xref: /linux/drivers/net/ethernet/renesas/sh_eth.c (revision b85d45947951d23cb22d90caecf4c1eb81342c96)
1 /*  SuperH Ethernet device driver
2  *
3  *  Copyright (C) 2014  Renesas Electronics Corporation
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
6  *  Copyright (C) 2013-2014 Cogent Embedded, Inc.
7  *  Copyright (C) 2014 Codethink Limited
8  *
9  *  This program is free software; you can redistribute it and/or modify it
10  *  under the terms and conditions of the GNU General Public License,
11  *  version 2, as published by the Free Software Foundation.
12  *
13  *  This program is distributed in the hope it will be useful, but WITHOUT
14  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  *  more details.
17  *
18  *  The full GNU General Public License is included in this distribution in
19  *  the file called "COPYING".
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
38 #include <linux/io.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/clk.h>
44 #include <linux/sh_eth.h>
45 #include <linux/of_mdio.h>
46 
47 #include "sh_eth.h"
48 
49 #define SH_ETH_DEF_MSG_ENABLE \
50 		(NETIF_MSG_LINK	| \
51 		NETIF_MSG_TIMER	| \
52 		NETIF_MSG_RX_ERR| \
53 		NETIF_MSG_TX_ERR)
54 
55 #define SH_ETH_OFFSET_DEFAULTS			\
56 	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
57 
58 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
59 	SH_ETH_OFFSET_DEFAULTS,
60 
61 	[EDSR]		= 0x0000,
62 	[EDMR]		= 0x0400,
63 	[EDTRR]		= 0x0408,
64 	[EDRRR]		= 0x0410,
65 	[EESR]		= 0x0428,
66 	[EESIPR]	= 0x0430,
67 	[TDLAR]		= 0x0010,
68 	[TDFAR]		= 0x0014,
69 	[TDFXR]		= 0x0018,
70 	[TDFFR]		= 0x001c,
71 	[RDLAR]		= 0x0030,
72 	[RDFAR]		= 0x0034,
73 	[RDFXR]		= 0x0038,
74 	[RDFFR]		= 0x003c,
75 	[TRSCER]	= 0x0438,
76 	[RMFCR]		= 0x0440,
77 	[TFTR]		= 0x0448,
78 	[FDR]		= 0x0450,
79 	[RMCR]		= 0x0458,
80 	[RPADIR]	= 0x0460,
81 	[FCFTR]		= 0x0468,
82 	[CSMR]		= 0x04E4,
83 
84 	[ECMR]		= 0x0500,
85 	[ECSR]		= 0x0510,
86 	[ECSIPR]	= 0x0518,
87 	[PIR]		= 0x0520,
88 	[PSR]		= 0x0528,
89 	[PIPR]		= 0x052c,
90 	[RFLR]		= 0x0508,
91 	[APR]		= 0x0554,
92 	[MPR]		= 0x0558,
93 	[PFTCR]		= 0x055c,
94 	[PFRCR]		= 0x0560,
95 	[TPAUSER]	= 0x0564,
96 	[GECMR]		= 0x05b0,
97 	[BCULR]		= 0x05b4,
98 	[MAHR]		= 0x05c0,
99 	[MALR]		= 0x05c8,
100 	[TROCR]		= 0x0700,
101 	[CDCR]		= 0x0708,
102 	[LCCR]		= 0x0710,
103 	[CEFCR]		= 0x0740,
104 	[FRECR]		= 0x0748,
105 	[TSFRCR]	= 0x0750,
106 	[TLFRCR]	= 0x0758,
107 	[RFCR]		= 0x0760,
108 	[CERCR]		= 0x0768,
109 	[CEECR]		= 0x0770,
110 	[MAFCR]		= 0x0778,
111 	[RMII_MII]	= 0x0790,
112 
113 	[ARSTR]		= 0x0000,
114 	[TSU_CTRST]	= 0x0004,
115 	[TSU_FWEN0]	= 0x0010,
116 	[TSU_FWEN1]	= 0x0014,
117 	[TSU_FCM]	= 0x0018,
118 	[TSU_BSYSL0]	= 0x0020,
119 	[TSU_BSYSL1]	= 0x0024,
120 	[TSU_PRISL0]	= 0x0028,
121 	[TSU_PRISL1]	= 0x002c,
122 	[TSU_FWSL0]	= 0x0030,
123 	[TSU_FWSL1]	= 0x0034,
124 	[TSU_FWSLC]	= 0x0038,
125 	[TSU_QTAG0]	= 0x0040,
126 	[TSU_QTAG1]	= 0x0044,
127 	[TSU_FWSR]	= 0x0050,
128 	[TSU_FWINMK]	= 0x0054,
129 	[TSU_ADQT0]	= 0x0048,
130 	[TSU_ADQT1]	= 0x004c,
131 	[TSU_VTAG0]	= 0x0058,
132 	[TSU_VTAG1]	= 0x005c,
133 	[TSU_ADSBSY]	= 0x0060,
134 	[TSU_TEN]	= 0x0064,
135 	[TSU_POST1]	= 0x0070,
136 	[TSU_POST2]	= 0x0074,
137 	[TSU_POST3]	= 0x0078,
138 	[TSU_POST4]	= 0x007c,
139 	[TSU_ADRH0]	= 0x0100,
140 
141 	[TXNLCR0]	= 0x0080,
142 	[TXALCR0]	= 0x0084,
143 	[RXNLCR0]	= 0x0088,
144 	[RXALCR0]	= 0x008c,
145 	[FWNLCR0]	= 0x0090,
146 	[FWALCR0]	= 0x0094,
147 	[TXNLCR1]	= 0x00a0,
148 	[TXALCR1]	= 0x00a0,
149 	[RXNLCR1]	= 0x00a8,
150 	[RXALCR1]	= 0x00ac,
151 	[FWNLCR1]	= 0x00b0,
152 	[FWALCR1]	= 0x00b4,
153 };
154 
155 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
156 	SH_ETH_OFFSET_DEFAULTS,
157 
158 	[EDSR]		= 0x0000,
159 	[EDMR]		= 0x0400,
160 	[EDTRR]		= 0x0408,
161 	[EDRRR]		= 0x0410,
162 	[EESR]		= 0x0428,
163 	[EESIPR]	= 0x0430,
164 	[TDLAR]		= 0x0010,
165 	[TDFAR]		= 0x0014,
166 	[TDFXR]		= 0x0018,
167 	[TDFFR]		= 0x001c,
168 	[RDLAR]		= 0x0030,
169 	[RDFAR]		= 0x0034,
170 	[RDFXR]		= 0x0038,
171 	[RDFFR]		= 0x003c,
172 	[TRSCER]	= 0x0438,
173 	[RMFCR]		= 0x0440,
174 	[TFTR]		= 0x0448,
175 	[FDR]		= 0x0450,
176 	[RMCR]		= 0x0458,
177 	[RPADIR]	= 0x0460,
178 	[FCFTR]		= 0x0468,
179 	[CSMR]		= 0x04E4,
180 
181 	[ECMR]		= 0x0500,
182 	[RFLR]		= 0x0508,
183 	[ECSR]		= 0x0510,
184 	[ECSIPR]	= 0x0518,
185 	[PIR]		= 0x0520,
186 	[APR]		= 0x0554,
187 	[MPR]		= 0x0558,
188 	[PFTCR]		= 0x055c,
189 	[PFRCR]		= 0x0560,
190 	[TPAUSER]	= 0x0564,
191 	[MAHR]		= 0x05c0,
192 	[MALR]		= 0x05c8,
193 	[CEFCR]		= 0x0740,
194 	[FRECR]		= 0x0748,
195 	[TSFRCR]	= 0x0750,
196 	[TLFRCR]	= 0x0758,
197 	[RFCR]		= 0x0760,
198 	[MAFCR]		= 0x0778,
199 
200 	[ARSTR]		= 0x0000,
201 	[TSU_CTRST]	= 0x0004,
202 	[TSU_VTAG0]	= 0x0058,
203 	[TSU_ADSBSY]	= 0x0060,
204 	[TSU_TEN]	= 0x0064,
205 	[TSU_ADRH0]	= 0x0100,
206 
207 	[TXNLCR0]	= 0x0080,
208 	[TXALCR0]	= 0x0084,
209 	[RXNLCR0]	= 0x0088,
210 	[RXALCR0]	= 0x008C,
211 };
212 
213 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
214 	SH_ETH_OFFSET_DEFAULTS,
215 
216 	[ECMR]		= 0x0300,
217 	[RFLR]		= 0x0308,
218 	[ECSR]		= 0x0310,
219 	[ECSIPR]	= 0x0318,
220 	[PIR]		= 0x0320,
221 	[PSR]		= 0x0328,
222 	[RDMLR]		= 0x0340,
223 	[IPGR]		= 0x0350,
224 	[APR]		= 0x0354,
225 	[MPR]		= 0x0358,
226 	[RFCF]		= 0x0360,
227 	[TPAUSER]	= 0x0364,
228 	[TPAUSECR]	= 0x0368,
229 	[MAHR]		= 0x03c0,
230 	[MALR]		= 0x03c8,
231 	[TROCR]		= 0x03d0,
232 	[CDCR]		= 0x03d4,
233 	[LCCR]		= 0x03d8,
234 	[CNDCR]		= 0x03dc,
235 	[CEFCR]		= 0x03e4,
236 	[FRECR]		= 0x03e8,
237 	[TSFRCR]	= 0x03ec,
238 	[TLFRCR]	= 0x03f0,
239 	[RFCR]		= 0x03f4,
240 	[MAFCR]		= 0x03f8,
241 
242 	[EDMR]		= 0x0200,
243 	[EDTRR]		= 0x0208,
244 	[EDRRR]		= 0x0210,
245 	[TDLAR]		= 0x0218,
246 	[RDLAR]		= 0x0220,
247 	[EESR]		= 0x0228,
248 	[EESIPR]	= 0x0230,
249 	[TRSCER]	= 0x0238,
250 	[RMFCR]		= 0x0240,
251 	[TFTR]		= 0x0248,
252 	[FDR]		= 0x0250,
253 	[RMCR]		= 0x0258,
254 	[TFUCR]		= 0x0264,
255 	[RFOCR]		= 0x0268,
256 	[RMIIMODE]      = 0x026c,
257 	[FCFTR]		= 0x0270,
258 	[TRIMD]		= 0x027c,
259 };
260 
261 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
262 	SH_ETH_OFFSET_DEFAULTS,
263 
264 	[ECMR]		= 0x0100,
265 	[RFLR]		= 0x0108,
266 	[ECSR]		= 0x0110,
267 	[ECSIPR]	= 0x0118,
268 	[PIR]		= 0x0120,
269 	[PSR]		= 0x0128,
270 	[RDMLR]		= 0x0140,
271 	[IPGR]		= 0x0150,
272 	[APR]		= 0x0154,
273 	[MPR]		= 0x0158,
274 	[TPAUSER]	= 0x0164,
275 	[RFCF]		= 0x0160,
276 	[TPAUSECR]	= 0x0168,
277 	[BCFRR]		= 0x016c,
278 	[MAHR]		= 0x01c0,
279 	[MALR]		= 0x01c8,
280 	[TROCR]		= 0x01d0,
281 	[CDCR]		= 0x01d4,
282 	[LCCR]		= 0x01d8,
283 	[CNDCR]		= 0x01dc,
284 	[CEFCR]		= 0x01e4,
285 	[FRECR]		= 0x01e8,
286 	[TSFRCR]	= 0x01ec,
287 	[TLFRCR]	= 0x01f0,
288 	[RFCR]		= 0x01f4,
289 	[MAFCR]		= 0x01f8,
290 	[RTRATE]	= 0x01fc,
291 
292 	[EDMR]		= 0x0000,
293 	[EDTRR]		= 0x0008,
294 	[EDRRR]		= 0x0010,
295 	[TDLAR]		= 0x0018,
296 	[RDLAR]		= 0x0020,
297 	[EESR]		= 0x0028,
298 	[EESIPR]	= 0x0030,
299 	[TRSCER]	= 0x0038,
300 	[RMFCR]		= 0x0040,
301 	[TFTR]		= 0x0048,
302 	[FDR]		= 0x0050,
303 	[RMCR]		= 0x0058,
304 	[TFUCR]		= 0x0064,
305 	[RFOCR]		= 0x0068,
306 	[FCFTR]		= 0x0070,
307 	[RPADIR]	= 0x0078,
308 	[TRIMD]		= 0x007c,
309 	[RBWAR]		= 0x00c8,
310 	[RDFAR]		= 0x00cc,
311 	[TBRAR]		= 0x00d4,
312 	[TDFAR]		= 0x00d8,
313 };
314 
315 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
316 	SH_ETH_OFFSET_DEFAULTS,
317 
318 	[EDMR]		= 0x0000,
319 	[EDTRR]		= 0x0004,
320 	[EDRRR]		= 0x0008,
321 	[TDLAR]		= 0x000c,
322 	[RDLAR]		= 0x0010,
323 	[EESR]		= 0x0014,
324 	[EESIPR]	= 0x0018,
325 	[TRSCER]	= 0x001c,
326 	[RMFCR]		= 0x0020,
327 	[TFTR]		= 0x0024,
328 	[FDR]		= 0x0028,
329 	[RMCR]		= 0x002c,
330 	[EDOCR]		= 0x0030,
331 	[FCFTR]		= 0x0034,
332 	[RPADIR]	= 0x0038,
333 	[TRIMD]		= 0x003c,
334 	[RBWAR]		= 0x0040,
335 	[RDFAR]		= 0x0044,
336 	[TBRAR]		= 0x004c,
337 	[TDFAR]		= 0x0050,
338 
339 	[ECMR]		= 0x0160,
340 	[ECSR]		= 0x0164,
341 	[ECSIPR]	= 0x0168,
342 	[PIR]		= 0x016c,
343 	[MAHR]		= 0x0170,
344 	[MALR]		= 0x0174,
345 	[RFLR]		= 0x0178,
346 	[PSR]		= 0x017c,
347 	[TROCR]		= 0x0180,
348 	[CDCR]		= 0x0184,
349 	[LCCR]		= 0x0188,
350 	[CNDCR]		= 0x018c,
351 	[CEFCR]		= 0x0194,
352 	[FRECR]		= 0x0198,
353 	[TSFRCR]	= 0x019c,
354 	[TLFRCR]	= 0x01a0,
355 	[RFCR]		= 0x01a4,
356 	[MAFCR]		= 0x01a8,
357 	[IPGR]		= 0x01b4,
358 	[APR]		= 0x01b8,
359 	[MPR]		= 0x01bc,
360 	[TPAUSER]	= 0x01c4,
361 	[BCFR]		= 0x01cc,
362 
363 	[ARSTR]		= 0x0000,
364 	[TSU_CTRST]	= 0x0004,
365 	[TSU_FWEN0]	= 0x0010,
366 	[TSU_FWEN1]	= 0x0014,
367 	[TSU_FCM]	= 0x0018,
368 	[TSU_BSYSL0]	= 0x0020,
369 	[TSU_BSYSL1]	= 0x0024,
370 	[TSU_PRISL0]	= 0x0028,
371 	[TSU_PRISL1]	= 0x002c,
372 	[TSU_FWSL0]	= 0x0030,
373 	[TSU_FWSL1]	= 0x0034,
374 	[TSU_FWSLC]	= 0x0038,
375 	[TSU_QTAGM0]	= 0x0040,
376 	[TSU_QTAGM1]	= 0x0044,
377 	[TSU_ADQT0]	= 0x0048,
378 	[TSU_ADQT1]	= 0x004c,
379 	[TSU_FWSR]	= 0x0050,
380 	[TSU_FWINMK]	= 0x0054,
381 	[TSU_ADSBSY]	= 0x0060,
382 	[TSU_TEN]	= 0x0064,
383 	[TSU_POST1]	= 0x0070,
384 	[TSU_POST2]	= 0x0074,
385 	[TSU_POST3]	= 0x0078,
386 	[TSU_POST4]	= 0x007c,
387 
388 	[TXNLCR0]	= 0x0080,
389 	[TXALCR0]	= 0x0084,
390 	[RXNLCR0]	= 0x0088,
391 	[RXALCR0]	= 0x008c,
392 	[FWNLCR0]	= 0x0090,
393 	[FWALCR0]	= 0x0094,
394 	[TXNLCR1]	= 0x00a0,
395 	[TXALCR1]	= 0x00a0,
396 	[RXNLCR1]	= 0x00a8,
397 	[RXALCR1]	= 0x00ac,
398 	[FWNLCR1]	= 0x00b0,
399 	[FWALCR1]	= 0x00b4,
400 
401 	[TSU_ADRH0]	= 0x0100,
402 };
403 
404 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
405 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
406 
407 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
408 {
409 	return mdp->reg_offset == sh_eth_offset_gigabit;
410 }
411 
412 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
413 {
414 	return mdp->reg_offset == sh_eth_offset_fast_rz;
415 }
416 
417 static void sh_eth_select_mii(struct net_device *ndev)
418 {
419 	u32 value = 0x0;
420 	struct sh_eth_private *mdp = netdev_priv(ndev);
421 
422 	switch (mdp->phy_interface) {
423 	case PHY_INTERFACE_MODE_GMII:
424 		value = 0x2;
425 		break;
426 	case PHY_INTERFACE_MODE_MII:
427 		value = 0x1;
428 		break;
429 	case PHY_INTERFACE_MODE_RMII:
430 		value = 0x0;
431 		break;
432 	default:
433 		netdev_warn(ndev,
434 			    "PHY interface mode was not setup. Set to MII.\n");
435 		value = 0x1;
436 		break;
437 	}
438 
439 	sh_eth_write(ndev, value, RMII_MII);
440 }
441 
442 static void sh_eth_set_duplex(struct net_device *ndev)
443 {
444 	struct sh_eth_private *mdp = netdev_priv(ndev);
445 
446 	if (mdp->duplex) /* Full */
447 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
