xref: /linux/drivers/net/ethernet/renesas/sh_eth.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 /*
2  *  SuperH Ethernet device driver
3  *
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2012 Renesas Solutions Corp.
6  *
7  *  This program is free software; you can redistribute it and/or modify it
8  *  under the terms and conditions of the GNU General Public License,
9  *  version 2, as published by the Free Software Foundation.
10  *
11  *  This program is distributed in the hope it will be useful, but WITHOUT
12  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  *  more details.
15  *  You should have received a copy of the GNU General Public License along with
16  *  this program; if not, write to the Free Software Foundation, Inc.,
17  *  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  *  The full GNU General Public License is included in this distribution in
20  *  the file called "COPYING".
21  */
22 
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/spinlock.h>
27 #include <linux/interrupt.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/etherdevice.h>
30 #include <linux/delay.h>
31 #include <linux/platform_device.h>
32 #include <linux/mdio-bitbang.h>
33 #include <linux/netdevice.h>
34 #include <linux/phy.h>
35 #include <linux/cache.h>
36 #include <linux/io.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/slab.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/clk.h>
42 #include <linux/sh_eth.h>
43 
44 #include "sh_eth.h"
45 
46 #define SH_ETH_DEF_MSG_ENABLE \
47 		(NETIF_MSG_LINK	| \
48 		NETIF_MSG_TIMER	| \
49 		NETIF_MSG_RX_ERR| \
50 		NETIF_MSG_TX_ERR)
51 
52 #if defined(CONFIG_CPU_SUBTYPE_SH7734) || \
53 	defined(CONFIG_CPU_SUBTYPE_SH7763) || \
54 	defined(CONFIG_ARCH_R8A7740)
55 static void sh_eth_select_mii(struct net_device *ndev)
56 {
57 	u32 value = 0x0;
58 	struct sh_eth_private *mdp = netdev_priv(ndev);
59 
60 	switch (mdp->phy_interface) {
61 	case PHY_INTERFACE_MODE_GMII:
62 		value = 0x2;
63 		break;
64 	case PHY_INTERFACE_MODE_MII:
65 		value = 0x1;
66 		break;
67 	case PHY_INTERFACE_MODE_RMII:
68 		value = 0x0;
69 		break;
70 	default:
71 		pr_warn("PHY interface mode was not setup. Set to MII.\n");
72 		value = 0x1;
73 		break;
74 	}
75 
76 	sh_eth_write(ndev, value, RMII_MII);
77 }
78 #endif
79 
80 /* There is CPU dependent code */
81 #if defined(CONFIG_CPU_SUBTYPE_SH7724) || defined(CONFIG_ARCH_R8A7779)
82 #define SH_ETH_RESET_DEFAULT	1
83 static void sh_eth_set_duplex(struct net_device *ndev)
84 {
85 	struct sh_eth_private *mdp = netdev_priv(ndev);
86 
87 	if (mdp->duplex) /* Full */
88 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
89 	else		/* Half */
90 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
91 }
92 
93 static void sh_eth_set_rate(struct net_device *ndev)
94 {
95 	struct sh_eth_private *mdp = netdev_priv(ndev);
96 	unsigned int bits = ECMR_RTM;
97 
98 #if defined(CONFIG_ARCH_R8A7779)
99 	bits |= ECMR_ELB;
100 #endif
101 
102 	switch (mdp->speed) {
103 	case 10: /* 10BASE */
104 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~bits, ECMR);
105 		break;
106 	case 100:/* 100BASE */
107 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | bits, ECMR);
108 		break;
109 	default:
110 		break;
111 	}
112 }
113 
114 /* SH7724 */
115 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
116 	.set_duplex	= sh_eth_set_duplex,
117 	.set_rate	= sh_eth_set_rate,
118 
119 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
120 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
121 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
122 
123 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
124 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
125 			  EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
126 	.tx_error_check	= EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
127 
128 	.apr		= 1,
129 	.mpr		= 1,
130 	.tpauser	= 1,
131 	.hw_swap	= 1,
132 	.rpadir		= 1,
133 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
134 };
135 #elif defined(CONFIG_CPU_SUBTYPE_SH7757)
136 #define SH_ETH_HAS_BOTH_MODULES	1
137 #define SH_ETH_HAS_TSU	1
138 static int sh_eth_check_reset(struct net_device *ndev);
139 
140 static void sh_eth_set_duplex(struct net_device *ndev)
141 {
142 	struct sh_eth_private *mdp = netdev_priv(ndev);
143 
144 	if (mdp->duplex) /* Full */
145 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
146 	else		/* Half */
147 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
148 }
149 
150 static void sh_eth_set_rate(struct net_device *ndev)
151 {
152 	struct sh_eth_private *mdp = netdev_priv(ndev);
153 
154 	switch (mdp->speed) {
155 	case 10: /* 10BASE */
156 		sh_eth_write(ndev, 0, RTRATE);
157 		break;
158 	case 100:/* 100BASE */
159 		sh_eth_write(ndev, 1, RTRATE);
160 		break;
161 	default:
162 		break;
163 	}
164 }
165 
166 /* SH7757 */
167 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
168 	.set_duplex		= sh_eth_set_duplex,
169 	.set_rate		= sh_eth_set_rate,
170 
171 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
172 	.rmcr_value	= 0x00000001,
173 
174 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
175 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
176 			  EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
177 	.tx_error_check	= EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
178 
179 	.apr		= 1,
180 	.mpr		= 1,
181 	.tpauser	= 1,
182 	.hw_swap	= 1,
183 	.no_ade		= 1,
184 	.rpadir		= 1,
185 	.rpadir_value   = 2 << 16,
186 };
187 
188 #define SH_GIGA_ETH_BASE	0xfee00000
189 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
190 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
191 static void sh_eth_chip_reset_giga(struct net_device *ndev)
192 {
193 	int i;
194 	unsigned long mahr[2], malr[2];
195 
196 	/* save MAHR and MALR */
197 	for (i = 0; i < 2; i++) {
198 		malr[i] = ioread32((void *)GIGA_MALR(i));
199 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
200 	}
201 
202 	/* reset device */
203 	iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
204 	mdelay(1);
205 
206 	/* restore MAHR and MALR */
207 	for (i = 0; i < 2; i++) {
208 		iowrite32(malr[i], (void *)GIGA_MALR(i));
209 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
210 	}
211 }
212 
213 static int sh_eth_is_gether(struct sh_eth_private *mdp);
214 static int sh_eth_reset(struct net_device *ndev)
215 {
216 	struct sh_eth_private *mdp = netdev_priv(ndev);
217 	int ret = 0;
218 
219 	if (sh_eth_is_gether(mdp)) {
220 		sh_eth_write(ndev, 0x03, EDSR);
221 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
222 				EDMR);
223 
224 		ret = sh_eth_check_reset(ndev);
225 		if (ret)
226 			goto out;
227 
228 		/* Table Init */
229 		sh_eth_write(ndev, 0x0, TDLAR);
230 		sh_eth_write(ndev, 0x0, TDFAR);
231 		sh_eth_write(ndev, 0x0, TDFXR);
232 		sh_eth_write(ndev, 0x0, TDFFR);
233 		sh_eth_write(ndev, 0x0, RDLAR);
234 		sh_eth_write(ndev, 0x0, RDFAR);
235 		sh_eth_write(ndev, 0x0, RDFXR);
236 		sh_eth_write(ndev, 0x0, RDFFR);
237 	} else {
238 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
239 				EDMR);
240 		mdelay(3);
241 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
242 				EDMR);
243 	}
244 
245 out:
246 	return ret;
247 }
248 
249 static void sh_eth_set_duplex_giga(struct net_device *ndev)
250 {
251 	struct sh_eth_private *mdp = netdev_priv(ndev);
252 
253 	if (mdp->duplex) /* Full */
254 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
255 	else		/* Half */
256 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
257 }
258 
259 static void sh_eth_set_rate_giga(struct net_device *ndev)
260 {
261 	struct sh_eth_private *mdp = netdev_priv(ndev);
262 
263 	switch (mdp->speed) {
264 	case 10: /* 10BASE */
265 		sh_eth_write(ndev, 0x00000000, GECMR);
266 		break;
267 	case 100:/* 100BASE */
268 		sh_eth_write(ndev, 0x00000010, GECMR);
269 		break;
270 	case 1000: /* 1000BASE */
271 		sh_eth_write(ndev, 0x00000020, GECMR);
272 		break;
273 	default:
274 		break;
275 	}
276 }
277 
278 /* SH7757(GETHERC) */
279 static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
280 	.chip_reset	= sh_eth_chip_reset_giga,
281 	.set_duplex	= sh_eth_set_duplex_giga,
282 	.set_rate	= sh_eth_set_rate_giga,
283 
284 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
285 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
286 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
287 
288 	.tx_check	= EESR_TC1 | EESR_FTC,
289 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
290 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
291 			  EESR_ECI,
292 	.tx_error_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
293 			  EESR_TFE,
294 	.fdr_value	= 0x0000072f,
295 	.rmcr_value	= 0x00000001,
296 
297 	.apr		= 1,
298 	.mpr		= 1,
299 	.tpauser	= 1,
300 	.bculr		= 1,
301 	.hw_swap	= 1,
302 	.rpadir		= 1,
303 	.rpadir_value   = 2 << 16,
304 	.no_trimd	= 1,
305 	.no_ade		= 1,
306 	.tsu		= 1,
307 };
308 
309 static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
310 {
311 	if (sh_eth_is_gether(mdp))
312 		return &sh_eth_my_cpu_data_giga;
313 	else
314 		return &sh_eth_my_cpu_data;
315 }
316 
317 #elif defined(CONFIG_CPU_SUBTYPE_SH7734) || defined(CONFIG_CPU_SUBTYPE_SH7763)
