
2702 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2703 	bitbang->set_gate = pd->set_mdio_gate;
2704 	bitbang->mdi_msk = PIR_MDI;
2705 	bitbang->mdo_msk = PIR_MDO;
2706 	bitbang->mmd_msk = PIR_MMD;
2707 	bitbang->mdc_msk = PIR_MDC;
2708 	bitbang->ctrl.ops = &bb_ops;
2709 
2710 	/* MII controller setting */
2711 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2712 	if (!mdp->mii_bus)
2713 		return -ENOMEM;
2714 
2715 	/* Hook up MII support for ethtool */
2716 	mdp->mii_bus->name = "sh_mii";
2717 	mdp->mii_bus->parent = dev;
2718 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2719 		 pdev->name, pdev->id);
2720 
2721 	/* PHY IRQ */
2722 	mdp->mii_bus->irq = devm_kmalloc_array(dev, PHY_MAX_ADDR, sizeof(int),
2723 					       GFP_KERNEL);
2724 	if (!mdp->mii_bus->irq) {
2725 		ret = -ENOMEM;
2726 		goto out_free_bus;
2727 	}
2728 
2729 	/* register MDIO bus */
2730 	if (dev->of_node) {
2731 		ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
2732 	} else {
2733 		for (i = 0; i < PHY_MAX_ADDR; i++)
2734 			mdp->mii_bus->irq[i] = PHY_POLL;
2735 		if (pd->phy_irq > 0)
2736 			mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2737 
2738 		ret = mdiobus_register(mdp->mii_bus);
2739 	}
2740 
2741 	if (ret)
2742 		goto out_free_bus;
2743 
2744 	return 0;
2745 
2746 out_free_bus:
2747 	free_mdio_bitbang(mdp->mii_bus);
2748 	return ret;
2749 }
2750 
2751 static const u16 *sh_eth_get_register_offset(int register_type)
2752 {
2753 	const u16 *reg_offset = NULL;
2754 
2755 	switch (register_type) {
2756 	case SH_ETH_REG_GIGABIT:
2757 		reg_offset = sh_eth_offset_gigabit;
2758 		break;
2759 	case SH_ETH_REG_FAST_RZ:
2760 		reg_offset = sh_eth_offset_fast_rz;
2761 		break;
2762 	case SH_ETH_REG_FAST_RCAR:
2763 		reg_offset = sh_eth_offset_fast_rcar;
2764 		break;
2765 	case SH_ETH_REG_FAST_SH4:
2766 		reg_offset = sh_eth_offset_fast_sh4;
2767 		break;
2768 	case SH_ETH_REG_FAST_SH3_SH2:
2769 		reg_offset = sh_eth_offset_fast_sh3_sh2;
2770 		break;
2771 	default:
2772 		break;
2773 	}
2774 
2775 	return reg_offset;
2776 }
2777 
2778 static const struct net_device_ops sh_eth_netdev_ops = {
2779 	.ndo_open		= sh_eth_open,
2780 	.ndo_stop		= sh_eth_close,
2781 	.ndo_start_xmit		= sh_eth_start_xmit,
2782 	.ndo_get_stats		= sh_eth_get_stats,
2783 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
2784 	.ndo_tx_timeout		= sh_eth_tx_timeout,
2785 	.ndo_do_ioctl		= sh_eth_do_ioctl,
2786 	.ndo_validate_addr	= eth_validate_addr,
2787 	.ndo_set_mac_address	= eth_mac_addr,
2788 	.ndo_change_mtu		= eth_change_mtu,
2789 };
2790 
2791 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
2792 	.ndo_open		= sh_eth_open,
2793 	.ndo_stop		= sh_eth_close,
2794 	.ndo_start_xmit		= sh_eth_start_xmit,
2795 	.ndo_get_stats		= sh_eth_get_stats,
2796 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
2797 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
2798 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
2799 	.ndo_tx_timeout		= sh_eth_tx_timeout,
2800 	.ndo_do_ioctl		= sh_eth_do_ioctl,
2801 	.ndo_validate_addr	= eth_validate_addr,
2802 	.ndo_set_mac_address	= eth_mac_addr,
2803 	.ndo_change_mtu		= eth_change_mtu,
2804 };
2805 
2806 #ifdef CONFIG_OF
2807 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2808 {
2809 	struct device_node *np = dev->of_node;
2810 	struct sh_eth_plat_data *pdata;
2811 	const char *mac_addr;
2812 
2813 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2814 	if (!pdata)
2815 		return NULL;
2816 
2817 	pdata->phy_interface = of_get_phy_mode(np);
2818 
2819 	mac_addr = of_get_mac_address(np);
2820 	if (mac_addr)
2821 		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
2822 
2823 	pdata->no_ether_link =
2824 		of_property_read_bool(np, "renesas,no-ether-link");
2825 	pdata->ether_link_active_low =
2826 		of_property_read_bool(np, "renesas,ether-link-active-low");
2827 
2828 	return pdata;
2829 }
2830 
2831 static const struct of_device_id sh_eth_match_table[] = {
2832 	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
2833 	{ .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data },
2834 	{ .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data },