448 	else		/* Half */
449 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
450 }
451 
452 /* There is CPU dependent code */
453 static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
454 {
455 	struct sh_eth_private *mdp = netdev_priv(ndev);
456 
457 	switch (mdp->speed) {
458 	case 10: /* 10BASE */
459 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_ELB, ECMR);
460 		break;
461 	case 100:/* 100BASE */
462 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_ELB, ECMR);
463 		break;
464 	default:
465 		break;
466 	}
467 }
468 
469 /* R8A7778/9 */
470 static struct sh_eth_cpu_data r8a777x_data = {
471 	.set_duplex	= sh_eth_set_duplex,
472 	.set_rate	= sh_eth_set_rate_r8a777x,
473 
474 	.register_type	= SH_ETH_REG_FAST_RCAR,
475 
476 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
477 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
478 	.eesipr_value	= 0x01ff009f,
479 
480 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
481 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
482 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
483 			  EESR_ECI,
484 	.fdr_value	= 0x00000f0f,
485 
486 	.apr		= 1,
487 	.mpr		= 1,
488 	.tpauser	= 1,
489 	.hw_swap	= 1,
490 };
491 
492 /* R8A7790/1 */
493 static struct sh_eth_cpu_data r8a779x_data = {
494 	.set_duplex	= sh_eth_set_duplex,
495 	.set_rate	= sh_eth_set_rate_r8a777x,
496 
497 	.register_type	= SH_ETH_REG_FAST_RCAR,
498 
499 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
500 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
501 	.eesipr_value	= 0x01ff009f,
502 
503 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
504 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
505 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
506 			  EESR_ECI,
507 	.fdr_value	= 0x00000f0f,
508 
509 	.trscer_err_mask = DESC_I_RINT8,
510 
511 	.apr		= 1,
512 	.mpr		= 1,
513 	.tpauser	= 1,
514 	.hw_swap	= 1,
515 	.rmiimode	= 1,
516 };
517 
518 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
519 {
520 	struct sh_eth_private *mdp = netdev_priv(ndev);
521 
522 	switch (mdp->speed) {
523 	case 10: /* 10BASE */
524 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
525 		break;
526 	case 100:/* 100BASE */
527 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
528 		break;
529 	default:
530 		break;
531 	}
532 }
533 
534 /* SH7724 */
535 static struct sh_eth_cpu_data sh7724_data = {
536 	.set_duplex	= sh_eth_set_duplex,
537 	.set_rate	= sh_eth_set_rate_sh7724,
538 
539 	.register_type	= SH_ETH_REG_FAST_SH4,
540 
541 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
542 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
543 	.eesipr_value	= 0x01ff009f,
544 
545 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
546 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
547 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
548 			  EESR_ECI,
549 
550 	.apr		= 1,
551 	.mpr		= 1,
552 	.tpauser	= 1,
553 	.hw_swap	= 1,
554 	.rpadir		= 1,
555 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
556 };
557 
558 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
559 {
560 	struct sh_eth_private *mdp = netdev_priv(ndev);
561 
562 	switch (mdp->speed) {
563 	case 10: /* 10BASE */
564 		sh_eth_write(ndev, 0, RTRATE);
565 		break;
566 	case 100:/* 100BASE */
567 		sh_eth_write(ndev, 1, RTRATE);
568 		break;
569 	default:
570 		break;
571 	}
572 }
573 
574 /* SH7757 */
575 static struct sh_eth_cpu_data sh7757_data = {
576 	.set_duplex	= sh_eth_set_duplex,
577 	.set_rate	= sh_eth_set_rate_sh7757,
578 
579 	.register_type	= SH_ETH_REG_FAST_SH4,
580 
581 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
582 
583 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
584 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
585 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
586 			  EESR_ECI,
587 
588 	.irq_flags	= IRQF_SHARED,
589 	.apr		= 1,
590 	.mpr		= 1,
591 	.tpauser	= 1,
592 	.hw_swap	= 1,
593 	.no_ade		= 1,
594 	.rpadir		= 1,
595 	.rpadir_value   = 2 << 16,
596 	.rtrate		= 1,
597 };
598 
599 #define SH_GIGA_ETH_BASE	0xfee00000UL
600 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
601 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
602 static void sh_eth_chip_reset_giga(struct net_device *ndev)
603 {
604 	int i;
605 	u32 mahr[2], malr[2];
606 
607 	/* save MAHR and MALR */
608 	for (i = 0; i < 2; i++) {
609 		malr[i] = ioread32((void *)GIGA_MALR(i));
610 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
611 	}
612 
613 	/* reset device */
614 	iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
615 	mdelay(1);
616 
617 	/* restore MAHR and MALR */
618 	for (i = 0; i < 2; i++) {
619 		iowrite32(malr[i], (void *)GIGA_MALR(i));
620 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
621 	}
622 }
623 
624 static void sh_eth_set_rate_giga(struct net_device *ndev)
625 {
626 	struct sh_eth_private *mdp = netdev_priv(ndev);
627 
628 	switch (mdp->speed) {
629 	case 10: /* 10BASE */
630 		sh_eth_write(ndev, 0x00000000, GECMR);
631 		break;
632 	case 100:/* 100BASE */
633 		sh_eth_write(ndev, 0x00000010, GECMR);
634 		break;
635 	case 1000: /* 1000BASE */
636 		sh_eth_write(ndev, 0x00000020, GECMR);
637 		break;
638 	default:
639 		break;
640 	}
641 }
642 
643 /* SH7757(GETHERC) */
644 static struct sh_eth_cpu_data sh7757_data_giga = {
645 	.chip_reset	= sh_eth_chip_reset_giga,
646 	.set_duplex	= sh_eth_set_duplex,
647 	.set_rate	= sh_eth_set_rate_giga,
648 
649 	.register_type	= SH_ETH_REG_GIGABIT,
650 
651 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
652 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
653 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
654 
655 	.tx_check	= EESR_TC1 | EESR_FTC,
656 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
657 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
658 			  EESR_TDE | EESR_ECI,
659 	.fdr_value	= 0x0000072f,
660 
661 	.irq_flags	= IRQF_SHARED,
662 	.apr		= 1,
663 	.mpr		= 1,
664 	.tpauser	= 1,
665 	.bculr		= 1,
666 	.hw_swap	= 1,
667 	.rpadir		= 1,
668 	.rpadir_value   = 2 << 16,
669 	.no_trimd	= 1,
670 	.no_ade		= 1,
671 	.tsu		= 1,
672 };
673 
674 static void sh_eth_chip_reset(struct net_device *ndev)
675 {
676 	struct sh_eth_private *mdp = netdev_priv(ndev);
677 
678 	/* reset device */
679 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
680 	mdelay(1);
681 }
682 
683 static void sh_eth_set_rate_gether(struct net_device *ndev)
684 {
685 	struct sh_eth_private *mdp = netdev_priv(ndev);
686 
687 	switch (mdp->speed) {
688 	case 10: /* 10BASE */
689 		sh_eth_write(ndev, GECMR_10, GECMR);
690 		break;
691 	case 100:/* 100BASE */
692 		sh_eth_write(ndev, GECMR_100, GECMR);
693 		break;
694 	case 1000: /* 1000BASE */
695 		sh_eth_write(ndev, GECMR_1000, GECMR);
696 		break;
697 	default:
698 		break;
699 	}
700 }
701 
702 /* SH7734 */
703 static struct sh_eth_cpu_data sh7734_data = {
704 	.chip_reset	= sh_eth_chip_reset,
705 	.set_duplex	= sh_eth_set_duplex,
706 	.set_rate	= sh_eth_set_rate_gether,
707 
708 	.register_type	= SH_ETH_REG_GIGABIT,
709 
710 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
711 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
712 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
713 
714 	.tx_check	= EESR_TC1 | EESR_FTC,
715 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
716 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
717 			  EESR_TDE | EESR_ECI,
718 
719 	.apr		= 1,
720 	.mpr		= 1,
721 	.tpauser	= 1,
722 	.bculr		= 1,
723 	.hw_swap	= 1,
724 	.no_trimd	= 1,
725 	.no_ade		= 1,
726 	.tsu		= 1,
727 	.hw_crc		= 1,
728 	.select_mii	= 1,
729 };
730 
731 /* SH7763 */
732 static struct sh_eth_cpu_data sh7763_data = {
733 	.chip_reset	= sh_eth_chip_reset,
734 	.set_duplex	= sh_eth_set_duplex,
735 	.set_rate	= sh_eth_set_rate_gether,
736 
737 	.register_type	= SH_ETH_REG_GIGABIT,
738 
739 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
740 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
741 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
742 
743 	.tx_check	= EESR_TC1 | EESR_FTC,
744 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
745 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
746 			  EESR_ECI,
747 
748 	.apr		= 1,
749 	.mpr		= 1,
750 	.tpauser	= 1,
751 	.bculr		= 1,
752 	.hw_swap	= 1,
753 	.no_trimd	= 1,
754 	.no_ade		= 1,
755 	.tsu		= 1,
756 	.irq_flags	= IRQF_SHARED,
757 };
758 
759 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
760 {
761 	struct sh_eth_private *mdp = netdev_priv(ndev);
762 
763 	/* reset device */
764 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
765 	mdelay(1);
766 
767 	sh_eth_select_mii(ndev);
768 }
769 
770 /* R8A7740 */
771 static struct sh_eth_cpu_data r8a7740_data = {
772 	.chip_reset	= sh_eth_chip_reset_r8a7740,
773 	.set_duplex	= sh_eth_set_duplex,
774 	.set_rate	= sh_eth_set_rate_gether,
775 
776 	.register_type	= SH_ETH_REG_GIGABIT,
777 
778 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
779 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
780 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
781 
782 	.tx_check	= EESR_TC1 | EESR_FTC,
783 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
784 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
785 			  EESR_TDE | EESR_ECI,
786 	.fdr_value	= 0x0000070f,
787 
788 	.apr		= 1,
789 	.mpr		= 1,
790 	.tpauser	= 1,
791 	.bculr		= 1,
792 	.hw_swap	= 1,
793 	.rpadir		= 1,
794 	.rpadir_value   = 2 << 16,
795 	.no_trimd	= 1,
796 	.no_ade		= 1,
797 	.tsu		= 1,
798 	.select_mii	= 1,
799 	.shift_rd0	= 1,
800 };
801 
802 /* R7S72100 */
803 static struct sh_eth_cpu_data r7s72100_data = {
804 	.chip_reset	= sh_eth_chip_reset,
805 	.set_duplex	= sh_eth_set_duplex,
806 
807 	.register_type	= SH_ETH_REG_FAST_RZ,
808 
809 	.ecsr_value	= ECSR_ICD,
810 	.ecsipr_value	= ECSIPR_ICDIP,
811 	.eesipr_value	= 0xff7f009f,
812 
813 	.tx_check	= EESR_TC1 | EESR_FTC,
814 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
815 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
816 			  EESR_TDE | EESR_ECI,
817 	.fdr_value	= 0x0000070f,
818 
819 	.no_psr		= 1,
820 	.apr		= 1,
821 	.mpr		= 1,
822 	.tpauser	= 1,
823 	.hw_swap	= 1,
824 	.rpadir		= 1,
825 	.rpadir_value   = 2 << 16,
826 	.no_trimd	= 1,
827 	.no_ade		= 1,
828 	.hw_crc		= 1,
829 	.tsu		= 1,
830 	.shift_rd0	= 1,
831 };
832 
833 static struct sh_eth_cpu_data sh7619_data = {
834 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
835 
836 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
837 