318 #define SH_ETH_HAS_TSU	1
319 static int sh_eth_check_reset(struct net_device *ndev);
320 static void sh_eth_reset_hw_crc(struct net_device *ndev);
321 
322 static void sh_eth_chip_reset(struct net_device *ndev)
323 {
324 	struct sh_eth_private *mdp = netdev_priv(ndev);
325 
326 	/* reset device */
327 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
328 	mdelay(1);
329 }
330 
331 static void sh_eth_set_duplex(struct net_device *ndev)
332 {
333 	struct sh_eth_private *mdp = netdev_priv(ndev);
334 
335 	if (mdp->duplex) /* Full */
336 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
337 	else		/* Half */
338 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
339 }
340 
341 static void sh_eth_set_rate(struct net_device *ndev)
342 {
343 	struct sh_eth_private *mdp = netdev_priv(ndev);
344 
345 	switch (mdp->speed) {
346 	case 10: /* 10BASE */
347 		sh_eth_write(ndev, GECMR_10, GECMR);
348 		break;
349 	case 100:/* 100BASE */
350 		sh_eth_write(ndev, GECMR_100, GECMR);
351 		break;
352 	case 1000: /* 1000BASE */
353 		sh_eth_write(ndev, GECMR_1000, GECMR);
354 		break;
355 	default:
356 		break;
357 	}
358 }
359 
360 /* sh7763 */
361 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
362 	.chip_reset	= sh_eth_chip_reset,
363 	.set_duplex	= sh_eth_set_duplex,
364 	.set_rate	= sh_eth_set_rate,
365 
366 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
367 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
368 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
369 
370 	.tx_check	= EESR_TC1 | EESR_FTC,
371 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
372 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
373 			  EESR_ECI,
374 	.tx_error_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
375 			  EESR_TFE,
376 
377 	.apr		= 1,
378 	.mpr		= 1,
379 	.tpauser	= 1,
380 	.bculr		= 1,
381 	.hw_swap	= 1,
382 	.no_trimd	= 1,
383 	.no_ade		= 1,
384 	.tsu		= 1,
385 #if defined(CONFIG_CPU_SUBTYPE_SH7734)
386 	.hw_crc     = 1,
387 	.select_mii = 1,
388 #endif
389 };
390 
391 static int sh_eth_reset(struct net_device *ndev)
392 {
393 	int ret = 0;
394 
395 	sh_eth_write(ndev, EDSR_ENALL, EDSR);
396 	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
397 
398 	ret = sh_eth_check_reset(ndev);
399 	if (ret)
400 		goto out;
401 
402 	/* Table Init */
403 	sh_eth_write(ndev, 0x0, TDLAR);
404 	sh_eth_write(ndev, 0x0, TDFAR);
405 	sh_eth_write(ndev, 0x0, TDFXR);
406 	sh_eth_write(ndev, 0x0, TDFFR);
407 	sh_eth_write(ndev, 0x0, RDLAR);
408 	sh_eth_write(ndev, 0x0, RDFAR);
409 	sh_eth_write(ndev, 0x0, RDFXR);
410 	sh_eth_write(ndev, 0x0, RDFFR);
411 
412 	/* Reset HW CRC register */
413 	sh_eth_reset_hw_crc(ndev);
414 
415 	/* Select MII mode */
416 	if (sh_eth_my_cpu_data.select_mii)
417 		sh_eth_select_mii(ndev);
418 out:
419 	return ret;
420 }
421 
422 static void sh_eth_reset_hw_crc(struct net_device *ndev)
423 {
424 	if (sh_eth_my_cpu_data.hw_crc)
425 		sh_eth_write(ndev, 0x0, CSMR);
426 }
427 
428 #elif defined(CONFIG_ARCH_R8A7740)
429 #define SH_ETH_HAS_TSU	1
430 static int sh_eth_check_reset(struct net_device *ndev);
431 
432 static void sh_eth_chip_reset(struct net_device *ndev)
433 {
434 	struct sh_eth_private *mdp = netdev_priv(ndev);
435 
436 	/* reset device */
437 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
438 	mdelay(1);
439 
440 	sh_eth_select_mii(ndev);
441 }
442 
443 static int sh_eth_reset(struct net_device *ndev)
444 {
445 	int ret = 0;
446 
447 	sh_eth_write(ndev, EDSR_ENALL, EDSR);
448 	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
449 
450 	ret = sh_eth_check_reset(ndev);
451 	if (ret)
452 		goto out;
453 
454 	/* Table Init */
455 	sh_eth_write(ndev, 0x0, TDLAR);
456 	sh_eth_write(ndev, 0x0, TDFAR);
457 	sh_eth_write(ndev, 0x0, TDFXR);
458 	sh_eth_write(ndev, 0x0, TDFFR);
459 	sh_eth_write(ndev, 0x0, RDLAR);
460 	sh_eth_write(ndev, 0x0, RDFAR);
461 	sh_eth_write(ndev, 0x0, RDFXR);
462 	sh_eth_write(ndev, 0x0, RDFFR);
463 
464 out:
465 	return ret;
466 }
467 
468 static void sh_eth_set_duplex(struct net_device *ndev)
469 {
470 	struct sh_eth_private *mdp = netdev_priv(ndev);
471 
472 	if (mdp->duplex) /* Full */
473 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
474 	else		/* Half */
475 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
476 }
477 
478 static void sh_eth_set_rate(struct net_device *ndev)
479 {
480 	struct sh_eth_private *mdp = netdev_priv(ndev);
481 
482 	switch (mdp->speed) {
483 	case 10: /* 10BASE */
484 		sh_eth_write(ndev, GECMR_10, GECMR);
485 		break;
486 	case 100:/* 100BASE */
487 		sh_eth_write(ndev, GECMR_100, GECMR);
488 		break;
489 	case 1000: /* 1000BASE */
490 		sh_eth_write(ndev, GECMR_1000, GECMR);
491 		break;
492 	default:
493 		break;
494 	}
495 }
496 
497 /* R8A7740 */
498 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
499 	.chip_reset	= sh_eth_chip_reset,
500 	.set_duplex	= sh_eth_set_duplex,
501 	.set_rate	= sh_eth_set_rate,
502 
503 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
504 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
505 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
506 
507 	.tx_check	= EESR_TC1 | EESR_FTC,
508 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
509 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
510 			  EESR_ECI,
511 	.tx_error_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
512 			  EESR_TFE,
513 
514 	.apr		= 1,
515 	.mpr		= 1,
516 	.tpauser	= 1,
517 	.bculr		= 1,
518 	.hw_swap	= 1,
519 	.no_trimd	= 1,
520 	.no_ade		= 1,
521 	.tsu		= 1,
522 	.select_mii	= 1,
523 };
524 
525 #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
526 #define SH_ETH_RESET_DEFAULT	1
527 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
528 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
529 
530 	.apr		= 1,
531 	.mpr		= 1,
532 	.tpauser	= 1,
533 	.hw_swap	= 1,
534 };
535 #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
536 #define SH_ETH_RESET_DEFAULT	1
537 #define SH_ETH_HAS_TSU	1
538 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
539 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
540 	.tsu		= 1,
541 };
542 #endif
543 
544 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
545 {
546 	if (!cd->ecsr_value)
547 		cd->ecsr_value = DEFAULT_ECSR_INIT;
548 
549 	if (!cd->ecsipr_value)
550 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
551 
552 	if (!cd->fcftr_value)
553 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
554 				  DEFAULT_FIFO_F_D_RFD;
555 
556 	if (!cd->fdr_value)
557 		cd->fdr_value = DEFAULT_FDR_INIT;
558 
559 	if (!cd->rmcr_value)
560 		cd->rmcr_value = DEFAULT_RMCR_VALUE;
561 
562 	if (!cd->tx_check)
563 		cd->tx_check = DEFAULT_TX_CHECK;
564 
565 	if (!cd->eesr_err_check)
566 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
567 
568 	if (!cd->tx_error_check)
569 		cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
570 }
571 
572 #if defined(SH_ETH_RESET_DEFAULT)
573 /* Chip Reset */
574 static int  sh_eth_reset(struct net_device *ndev)
575 {
576 	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
577 	mdelay(3);
578 	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
579 
580 	return 0;
581 }
582 #else
583 static int sh_eth_check_reset(struct net_device *ndev)
584 {
585 	int ret = 0;
586 	int cnt = 100;
587 
588 	while (cnt > 0) {
589 		if (!(sh_eth_read(ndev, EDMR) & 0x3))
590 			break;
591 		mdelay(1);
592 		cnt--;
593 	}
594 	if (cnt < 0) {
595 		printk(KERN_ERR "Device reset fail\n");
596 		ret = -ETIMEDOUT;
597 	}
598 	return ret;
599 }
600 #endif
601 
602 #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
603 static void sh_eth_set_receive_align(struct sk_buff *skb)
604 {
605 	int reserve;
606 
607 	reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
608 	if (reserve)
609 		skb_reserve(skb, reserve);
610 }
611 #else
612 static void sh_eth_set_receive_align(struct sk_buff *skb)
613 {
614 	skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
615 }
616 #endif
617 
618 
619 /* CPU <-> EDMAC endian convert */
620 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
621 {
622 	switch (mdp->edmac_endian) {
623 	case EDMAC_LITTLE_ENDIAN:
624 		return cpu_to_le32(x);
625 	case EDMAC_BIG_ENDIAN:
626 		return cpu_to_be32(x);
627 	}
628 	return x;
629 }
630 
631 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
632 {
633 	switch (mdp->edmac_endian) {
634 	case EDMAC_LITTLE_ENDIAN:
635 		return le32_to_cpu(x);
636 	case EDMAC_BIG_ENDIAN:
637 		return be32_to_cpu(x);
638 	}
639 	return x;
640 }
641 
642 /*
643  * Program the hardware MAC address from dev->dev_addr.
644  */
645 static void update_mac_address(struct net_device *ndev)
646 {
647 	sh_eth_write(ndev,
648 		(ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
649 		(ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
650 	sh_eth_write(ndev,
651 		(ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
652 }
653 
654 /*
655  * Get MAC address from SuperH MAC address register
656  *
657  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
658  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
659  * When you want use this device, you must set MAC address in bootloader.