2835 	{ .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data },
2836 	{ .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data },
2837 	{ .compatible = "renesas,ether-r8a7793", .data = &r8a779x_data },
2838 	{ .compatible = "renesas,ether-r8a7794", .data = &r8a779x_data },
2839 	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
2840 	{ }
2841 };
2842 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
2843 #else
2844 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2845 {
2846 	return NULL;
2847 }
2848 #endif
2849 
2850 static int sh_eth_drv_probe(struct platform_device *pdev)
2851 {
2852 	int ret, devno = 0;
2853 	struct resource *res;
2854 	struct net_device *ndev = NULL;
2855 	struct sh_eth_private *mdp = NULL;
2856 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
2857 	const struct platform_device_id *id = platform_get_device_id(pdev);
2858 
2859 	/* get base addr */
2860 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2861 
2862 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2863 	if (!ndev)
2864 		return -ENOMEM;
2865 
2866 	pm_runtime_enable(&pdev->dev);
2867 	pm_runtime_get_sync(&pdev->dev);
2868 
2869 	devno = pdev->id;
2870 	if (devno < 0)
2871 		devno = 0;
2872 
2873 	ndev->dma = -1;
2874 	ret = platform_get_irq(pdev, 0);
2875 	if (ret < 0) {
2876 		ret = -ENODEV;
2877 		goto out_release;
2878 	}
2879 	ndev->irq = ret;
2880 
2881 	SET_NETDEV_DEV(ndev, &pdev->dev);
2882 
2883 	mdp = netdev_priv(ndev);
2884 	mdp->num_tx_ring = TX_RING_SIZE;
2885 	mdp->num_rx_ring = RX_RING_SIZE;
2886 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
2887 	if (IS_ERR(mdp->addr)) {
2888 		ret = PTR_ERR(mdp->addr);
2889 		goto out_release;
2890 	}
2891 
2892 	ndev->base_addr = res->start;
2893 
2894 	spin_lock_init(&mdp->lock);
2895 	mdp->pdev = pdev;
2896 
2897 	if (pdev->dev.of_node)
2898 		pd = sh_eth_parse_dt(&pdev->dev);
2899 	if (!pd) {
2900 		dev_err(&pdev->dev, "no platform data\n");
2901 		ret = -EINVAL;
2902 		goto out_release;
2903 	}
2904 
2905 	/* get PHY ID */
2906 	mdp->phy_id = pd->phy;
2907 	mdp->phy_interface = pd->phy_interface;
2908 	/* EDMAC endian */
2909 	mdp->edmac_endian = pd->edmac_endian;
2910 	mdp->no_ether_link = pd->no_ether_link;
2911 	mdp->ether_link_active_low = pd->ether_link_active_low;
2912 
2913 	/* set cpu data */
2914 	if (id) {
2915 		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
2916 	} else	{
2917 		const struct of_device_id *match;
2918 
2919 		match = of_match_device(of_match_ptr(sh_eth_match_table),
2920 					&pdev->dev);
2921 		mdp->cd = (struct sh_eth_cpu_data *)match->data;
2922 	}
2923 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
2924 	if (!mdp->reg_offset) {
2925 		dev_err(&pdev->dev, "Unknown register type (%d)\n",
2926 			mdp->cd->register_type);
2927 		ret = -EINVAL;
2928 		goto out_release;
2929 	}
2930 	sh_eth_set_default_cpu_data(mdp->cd);
2931 
2932 	/* set function */
2933 	if (mdp->cd->tsu)
2934 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
2935 	else
2936 		ndev->netdev_ops = &sh_eth_netdev_ops;
2937 	ndev->ethtool_ops = &sh_eth_ethtool_ops;
2938 	ndev->watchdog_timeo = TX_TIMEOUT;
2939 
2940 	/* debug message level */
2941 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
2942 
2943 	/* read and set MAC address */
2944 	read_mac_address(ndev, pd->mac_addr);
2945 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2946 		dev_warn(&pdev->dev,
2947 			 "no valid MAC address supplied, using a random one.\n");
2948 		eth_hw_addr_random(ndev);
2949 	}
2950 
2951 	/* ioremap the TSU registers */
2952 	if (mdp->cd->tsu) {
2953 		struct resource *rtsu;
2954 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2955 		mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
2956 		if (IS_ERR(mdp->tsu_addr)) {
2957 			ret = PTR_ERR(mdp->tsu_addr);
2958 			goto out_release;
2959 		}
2960 		mdp->port = devno % 2;
2961 		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
2962 	}
2963 
2964 	/* initialize first or needed device */
2965 	if (!devno || pd->needs_init) {
2966 		if (mdp->cd->chip_reset)
2967 			mdp->cd->chip_reset(ndev);
2968 
2969 		if (mdp->cd->tsu) {
2970 			/* TSU init (Init only)*/
2971 			sh_eth_tsu_init(mdp);
2972 		}
2973 	}