838 	.apr		= 1,
839 	.mpr		= 1,
840 	.tpauser	= 1,
841 	.hw_swap	= 1,
842 };
843 
844 static struct sh_eth_cpu_data sh771x_data = {
845 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
846 
847 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
848 	.tsu		= 1,
849 };
850 
851 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
852 {
853 	if (!cd->ecsr_value)
854 		cd->ecsr_value = DEFAULT_ECSR_INIT;
855 
856 	if (!cd->ecsipr_value)
857 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
858 
859 	if (!cd->fcftr_value)
860 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
861 				  DEFAULT_FIFO_F_D_RFD;
862 
863 	if (!cd->fdr_value)
864 		cd->fdr_value = DEFAULT_FDR_INIT;
865 
866 	if (!cd->tx_check)
867 		cd->tx_check = DEFAULT_TX_CHECK;
868 
869 	if (!cd->eesr_err_check)
870 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
871 
872 	if (!cd->trscer_err_mask)
873 		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
874 }
875 
876 static int sh_eth_check_reset(struct net_device *ndev)
877 {
878 	int ret = 0;
879 	int cnt = 100;
880 
881 	while (cnt > 0) {
882 		if (!(sh_eth_read(ndev, EDMR) & 0x3))
883 			break;
884 		mdelay(1);
885 		cnt--;
886 	}
887 	if (cnt <= 0) {
888 		netdev_err(ndev, "Device reset failed\n");
889 		ret = -ETIMEDOUT;
890 	}
891 	return ret;
892 }
893 
894 static int sh_eth_reset(struct net_device *ndev)
895 {
896 	struct sh_eth_private *mdp = netdev_priv(ndev);
897 	int ret = 0;
898 
899 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
900 		sh_eth_write(ndev, EDSR_ENALL, EDSR);
901 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
902 			     EDMR);
903 
904 		ret = sh_eth_check_reset(ndev);
905 		if (ret)
906 			return ret;
907 
908 		/* Table Init */
909 		sh_eth_write(ndev, 0x0, TDLAR);
910 		sh_eth_write(ndev, 0x0, TDFAR);
911 		sh_eth_write(ndev, 0x0, TDFXR);
912 		sh_eth_write(ndev, 0x0, TDFFR);
913 		sh_eth_write(ndev, 0x0, RDLAR);
914 		sh_eth_write(ndev, 0x0, RDFAR);
915 		sh_eth_write(ndev, 0x0, RDFXR);
916 		sh_eth_write(ndev, 0x0, RDFFR);
917 
918 		/* Reset HW CRC register */
919 		if (mdp->cd->hw_crc)
920 			sh_eth_write(ndev, 0x0, CSMR);
921 
922 		/* Select MII mode */
923 		if (mdp->cd->select_mii)
924 			sh_eth_select_mii(ndev);
925 	} else {
926 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
927 			     EDMR);
928 		mdelay(3);
929 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
930 			     EDMR);
931 	}
932 
933 	return ret;
934 }
935 
936 static void sh_eth_set_receive_align(struct sk_buff *skb)
937 {
938 	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
939 
940 	if (reserve)
941 		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
942 }
943 
944 
945 /* CPU <-> EDMAC endian convert */
946 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
947 {
948 	switch (mdp->edmac_endian) {
949 	case EDMAC_LITTLE_ENDIAN:
950 		return cpu_to_le32(x);
951 	case EDMAC_BIG_ENDIAN:
952 		return cpu_to_be32(x);
953 	}
954 	return x;
955 }
956 
957 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
958 {
959 	switch (mdp->edmac_endian) {
960 	case EDMAC_LITTLE_ENDIAN:
961 		return le32_to_cpu(x);
962 	case EDMAC_BIG_ENDIAN:
963 		return be32_to_cpu(x);
964 	}
965 	return x;
966 }
967 
968 /* Program the hardware MAC address from dev->dev_addr. */
969 static void update_mac_address(struct net_device *ndev)
970 {
971 	sh_eth_write(ndev,
972 		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
973 		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
974 	sh_eth_write(ndev,
975 		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
976 }
977 
978 /* Get MAC address from SuperH MAC address register
979  *
980  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
981  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
982  * When you want use this device, you must set MAC address in bootloader.
983  *
984  */
985 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
986 {
987 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
988 		memcpy(ndev->dev_addr, mac, ETH_ALEN);
989 	} else {
990 		ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
991 		ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
992 		ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
993 		ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
994 		ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
995 		ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
996 	}
997 }
998 
999 static u32 sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
1000 {
1001 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
1002 		return EDTRR_TRNS_GETHER;
1003 	else
1004 		return EDTRR_TRNS_ETHER;
1005 }
1006 
1007 struct bb_info {
1008 	void (*set_gate)(void *addr);
1009 	struct mdiobb_ctrl ctrl;
1010 	void *addr;
1011 	u32 mmd_msk;/* MMD */
1012 	u32 mdo_msk;
1013 	u32 mdi_msk;
1014 	u32 mdc_msk;
1015 };
1016 
1017 /* PHY bit set */
1018 static void bb_set(void *addr, u32 msk)
1019 {
1020 	iowrite32(ioread32(addr) | msk, addr);
1021 }
1022 
1023 /* PHY bit clear */
1024 static void bb_clr(void *addr, u32 msk)
1025 {
1026 	iowrite32((ioread32(addr) & ~msk), addr);
1027 }
1028 
1029 /* PHY bit read */
1030 static int bb_read(void *addr, u32 msk)
1031 {
1032 	return (ioread32(addr) & msk) != 0;
1033 }
1034 
1035 /* Data I/O pin control */
1036 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1037 {
1038 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1039 
1040 	if (bitbang->set_gate)
1041 		bitbang->set_gate(bitbang->addr);
1042 
1043 	if (bit)
1044 		bb_set(bitbang->addr, bitbang->mmd_msk);
1045 	else
1046 		bb_clr(bitbang->addr, bitbang->mmd_msk);
1047 }
1048 
1049 /* Set bit data*/
1050 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1051 {
1052 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1053 
1054 	if (bitbang->set_gate)
1055 		bitbang->set_gate(bitbang->addr);
1056 
1057 	if (bit)
1058 		bb_set(bitbang->addr, bitbang->mdo_msk);
1059 	else
1060 		bb_clr(bitbang->addr, bitbang->mdo_msk);
1061 }
1062 
1063 /* Get bit data*/
1064 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1065 {
1066 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1067 
1068 	if (bitbang->set_gate)
1069 		bitbang->set_gate(bitbang->addr);
1070 
1071 	return bb_read(bitbang->addr, bitbang->mdi_msk);
1072 }
1073 
1074 /* MDC pin control */
1075 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1076 {
1077 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1078 
1079 	if (bitbang->set_gate)
1080 		bitbang->set_gate(bitbang->addr);
1081 
1082 	if (bit)
1083 		bb_set(bitbang->addr, bitbang->mdc_msk);
1084 	else
1085 		bb_clr(bitbang->addr, bitbang->mdc_msk);
1086 }
1087 
1088 /* mdio bus control struct */
1089 static struct mdiobb_ops bb_ops = {
1090 	.owner = THIS_MODULE,
1091 	.set_mdc = sh_mdc_ctrl,
1092 	.set_mdio_dir = sh_mmd_ctrl,
1093 	.set_mdio_data = sh_set_mdio,
1094 	.get_mdio_data = sh_get_mdio,
1095 };
1096 
1097 /* free skb and descriptor buffer */
1098 static void sh_eth_ring_free(struct net_device *ndev)
1099 {
1100 	struct sh_eth_private *mdp = netdev_priv(ndev);
1101 	int i;
1102 
1103 	/* Free Rx skb ringbuffer */
1104 	if (mdp->rx_skbuff) {
1105 		for (i = 0; i < mdp->num_rx_ring; i++)
1106 			dev_kfree_skb(mdp->rx_skbuff[i]);
1107 	}
1108 	kfree(mdp->rx_skbuff);
1109 	mdp->rx_skbuff = NULL;
1110 
1111 	/* Free Tx skb ringbuffer */
1112 	if (mdp->tx_skbuff) {
1113 		for (i = 0; i < mdp->num_tx_ring; i++)
1114 			dev_kfree_skb(mdp->tx_skbuff[i]);
1115 	}
1116 	kfree(mdp->tx_skbuff);
1117 	mdp->tx_skbuff = NULL;
1118 }
1119 
1120 /* format skb and descriptor buffer */
1121 static void sh_eth_ring_format(struct net_device *ndev)
1122 {
1123 	struct sh_eth_private *mdp = netdev_priv(ndev);
1124 	int i;
1125 	struct sk_buff *skb;
1126 	struct sh_eth_rxdesc *rxdesc = NULL;
1127 	struct sh_eth_txdesc *txdesc = NULL;
1128 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1129 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1130 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1131 	dma_addr_t dma_addr;
1132 
1133 	mdp->cur_rx = 0;
1134 	mdp->cur_tx = 0;
1135 	mdp->dirty_rx = 0;
1136 	mdp->dirty_tx = 0;
1137 
1138 	memset(mdp->rx_ring, 0, rx_ringsize);
1139 
1140 	/* build Rx ring buffer */
1141 	for (i = 0; i < mdp->num_rx_ring; i++) {
1142 		/* skb */
1143 		mdp->rx_skbuff[i] = NULL;
1144 		skb = netdev_alloc_skb(ndev, skbuff_size);
1145 		if (skb == NULL)
1146 			break;
1147 		sh_eth_set_receive_align(skb);
1148 
1149 		/* RX descriptor */
1150 		rxdesc = &mdp->rx_ring[i];
1151 		/* The size of the buffer is a multiple of 32 bytes. */
1152 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 32);
1153 		dma_addr = dma_map_single(&ndev->dev, skb->data,
1154 					  rxdesc->buffer_length,
1155 					  DMA_FROM_DEVICE);
1156 		if (dma_mapping_error(&ndev->dev, dma_addr)) {
1157 			kfree_skb(skb);
1158 			break;
1159 		}
1160 		mdp->rx_skbuff[i] = skb;
1161 		rxdesc->addr = dma_addr;
1162 		rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1163 
1164 		/* Rx descriptor address set */
1165 		if (i == 0) {
1166 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1167 			if (sh_eth_is_gether(mdp) ||
1168 			    sh_eth_is_rz_fast_ether(mdp))
1169 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1170 		}
1171 	}
1172 
1173 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1174 
1175 	/* Mark the last entry as wrapping the ring. */
1176 	rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
1177 
1178 	memset(mdp->tx_ring, 0, tx_ringsize);
1179 
1180 	/* build Tx ring buffer */
1181 	for (i = 0; i < mdp->num_tx_ring; i++) {
1182 		mdp->tx_skbuff[i] = NULL;
1183 		txdesc = &mdp->tx_ring[i];
1184 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1185 		txdesc->buffer_length = 0;
1186 		if (i == 0) {
1187 			/* Tx descriptor address set */
1188 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1189 			if (sh_eth_is_gether(mdp) ||
1190 			    sh_eth_is_rz_fast_ether(mdp))
1191 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1192 		}
1193 	}
1194 
1195 	txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1196 }
1197 
1198 /* Get skb and descriptor buffer */
1199 static int sh_eth_ring_init(struct net_device *ndev)
1200 {
1201 	struct sh_eth_private *mdp = netdev_priv(ndev);
1202 	int rx_ringsize, tx_ringsize, ret = 0;
1203 
1204 	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1205 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1206 	 * the first 2 bytes, and +16 gets room for the status word from the
1207 	 * card.