660  *
661  */
662 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
663 {
664 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
665 		memcpy(ndev->dev_addr, mac, 6);
666 	} else {
667 		ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
668 		ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
669 		ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
670 		ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
671 		ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
672 		ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
673 	}
674 }
675 
676 static int sh_eth_is_gether(struct sh_eth_private *mdp)
677 {
678 	if (mdp->reg_offset == sh_eth_offset_gigabit)
679 		return 1;
680 	else
681 		return 0;
682 }
683 
684 static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
685 {
686 	if (sh_eth_is_gether(mdp))
687 		return EDTRR_TRNS_GETHER;
688 	else
689 		return EDTRR_TRNS_ETHER;
690 }
691 
692 struct bb_info {
693 	void (*set_gate)(void *addr);
694 	struct mdiobb_ctrl ctrl;
695 	void *addr;
696 	u32 mmd_msk;/* MMD */
697 	u32 mdo_msk;
698 	u32 mdi_msk;
699 	u32 mdc_msk;
700 };
701 
702 /* PHY bit set */
703 static void bb_set(void *addr, u32 msk)
704 {
705 	iowrite32(ioread32(addr) | msk, addr);
706 }
707 
708 /* PHY bit clear */
709 static void bb_clr(void *addr, u32 msk)
710 {
711 	iowrite32((ioread32(addr) & ~msk), addr);
712 }
713 
714 /* PHY bit read */
715 static int bb_read(void *addr, u32 msk)
716 {
717 	return (ioread32(addr) & msk) != 0;
718 }
719 
720 /* Data I/O pin control */
721 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
722 {
723 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
724 
725 	if (bitbang->set_gate)
726 		bitbang->set_gate(bitbang->addr);
727 
728 	if (bit)
729 		bb_set(bitbang->addr, bitbang->mmd_msk);
730 	else
731 		bb_clr(bitbang->addr, bitbang->mmd_msk);
732 }
733 
734 /* Set bit data*/
735 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
736 {
737 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
738 
739 	if (bitbang->set_gate)
740 		bitbang->set_gate(bitbang->addr);
741 
742 	if (bit)
743 		bb_set(bitbang->addr, bitbang->mdo_msk);
744 	else
745 		bb_clr(bitbang->addr, bitbang->mdo_msk);
746 }
747 
748 /* Get bit data*/
749 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
750 {
751 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
752 
753 	if (bitbang->set_gate)
754 		bitbang->set_gate(bitbang->addr);
755 
756 	return bb_read(bitbang->addr, bitbang->mdi_msk);
757 }
758 
759 /* MDC pin control */
760 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
761 {
762 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
763 
764 	if (bitbang->set_gate)
765 		bitbang->set_gate(bitbang->addr);
766 
767 	if (bit)
768 		bb_set(bitbang->addr, bitbang->mdc_msk);
769 	else
770 		bb_clr(bitbang->addr, bitbang->mdc_msk);
771 }
772 
773 /* mdio bus control struct */
774 static struct mdiobb_ops bb_ops = {
775 	.owner = THIS_MODULE,
776 	.set_mdc = sh_mdc_ctrl,
777 	.set_mdio_dir = sh_mmd_ctrl,
778 	.set_mdio_data = sh_set_mdio,
779 	.get_mdio_data = sh_get_mdio,
780 };
781 
782 /* free skb and descriptor buffer */
783 static void sh_eth_ring_free(struct net_device *ndev)
784 {
785 	struct sh_eth_private *mdp = netdev_priv(ndev);
786 	int i;
787 
788 	/* Free Rx skb ringbuffer */
789 	if (mdp->rx_skbuff) {
790 		for (i = 0; i < mdp->num_rx_ring; i++) {
791 			if (mdp->rx_skbuff[i])
792 				dev_kfree_skb(mdp->rx_skbuff[i]);
793 		}
794 	}
795 	kfree(mdp->rx_skbuff);
796 	mdp->rx_skbuff = NULL;
797 
798 	/* Free Tx skb ringbuffer */
799 	if (mdp->tx_skbuff) {
800 		for (i = 0; i < mdp->num_tx_ring; i++) {
801 			if (mdp->tx_skbuff[i])
802 				dev_kfree_skb(mdp->tx_skbuff[i]);
803 		}
804 	}
805 	kfree(mdp->tx_skbuff);
806 	mdp->tx_skbuff = NULL;
807 }
808 
809 /* format skb and descriptor buffer */
810 static void sh_eth_ring_format(struct net_device *ndev)
811 {
812 	struct sh_eth_private *mdp = netdev_priv(ndev);
813 	int i;
814 	struct sk_buff *skb;
815 	struct sh_eth_rxdesc *rxdesc = NULL;
816 	struct sh_eth_txdesc *txdesc = NULL;
817 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
818 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
819 
820 	mdp->cur_rx = mdp->cur_tx = 0;
821 	mdp->dirty_rx = mdp->dirty_tx = 0;
822 
823 	memset(mdp->rx_ring, 0, rx_ringsize);
824 
825 	/* build Rx ring buffer */
826 	for (i = 0; i < mdp->num_rx_ring; i++) {
827 		/* skb */
828 		mdp->rx_skbuff[i] = NULL;
829 		skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
830 		mdp->rx_skbuff[i] = skb;
831 		if (skb == NULL)
832 			break;
833 		dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
834 				DMA_FROM_DEVICE);
835 		sh_eth_set_receive_align(skb);
836 
837 		/* RX descriptor */
838 		rxdesc = &mdp->rx_ring[i];
839 		rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
840 		rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
841 
842 		/* The size of the buffer is 16 byte boundary. */
843 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
844 		/* Rx descriptor address set */
845 		if (i == 0) {
846 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
847 			if (sh_eth_is_gether(mdp))
848 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
849 		}
850 	}
851 
852 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
853 
854 	/* Mark the last entry as wrapping the ring. */
855 	rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
856 
857 	memset(mdp->tx_ring, 0, tx_ringsize);
858 
859 	/* build Tx ring buffer */
860 	for (i = 0; i < mdp->num_tx_ring; i++) {
861 		mdp->tx_skbuff[i] = NULL;
862 		txdesc = &mdp->tx_ring[i];
863 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
864 		txdesc->buffer_length = 0;
865 		if (i == 0) {
866 			/* Tx descriptor address set */
867 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
868 			if (sh_eth_is_gether(mdp))
869 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
870 		}
871 	}
872 
873 	txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
874 }
875 
876 /* Get skb and descriptor buffer */
877 static int sh_eth_ring_init(struct net_device *ndev)
878 {
879 	struct sh_eth_private *mdp = netdev_priv(ndev);
880 	int rx_ringsize, tx_ringsize, ret = 0;
881 
882 	/*
883 	 * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
884 	 * card needs room to do 8 byte alignment, +2 so we can reserve
885 	 * the first 2 bytes, and +16 gets room for the status word from the
886 	 * card.
887 	 */
888 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
889 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
890 	if (mdp->cd->rpadir)
891 		mdp->rx_buf_sz += NET_IP_ALIGN;
892 
893 	/* Allocate RX and TX skb rings */
894 	mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * mdp->num_rx_ring,
895 				GFP_KERNEL);
896 	if (!mdp->rx_skbuff) {
897 		dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
898 		ret = -ENOMEM;
899 		return ret;
900 	}
901 
902 	mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * mdp->num_tx_ring,
903 				GFP_KERNEL);
904 	if (!mdp->tx_skbuff) {
905 		dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
906 		ret = -ENOMEM;
907 		goto skb_ring_free;
908 	}
909 
910 	/* Allocate all Rx descriptors. */
911 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
912 	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
913 			GFP_KERNEL);
914 
915 	if (!mdp->rx_ring) {
916 		dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
917 			rx_ringsize);
918 		ret = -ENOMEM;
919 		goto desc_ring_free;
920 	}
921 
922 	mdp->dirty_rx = 0;
923 
924 	/* Allocate all Tx descriptors. */
925 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
926 	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
927 			GFP_KERNEL);
928 	if (!mdp->tx_ring) {
929 		dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
930 			tx_ringsize);
931 		ret = -ENOMEM;
932 		goto desc_ring_free;
933 	}
934 	return ret;
935 
936 desc_ring_free:
937 	/* free DMA buffer */
938 	dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
939 
940 skb_ring_free:
941 	/* Free Rx and Tx skb ring buffer */
942 	sh_eth_ring_free(ndev);
943 	mdp->tx_ring = NULL;
944 	mdp->rx_ring = NULL;
945 
946 	return ret;
947 }
948 
949 static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp)
950 {
951 	int ringsize;
952 
953 	if (mdp->rx_ring) {
954 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
955 		dma_free_coherent(NULL, ringsize, mdp->rx_ring,
956 				  mdp->rx_desc_dma);
957 		mdp->rx_ring = NULL;
958 	}
959 
960 	if (mdp->tx_ring) {
961 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
962 		dma_free_coherent(NULL, ringsize, mdp->tx_ring,
963 				  mdp->tx_desc_dma);
964 		mdp->tx_ring = NULL;
965 	}
966 }
967 
968 static int sh_eth_dev_init(struct net_device *ndev, bool start)
969 {
970 	int ret = 0;
971 	struct sh_eth_private *mdp = netdev_priv(ndev);
972 	u32 val;
973 
974 	/* Soft Reset */
975 	ret = sh_eth_reset(ndev);
976 	if (ret)
977 		goto out;
978 
979 	/* Descriptor format */
980 	sh_eth_ring_format(ndev);
981 	if (mdp->cd->rpadir)
982 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
983 
984 	/* all sh_eth int mask */