2974 
2975 	if (mdp->cd->rmiimode)
2976 		sh_eth_write(ndev, 0x1, RMIIMODE);
2977 
2978 	/* MDIO bus init */
2979 	ret = sh_mdio_init(mdp, pd);
2980 	if (ret) {
2981 		dev_err(&ndev->dev, "failed to initialise MDIO\n");
2982 		goto out_release;
2983 	}
2984 
2985 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
2986 
2987 	/* network device register */
2988 	ret = register_netdev(ndev);
2989 	if (ret)
2990 		goto out_napi_del;
2991 
2992 	/* print device information */
2993 	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
2994 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2995 
2996 	pm_runtime_put(&pdev->dev);
2997 	platform_set_drvdata(pdev, ndev);
2998 
2999 	return ret;
3000 
3001 out_napi_del:
3002 	netif_napi_del(&mdp->napi);
3003 	sh_mdio_release(mdp);
3004 
3005 out_release:
3006 	/* net_dev free */
3007 	if (ndev)
3008 		free_netdev(ndev);
3009 
3010 	pm_runtime_put(&pdev->dev);
3011 	pm_runtime_disable(&pdev->dev);
3012 	return ret;
3013 }
3014 
3015 static int sh_eth_drv_remove(struct platform_device *pdev)
3016 {
3017 	struct net_device *ndev = platform_get_drvdata(pdev);
3018 	struct sh_eth_private *mdp = netdev_priv(ndev);
3019 
3020 	unregister_netdev(ndev);
3021 	netif_napi_del(&mdp->napi);
3022 	sh_mdio_release(mdp);
3023 	pm_runtime_disable(&pdev->dev);
3024 	free_netdev(ndev);
3025 
3026 	return 0;
3027 }
3028 
3029 #ifdef CONFIG_PM
3030 #ifdef CONFIG_PM_SLEEP
3031 static int sh_eth_suspend(struct device *dev)
3032 {
3033 	struct net_device *ndev = dev_get_drvdata(dev);
3034 	int ret = 0;
3035 
3036 	if (netif_running(ndev)) {
3037 		netif_device_detach(ndev);
3038 		ret = sh_eth_close(ndev);
3039 	}
3040 
3041 	return ret;
3042 }
3043 
3044 static int sh_eth_resume(struct device *dev)
3045 {
3046 	struct net_device *ndev = dev_get_drvdata(dev);
3047 	int ret = 0;
3048 
3049 	if (netif_running(ndev)) {
3050 		ret = sh_eth_open(ndev);
3051 		if (ret < 0)
3052 			return ret;
3053 		netif_device_attach(ndev);
3054 	}
3055 
3056 	return ret;
3057 }
3058 #endif
3059 
3060 static int sh_eth_runtime_nop(struct device *dev)
3061 {
3062 	/* Runtime PM callback shared between ->runtime_suspend()
3063 	 * and ->runtime_resume(). Simply returns success.
3064 	 *
3065 	 * This driver re-initializes all registers after
3066 	 * pm_runtime_get_sync() anyway so there is no need
3067 	 * to save and restore registers here.
3068 	 */
3069 	return 0;
3070 }
3071 
3072 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3073 	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3074 	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3075 };
3076 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3077 #else
3078 #define SH_ETH_PM_OPS NULL
3079 #endif
3080 
3081 static struct platform_device_id sh_eth_id_table[] = {
3082 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3083 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3084 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3085 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3086 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3087 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3088 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3089 	{ "r7s72100-ether", (kernel_ulong_t)&r7s72100_data },
3090 	{ "r8a7740-gether", (kernel_ulong_t)&r8a7740_data },
3091 	{ "r8a777x-ether", (kernel_ulong_t)&r8a777x_data },
3092 	{ "r8a7790-ether", (kernel_ulong_t)&r8a779x_data },
3093 	{ "r8a7791-ether", (kernel_ulong_t)&r8a779x_data },
3094 	{ "r8a7793-ether", (kernel_ulong_t)&r8a779x_data },
3095 	{ "r8a7794-ether", (kernel_ulong_t)&r8a779x_data },
3096 	{ }
3097 };
3098 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3099 
3100 static struct platform_driver sh_eth_driver = {
3101 	.probe = sh_eth_drv_probe,
3102 	.remove = sh_eth_drv_remove,
3103 	.id_table = sh_eth_id_table,
3104 	.driver = {
3105 		   .name = CARDNAME,
3106 		   .pm = SH_ETH_PM_OPS,
3107 		   .of_match_table = of_match_ptr(sh_eth_match_table),
3108 	},
3109 };
3110 
3111 module_platform_driver(sh_eth_driver);
3112 
3113 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3114 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3115 MODULE_LICENSE("GPL v2");
3116