1208 	 */
1209 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1210 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1211 	if (mdp->cd->rpadir)
1212 		mdp->rx_buf_sz += NET_IP_ALIGN;
1213 
1214 	/* Allocate RX and TX skb rings */
1215 	mdp->rx_skbuff = kmalloc_array(mdp->num_rx_ring,
1216 				       sizeof(*mdp->rx_skbuff), GFP_KERNEL);
1217 	if (!mdp->rx_skbuff) {
1218 		ret = -ENOMEM;
1219 		return ret;
1220 	}
1221 
1222 	mdp->tx_skbuff = kmalloc_array(mdp->num_tx_ring,
1223 				       sizeof(*mdp->tx_skbuff), GFP_KERNEL);
1224 	if (!mdp->tx_skbuff) {
1225 		ret = -ENOMEM;
1226 		goto skb_ring_free;
1227 	}
1228 
1229 	/* Allocate all Rx descriptors. */
1230 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1231 	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1232 					  GFP_KERNEL);
1233 	if (!mdp->rx_ring) {
1234 		ret = -ENOMEM;
1235 		goto desc_ring_free;
1236 	}
1237 
1238 	mdp->dirty_rx = 0;
1239 
1240 	/* Allocate all Tx descriptors. */
1241 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1242 	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1243 					  GFP_KERNEL);
1244 	if (!mdp->tx_ring) {
1245 		ret = -ENOMEM;
1246 		goto desc_ring_free;
1247 	}
1248 	return ret;
1249 
1250 desc_ring_free:
1251 	/* free DMA buffer */
1252 	dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
1253 
1254 skb_ring_free:
1255 	/* Free Rx and Tx skb ring buffer */
1256 	sh_eth_ring_free(ndev);
1257 	mdp->tx_ring = NULL;
1258 	mdp->rx_ring = NULL;
1259 
1260 	return ret;
1261 }
1262 
1263 static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp)
1264 {
1265 	int ringsize;
1266 
1267 	if (mdp->rx_ring) {
1268 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1269 		dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1270 				  mdp->rx_desc_dma);
1271 		mdp->rx_ring = NULL;
1272 	}
1273 
1274 	if (mdp->tx_ring) {
1275 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1276 		dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1277 				  mdp->tx_desc_dma);
1278 		mdp->tx_ring = NULL;
1279 	}
1280 }
1281 
1282 static int sh_eth_dev_init(struct net_device *ndev, bool start)
1283 {
1284 	int ret = 0;
1285 	struct sh_eth_private *mdp = netdev_priv(ndev);
1286 	u32 val;
1287 
1288 	/* Soft Reset */
1289 	ret = sh_eth_reset(ndev);
1290 	if (ret)
1291 		return ret;
1292 
1293 	if (mdp->cd->rmiimode)
1294 		sh_eth_write(ndev, 0x1, RMIIMODE);
1295 
1296 	/* Descriptor format */
1297 	sh_eth_ring_format(ndev);
1298 	if (mdp->cd->rpadir)
1299 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1300 
1301 	/* all sh_eth int mask */
1302 	sh_eth_write(ndev, 0, EESIPR);
1303 
1304 #if defined(__LITTLE_ENDIAN)
1305 	if (mdp->cd->hw_swap)
1306 		sh_eth_write(ndev, EDMR_EL, EDMR);
1307 	else
1308 #endif
1309 		sh_eth_write(ndev, 0, EDMR);
1310 
1311 	/* FIFO size set */
1312 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1313 	sh_eth_write(ndev, 0, TFTR);
1314 
1315 	/* Frame recv control (enable multiple-packets per rx irq) */
1316 	sh_eth_write(ndev, RMCR_RNC, RMCR);
1317 
1318 	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1319 
1320 	if (mdp->cd->bculr)
1321 		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1322 
1323 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1324 
1325 	if (!mdp->cd->no_trimd)
1326 		sh_eth_write(ndev, 0, TRIMD);
1327 
1328 	/* Recv frame limit set register */
1329 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1330 		     RFLR);
1331 
1332 	sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1333 	if (start) {
1334 		mdp->irq_enabled = true;
1335 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1336 	}
1337 
1338 	/* PAUSE Prohibition */
1339 	val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1340 		ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1341 
1342 	sh_eth_write(ndev, val, ECMR);
1343 
1344 	if (mdp->cd->set_rate)
1345 		mdp->cd->set_rate(ndev);
1346 
1347 	/* E-MAC Status Register clear */
1348 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1349 
1350 	/* E-MAC Interrupt Enable register */
1351 	if (start)
1352 		sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1353 
1354 	/* Set MAC address */
1355 	update_mac_address(ndev);
1356 
1357 	/* mask reset */
1358 	if (mdp->cd->apr)
1359 		sh_eth_write(ndev, APR_AP, APR);
1360 	if (mdp->cd->mpr)
1361 		sh_eth_write(ndev, MPR_MP, MPR);
1362 	if (mdp->cd->tpauser)
1363 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1364 
1365 	if (start) {
1366 		/* Setting the Rx mode will start the Rx process. */
1367 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1368 
1369 		netif_start_queue(ndev);
1370 	}
1371 
1372 	return ret;
1373 }
1374 
1375 static void sh_eth_dev_exit(struct net_device *ndev)
1376 {
1377 	struct sh_eth_private *mdp = netdev_priv(ndev);
1378 	int i;
1379 
1380 	/* Deactivate all TX descriptors, so DMA should stop at next
1381 	 * packet boundary if it's currently running
1382 	 */
1383 	for (i = 0; i < mdp->num_tx_ring; i++)
1384 		mdp->tx_ring[i].status &= ~cpu_to_edmac(mdp, TD_TACT);
1385 
1386 	/* Disable TX FIFO egress to MAC */
1387 	sh_eth_rcv_snd_disable(ndev);
1388 
1389 	/* Stop RX DMA at next packet boundary */
1390 	sh_eth_write(ndev, 0, EDRRR);
1391 
1392 	/* Aside from TX DMA, we can't tell when the hardware is
1393 	 * really stopped, so we need to reset to make sure.
1394 	 * Before doing that, wait for long enough to *probably*
1395 	 * finish transmitting the last packet and poll stats.
1396 	 */
1397 	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1398 	sh_eth_get_stats(ndev);
1399 	sh_eth_reset(ndev);
1400 
1401 	/* Set MAC address again */
1402 	update_mac_address(ndev);
1403 }
1404 
1405 /* free Tx skb function */
1406 static int sh_eth_txfree(struct net_device *ndev)
1407 {
1408 	struct sh_eth_private *mdp = netdev_priv(ndev);
1409 	struct sh_eth_txdesc *txdesc;
1410 	int free_num = 0;
1411 	int entry = 0;
1412 
1413 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1414 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1415 		txdesc = &mdp->tx_ring[entry];
1416 		if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1417 			break;
1418 		/* TACT bit must be checked before all the following reads */
1419 		rmb();
1420 		netif_info(mdp, tx_done, ndev,
1421 			   "tx entry %d status 0x%08x\n",
1422 			   entry, edmac_to_cpu(mdp, txdesc->status));
1423 		/* Free the original skb. */
1424 		if (mdp->tx_skbuff[entry]) {
1425 			dma_unmap_single(&ndev->dev, txdesc->addr,
1426 					 txdesc->buffer_length, DMA_TO_DEVICE);
1427 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1428 			mdp->tx_skbuff[entry] = NULL;
1429 			free_num++;
1430 		}
1431 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1432 		if (entry >= mdp->num_tx_ring - 1)
1433 			txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1434 
1435 		ndev->stats.tx_packets++;
1436 		ndev->stats.tx_bytes += txdesc->buffer_length;
1437 	}
1438 	return free_num;
1439 }
1440 
1441 /* Packet receive function */
1442 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1443 {
1444 	struct sh_eth_private *mdp = netdev_priv(ndev);
1445 	struct sh_eth_rxdesc *rxdesc;
1446 
1447 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1448 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1449 	int limit;
1450 	struct sk_buff *skb;
1451 	u16 pkt_len = 0;
1452 	u32 desc_status;
1453 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1454 	dma_addr_t dma_addr;
1455 
1456 	boguscnt = min(boguscnt, *quota);
1457 	limit = boguscnt;
1458 	rxdesc = &mdp->rx_ring[entry];
1459 	while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1460 		/* RACT bit must be checked before all the following reads */
1461 		rmb();
1462 		desc_status = edmac_to_cpu(mdp, rxdesc->status);
1463 		pkt_len = rxdesc->frame_length;
1464 
1465 		if (--boguscnt < 0)
1466 			break;
1467 
1468 		netif_info(mdp, rx_status, ndev,
1469 			   "rx entry %d status 0x%08x len %d\n",
1470 			   entry, desc_status, pkt_len);
1471 
1472 		if (!(desc_status & RDFEND))
1473 			ndev->stats.rx_length_errors++;
1474 
1475 		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1476 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1477 		 * bit 0. However, in case of the R8A7740 and R7S72100
1478 		 * the RFS bits are from bit 25 to bit 16. So, the
1479 		 * driver needs right shifting by 16.