985 	sh_eth_write(ndev, 0, EESIPR);
986 
987 #if defined(__LITTLE_ENDIAN)
988 	if (mdp->cd->hw_swap)
989 		sh_eth_write(ndev, EDMR_EL, EDMR);
990 	else
991 #endif
992 		sh_eth_write(ndev, 0, EDMR);
993 
994 	/* FIFO size set */
995 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
996 	sh_eth_write(ndev, 0, TFTR);
997 
998 	/* Frame recv control */
999 	sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
1000 
1001 	sh_eth_write(ndev, DESC_I_RINT8 | DESC_I_RINT5 | DESC_I_TINT2, TRSCER);
1002 
1003 	if (mdp->cd->bculr)
1004 		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1005 
1006 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1007 
1008 	if (!mdp->cd->no_trimd)
1009 		sh_eth_write(ndev, 0, TRIMD);
1010 
1011 	/* Recv frame limit set register */
1012 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1013 		     RFLR);
1014 
1015 	sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1016 	if (start)
1017 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1018 
1019 	/* PAUSE Prohibition */
1020 	val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1021 		ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1022 
1023 	sh_eth_write(ndev, val, ECMR);
1024 
1025 	if (mdp->cd->set_rate)
1026 		mdp->cd->set_rate(ndev);
1027 
1028 	/* E-MAC Status Register clear */
1029 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1030 
1031 	/* E-MAC Interrupt Enable register */
1032 	if (start)
1033 		sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1034 
1035 	/* Set MAC address */
1036 	update_mac_address(ndev);
1037 
1038 	/* mask reset */
1039 	if (mdp->cd->apr)
1040 		sh_eth_write(ndev, APR_AP, APR);
1041 	if (mdp->cd->mpr)
1042 		sh_eth_write(ndev, MPR_MP, MPR);
1043 	if (mdp->cd->tpauser)
1044 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1045 
1046 	if (start) {
1047 		/* Setting the Rx mode will start the Rx process. */
1048 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1049 
1050 		netif_start_queue(ndev);
1051 	}
1052 
1053 out:
1054 	return ret;
1055 }
1056 
1057 /* free Tx skb function */
1058 static int sh_eth_txfree(struct net_device *ndev)
1059 {
1060 	struct sh_eth_private *mdp = netdev_priv(ndev);
1061 	struct sh_eth_txdesc *txdesc;
1062 	int freeNum = 0;
1063 	int entry = 0;
1064 
1065 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1066 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1067 		txdesc = &mdp->tx_ring[entry];
1068 		if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1069 			break;
1070 		/* Free the original skb. */
1071 		if (mdp->tx_skbuff[entry]) {
1072 			dma_unmap_single(&ndev->dev, txdesc->addr,
1073 					 txdesc->buffer_length, DMA_TO_DEVICE);
1074 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1075 			mdp->tx_skbuff[entry] = NULL;
1076 			freeNum++;
1077 		}
1078 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1079 		if (entry >= mdp->num_tx_ring - 1)
1080 			txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1081 
1082 		ndev->stats.tx_packets++;
1083 		ndev->stats.tx_bytes += txdesc->buffer_length;
1084 	}
1085 	return freeNum;
1086 }
1087 
1088 /* Packet receive function */
1089 static int sh_eth_rx(struct net_device *ndev, u32 intr_status)
1090 {
1091 	struct sh_eth_private *mdp = netdev_priv(ndev);
1092 	struct sh_eth_rxdesc *rxdesc;
1093 
1094 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1095 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1096 	struct sk_buff *skb;
1097 	u16 pkt_len = 0;
1098 	u32 desc_status;
1099 
1100 	rxdesc = &mdp->rx_ring[entry];
1101 	while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1102 		desc_status = edmac_to_cpu(mdp, rxdesc->status);
1103 		pkt_len = rxdesc->frame_length;
1104 
1105 #if defined(CONFIG_ARCH_R8A7740)
1106 		desc_status >>= 16;
1107 #endif
1108 
1109 		if (--boguscnt < 0)
1110 			break;
1111 
1112 		if (!(desc_status & RDFEND))
1113 			ndev->stats.rx_length_errors++;
1114 
1115 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1116 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1117 			ndev->stats.rx_errors++;
1118 			if (desc_status & RD_RFS1)
1119 				ndev->stats.rx_crc_errors++;
1120 			if (desc_status & RD_RFS2)
1121 				ndev->stats.rx_frame_errors++;
1122 			if (desc_status & RD_RFS3)
1123 				ndev->stats.rx_length_errors++;
1124 			if (desc_status & RD_RFS4)
1125 				ndev->stats.rx_length_errors++;
1126 			if (desc_status & RD_RFS6)
1127 				ndev->stats.rx_missed_errors++;
1128 			if (desc_status & RD_RFS10)
1129 				ndev->stats.rx_over_errors++;
1130 		} else {
1131 			if (!mdp->cd->hw_swap)
1132 				sh_eth_soft_swap(
1133 					phys_to_virt(ALIGN(rxdesc->addr, 4)),
1134 					pkt_len + 2);
1135 			skb = mdp->rx_skbuff[entry];
1136 			mdp->rx_skbuff[entry] = NULL;
1137 			if (mdp->cd->rpadir)
1138 				skb_reserve(skb, NET_IP_ALIGN);
1139 			skb_put(skb, pkt_len);
1140 			skb->protocol = eth_type_trans(skb, ndev);
1141 			netif_rx(skb);
1142 			ndev->stats.rx_packets++;
1143 			ndev->stats.rx_bytes += pkt_len;
1144 		}
1145 		rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
1146 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1147 		rxdesc = &mdp->rx_ring[entry];
1148 	}
1149 
1150 	/* Refill the Rx ring buffers. */
1151 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1152 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1153 		rxdesc = &mdp->rx_ring[entry];
1154 		/* The size of the buffer is 16 byte boundary. */
1155 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1156 
1157 		if (mdp->rx_skbuff[entry] == NULL) {
1158 			skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1159 			mdp->rx_skbuff[entry] = skb;
1160 			if (skb == NULL)
1161 				break;	/* Better luck next round. */
1162 			dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1163 					DMA_FROM_DEVICE);
1164 			sh_eth_set_receive_align(skb);
1165 
1166 			skb_checksum_none_assert(skb);
1167 			rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1168 		}
1169 		if (entry >= mdp->num_rx_ring - 1)
1170 			rxdesc->status |=
1171 				cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
1172 		else
1173 			rxdesc->status |=
1174 				cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1175 	}
1176 
1177 	/* Restart Rx engine if stopped. */
1178 	/* If we don't need to check status, don't. -KDU */
1179 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1180 		/* fix the values for the next receiving if RDE is set */
1181 		if (intr_status & EESR_RDE)
1182 			mdp->cur_rx = mdp->dirty_rx =
1183 				(sh_eth_read(ndev, RDFAR) -
1184 				 sh_eth_read(ndev, RDLAR)) >> 4;
1185 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1186 	}
1187 
1188 	return 0;
1189 }
1190 
1191 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1192 {
1193 	/* disable tx and rx */
1194 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1195 		~(ECMR_RE | ECMR_TE), ECMR);
1196 }
1197 
1198 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1199 {
1200 	/* enable tx and rx */
1201 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1202 		(ECMR_RE | ECMR_TE), ECMR);
1203 }
1204 
1205 /* error control function */
1206 static void sh_eth_error(struct net_device *ndev, int intr_status)
1207 {
1208 	struct sh_eth_private *mdp = netdev_priv(ndev);
1209 	u32 felic_stat;
1210 	u32 link_stat;
1211 	u32 mask;
1212 
1213 	if (intr_status & EESR_ECI) {
1214 		felic_stat = sh_eth_read(ndev, ECSR);
1215 		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1216 		if (felic_stat & ECSR_ICD)
1217 			ndev->stats.tx_carrier_errors++;
1218 		if (felic_stat & ECSR_LCHNG) {
1219 			/* Link Changed */
1220 			if (mdp->cd->no_psr || mdp->no_ether_link) {
1221 				if (mdp->link == PHY_DOWN)
1222 					link_stat = 0;
1223 				else
1224 					link_stat = PHY_ST_LINK;
1225 			} else {
1226 				link_stat = (sh_eth_read(ndev, PSR));
1227 				if (mdp->ether_link_active_low)
1228 					link_stat = ~link_stat;
1229 			}
1230 			if (!(link_stat & PHY_ST_LINK))
1231 				sh_eth_rcv_snd_disable(ndev);
1232 			else {
1233 				/* Link Up */
1234 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1235 					  ~DMAC_M_ECI, EESIPR);
1236 				/*clear int */
1237 				sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1238 					  ECSR);
1239 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1240 					  DMAC_M_ECI, EESIPR);
1241 				/* enable tx and rx */
1242 				sh_eth_rcv_snd_enable(ndev);
1243 			}
1244 		}
1245 	}
1246 
1247 	if (intr_status & EESR_TWB) {
1248 		/* Write buck end. unused write back interrupt */
1249 		if (intr_status & EESR_TABT)	/* Transmit Abort int */
1250 			ndev->stats.tx_aborted_errors++;
1251 			if (netif_msg_tx_err(mdp))
1252 				dev_err(&ndev->dev, "Transmit Abort\n");
1253 	}
1254 
1255 	if (intr_status & EESR_RABT) {
1256 		/* Receive Abort int */
1257 		if (intr_status & EESR_RFRMER) {
1258 			/* Receive Frame Overflow int */
1259 			ndev->stats.rx_frame_errors++;
1260 			if (netif_msg_rx_err(mdp))
1261 				dev_err(&ndev->dev, "Receive Abort\n");
1262 		}
1263 	}
1264 
1265 	if (intr_status & EESR_TDE) {
1266 		/* Transmit Descriptor Empty int */
1267 		ndev->stats.tx_fifo_errors++;
1268 		if (netif_msg_tx_err(mdp))