1480 		 */
1481 		if (mdp->cd->shift_rd0)
1482 			desc_status >>= 16;
1483 
1484 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1485 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1486 			ndev->stats.rx_errors++;
1487 			if (desc_status & RD_RFS1)
1488 				ndev->stats.rx_crc_errors++;
1489 			if (desc_status & RD_RFS2)
1490 				ndev->stats.rx_frame_errors++;
1491 			if (desc_status & RD_RFS3)
1492 				ndev->stats.rx_length_errors++;
1493 			if (desc_status & RD_RFS4)
1494 				ndev->stats.rx_length_errors++;
1495 			if (desc_status & RD_RFS6)
1496 				ndev->stats.rx_missed_errors++;
1497 			if (desc_status & RD_RFS10)
1498 				ndev->stats.rx_over_errors++;
1499 		} else {
1500 			if (!mdp->cd->hw_swap)
1501 				sh_eth_soft_swap(
1502 					phys_to_virt(ALIGN(rxdesc->addr, 4)),
1503 					pkt_len + 2);
1504 			skb = mdp->rx_skbuff[entry];
1505 			mdp->rx_skbuff[entry] = NULL;
1506 			if (mdp->cd->rpadir)
1507 				skb_reserve(skb, NET_IP_ALIGN);
1508 			dma_unmap_single(&ndev->dev, rxdesc->addr,
1509 					 ALIGN(mdp->rx_buf_sz, 32),
1510 					 DMA_FROM_DEVICE);
1511 			skb_put(skb, pkt_len);
1512 			skb->protocol = eth_type_trans(skb, ndev);
1513 			netif_receive_skb(skb);
1514 			ndev->stats.rx_packets++;
1515 			ndev->stats.rx_bytes += pkt_len;
1516 			if (desc_status & RD_RFS8)
1517 				ndev->stats.multicast++;
1518 		}
1519 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1520 		rxdesc = &mdp->rx_ring[entry];
1521 	}
1522 
1523 	/* Refill the Rx ring buffers. */
1524 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1525 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1526 		rxdesc = &mdp->rx_ring[entry];
1527 		/* The size of the buffer is 32 byte boundary. */
1528 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 32);
1529 
1530 		if (mdp->rx_skbuff[entry] == NULL) {
1531 			skb = netdev_alloc_skb(ndev, skbuff_size);
1532 			if (skb == NULL)
1533 				break;	/* Better luck next round. */
1534 			sh_eth_set_receive_align(skb);
1535 			dma_addr = dma_map_single(&ndev->dev, skb->data,
1536 						  rxdesc->buffer_length,
1537 						  DMA_FROM_DEVICE);
1538 			if (dma_mapping_error(&ndev->dev, dma_addr)) {
1539 				kfree_skb(skb);
1540 				break;
1541 			}
1542 			mdp->rx_skbuff[entry] = skb;
1543 
1544 			skb_checksum_none_assert(skb);
1545 			rxdesc->addr = dma_addr;
1546 		}
1547 		wmb(); /* RACT bit must be set after all the above writes */
1548 		if (entry >= mdp->num_rx_ring - 1)
1549 			rxdesc->status |=
1550 				cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
1551 		else
1552 			rxdesc->status |=
1553 				cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1554 	}
1555 
1556 	/* Restart Rx engine if stopped. */
1557 	/* If we don't need to check status, don't. -KDU */
1558 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1559 		/* fix the values for the next receiving if RDE is set */
1560 		if (intr_status & EESR_RDE &&
1561 		    mdp->reg_offset[RDFAR] != SH_ETH_OFFSET_INVALID) {
1562 			u32 count = (sh_eth_read(ndev, RDFAR) -
1563 				     sh_eth_read(ndev, RDLAR)) >> 4;
1564 
1565 			mdp->cur_rx = count;
1566 			mdp->dirty_rx = count;
1567 		}
1568 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1569 	}
1570 
1571 	*quota -= limit - boguscnt - 1;
1572 
1573 	return *quota <= 0;
1574 }
1575 
1576 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1577 {
1578 	/* disable tx and rx */
1579 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1580 		~(ECMR_RE | ECMR_TE), ECMR);
1581 }
1582 
1583 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1584 {
1585 	/* enable tx and rx */
1586 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1587 		(ECMR_RE | ECMR_TE), ECMR);
1588 }
1589 
1590 /* error control function */
1591 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1592 {
1593 	struct sh_eth_private *mdp = netdev_priv(ndev);
1594 	u32 felic_stat;
1595 	u32 link_stat;
1596 	u32 mask;
1597 
1598 	if (intr_status & EESR_ECI) {
1599 		felic_stat = sh_eth_read(ndev, ECSR);
1600 		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1601 		if (felic_stat & ECSR_ICD)
1602 			ndev->stats.tx_carrier_errors++;
1603 		if (felic_stat & ECSR_LCHNG) {
1604 			/* Link Changed */
1605 			if (mdp->cd->no_psr || mdp->no_ether_link) {
1606 				goto ignore_link;
1607 			} else {
1608 				link_stat = (sh_eth_read(ndev, PSR));
1609 				if (mdp->ether_link_active_low)
1610 					link_stat = ~link_stat;
1611 			}
1612 			if (!(link_stat & PHY_ST_LINK)) {
1613 				sh_eth_rcv_snd_disable(ndev);
1614 			} else {
1615 				/* Link Up */
1616 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1617 						   ~DMAC_M_ECI, EESIPR);
1618 				/* clear int */
1619 				sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1620 					     ECSR);
1621 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1622 						   DMAC_M_ECI, EESIPR);
1623 				/* enable tx and rx */
1624 				sh_eth_rcv_snd_enable(ndev);
1625 			}
1626 		}
1627 	}
1628 
1629 ignore_link:
1630 	if (intr_status & EESR_TWB) {
1631 		/* Unused write back interrupt */
1632 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1633 			ndev->stats.tx_aborted_errors++;
1634 			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1635 		}
1636 	}
1637 
1638 	if (intr_status & EESR_RABT) {
1639 		/* Receive Abort int */
1640 		if (intr_status & EESR_RFRMER) {
1641 			/* Receive Frame Overflow int */
1642 			ndev->stats.rx_frame_errors++;
1643 		}
1644 	}
1645 
1646 	if (intr_status & EESR_TDE) {
1647 		/* Transmit Descriptor Empty int */
1648 		ndev->stats.tx_fifo_errors++;
1649 		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1650 	}
1651 
1652 	if (intr_status & EESR_TFE) {
1653 		/* FIFO under flow */
1654 		ndev->stats.tx_fifo_errors++;
1655 		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1656 	}
1657 
1658 	if (intr_status & EESR_RDE) {
1659 		/* Receive Descriptor Empty int */
1660 		ndev->stats.rx_over_errors++;
1661 	}
1662 
1663 	if (intr_status & EESR_RFE) {
1664 		/* Receive FIFO Overflow int */
1665 		ndev->stats.rx_fifo_errors++;
1666 	}
1667 
1668 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1669 		/* Address Error */
1670 		ndev->stats.tx_fifo_errors++;
1671 		netif_err(mdp, tx_err, ndev, "Address Error\n");
1672 	}
1673 
1674 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1675 	if (mdp->cd->no_ade)
1676 		mask &= ~EESR_ADE;
1677 	if (intr_status & mask) {
1678 		/* Tx error */
1679 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1680 
1681 		/* dmesg */
1682 		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1683 			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1684 			   (u32)ndev->state, edtrr);
1685 		/* dirty buffer free */
1686 		sh_eth_txfree(ndev);
1687 
1688 		/* SH7712 BUG */
1689 		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1690 			/* tx dma start */
1691 			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1692 		}
1693 		/* wakeup */
1694 		netif_wake_queue(ndev);
1695 	}
1696 }
1697 
1698 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1699 {
1700 	struct net_device *ndev = netdev;
1701 	struct sh_eth_private *mdp = netdev_priv(ndev);
1702 	struct sh_eth_cpu_data *cd = mdp->cd;
1703 	irqreturn_t ret = IRQ_NONE;
1704 	u32 intr_status, intr_enable;
1705 
1706 	spin_lock(&mdp->lock);
1707 
1708 	/* Get interrupt status */
1709 	intr_status = sh_eth_read(ndev, EESR);
1710 	/* Mask it with the interrupt mask, forcing ECI interrupt to be always
1711 	 * enabled since it's the one that  comes thru regardless of the mask,
1712 	 * and we need to fully handle it in sh_eth_error() in order to quench
1713 	 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1714 	 */
1715 	intr_enable = sh_eth_read(ndev, EESIPR);
1716 	intr_status &= intr_enable | DMAC_M_ECI;
1717 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1718 		ret = IRQ_HANDLED;
1719 	else
1720 		goto out;
1721 
1722 	if (!likely(mdp->irq_enabled)) {
1723 		sh_eth_write(ndev, 0, EESIPR);
1724 		goto out;
1725 	}
1726 
1727 	if (intr_status & EESR_RX_CHECK) {
1728 		if (napi_schedule_prep(&mdp->napi)) {
1729 			/* Mask Rx interrupts */
1730 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1731 				     EESIPR);
1732 			__napi_schedule(&mdp->napi);
1733 		} else {
1734 			netdev_warn(ndev,
1735 				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1736 				    intr_status, intr_enable);
1737 		}
1738 	}
1739 
1740 	/* Tx Check */
1741 	if (intr_status & cd->tx_check) {
1742 		/* Clear Tx interrupts */
1743 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1744 
1745 		sh_eth_txfree(ndev);
1746 		netif_wake_queue(ndev);
1747 	}
1748 
1749 	if (intr_status & cd->eesr_err_check) {
1750 		/* Clear error interrupts */
1751 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1752 
1753 		sh_eth_error(ndev, intr_status);
1754 	}
1755 
1756 out:
1757 	spin_unlock(&mdp->lock);
1758 
1759 	return ret;
1760 }
1761 
1762 static int sh_eth_poll(struct napi_struct *napi, int budget)
1763 {
1764 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1765 						  napi);
1766 	struct net_device *ndev = napi->dev;
1767 	int quota = budget;
1768 	u32 intr_status;
1769 
1770 	for (;;) {
1771 		intr_status = sh_eth_read(ndev, EESR);
1772 		if (!(intr_status & EESR_RX_CHECK))
1773 			break;
1774 		/* Clear Rx interrupts */
1775 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1776 
1777 		if (sh_eth_rx(ndev, intr_status, &quota))
1778 			goto out;
1779 	}
1780 
1781 	napi_complete(napi);
1782 
1783 	/* Reenable Rx interrupts */
1784 	if (mdp->irq_enabled)
1785 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1786 out:
1787 	return budget - quota;
1788 }
1789 
1790 /* PHY state control function */
1791 static void sh_eth_adjust_link(struct net_device *ndev)
1792 {
1793 	struct sh_eth_private *mdp = netdev_priv(ndev);
1794 	struct phy_device *phydev = mdp->phydev;
1795 	int new_state = 0;
1796 
1797 	if (phydev->link) {
1798 		if (phydev->duplex != mdp->duplex) {
1799 			new_state = 1;
1800 			mdp->duplex = phydev->duplex;
1801 			if (mdp->cd->set_duplex)
1802 				mdp->cd->set_duplex(ndev);
1803 		}
1804 
1805 		if (phydev->speed != mdp->speed) {
1806 			new_state = 1;
1807 			mdp->speed = phydev->speed;
1808 			if (mdp->cd->set_rate)
1809 				mdp->cd->set_rate(ndev);
1810 		}
1811 		if (!mdp->link) {
1812 			sh_eth_write(ndev,
1813 				     sh_eth_read(ndev, ECMR) & ~ECMR_TXF,
1814 				     ECMR);
1815 			new_state = 1;
1816 			mdp->link = phydev->link;
1817 			if (mdp->cd->no_psr || mdp->no_ether_link)
1818 				sh_eth_rcv_snd_enable(ndev);
1819 		}
1820 	} else if (mdp->link) {
1821 		new_state = 1;
1822 		mdp->link = 0;
1823 		mdp->speed = 0;
1824 		mdp->duplex = -1;
1825 		if (mdp->cd->no_psr || mdp->no_ether_link)
1826 			sh_eth_rcv_snd_disable(ndev);
1827 	}
1828 
1829 	if (new_state && netif_msg_link(mdp))
1830 		phy_print_status(phydev);
1831 }
1832 
1833 /* PHY init function */
1834 static int sh_eth_phy_init(struct net_device *ndev)
1835 {
1836 	struct device_node *np = ndev->dev.parent->of_node;
1837 	struct sh_eth_private *mdp = netdev_priv(ndev);
1838 	struct phy_device *phydev = NULL;
1839 
1840 	mdp->link = 0;
1841 	mdp->speed = 0;
1842 	mdp->duplex = -1;
1843 
1844 	/* Try connect to PHY */
1845 	if (np) {
1846 		struct device_node *pn;
1847 
1848 		pn = of_parse_phandle(np, "phy-handle", 0);
1849 		phydev = of_phy_connect(ndev, pn,
1850 					sh_eth_adjust_link, 0,
1851 					mdp->phy_interface);
1852 
1853 		if (!phydev)
1854 			phydev = ERR_PTR(-ENOENT);
1855 	} else {
1856 		char phy_id[MII_BUS_ID_SIZE + 3];
1857 
1858 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1859 			 mdp->mii_bus->id, mdp->phy_id);
1860 
1861 		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1862 				     mdp->phy_interface);
1863 	}
1864 
1865 	if (IS_ERR(phydev)) {
1866 		netdev_err(ndev, "failed to connect PHY\n");
1867 		return PTR_ERR(phydev);
1868 	}
1869 
1870 	netdev_info(ndev, "attached PHY %d (IRQ %d) to driver %s\n",
1871 		    phydev->addr, phydev->irq, phydev->drv->name);
1872 
1873 	mdp->phydev = phydev;
1874 
1875 	return 0;
1876 }
1877 
1878 /* PHY control start function */
1879 static int sh_eth_phy_start(struct net_device *ndev)
1880 {
1881 	struct sh_eth_private *mdp = netdev_priv(ndev);
1882 	int ret;
1883 
1884 	ret = sh_eth_phy_init(ndev);
1885 	if (ret)
1886 		return ret;
1887 
1888 	phy_start(mdp->phydev);
1889 
1890 	return 0;
1891 }
1892 
1893 static int sh_eth_get_settings(struct net_device *ndev,
1894 			       struct ethtool_cmd *ecmd)
1895 {
1896 	struct sh_eth_private *mdp = netdev_priv(ndev);
1897 	unsigned long flags;
1898 	int ret;
1899 
1900 	if (!mdp->phydev)
1901 		return -ENODEV;
1902 
1903 	spin_lock_irqsave(&mdp->lock, flags);
1904 	ret = phy_ethtool_gset(mdp->phydev, ecmd);
1905 	spin_unlock_irqrestore(&mdp->lock, flags);
1906 
1907 	return ret;
1908 }
1909 
1910 static int sh_eth_set_settings(struct net_device *ndev,
1911 			       struct ethtool_cmd *ecmd)
1912 {
1913 	struct sh_eth_private *mdp = netdev_priv(ndev);
1914 	unsigned long flags;
1915 	int ret;
1916 
1917 	if (!mdp->phydev)
1918 		return -ENODEV;
1919 
1920 	spin_lock_irqsave(&mdp->lock, flags);
1921 
1922 	/* disable tx and rx */
1923 	sh_eth_rcv_snd_disable(ndev);
1924 
1925 	ret = phy_ethtool_sset(mdp->phydev, ecmd);
1926 	if (ret)
1927 		goto error_exit;
1928 
1929 	if (ecmd->duplex == DUPLEX_FULL)
1930 		mdp->duplex = 1;
1931 	else
1932 		mdp->duplex = 0;
1933 
1934 	if (mdp->cd->set_duplex)
1935 		mdp->cd->set_duplex(ndev);
1936 
1937 error_exit:
1938 	mdelay(1);
1939 
1940 	/* enable tx and rx */
1941 	sh_eth_rcv_snd_enable(ndev);
1942 
1943 	spin_unlock_irqrestore(&mdp->lock, flags);
1944 
1945 	return ret;
1946 }
1947 
1948 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
1949  * version must be bumped as well.  Just adding registers up to that
1950  * limit is fine, as long as the existing register indices don't
1951  * change.