1269 			dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
1270 	}
1271 
1272 	if (intr_status & EESR_TFE) {
1273 		/* FIFO under flow */
1274 		ndev->stats.tx_fifo_errors++;
1275 		if (netif_msg_tx_err(mdp))
1276 			dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
1277 	}
1278 
1279 	if (intr_status & EESR_RDE) {
1280 		/* Receive Descriptor Empty int */
1281 		ndev->stats.rx_over_errors++;
1282 
1283 		if (netif_msg_rx_err(mdp))
1284 			dev_err(&ndev->dev, "Receive Descriptor Empty\n");
1285 	}
1286 
1287 	if (intr_status & EESR_RFE) {
1288 		/* Receive FIFO Overflow int */
1289 		ndev->stats.rx_fifo_errors++;
1290 		if (netif_msg_rx_err(mdp))
1291 			dev_err(&ndev->dev, "Receive FIFO Overflow\n");
1292 	}
1293 
1294 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1295 		/* Address Error */
1296 		ndev->stats.tx_fifo_errors++;
1297 		if (netif_msg_tx_err(mdp))
1298 			dev_err(&ndev->dev, "Address Error\n");
1299 	}
1300 
1301 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1302 	if (mdp->cd->no_ade)
1303 		mask &= ~EESR_ADE;
1304 	if (intr_status & mask) {
1305 		/* Tx error */
1306 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1307 		/* dmesg */
1308 		dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
1309 				intr_status, mdp->cur_tx);
1310 		dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1311 				mdp->dirty_tx, (u32) ndev->state, edtrr);
1312 		/* dirty buffer free */
1313 		sh_eth_txfree(ndev);
1314 
1315 		/* SH7712 BUG */
1316 		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1317 			/* tx dma start */
1318 			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1319 		}
1320 		/* wakeup */
1321 		netif_wake_queue(ndev);
1322 	}
1323 }
1324 
1325 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1326 {
1327 	struct net_device *ndev = netdev;
1328 	struct sh_eth_private *mdp = netdev_priv(ndev);
1329 	struct sh_eth_cpu_data *cd = mdp->cd;
1330 	irqreturn_t ret = IRQ_NONE;
1331 	u32 intr_status = 0;
1332 
1333 	spin_lock(&mdp->lock);
1334 
1335 	/* Get interrpt stat */
1336 	intr_status = sh_eth_read(ndev, EESR);
1337 	/* Clear interrupt */
1338 	if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
1339 			EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
1340 			cd->tx_check | cd->eesr_err_check)) {
1341 		sh_eth_write(ndev, intr_status, EESR);
1342 		ret = IRQ_HANDLED;
1343 	} else
1344 		goto other_irq;
1345 
1346 	if (intr_status & (EESR_FRC | /* Frame recv*/
1347 			EESR_RMAF | /* Multi cast address recv*/
1348 			EESR_RRF  | /* Bit frame recv */
1349 			EESR_RTLF | /* Long frame recv*/
1350 			EESR_RTSF | /* short frame recv */
1351 			EESR_PRE  | /* PHY-LSI recv error */
1352 			EESR_CERF)){ /* recv frame CRC error */
1353 		sh_eth_rx(ndev, intr_status);
1354 	}
1355 
1356 	/* Tx Check */
1357 	if (intr_status & cd->tx_check) {
1358 		sh_eth_txfree(ndev);
1359 		netif_wake_queue(ndev);
1360 	}
1361 
1362 	if (intr_status & cd->eesr_err_check)
1363 		sh_eth_error(ndev, intr_status);
1364 
1365 other_irq:
1366 	spin_unlock(&mdp->lock);
1367 
1368 	return ret;
1369 }
1370 
1371 /* PHY state control function */
1372 static void sh_eth_adjust_link(struct net_device *ndev)
1373 {
1374 	struct sh_eth_private *mdp = netdev_priv(ndev);
1375 	struct phy_device *phydev = mdp->phydev;
1376 	int new_state = 0;
1377 
1378 	if (phydev->link != PHY_DOWN) {
1379 		if (phydev->duplex != mdp->duplex) {
1380 			new_state = 1;
1381 			mdp->duplex = phydev->duplex;
1382 			if (mdp->cd->set_duplex)
1383 				mdp->cd->set_duplex(ndev);
1384 		}
1385 
1386 		if (phydev->speed != mdp->speed) {
1387 			new_state = 1;
1388 			mdp->speed = phydev->speed;
1389 			if (mdp->cd->set_rate)
1390 				mdp->cd->set_rate(ndev);
1391 		}
1392 		if (mdp->link == PHY_DOWN) {
1393 			sh_eth_write(ndev,
1394 				(sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
1395 			new_state = 1;
1396 			mdp->link = phydev->link;
1397 		}
1398 	} else if (mdp->link) {
1399 		new_state = 1;
1400 		mdp->link = PHY_DOWN;
1401 		mdp->speed = 0;
1402 		mdp->duplex = -1;
1403 	}
1404 
1405 	if (new_state && netif_msg_link(mdp))
1406 		phy_print_status(phydev);
1407 }
1408 
1409 /* PHY init function */
1410 static int sh_eth_phy_init(struct net_device *ndev)
1411 {
1412 	struct sh_eth_private *mdp = netdev_priv(ndev);
1413 	char phy_id[MII_BUS_ID_SIZE + 3];
1414 	struct phy_device *phydev = NULL;
1415 
1416 	snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1417 		mdp->mii_bus->id , mdp->phy_id);
1418 
1419 	mdp->link = PHY_DOWN;
1420 	mdp->speed = 0;
1421 	mdp->duplex = -1;
1422 
1423 	/* Try connect to PHY */
1424 	phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1425 				0, mdp->phy_interface);
1426 	if (IS_ERR(phydev)) {
1427 		dev_err(&ndev->dev, "phy_connect failed\n");
1428 		return PTR_ERR(phydev);
1429 	}
1430 
1431 	dev_info(&ndev->dev, "attached phy %i to driver %s\n",
1432 		phydev->addr, phydev->drv->name);
1433 
1434 	mdp->phydev = phydev;
1435 
1436 	return 0;
1437 }
1438 
1439 /* PHY control start function */
1440 static int sh_eth_phy_start(struct net_device *ndev)
1441 {
1442 	struct sh_eth_private *mdp = netdev_priv(ndev);
1443 	int ret;
1444 
1445 	ret = sh_eth_phy_init(ndev);
1446 	if (ret)
1447 		return ret;
1448 
1449 	/* reset phy - this also wakes it from PDOWN */
1450 	phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
1451 	phy_start(mdp->phydev);
1452 
1453 	return 0;
1454 }
1455 
1456 static int sh_eth_get_settings(struct net_device *ndev,
1457 			struct ethtool_cmd *ecmd)
1458 {
1459 	struct sh_eth_private *mdp = netdev_priv(ndev);
1460 	unsigned long flags;
1461 	int ret;
1462 
1463 	spin_lock_irqsave(&mdp->lock, flags);
1464 	ret = phy_ethtool_gset(mdp->phydev, ecmd);
1465 	spin_unlock_irqrestore(&mdp->lock, flags);
1466 
1467 	return ret;
1468 }
1469 
1470 static int sh_eth_set_settings(struct net_device *ndev,
1471 		struct ethtool_cmd *ecmd)
1472 {
1473 	struct sh_eth_private *mdp = netdev_priv(ndev);
1474 	unsigned long flags;
1475 	int ret;
1476 
1477 	spin_lock_irqsave(&mdp->lock, flags);
1478 
1479 	/* disable tx and rx */
1480 	sh_eth_rcv_snd_disable(ndev);
1481 
1482 	ret = phy_ethtool_sset(mdp->phydev, ecmd);
1483 	if (ret)
1484 		goto error_exit;
1485 
1486 	if (ecmd->duplex == DUPLEX_FULL)
1487 		mdp->duplex = 1;
1488 	else
1489 		mdp->duplex = 0;
1490 
1491 	if (mdp->cd->set_duplex)
1492 		mdp->cd->set_duplex(ndev);
1493 
1494 error_exit:
1495 	mdelay(1);
1496 
1497 	/* enable tx and rx */
1498 	sh_eth_rcv_snd_enable(ndev);
1499 
1500 	spin_unlock_irqrestore(&mdp->lock, flags);
1501 
1502 	return ret;
1503 }
1504 
1505 static int sh_eth_nway_reset(struct net_device *ndev)
1506 {
1507 	struct sh_eth_private *mdp = netdev_priv(ndev);
1508 	unsigned long flags;
1509 	int ret;
1510 
1511 	spin_lock_irqsave(&mdp->lock, flags);
1512 	ret = phy_start_aneg(mdp->phydev);
1513 	spin_unlock_irqrestore(&mdp->lock, flags);
1514 
1515 	return ret;
1516 }
1517 
1518 static u32 sh_eth_get_msglevel(struct net_device *ndev)
1519 {
1520 	struct sh_eth_private *mdp = netdev_priv(ndev);
1521 	return mdp->msg_enable;
1522 }
1523 
1524 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1525 {
1526 	struct sh_eth_private *mdp = netdev_priv(ndev);
1527 	mdp->msg_enable = value;
1528 }
1529 
1530 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1531 	"rx_current", "tx_current",
1532 	"rx_dirty", "tx_dirty",
1533 };
1534 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
1535 
1536 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1537 {
1538 	switch (sset) {
1539 	case ETH_SS_STATS:
1540 		return SH_ETH_STATS_LEN;
1541 	default:
1542 		return -EOPNOTSUPP;
1543 	}
1544 }
1545 
1546 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1547 			struct ethtool_stats *stats, u64 *data)
1548 {
1549 	struct sh_eth_private *mdp = netdev_priv(ndev);
1550 	int i = 0;
1551 
1552 	/* device-specific stats */
1553 	data[i++] = mdp->cur_rx;
1554 	data[i++] = mdp->cur_tx;
1555 	data[i++] = mdp->dirty_rx;
1556 	data[i++] = mdp->dirty_tx;
1557 }
1558 
1559 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1560 {
1561 	switch (stringset) {
1562 	case ETH_SS_STATS:
1563 		memcpy(data, *sh_eth_gstrings_stats,
1564 					sizeof(sh_eth_gstrings_stats));
1565 		break;
1566 	}
1567 }
1568 
1569 static void sh_eth_get_ringparam(struct net_device *ndev,
1570 				 struct ethtool_ringparam *ring)
1571 {
1572 	struct sh_eth_private *mdp = netdev_priv(ndev);
1573 
1574 	ring->rx_max_pending = RX_RING_MAX;
1575 	ring->tx_max_pending = TX_RING_MAX;
1576 	ring->rx_pending = mdp->num_rx_ring;
1577 	ring->tx_pending = mdp->num_tx_ring;
1578 }
1579 
1580 static int sh_eth_set_ringparam(struct net_device *ndev,
1581 				struct ethtool_ringparam *ring)
1582 {
1583 	struct sh_eth_private *mdp = netdev_priv(ndev);
1584 	int ret;
1585 
1586 	if (ring->tx_pending > TX_RING_MAX ||
1587 	    ring->rx_pending > RX_RING_MAX ||
1588 	    ring->tx_pending < TX_RING_MIN ||
1589 	    ring->rx_pending < RX_RING_MIN)
1590 		return -EINVAL;
1591 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1592 		return -EINVAL;
1593 
1594 	if (netif_running(ndev)) {