1952  */
1953 #define SH_ETH_REG_DUMP_VERSION		1
1954 #define SH_ETH_REG_DUMP_MAX_REGS	256
1955 
1956 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
1957 {
1958 	struct sh_eth_private *mdp = netdev_priv(ndev);
1959 	struct sh_eth_cpu_data *cd = mdp->cd;
1960 	u32 *valid_map;
1961 	size_t len;
1962 
1963 	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
1964 
1965 	/* Dump starts with a bitmap that tells ethtool which
1966 	 * registers are defined for this chip.
1967 	 */
1968 	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
1969 	if (buf) {
1970 		valid_map = buf;
1971 		buf += len;
1972 	} else {
1973 		valid_map = NULL;
1974 	}
1975 
1976 	/* Add a register to the dump, if it has a defined offset.
1977 	 * This automatically skips most undefined registers, but for
1978 	 * some it is also necessary to check a capability flag in
1979 	 * struct sh_eth_cpu_data.
1980 	 */
1981 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
1982 #define add_reg_from(reg, read_expr) do {				\
1983 		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
1984 			if (buf) {					\
1985 				mark_reg_valid(reg);			\
1986 				*buf++ = read_expr;			\
1987 			}						\
1988 			++len;						\
1989 		}							\
1990 	} while (0)
1991 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
1992 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
1993 
1994 	add_reg(EDSR);
1995 	add_reg(EDMR);
1996 	add_reg(EDTRR);
1997 	add_reg(EDRRR);
1998 	add_reg(EESR);
1999 	add_reg(EESIPR);
2000 	add_reg(TDLAR);
2001 	add_reg(TDFAR);
2002 	add_reg(TDFXR);
2003 	add_reg(TDFFR);
2004 	add_reg(RDLAR);
2005 	add_reg(RDFAR);
2006 	add_reg(RDFXR);
2007 	add_reg(RDFFR);
2008 	add_reg(TRSCER);
2009 	add_reg(RMFCR);
2010 	add_reg(TFTR);
2011 	add_reg(FDR);
2012 	add_reg(RMCR);
2013 	add_reg(TFUCR);
2014 	add_reg(RFOCR);
2015 	if (cd->rmiimode)
2016 		add_reg(RMIIMODE);
2017 	add_reg(FCFTR);
2018 	if (cd->rpadir)
2019 		add_reg(RPADIR);
2020 	if (!cd->no_trimd)
2021 		add_reg(TRIMD);
2022 	add_reg(ECMR);
2023 	add_reg(ECSR);
2024 	add_reg(ECSIPR);
2025 	add_reg(PIR);
2026 	if (!cd->no_psr)
2027 		add_reg(PSR);
2028 	add_reg(RDMLR);
2029 	add_reg(RFLR);
2030 	add_reg(IPGR);
2031 	if (cd->apr)
2032 		add_reg(APR);
2033 	if (cd->mpr)
2034 		add_reg(MPR);
2035 	add_reg(RFCR);
2036 	add_reg(RFCF);
2037 	if (cd->tpauser)
2038 		add_reg(TPAUSER);
2039 	add_reg(TPAUSECR);
2040 	add_reg(GECMR);
2041 	if (cd->bculr)
2042 		add_reg(BCULR);
2043 	add_reg(MAHR);
2044 	add_reg(MALR);
2045 	add_reg(TROCR);
2046 	add_reg(CDCR);
2047 	add_reg(LCCR);
2048 	add_reg(CNDCR);
2049 	add_reg(CEFCR);
2050 	add_reg(FRECR);
2051 	add_reg(TSFRCR);
2052 	add_reg(TLFRCR);
2053 	add_reg(CERCR);
2054 	add_reg(CEECR);
2055 	add_reg(MAFCR);
2056 	if (cd->rtrate)
2057 		add_reg(RTRATE);
2058 	if (cd->hw_crc)
2059 		add_reg(CSMR);
2060 	if (cd->select_mii)
2061 		add_reg(RMII_MII);
2062 	add_reg(ARSTR);
2063 	if (cd->tsu) {
2064 		add_tsu_reg(TSU_CTRST);
2065 		add_tsu_reg(TSU_FWEN0);
2066 		add_tsu_reg(TSU_FWEN1);
2067 		add_tsu_reg(TSU_FCM);
2068 		add_tsu_reg(TSU_BSYSL0);
2069 		add_tsu_reg(TSU_BSYSL1);
2070 		add_tsu_reg(TSU_PRISL0);
2071 		add_tsu_reg(TSU_PRISL1);
2072 		add_tsu_reg(TSU_FWSL0);
2073 		add_tsu_reg(TSU_FWSL1);
2074 		add_tsu_reg(TSU_FWSLC);
2075 		add_tsu_reg(TSU_QTAG0);
2076 		add_tsu_reg(TSU_QTAG1);
2077 		add_tsu_reg(TSU_QTAGM0);
2078 		add_tsu_reg(TSU_QTAGM1);
2079 		add_tsu_reg(TSU_FWSR);
2080 		add_tsu_reg(TSU_FWINMK);
2081 		add_tsu_reg(TSU_ADQT0);
2082 		add_tsu_reg(TSU_ADQT1);
2083 		add_tsu_reg(TSU_VTAG0);
2084 		add_tsu_reg(TSU_VTAG1);
2085 		add_tsu_reg(TSU_ADSBSY);
2086 		add_tsu_reg(TSU_TEN);
2087 		add_tsu_reg(TSU_POST1);
2088 		add_tsu_reg(TSU_POST2);
2089 		add_tsu_reg(TSU_POST3);
2090 		add_tsu_reg(TSU_POST4);
2091 		if (mdp->reg_offset[TSU_ADRH0] != SH_ETH_OFFSET_INVALID) {
2092 			/* This is the start of a table, not just a single
2093 			 * register.
2094 			 */
2095 			if (buf) {
2096 				unsigned int i;
2097 
2098 				mark_reg_valid(TSU_ADRH0);
2099 				for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2100 					*buf++ = ioread32(
2101 						mdp->tsu_addr +
2102 						mdp->reg_offset[TSU_ADRH0] +
2103 						i * 4);
2104 			}
2105 			len += SH_ETH_TSU_CAM_ENTRIES * 2;
2106 		}
2107 	}
2108 
2109 #undef mark_reg_valid
2110 #undef add_reg_from
2111 #undef add_reg
2112 #undef add_tsu_reg
2113 
2114 	return len * 4;
2115 }
2116 
2117 static int sh_eth_get_regs_len(struct net_device *ndev)
2118 {
2119 	return __sh_eth_get_regs(ndev, NULL);
2120 }
2121 
2122 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2123 			    void *buf)
2124 {
2125 	struct sh_eth_private *mdp = netdev_priv(ndev);
2126 
2127 	regs->version = SH_ETH_REG_DUMP_VERSION;
2128 
2129 	pm_runtime_get_sync(&mdp->pdev->dev);
2130 	__sh_eth_get_regs(ndev, buf);
2131 	pm_runtime_put_sync(&mdp->pdev->dev);
2132 }
2133 
2134 static int sh_eth_nway_reset(struct net_device *ndev)
2135 {
2136 	struct sh_eth_private *mdp = netdev_priv(ndev);
2137 	unsigned long flags;
2138 	int ret;
2139 
2140 	if (!mdp->phydev)
2141 		return -ENODEV;
2142 
2143 	spin_lock_irqsave(&mdp->lock, flags);
2144 	ret = phy_start_aneg(mdp->phydev);
2145 	spin_unlock_irqrestore(&mdp->lock, flags);
2146 
2147 	return ret;
2148 }
2149 
2150 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2151 {
2152 	struct sh_eth_private *mdp = netdev_priv(ndev);
2153 	return mdp->msg_enable;
2154 }
2155 
2156 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2157 {
2158 	struct sh_eth_private *mdp = netdev_priv(ndev);
2159 	mdp->msg_enable = value;
2160 }
2161 
2162 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2163 	"rx_current", "tx_current",
2164 	"rx_dirty", "tx_dirty",
2165 };
2166 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2167 
2168 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2169 {
2170 	switch (sset) {
2171 	case ETH_SS_STATS:
2172 		return SH_ETH_STATS_LEN;
2173 	default:
2174 		return -EOPNOTSUPP;
2175 	}
2176 }
2177 
2178 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2179 				     struct ethtool_stats *stats, u64 *data)
2180 {
2181 	struct sh_eth_private *mdp = netdev_priv(ndev);
2182 	int i = 0;
2183 
2184 	/* device-specific stats */
2185 	data[i++] = mdp->cur_rx;
2186 	data[i++] = mdp->cur_tx;
2187 	data[i++] = mdp->dirty_rx;
2188 	data[i++] = mdp->dirty_tx;
2189 }
2190 
2191 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2192 {
2193 	switch (stringset) {
2194 	case ETH_SS_STATS:
2195 		memcpy(data, *sh_eth_gstrings_stats,
2196 		       sizeof(sh_eth_gstrings_stats));
2197 		break;
2198 	}
2199 }
2200 
2201 static void sh_eth_get_ringparam(struct net_device *ndev,
2202 				 struct ethtool_ringparam *ring)
2203 {
2204 	struct sh_eth_private *mdp = netdev_priv(ndev);
2205 
2206 	ring->rx_max_pending = RX_RING_MAX;
2207 	ring->tx_max_pending = TX_RING_MAX;
2208 	ring->rx_pending = mdp->num_rx_ring;
2209 	ring->tx_pending = mdp->num_tx_ring;
2210 }
2211 
2212 static int sh_eth_set_ringparam(struct net_device *ndev,
2213 				struct ethtool_ringparam *ring)
2214 {
2215 	struct sh_eth_private *mdp = netdev_priv(ndev);
2216 	int ret;
2217 
2218 	if (ring->tx_pending > TX_RING_MAX ||
2219 	    ring->rx_pending > RX_RING_MAX ||
2220 	    ring->tx_pending < TX_RING_MIN ||
2221 	    ring->rx_pending < RX_RING_MIN)
2222 		return -EINVAL;
2223 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2224 		return -EINVAL;
2225 
2226 	if (netif_running(ndev)) {
2227 		netif_device_detach(ndev);
2228 		netif_tx_disable(ndev);
2229 
2230 		/* Serialise with the interrupt handler and NAPI, then
2231 		 * disable interrupts.  We have to clear the
2232 		 * irq_enabled flag first to ensure that interrupts
2233 		 * won't be re-enabled.
2234 		 */
2235 		mdp->irq_enabled = false;
2236 		synchronize_irq(ndev->irq);
2237 		napi_synchronize(&mdp->napi);
2238 		sh_eth_write(ndev, 0x0000, EESIPR);
2239 
2240 		sh_eth_dev_exit(ndev);
2241 
2242 		/* Free all the skbuffs in the Rx queue. */
2243 		sh_eth_ring_free(ndev);
2244 		/* Free DMA buffer */
2245 		sh_eth_free_dma_buffer(mdp);
2246 	}
2247 
2248 	/* Set new parameters */
2249 	mdp->num_rx_ring = ring->rx_pending;
2250 	mdp->num_tx_ring = ring->tx_pending;
2251 
2252 	if (netif_running(ndev)) {
2253 		ret = sh_eth_ring_init(ndev);
2254 		if (ret < 0) {
2255 			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2256 				   __func__);
2257 			return ret;
2258 		}
2259 		ret = sh_eth_dev_init(ndev, false);
2260 		if (ret < 0) {
2261 			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2262 				   __func__);
2263 			return ret;
2264 		}
2265 
2266 		mdp->irq_enabled = true;
2267 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
2268 		/* Setting the Rx mode will start the Rx process. */
2269 		sh_eth_write(ndev, EDRRR_R, EDRRR);
2270 		netif_device_attach(ndev);
2271 	}
2272 
2273 	return 0;
2274 }
2275 
2276 static const struct ethtool_ops sh_eth_ethtool_ops = {
2277 	.get_settings	= sh_eth_get_settings,
2278 	.set_settings	= sh_eth_set_settings,
2279 	.get_regs_len	= sh_eth_get_regs_len,
2280 	.get_regs	= sh_eth_get_regs,
2281 	.nway_reset	= sh_eth_nway_reset,
2282 	.get_msglevel	= sh_eth_get_msglevel,
2283 	.set_msglevel	= sh_eth_set_msglevel,
2284 	.get_link	= ethtool_op_get_link,
2285 	.get_strings	= sh_eth_get_strings,
2286 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2287 	.get_sset_count     = sh_eth_get_sset_count,
2288 	.get_ringparam	= sh_eth_get_ringparam,
2289 	.set_ringparam	= sh_eth_set_ringparam,
2290 };
2291 
2292 /* network device open function */
2293 static int sh_eth_open(struct net_device *ndev)
2294 {
2295 	int ret = 0;
2296 	struct sh_eth_private *mdp = netdev_priv(ndev);
2297 
2298 	pm_runtime_get_sync(&mdp->pdev->dev);
2299 
2300 	napi_enable(&mdp->napi);
2301 
2302 	ret = request_irq(ndev->irq, sh_eth_interrupt,
2303 			  mdp->cd->irq_flags, ndev->name, ndev);
2304 	if (ret) {
2305 		netdev_err(ndev, "Can not assign IRQ number\n");
2306 		goto out_napi_off;
2307 	}
2308 
2309 	/* Descriptor set */
2310 	ret = sh_eth_ring_init(ndev);
2311 	if (ret)
2312 		goto out_free_irq;
2313 
2314 	/* device init */
2315 	ret = sh_eth_dev_init(ndev, true);
2316 	if (ret)
2317 		goto out_free_irq;
2318 
2319 	/* PHY control start*/
2320 	ret = sh_eth_phy_start(ndev);
2321 	if (ret)
2322 		goto out_free_irq;
2323 
2324 	mdp->is_opened = 1;
2325 
2326 	return ret;
2327 
2328 out_free_irq:
2329 	free_irq(ndev->irq, ndev);
2330 out_napi_off:
2331 	napi_disable(&mdp->napi);
2332 	pm_runtime_put_sync(&mdp->pdev->dev);
2333 	return ret;
2334 }
2335 
2336 /* Timeout function */
2337 static void sh_eth_tx_timeout(struct net_device *ndev)
2338 {
2339 	struct sh_eth_private *mdp = netdev_priv(ndev);
2340 	struct sh_eth_rxdesc *rxdesc;
2341 	int i;
2342 
2343 	netif_stop_queue(ndev);
2344 
2345 	netif_err(mdp, timer, ndev,
2346 		  "transmit timed out, status %8.8x, resetting...\n",
2347 		  sh_eth_read(ndev, EESR));
2348 
2349 	/* tx_errors count up */
2350 	ndev->stats.tx_errors++;
2351 
2352 	/* Free all the skbuffs in the Rx queue. */
2353 	for (i = 0; i < mdp->num_rx_ring; i++) {
2354 		rxdesc = &mdp->rx_ring[i];
2355 		rxdesc->status = 0;
2356 		rxdesc->addr = 0xBADF00D0;
2357 		dev_kfree_skb(mdp->rx_skbuff[i]);
2358 		mdp->rx_skbuff[i] = NULL;
2359 	}
2360 	for (i = 0; i < mdp->num_tx_ring; i++) {
2361 		dev_kfree_skb(mdp->tx_skbuff[i]);
2362 		mdp->tx_skbuff[i] = NULL;
2363 	}
2364 
2365 	/* device init */
2366 	sh_eth_dev_init(ndev, true);
2367 }
2368 
2369 /* Packet transmit function */
2370 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2371 {
2372 	struct sh_eth_private *mdp = netdev_priv(ndev);
2373 	struct sh_eth_txdesc *txdesc;
2374 	u32 entry;
2375 	unsigned long flags;
2376 
2377 	spin_lock_irqsave(&mdp->lock, flags);
2378 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2379 		if (!sh_eth_txfree(ndev)) {
2380 			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2381 			netif_stop_queue(ndev);
2382 			spin_unlock_irqrestore(&mdp->lock, flags);
2383 			return NETDEV_TX_BUSY;
2384 		}
2385 	}
2386 	spin_unlock_irqrestore(&mdp->lock, flags);
2387 
2388 	if (skb_put_padto(skb, ETH_ZLEN))
2389 		return NETDEV_TX_OK;
2390 
2391 	entry = mdp->cur_tx % mdp->num_tx_ring;
2392 	mdp->tx_skbuff[entry] = skb;
2393 	txdesc = &mdp->tx_ring[entry];
2394 	/* soft swap. */
2395 	if (!mdp->cd->hw_swap)
2396 		sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
2397 				 skb->len + 2);
2398 	txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2399 				      DMA_TO_DEVICE);
2400 	if (dma_mapping_error(&ndev->dev, txdesc->addr)) {
2401 		kfree_skb(skb);
2402 		return NETDEV_TX_OK;
2403 	}
2404 	txdesc->buffer_length = skb->len;
2405 
2406 	wmb(); /* TACT bit must be set after all the above writes */
2407 	if (entry >= mdp->num_tx_ring - 1)
2408 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
2409 	else
2410 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
2411 
2412 	mdp->cur_tx++;
2413 
2414 	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2415 		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2416 
2417 	return NETDEV_TX_OK;
2418 }
2419 
2420 /* The statistics registers have write-clear behaviour, which means we
2421  * will lose any increment between the read and write.  We mitigate
2422  * this by only clearing when we read a non-zero value, so we will
2423  * never falsely report a total of zero.
2424  */
2425 static void
2426 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2427 {
2428 	u32 delta = sh_eth_read(ndev, reg);
2429 
2430 	if (delta) {
2431 		*stat += delta;
2432 		sh_eth_write(ndev, 0, reg);
2433 	}
2434 }
2435 
2436 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2437 {
2438 	struct sh_eth_private *mdp = netdev_priv(ndev);
2439 
2440 	if (sh_eth_is_rz_fast_ether(mdp))
2441 		return &ndev->stats;
2442 
2443 	if (!mdp->is_opened)
2444 		return &ndev->stats;
2445 
2446 	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2447 	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2448 	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2449 
2450 	if (sh_eth_is_gether(mdp)) {
2451 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2452 				   CERCR);
2453 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2454 				   CEECR);
2455 	} else {
2456 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2457 				   CNDCR);
2458 	}
2459 
2460 	return &ndev->stats;
2461 }
2462 
2463 /* device close function */
2464 static int sh_eth_close(struct net_device *ndev)
2465 {
2466 	struct sh_eth_private *mdp = netdev_priv(ndev);
2467 
2468 	netif_stop_queue(ndev);
2469 
2470 	/* Serialise with the interrupt handler and NAPI, then disable
2471 	 * interrupts.  We have to clear the irq_enabled flag first to
2472 	 * ensure that interrupts won't be re-enabled.
2473 	 */
2474 	mdp->irq_enabled = false;
2475 	synchronize_irq(ndev->irq);
2476 	napi_disable(&mdp->napi);
2477 	sh_eth_write(ndev, 0x0000, EESIPR);
2478 
2479 	sh_eth_dev_exit(ndev);
2480 
2481 	/* PHY Disconnect */
2482 	if (mdp->phydev) {
2483 		phy_stop(mdp->phydev);
2484 		phy_disconnect(mdp->phydev);
2485 		mdp->phydev = NULL;
2486 	}
2487 
2488 	free_irq(ndev->irq, ndev);
2489 
2490 	/* Free all the skbuffs in the Rx queue. */
2491 	sh_eth_ring_free(ndev);
2492 
2493 	/* free DMA buffer */
2494 	sh_eth_free_dma_buffer(mdp);
2495 
2496 	pm_runtime_put_sync(&mdp->pdev->dev);
2497 
2498 	mdp->is_opened = 0;
2499 
2500 	return 0;
2501 }
2502 
2503 /* ioctl to device function */
2504 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2505 {
2506 	struct sh_eth_private *mdp = netdev_priv(ndev);
2507 	struct phy_device *phydev = mdp->phydev;
2508 
2509 	if (!netif_running(ndev))
2510 		return -EINVAL;
2511 
2512 	if (!phydev)
2513 		return -ENODEV;
2514 
2515 	return phy_mii_ioctl(phydev, rq, cmd);
2516 }
2517 
2518 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2519 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2520 					    int entry)
2521 {
2522 	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2523 }
2524 
2525 static u32 sh_eth_tsu_get_post_mask(int entry)
2526 {
2527 	return 0x0f << (28 - ((entry % 8) * 4));
2528 }
2529 
2530 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2531 {
2532 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2533 }
2534 
2535 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2536 					     int entry)
2537 {
2538 	struct sh_eth_private *mdp = netdev_priv(ndev);
2539 	u32 tmp;
2540 	void *reg_offset;
2541 
2542 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2543 	tmp = ioread32(reg_offset);
2544 	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2545 }
2546 
2547 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2548 					      int entry)
2549 {
2550 	struct sh_eth_private *mdp = netdev_priv(ndev);
2551 	u32 post_mask, ref_mask, tmp;
2552 	void *reg_offset;
2553 
2554 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2555 	post_mask = sh_eth_tsu_get_post_mask(entry);
2556 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2557 
2558 	tmp = ioread32(reg_offset);
2559 	iowrite32(tmp & ~post_mask, reg_offset);
2560 
2561 	/* If other port enables, the function returns "true" */
2562 	return tmp & ref_mask;
2563 }
2564 
2565 static int sh_eth_tsu_busy(struct net_device *ndev)
2566 {
2567 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2568 	struct sh_eth_private *mdp = netdev_priv(ndev);
2569 
2570 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2571 		udelay(10);
2572 		timeout--;
2573 		if (timeout <= 0) {
2574 			netdev_err(ndev, "%s: timeout\n", __func__);
2575 			return -ETIMEDOUT;
2576 		}
2577 	}
2578 
2579 	return 0;
2580 }
2581 
2582 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2583 				  const u8 *addr)
2584 {
2585 	u32 val;
2586 
2587 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2588 	iowrite32(val, reg);
2589 	if (sh_eth_tsu_busy(ndev) < 0)
2590 		return -EBUSY;
2591 
2592 	val = addr[4] << 8 | addr[5];
2593 	iowrite32(val, reg + 4);
2594 	if (sh_eth_tsu_busy(ndev) < 0)
2595 		return -EBUSY;
2596 
2597 	return 0;
2598 }
2599 
2600 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2601 {
2602 	u32 val;
2603 
2604 	val = ioread32(reg);
2605 	addr[0] = (val >> 24) & 0xff;
2606 	addr[1] = (val >> 16) & 0xff;
2607 	addr[2] = (val >> 8) & 0xff;
2608 	addr[3] = val & 0xff;
2609 	val = ioread32(reg + 4);
2610 	addr[4] = (val >> 8) & 0xff;
2611 	addr[5] = val & 0xff;
2612 }
2613 
2614 
2615 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2616 {
2617 	struct sh_eth_private *mdp = netdev_priv(ndev);
2618 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2619 	int i;
2620 	u8 c_addr[ETH_ALEN];
2621 
2622 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2623 		sh_eth_tsu_read_entry(reg_offset, c_addr);
2624 		if (ether_addr_equal(addr, c_addr))
2625 			return i;
2626 	}
2627 
2628 	return -ENOENT;
2629 }
2630 
2631 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2632 {
2633 	u8 blank[ETH_ALEN];
2634 	int entry;
2635 
2636 	memset(blank, 0, sizeof(blank));
2637 	entry = sh_eth_tsu_find_entry(ndev, blank);
2638 	return (entry < 0) ? -ENOMEM : entry;
2639 }
2640 
2641 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2642 					      int entry)
2643 {
2644 	struct sh_eth_private *mdp = netdev_priv(ndev);
2645 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2646 	int ret;
2647 	u8 blank[ETH_ALEN];
2648 
2649 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2650 			 ~(1 << (31 - entry)), TSU_TEN);
2651 
2652 	memset(blank, 0, sizeof(blank));
2653 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2654 	if (ret < 0)
2655 		return ret;
2656 	return 0;
2657 }
2658 
2659 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2660 {
2661 	struct sh_eth_private *mdp = netdev_priv(ndev);
2662 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2663 	int i, ret;
2664 
2665 	if (!mdp->cd->tsu)
2666 		return 0;
2667 
2668 	i = sh_eth_tsu_find_entry(ndev, addr);
2669 	if (i < 0) {
2670 		/* No entry found, create one */
2671 		i = sh_eth_tsu_find_empty(ndev);
2672 		if (i < 0)
2673 			return -ENOMEM;
2674 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2675 		if (ret < 0)
2676 			return ret;
2677 
2678 		/* Enable the entry */
2679 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2680 				 (1 << (31 - i)), TSU_TEN);
2681 	}
2682 
2683 	/* Entry found or created, enable POST */
2684 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2685 
2686 	return 0;
2687 }
2688 
2689 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2690 {
2691 	struct sh_eth_private *mdp = netdev_priv(ndev);
2692 	int i, ret;
2693 
2694 	if (!mdp->cd->tsu)
2695 		return 0;
2696 
2697 	i = sh_eth_tsu_find_entry(ndev, addr);
2698 	if (i) {
2699 		/* Entry found */
2700 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2701 			goto done;
2702 
2703 		/* Disable the entry if both ports was disabled */
2704 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2705 		if (ret < 0)
2706 			return ret;
2707 	}
2708 done:
2709 	return 0;
2710 }
2711 
2712 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2713 {
2714 	struct sh_eth_private *mdp = netdev_priv(ndev);
2715 	int i, ret;
2716 
2717 	if (!mdp->cd->tsu)
2718 		return 0;
2719 
2720 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2721 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2722 			continue;
2723 
2724 		/* Disable the entry if both ports was disabled */
2725 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2726 		if (ret < 0)
2727 			return ret;
2728 	}
2729 
2730 	return 0;
2731 }
2732 
2733 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2734 {
2735 	struct sh_eth_private *mdp = netdev_priv(ndev);
2736 	u8 addr[ETH_ALEN];
2737 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2738 	int i;
2739 
2740 	if (!mdp->cd->tsu)
2741 		return;
2742 
2743 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2744 		sh_eth_tsu_read_entry(reg_offset, addr);
2745 		if (is_multicast_ether_addr(addr))
2746 			sh_eth_tsu_del_entry(ndev, addr);
2747 	}
2748 }
2749 
2750 /* Update promiscuous flag and multicast filter */
2751 static void sh_eth_set_rx_mode(struct net_device *ndev)
2752 {
2753 	struct sh_eth_private *mdp = netdev_priv(ndev);
2754 	u32 ecmr_bits;
2755 	int mcast_all = 0;
2756 	unsigned long flags;
2757 
2758 	spin_lock_irqsave(&mdp->lock, flags);
2759 	/* Initial condition is MCT = 1, PRM = 0.