1595 		netif_tx_disable(ndev);
1596 		/* Disable interrupts by clearing the interrupt mask. */
1597 		sh_eth_write(ndev, 0x0000, EESIPR);
1598 		/* Stop the chip's Tx and Rx processes. */
1599 		sh_eth_write(ndev, 0, EDTRR);
1600 		sh_eth_write(ndev, 0, EDRRR);
1601 		synchronize_irq(ndev->irq);
1602 	}
1603 
1604 	/* Free all the skbuffs in the Rx queue. */
1605 	sh_eth_ring_free(ndev);
1606 	/* Free DMA buffer */
1607 	sh_eth_free_dma_buffer(mdp);
1608 
1609 	/* Set new parameters */
1610 	mdp->num_rx_ring = ring->rx_pending;
1611 	mdp->num_tx_ring = ring->tx_pending;
1612 
1613 	ret = sh_eth_ring_init(ndev);
1614 	if (ret < 0) {
1615 		dev_err(&ndev->dev, "%s: sh_eth_ring_init failed.\n", __func__);
1616 		return ret;
1617 	}
1618 	ret = sh_eth_dev_init(ndev, false);
1619 	if (ret < 0) {
1620 		dev_err(&ndev->dev, "%s: sh_eth_dev_init failed.\n", __func__);
1621 		return ret;
1622 	}
1623 
1624 	if (netif_running(ndev)) {
1625 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1626 		/* Setting the Rx mode will start the Rx process. */
1627 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1628 		netif_wake_queue(ndev);
1629 	}
1630 
1631 	return 0;
1632 }
1633 
1634 static const struct ethtool_ops sh_eth_ethtool_ops = {
1635 	.get_settings	= sh_eth_get_settings,
1636 	.set_settings	= sh_eth_set_settings,
1637 	.nway_reset	= sh_eth_nway_reset,
1638 	.get_msglevel	= sh_eth_get_msglevel,
1639 	.set_msglevel	= sh_eth_set_msglevel,
1640 	.get_link	= ethtool_op_get_link,
1641 	.get_strings	= sh_eth_get_strings,
1642 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
1643 	.get_sset_count     = sh_eth_get_sset_count,
1644 	.get_ringparam	= sh_eth_get_ringparam,
1645 	.set_ringparam	= sh_eth_set_ringparam,
1646 };
1647 
1648 /* network device open function */
1649 static int sh_eth_open(struct net_device *ndev)
1650 {
1651 	int ret = 0;
1652 	struct sh_eth_private *mdp = netdev_priv(ndev);
1653 
1654 	pm_runtime_get_sync(&mdp->pdev->dev);
1655 
1656 	ret = request_irq(ndev->irq, sh_eth_interrupt,
1657 #if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
1658 	defined(CONFIG_CPU_SUBTYPE_SH7764) || \
1659 	defined(CONFIG_CPU_SUBTYPE_SH7757)
1660 				IRQF_SHARED,
1661 #else
1662 				0,
1663 #endif
1664 				ndev->name, ndev);
1665 	if (ret) {
1666 		dev_err(&ndev->dev, "Can not assign IRQ number\n");
1667 		return ret;
1668 	}
1669 
1670 	/* Descriptor set */
1671 	ret = sh_eth_ring_init(ndev);
1672 	if (ret)
1673 		goto out_free_irq;
1674 
1675 	/* device init */
1676 	ret = sh_eth_dev_init(ndev, true);
1677 	if (ret)
1678 		goto out_free_irq;
1679 
1680 	/* PHY control start*/
1681 	ret = sh_eth_phy_start(ndev);
1682 	if (ret)
1683 		goto out_free_irq;
1684 
1685 	return ret;
1686 
1687 out_free_irq:
1688 	free_irq(ndev->irq, ndev);
1689 	pm_runtime_put_sync(&mdp->pdev->dev);
1690 	return ret;
1691 }
1692 
1693 /* Timeout function */
1694 static void sh_eth_tx_timeout(struct net_device *ndev)
1695 {
1696 	struct sh_eth_private *mdp = netdev_priv(ndev);
1697 	struct sh_eth_rxdesc *rxdesc;
1698 	int i;
1699 
1700 	netif_stop_queue(ndev);
1701 
1702 	if (netif_msg_timer(mdp))
1703 		dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
1704 	       " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
1705 
1706 	/* tx_errors count up */
1707 	ndev->stats.tx_errors++;
1708 
1709 	/* Free all the skbuffs in the Rx queue. */
1710 	for (i = 0; i < mdp->num_rx_ring; i++) {
1711 		rxdesc = &mdp->rx_ring[i];
1712 		rxdesc->status = 0;
1713 		rxdesc->addr = 0xBADF00D0;
1714 		if (mdp->rx_skbuff[i])
1715 			dev_kfree_skb(mdp->rx_skbuff[i]);
1716 		mdp->rx_skbuff[i] = NULL;
1717 	}
1718 	for (i = 0; i < mdp->num_tx_ring; i++) {
1719 		if (mdp->tx_skbuff[i])
1720 			dev_kfree_skb(mdp->tx_skbuff[i]);
1721 		mdp->tx_skbuff[i] = NULL;
1722 	}
1723 
1724 	/* device init */
1725 	sh_eth_dev_init(ndev, true);
1726 }
1727 
1728 /* Packet transmit function */
1729 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1730 {
1731 	struct sh_eth_private *mdp = netdev_priv(ndev);
1732 	struct sh_eth_txdesc *txdesc;
1733 	u32 entry;
1734 	unsigned long flags;
1735 
1736 	spin_lock_irqsave(&mdp->lock, flags);
1737 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
1738 		if (!sh_eth_txfree(ndev)) {
1739 			if (netif_msg_tx_queued(mdp))
1740 				dev_warn(&ndev->dev, "TxFD exhausted.\n");
1741 			netif_stop_queue(ndev);
1742 			spin_unlock_irqrestore(&mdp->lock, flags);
1743 			return NETDEV_TX_BUSY;
1744 		}
1745 	}
1746 	spin_unlock_irqrestore(&mdp->lock, flags);
1747 
1748 	entry = mdp->cur_tx % mdp->num_tx_ring;
1749 	mdp->tx_skbuff[entry] = skb;
1750 	txdesc = &mdp->tx_ring[entry];
1751 	/* soft swap. */
1752 	if (!mdp->cd->hw_swap)
1753 		sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
1754 				 skb->len + 2);
1755 	txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
1756 				      DMA_TO_DEVICE);
1757 	if (skb->len < ETHERSMALL)
1758 		txdesc->buffer_length = ETHERSMALL;
1759 	else
1760 		txdesc->buffer_length = skb->len;
1761 
1762 	if (entry >= mdp->num_tx_ring - 1)
1763 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
1764 	else
1765 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
1766 
1767 	mdp->cur_tx++;
1768 
1769 	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
1770 		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1771 
1772 	return NETDEV_TX_OK;
1773 }
1774 
1775 /* device close function */
1776 static int sh_eth_close(struct net_device *ndev)
1777 {
1778 	struct sh_eth_private *mdp = netdev_priv(ndev);
1779 
1780 	netif_stop_queue(ndev);
1781 
1782 	/* Disable interrupts by clearing the interrupt mask. */
1783 	sh_eth_write(ndev, 0x0000, EESIPR);
1784 
1785 	/* Stop the chip's Tx and Rx processes. */
1786 	sh_eth_write(ndev, 0, EDTRR);
1787 	sh_eth_write(ndev, 0, EDRRR);
1788 
1789 	/* PHY Disconnect */
1790 	if (mdp->phydev) {
1791 		phy_stop(mdp->phydev);
1792 		phy_disconnect(mdp->phydev);
1793 	}
1794 
1795 	free_irq(ndev->irq, ndev);
1796 
1797 	/* Free all the skbuffs in the Rx queue. */
1798 	sh_eth_ring_free(ndev);
1799 
1800 	/* free DMA buffer */
1801 	sh_eth_free_dma_buffer(mdp);
1802 
1803 	pm_runtime_put_sync(&mdp->pdev->dev);
1804 
1805 	return 0;
1806 }
1807 
1808 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
1809 {
1810 	struct sh_eth_private *mdp = netdev_priv(ndev);
1811 
1812 	pm_runtime_get_sync(&mdp->pdev->dev);
1813 
1814 	ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
1815 	sh_eth_write(ndev, 0, TROCR);	/* (write clear) */
1816 	ndev->stats.collisions += sh_eth_read(ndev, CDCR);
1817 	sh_eth_write(ndev, 0, CDCR);	/* (write clear) */
1818 	ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
1819 	sh_eth_write(ndev, 0, LCCR);	/* (write clear) */
1820 	if (sh_eth_is_gether(mdp)) {
1821 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
1822 		sh_eth_write(ndev, 0, CERCR);	/* (write clear) */
1823 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
1824 		sh_eth_write(ndev, 0, CEECR);	/* (write clear) */
1825 	} else {
1826 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
1827 		sh_eth_write(ndev, 0, CNDCR);	/* (write clear) */
1828 	}
1829 	pm_runtime_put_sync(&mdp->pdev->dev);
1830 
1831 	return &ndev->stats;
1832 }
1833 
1834 /* ioctl to device function */
1835 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
1836 				int cmd)
1837 {
1838 	struct sh_eth_private *mdp = netdev_priv(ndev);
1839 	struct phy_device *phydev = mdp->phydev;
1840 
1841 	if (!netif_running(ndev))
1842 		return -EINVAL;
1843 
1844 	if (!phydev)
1845 		return -ENODEV;
1846 
1847 	return phy_mii_ioctl(phydev, rq, cmd);
1848 }
1849 
1850 #if defined(SH_ETH_HAS_TSU)
1851 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
1852 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
1853 					    int entry)
1854 {
1855 	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
1856 }
1857 
1858 static u32 sh_eth_tsu_get_post_mask(int entry)
1859 {
1860 	return 0x0f << (28 - ((entry % 8) * 4));
1861 }
1862 
1863 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
1864 {
1865 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
1866 }
1867 
1868 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
1869 					     int entry)
1870 {
1871 	struct sh_eth_private *mdp = netdev_priv(ndev);
1872 	u32 tmp;
1873 	void *reg_offset;
1874 
1875 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
1876 	tmp = ioread32(reg_offset);
1877 	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
1878 }
1879 
1880 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
1881 					      int entry)
1882 {
1883 	struct sh_eth_private *mdp = netdev_priv(ndev);
1884 	u32 post_mask, ref_mask, tmp;
1885 	void *reg_offset;
1886 
1887 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
1888 	post_mask = sh_eth_tsu_get_post_mask(entry);
1889 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
1890 
1891 	tmp = ioread32(reg_offset);
1892 	iowrite32(tmp & ~post_mask, reg_offset);
1893 
1894 	/* If other port enables, the function returns "true" */
1895 	return tmp & ref_mask;
1896 }
1897 
1898 static int sh_eth_tsu_busy(struct net_device *ndev)
1899 {
1900 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
1901 	struct sh_eth_private *mdp = netdev_priv(ndev);
1902 
1903 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
1904 		udelay(10);
1905 		timeout--;
1906 		if (timeout <= 0) {
1907 			dev_err(&ndev->dev, "%s: timeout\n", __func__);
1908 			return -ETIMEDOUT;
1909 		}
1910 	}
1911 
1912 	return 0;
1913 }
1914 
1915 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
1916 				  const u8 *addr)
1917 {
1918 	u32 val;
1919 
1920 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
1921 	iowrite32(val, reg);
1922 	if (sh_eth_tsu_busy(ndev) < 0)
1923 		return -EBUSY;
1924 
1925 	val = addr[4] << 8 | addr[5];
1926 	iowrite32(val, reg + 4);
1927 	if (sh_eth_tsu_busy(ndev) < 0)
1928 		return -EBUSY;
1929 
1930 	return 0;
1931 }
1932 
1933 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
1934 {
1935 	u32 val;
1936 
1937 	val = ioread32(reg);
1938 	addr[0] = (val >> 24) & 0xff;
1939 	addr[1] = (val >> 16) & 0xff;
1940 	addr[2] = (val >> 8) & 0xff;
1941 	addr[3] = val & 0xff;
1942 	val = ioread32(reg + 4);
1943 	addr[4] = (val >> 8) & 0xff;
1944 	addr[5] = val & 0xff;
1945 }
1946 
1947 
1948 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
1949 {
1950 	struct sh_eth_private *mdp = netdev_priv(ndev);
1951 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
1952 	int i;
1953 	u8 c_addr[ETH_ALEN];
1954 
1955 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
1956 		sh_eth_tsu_read_entry(reg_offset, c_addr);
1957 		if (memcmp(addr, c_addr, ETH_ALEN) == 0)
1958 			return i;
1959 	}
1960 
1961 	return -ENOENT;
1962 }
1963 
1964 static int sh_eth_tsu_find_empty(struct net_device *ndev)
1965 {
1966 	u8 blank[ETH_ALEN];
1967 	int entry;
1968 
1969 	memset(blank, 0, sizeof(blank));
1970 	entry = sh_eth_tsu_find_entry(ndev, blank);
1971 	return (entry < 0) ? -ENOMEM : entry;
1972 }
1973 
1974 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
1975 					      int entry)
1976 {
1977 	struct sh_eth_private *mdp = netdev_priv(ndev);
1978 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
1979 	int ret;
1980 	u8 blank[ETH_ALEN];
1981 
1982 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
1983 			 ~(1 << (31 - entry)), TSU_TEN);
1984 
1985 	memset(blank, 0, sizeof(blank));
1986 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
1987 	if (ret < 0)
1988 		return ret;
1989 	return 0;
1990 }
1991 
1992 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
1993 {
1994 	struct sh_eth_private *mdp = netdev_priv(ndev);
1995 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
1996 	int i, ret;
1997 
1998 	if (!mdp->cd->tsu)
1999 		return 0;
2000 
2001 	i = sh_eth_tsu_find_entry(ndev, addr);
2002 	if (i < 0) {
2003 		/* No entry found, create one */
2004 		i = sh_eth_tsu_find_empty(ndev);
2005 		if (i < 0)
2006 			return -ENOMEM;
2007 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2008 		if (ret < 0)
2009 			return ret;
2010 
2011 		/* Enable the entry */
2012 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2013 				 (1 << (31 - i)), TSU_TEN);
2014 	}
2015 
2016 	/* Entry found or created, enable POST */
2017 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2018 
2019 	return 0;
2020 }
2021 
2022 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2023 {
2024 	struct sh_eth_private *mdp = netdev_priv(ndev);
2025 	int i, ret;
2026 
2027 	if (!mdp->cd->tsu)
2028 		return 0;
2029 
2030 	i = sh_eth_tsu_find_entry(ndev, addr);
2031 	if (i) {
2032 		/* Entry found */
2033 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2034 			goto done;
2035 
2036 		/* Disable the entry if both ports was disabled */
2037 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2038 		if (ret < 0)
2039 			return ret;
2040 	}
2041 done:
2042 	return 0;
2043 }
2044 
2045 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2046 {
2047 	struct sh_eth_private *mdp = netdev_priv(ndev);
2048 	int i, ret;
2049 
2050 	if (unlikely(!mdp->cd->tsu))
2051 		return 0;
2052 
2053 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2054 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2055 			continue;
2056 
2057 		/* Disable the entry if both ports was disabled */
2058 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2059 		if (ret < 0)
2060 			return ret;
2061 	}
2062 
2063 	return 0;
2064 }
2065 
2066 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2067 {
2068 	struct sh_eth_private *mdp = netdev_priv(ndev);
2069 	u8 addr[ETH_ALEN];
2070 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2071 	int i;
2072 
2073 	if (unlikely(!mdp->cd->tsu))
2074 		return;
2075 
2076 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2077 		sh_eth_tsu_read_entry(reg_offset, addr);
2078 		if (is_multicast_ether_addr(addr))
2079 			sh_eth_tsu_del_entry(ndev, addr);
2080 	}
2081 }
2082 
2083 /* Multicast reception directions set */
2084 static void sh_eth_set_multicast_list(struct net_device *ndev)
2085 {
2086 	struct sh_eth_private *mdp = netdev_priv(ndev);
2087 	u32 ecmr_bits;
2088 	int mcast_all = 0;
2089 	unsigned long flags;
2090 
2091 	spin_lock_irqsave(&mdp->lock, flags);
2092 	/*
2093 	 * Initial condition is MCT = 1, PRM = 0.
2094 	 * Depending on ndev->flags, set PRM or clear MCT
2095 	 */
2096 	ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
2097 
2098 	if (!(ndev->flags & IFF_MULTICAST)) {
2099 		sh_eth_tsu_purge_mcast(ndev);
2100 		mcast_all = 1;
2101 	}
2102 	if (ndev->flags & IFF_ALLMULTI) {
2103 		sh_eth_tsu_purge_mcast(ndev);
2104 		ecmr_bits &= ~ECMR_MCT;
2105 		mcast_all = 1;
2106 	}
2107 
2108 	if (ndev->flags & IFF_PROMISC) {
2109 		sh_eth_tsu_purge_all(ndev);
2110 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2111 	} else if (mdp->cd->tsu) {
2112 		struct netdev_hw_addr *ha;
2113 		netdev_for_each_mc_addr(ha, ndev) {
2114 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2115 				continue;
2116 
2117 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2118 				if (!mcast_all) {
2119 					sh_eth_tsu_purge_mcast(ndev);
2120 					ecmr_bits &= ~ECMR_MCT;
2121 					mcast_all = 1;
2122 				}
2123 			}
2124 		}
2125 	} else {
2126 		/* Normal, unicast/broadcast-only mode. */
2127 		ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
2128 	}
2129 
2130 	/* update the ethernet mode */
2131 	sh_eth_write(ndev, ecmr_bits, ECMR);
2132 
2133 	spin_unlock_irqrestore(&mdp->lock, flags);
2134 }
2135 
2136 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2137 {
2138 	if (!mdp->port)
2139 		return TSU_VTAG0;
2140 	else
2141 		return TSU_VTAG1;
2142 }
2143 
2144 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
2145 {
2146 	struct sh_eth_private *mdp = netdev_priv(ndev);
2147 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2148 
2149 	if (unlikely(!mdp->cd->tsu))
2150 		return -EPERM;
2151 
2152 	/* No filtering if vid = 0 */
2153 	if (!vid)
2154 		return 0;
2155 
2156 	mdp->vlan_num_ids++;
2157 
2158 	/*
2159 	 * The controller has one VLAN tag HW filter. So, if the filter is
2160 	 * already enabled, the driver disables it and the filte
2161 	 */
2162 	if (mdp->vlan_num_ids > 1) {
2163 		/* disable VLAN filter */
2164 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2165 		return 0;
2166 	}
2167 
2168 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2169 			 vtag_reg_index);
2170 
2171 	return 0;
2172 }
2173 
2174 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
2175 {
2176 	struct sh_eth_private *mdp = netdev_priv(ndev);
2177 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2178 
2179 	if (unlikely(!mdp->cd->tsu))
2180 		return -EPERM;
2181 
2182 	/* No filtering if vid = 0 */
2183 	if (!vid)
2184 		return 0;
2185 
2186 	mdp->vlan_num_ids--;
2187 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2188 
2189 	return 0;
2190 }
2191 #endif /* SH_ETH_HAS_TSU */
2192 
2193 /* SuperH's TSU register init function */
2194 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2195 {
2196 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2197 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2198 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2199 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2200 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2201 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2202 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2203 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2204 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2205 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2206 	if (sh_eth_is_gether(mdp)) {
2207 		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2208 		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2209 	} else {
2210 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2211 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2212 	}
2213 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2214 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2215 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2216 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2217 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2218 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2219 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2220 }
2221 
2222 /* MDIO bus release function */
2223 static int sh_mdio_release(struct net_device *ndev)
2224 {
2225 	struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
2226 
2227 	/* unregister mdio bus */
2228 	mdiobus_unregister(bus);
2229 
2230 	/* remove mdio bus info from net_device */
2231 	dev_set_drvdata(&ndev->dev, NULL);
2232 
2233 	/* free interrupts memory */
2234 	kfree(bus->irq);
2235 
2236 	/* free bitbang info */
2237 	free_mdio_bitbang(bus);
2238 
2239 	return 0;
2240 }
2241 
2242 /* MDIO bus init function */
2243 static int sh_mdio_init(struct net_device *ndev, int id,
2244 			struct sh_eth_plat_data *pd)
2245 {
2246 	int ret, i;
2247 	struct bb_info *bitbang;
2248 	struct sh_eth_private *mdp = netdev_priv(ndev);
2249 
2250 	/* create bit control struct for PHY */
2251 	bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
2252 	if (!bitbang) {
2253 		ret = -ENOMEM;
2254 		goto out;
2255 	}
2256 
2257 	/* bitbang init */
2258 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2259 	bitbang->set_gate = pd->set_mdio_gate;
2260 	bitbang->mdi_msk = 0x08;
2261 	bitbang->mdo_msk = 0x04;
2262 	bitbang->mmd_msk = 0x02;/* MMD */
2263 	bitbang->mdc_msk = 0x01;
2264 	bitbang->ctrl.ops = &bb_ops;
2265 
2266 	/* MII controller setting */
2267 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2268 	if (!mdp->mii_bus) {
2269 		ret = -ENOMEM;
2270 		goto out_free_bitbang;
2271 	}
2272 
2273 	/* Hook up MII support for ethtool */
2274 	mdp->mii_bus->name = "sh_mii";
2275 	mdp->mii_bus->parent = &ndev->dev;
2276 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2277 		mdp->pdev->name, id);
2278 
2279 	/* PHY IRQ */
2280 	mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
2281 	if (!mdp->mii_bus->irq) {
2282 		ret = -ENOMEM;
2283 		goto out_free_bus;
2284 	}
2285 
2286 	for (i = 0; i < PHY_MAX_ADDR; i++)
2287 		mdp->mii_bus->irq[i] = PHY_POLL;
2288 
2289 	/* register mdio bus */
2290 	ret = mdiobus_register(mdp->mii_bus);
2291 	if (ret)
2292 		goto out_free_irq;
2293 
2294 	dev_set_drvdata(&ndev->dev, mdp->mii_bus);
2295 
2296 	return 0;
2297 
2298 out_free_irq:
2299 	kfree(mdp->mii_bus->irq);
2300 
2301 out_free_bus:
2302 	free_mdio_bitbang(mdp->mii_bus);
2303 
2304 out_free_bitbang:
2305 	kfree(bitbang);
2306 
2307 out:
2308 	return ret;
2309 }
2310 
2311 static const u16 *sh_eth_get_register_offset(int register_type)
2312 {
2313 	const u16 *reg_offset = NULL;
2314 
2315 	switch (register_type) {
2316 	case SH_ETH_REG_GIGABIT:
2317 		reg_offset = sh_eth_offset_gigabit;
2318 		break;
2319 	case SH_ETH_REG_FAST_SH4:
2320 		reg_offset = sh_eth_offset_fast_sh4;
2321 		break;
2322 	case SH_ETH_REG_FAST_SH3_SH2:
2323 		reg_offset = sh_eth_offset_fast_sh3_sh2;
2324 		break;
2325 	default:
2326 		printk(KERN_ERR "Unknown register type (%d)\n", register_type);
2327 		break;
2328 	}
2329 
2330 	return reg_offset;
2331 }
2332 
2333 static const struct net_device_ops sh_eth_netdev_ops = {
2334 	.ndo_open		= sh_eth_open,
2335 	.ndo_stop		= sh_eth_close,
2336 	.ndo_start_xmit		= sh_eth_start_xmit,
2337 	.ndo_get_stats		= sh_eth_get_stats,
2338 #if defined(SH_ETH_HAS_TSU)
2339 	.ndo_set_rx_mode	= sh_eth_set_multicast_list,
2340 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
2341 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
2342 #endif
2343 	.ndo_tx_timeout		= sh_eth_tx_timeout,
2344 	.ndo_do_ioctl		= sh_eth_do_ioctl,
2345 	.ndo_validate_addr	= eth_validate_addr,
2346 	.ndo_set_mac_address	= eth_mac_addr,
2347 	.ndo_change_mtu		= eth_change_mtu,
2348 };
2349 
2350 static int sh_eth_drv_probe(struct platform_device *pdev)
2351 {
2352 	int ret, devno = 0;
2353 	struct resource *res;
2354 	struct net_device *ndev = NULL;
2355 	struct sh_eth_private *mdp = NULL;
2356 	struct sh_eth_plat_data *pd;
2357 
2358 	/* get base addr */
2359 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2360 	if (unlikely(res == NULL)) {
2361 		dev_err(&pdev->dev, "invalid resource\n");
2362 		ret = -EINVAL;
2363 		goto out;
2364 	}
2365 
2366 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2367 	if (!ndev) {
2368 		ret = -ENOMEM;
2369 		goto out;
2370 	}
2371 
2372 	/* The sh Ether-specific entries in the device structure. */
2373 	ndev->base_addr = res->start;
2374 	devno = pdev->id;
2375 	if (devno < 0)
2376 		devno = 0;
2377 
2378 	ndev->dma = -1;
2379 	ret = platform_get_irq(pdev, 0);
2380 	if (ret < 0) {
2381 		ret = -ENODEV;
2382 		goto out_release;
2383 	}
2384 	ndev->irq = ret;
2385 
2386 	SET_NETDEV_DEV(ndev, &pdev->dev);
2387 
2388 	/* Fill in the fields of the device structure with ethernet values. */
2389 	ether_setup(ndev);
2390 
2391 	mdp = netdev_priv(ndev);
2392 	mdp->num_tx_ring = TX_RING_SIZE;
2393 	mdp->num_rx_ring = RX_RING_SIZE;
2394 	mdp->addr = ioremap(res->start, resource_size(res));
2395 	if (mdp->addr == NULL) {
2396 		ret = -ENOMEM;
2397 		dev_err(&pdev->dev, "ioremap failed.\n");
2398 		goto out_release;
2399 	}
2400 
2401 	spin_lock_init(&mdp->lock);
2402 	mdp->pdev = pdev;
2403 	pm_runtime_enable(&pdev->dev);
2404 	pm_runtime_resume(&pdev->dev);
2405 
2406 	pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
2407 	/* get PHY ID */
2408 	mdp->phy_id = pd->phy;
2409 	mdp->phy_interface = pd->phy_interface;
2410 	/* EDMAC endian */
2411 	mdp->edmac_endian = pd->edmac_endian;
2412 	mdp->no_ether_link = pd->no_ether_link;
2413 	mdp->ether_link_active_low = pd->ether_link_active_low;
2414 	mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
2415 
2416 	/* set cpu data */
2417 #if defined(SH_ETH_HAS_BOTH_MODULES)
2418 	mdp->cd = sh_eth_get_cpu_data(mdp);
2419 #else
2420 	mdp->cd = &sh_eth_my_cpu_data;
2421 #endif
2422 	sh_eth_set_default_cpu_data(mdp->cd);
2423 
2424 	/* set function */
2425 	ndev->netdev_ops = &sh_eth_netdev_ops;
2426 	SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
2427 	ndev->watchdog_timeo = TX_TIMEOUT;
2428 
2429 	/* debug message level */
2430 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
2431 
2432 	/* read and set MAC address */
2433 	read_mac_address(ndev, pd->mac_addr);
2434 
2435 	/* ioremap the TSU registers */
2436 	if (mdp->cd->tsu) {
2437 		struct resource *rtsu;
2438 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2439 		if (!rtsu) {
2440 			dev_err(&pdev->dev, "Not found TSU resource\n");
2441 			ret = -ENODEV;
2442 			goto out_release;
2443 		}
2444 		mdp->tsu_addr = ioremap(rtsu->start,
2445 					resource_size(rtsu));
2446 		mdp->port = devno % 2;
2447 		ndev->features = NETIF_F_HW_VLAN_FILTER;
2448 	}
2449 
2450 	/* initialize first or needed device */
2451 	if (!devno || pd->needs_init) {
2452 		if (mdp->cd->chip_reset)
2453 			mdp->cd->chip_reset(ndev);
2454 
2455 		if (mdp->cd->tsu) {
2456 			/* TSU init (Init only)*/
2457 			sh_eth_tsu_init(mdp);
2458 		}
2459 	}
2460 
2461 	/* network device register */
2462 	ret = register_netdev(ndev);
2463 	if (ret)
2464 		goto out_release;
2465 
2466 	/* mdio bus init */
2467 	ret = sh_mdio_init(ndev, pdev->id, pd);
2468 	if (ret)
2469 		goto out_unregister;
2470 
2471 	/* print device information */
2472 	pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
2473 	       (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2474 
2475 	platform_set_drvdata(pdev, ndev);
2476 
2477 	return ret;
2478 
2479 out_unregister:
2480 	unregister_netdev(ndev);
2481 
2482 out_release:
2483 	/* net_dev free */
2484 	if (mdp && mdp->addr)
2485 		iounmap(mdp->addr);
2486 	if (mdp && mdp->tsu_addr)
2487 		iounmap(mdp->tsu_addr);
2488 	if (ndev)
2489 		free_netdev(ndev);
2490 
2491 out:
2492 	return ret;
2493 }
2494 
2495 static int sh_eth_drv_remove(struct platform_device *pdev)
2496 {
2497 	struct net_device *ndev = platform_get_drvdata(pdev);
2498 	struct sh_eth_private *mdp = netdev_priv(ndev);
2499 
2500 	if (mdp->cd->tsu)
2501 		iounmap(mdp->tsu_addr);
2502 	sh_mdio_release(ndev);
2503 	unregister_netdev(ndev);
2504 	pm_runtime_disable(&pdev->dev);
2505 	iounmap(mdp->addr);
2506 	free_netdev(ndev);
2507 	platform_set_drvdata(pdev, NULL);
2508 
2509 	return 0;
2510 }
2511 
2512 static int sh_eth_runtime_nop(struct device *dev)
2513 {
2514 	/*
2515 	 * Runtime PM callback shared between ->runtime_suspend()
2516 	 * and ->runtime_resume(). Simply returns success.
2517 	 *
2518 	 * This driver re-initializes all registers after
2519 	 * pm_runtime_get_sync() anyway so there is no need
2520 	 * to save and restore registers here.
2521 	 */
2522 	return 0;
2523 }
2524 
2525 static struct dev_pm_ops sh_eth_dev_pm_ops = {
2526 	.runtime_suspend = sh_eth_runtime_nop,
2527 	.runtime_resume = sh_eth_runtime_nop,
2528 };
2529 
2530 static struct platform_driver sh_eth_driver = {
2531 	.probe = sh_eth_drv_probe,
2532 	.remove = sh_eth_drv_remove,
2533 	.driver = {
2534 		   .name = CARDNAME,
2535 		   .pm = &sh_eth_dev_pm_ops,
2536 	},
2537 };
2538 
2539 module_platform_driver(sh_eth_driver);
2540 
2541 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
2542 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
2543 MODULE_LICENSE("GPL v2");
2544