2760 	 * Depending on ndev->flags, set PRM or clear MCT
2761 	 */
2762 	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2763 	if (mdp->cd->tsu)
2764 		ecmr_bits |= ECMR_MCT;
2765 
2766 	if (!(ndev->flags & IFF_MULTICAST)) {
2767 		sh_eth_tsu_purge_mcast(ndev);
2768 		mcast_all = 1;
2769 	}
2770 	if (ndev->flags & IFF_ALLMULTI) {
2771 		sh_eth_tsu_purge_mcast(ndev);
2772 		ecmr_bits &= ~ECMR_MCT;
2773 		mcast_all = 1;
2774 	}
2775 
2776 	if (ndev->flags & IFF_PROMISC) {
2777 		sh_eth_tsu_purge_all(ndev);
2778 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2779 	} else if (mdp->cd->tsu) {
2780 		struct netdev_hw_addr *ha;
2781 		netdev_for_each_mc_addr(ha, ndev) {
2782 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2783 				continue;
2784 
2785 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2786 				if (!mcast_all) {
2787 					sh_eth_tsu_purge_mcast(ndev);
2788 					ecmr_bits &= ~ECMR_MCT;
2789 					mcast_all = 1;
2790 				}
2791 			}
2792 		}
2793 	}
2794 
2795 	/* update the ethernet mode */
2796 	sh_eth_write(ndev, ecmr_bits, ECMR);
2797 
2798 	spin_unlock_irqrestore(&mdp->lock, flags);
2799 }
2800 
2801 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2802 {
2803 	if (!mdp->port)
2804 		return TSU_VTAG0;
2805 	else
2806 		return TSU_VTAG1;
2807 }
2808 
2809 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2810 				  __be16 proto, u16 vid)
2811 {
2812 	struct sh_eth_private *mdp = netdev_priv(ndev);
2813 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2814 
2815 	if (unlikely(!mdp->cd->tsu))
2816 		return -EPERM;
2817 
2818 	/* No filtering if vid = 0 */
2819 	if (!vid)
2820 		return 0;
2821 
2822 	mdp->vlan_num_ids++;
2823 
2824 	/* The controller has one VLAN tag HW filter. So, if the filter is
2825 	 * already enabled, the driver disables it and the filte
2826 	 */
2827 	if (mdp->vlan_num_ids > 1) {
2828 		/* disable VLAN filter */
2829 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2830 		return 0;
2831 	}
2832 
2833 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2834 			 vtag_reg_index);
2835 
2836 	return 0;
2837 }
2838 
2839 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2840 				   __be16 proto, u16 vid)
2841 {
2842 	struct sh_eth_private *mdp = netdev_priv(ndev);
2843 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2844 
2845 	if (unlikely(!mdp->cd->tsu))
2846 		return -EPERM;
2847 
2848 	/* No filtering if vid = 0 */
2849 	if (!vid)
2850 		return 0;
2851 
2852 	mdp->vlan_num_ids--;
2853 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2854 
2855 	return 0;
2856 }
2857 
2858 /* SuperH's TSU register init function */
2859 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2860 {
2861 	if (sh_eth_is_rz_fast_ether(mdp)) {
2862 		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2863 		return;
2864 	}
2865 
2866 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2867 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2868 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2869 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2870 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2871 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2872 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2873 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2874 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2875 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2876 	if (sh_eth_is_gether(mdp)) {
2877 		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2878 		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2879 	} else {
2880 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2881 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2882 	}
2883 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2884 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2885 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2886 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2887 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2888 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2889 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2890 }
2891 
2892 /* MDIO bus release function */
2893 static int sh_mdio_release(struct sh_eth_private *mdp)
2894 {
2895 	/* unregister mdio bus */
2896 	mdiobus_unregister(mdp->mii_bus);
2897 
2898 	/* free bitbang info */
2899 	free_mdio_bitbang(mdp->mii_bus);
2900 
2901 	return 0;
2902 }
2903 
2904 /* MDIO bus init function */
2905 static int sh_mdio_init(struct sh_eth_private *mdp,
2906 			struct sh_eth_plat_data *pd)
2907 {
2908 	int ret, i;
2909 	struct bb_info *bitbang;
2910 	struct platform_device *pdev = mdp->pdev;
2911 	struct device *dev = &mdp->pdev->dev;
2912 
2913 	/* create bit control struct for PHY */
2914 	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2915 	if (!bitbang)
2916 		return -ENOMEM;
2917 
2918 	/* bitbang init */
2919 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2920 	bitbang->set_gate = pd->set_mdio_gate;
2921 	bitbang->mdi_msk = PIR_MDI;
2922 	bitbang->mdo_msk = PIR_MDO;
2923 	bitbang->mmd_msk = PIR_MMD;
2924 	bitbang->mdc_msk = PIR_MDC;
2925 	bitbang->ctrl.ops = &bb_ops;
2926 
2927 	/* MII controller setting */
2928 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2929 	if (!mdp->mii_bus)
2930 		return -ENOMEM;
2931 
2932 	/* Hook up MII support for ethtool */
2933 	mdp->mii_bus->name = "sh_mii";
2934 	mdp->mii_bus->parent = dev;
2935 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2936 		 pdev->name, pdev->id);
2937 
2938 	/* PHY IRQ */
2939 	mdp->mii_bus->irq = devm_kmalloc_array(dev, PHY_MAX_ADDR, sizeof(int),
2940 					       GFP_KERNEL);
2941 	if (!mdp->mii_bus->irq) {
2942 		ret = -ENOMEM;
2943 		goto out_free_bus;
2944 	}
2945 
2946 	/* register MDIO bus */
2947 	if (dev->of_node) {
2948 		ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
2949 	} else {
2950 		for (i = 0; i < PHY_MAX_ADDR; i++)
2951 			mdp->mii_bus->irq[i] = PHY_POLL;
2952 		if (pd->phy_irq > 0)
2953 			mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2954 
2955 		ret = mdiobus_register(mdp->mii_bus);
2956 	}
2957 
2958 	if (ret)
2959 		goto out_free_bus;
2960 
2961 	return 0;
2962 
2963 out_free_bus:
2964 	free_mdio_bitbang(mdp->mii_bus);
2965 	return ret;
2966 }
2967 
2968 static const u16 *sh_eth_get_register_offset(int register_type)
2969 {
2970 	const u16 *reg_offset = NULL;
2971 
2972 	switch (register_type) {
2973 	case SH_ETH_REG_GIGABIT:
2974 		reg_offset = sh_eth_offset_gigabit;
2975 		break;
2976 	case SH_ETH_REG_FAST_RZ:
2977 		reg_offset = sh_eth_offset_fast_rz;
2978 		break;
2979 	case SH_ETH_REG_FAST_RCAR:
2980 		reg_offset = sh_eth_offset_fast_rcar;
2981 		break;
2982 	case SH_ETH_REG_FAST_SH4:
2983 		reg_offset = sh_eth_offset_fast_sh4;
2984 		break;
2985 	case SH_ETH_REG_FAST_SH3_SH2:
2986 		reg_offset = sh_eth_offset_fast_sh3_sh2;
2987 		break;
2988 	default:
2989 		break;
2990 	}
2991 
2992 	return reg_offset;
2993 }
2994 
2995 static const struct net_device_ops sh_eth_netdev_ops = {
2996 	.ndo_open		= sh_eth_open,
2997 	.ndo_stop		= sh_eth_close,
2998 	.ndo_start_xmit		= sh_eth_start_xmit,
2999 	.ndo_get_stats		= sh_eth_get_stats,
3000 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3001 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3002 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3003 	.ndo_validate_addr	= eth_validate_addr,
3004 	.ndo_set_mac_address	= eth_mac_addr,
3005 	.ndo_change_mtu		= eth_change_mtu,
3006 };
3007 
3008 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3009 	.ndo_open		= sh_eth_open,
3010 	.ndo_stop		= sh_eth_close,
3011 	.ndo_start_xmit		= sh_eth_start_xmit,
3012 	.ndo_get_stats		= sh_eth_get_stats,
3013 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3014 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
3015 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
3016 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3017 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3018 	.ndo_validate_addr	= eth_validate_addr,
3019 	.ndo_set_mac_address	= eth_mac_addr,
3020 	.ndo_change_mtu		= eth_change_mtu,
3021 };
3022 
3023 #ifdef CONFIG_OF
3024 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3025 {
3026 	struct device_node *np = dev->of_node;
3027 	struct sh_eth_plat_data *pdata;
3028 	const char *mac_addr;
3029 
3030 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3031 	if (!pdata)
3032 		return NULL;
3033 
3034 	pdata->phy_interface = of_get_phy_mode(np);
3035 
3036 	mac_addr = of_get_mac_address(np);
3037 	if (mac_addr)
3038 		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
3039 
3040 	pdata->no_ether_link =
3041 		of_property_read_bool(np, "renesas,no-ether-link");
3042 	pdata->ether_link_active_low =
3043 		of_property_read_bool(np, "renesas,ether-link-active-low");
3044 
3045 	return pdata;
3046 }
3047 
3048 static const struct of_device_id sh_eth_match_table[] = {
3049 	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3050 	{ .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data },
3051 	{ .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data },
3052 	{ .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data },
3053 	{ .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data },
3054 	{ .compatible = "renesas,ether-r8a7793", .data = &r8a779x_data },
3055 	{ .compatible = "renesas,ether-r8a7794", .data = &r8a779x_data },
3056 	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3057 	{ }
3058 };
3059 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3060 #else
3061 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3062 {
3063 	return NULL;
3064 }
3065 #endif
3066 
3067 static int sh_eth_drv_probe(struct platform_device *pdev)
3068 {
3069 	int ret, devno = 0;
3070 	struct resource *res;
3071 	struct net_device *ndev = NULL;
3072 	struct sh_eth_private *mdp = NULL;
3073 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3074 	const struct platform_device_id *id = platform_get_device_id(pdev);
3075 
3076 	/* get base addr */
3077 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3078 
3079 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3080 	if (!ndev)
3081 		return -ENOMEM;
3082 
3083 	pm_runtime_enable(&pdev->dev);
3084 	pm_runtime_get_sync(&pdev->dev);
3085 
3086 	devno = pdev->id;
3087 	if (devno < 0)
3088 		devno = 0;
3089 
3090 	ndev->dma = -1;
3091 	ret = platform_get_irq(pdev, 0);
3092 	if (ret < 0)
3093 		goto out_release;
3094 	ndev->irq = ret;
3095 
3096 	SET_NETDEV_DEV(ndev, &pdev->dev);
3097 
3098 	mdp = netdev_priv(ndev);
3099 	mdp->num_tx_ring = TX_RING_SIZE;
3100 	mdp->num_rx_ring = RX_RING_SIZE;
3101 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3102 	if (IS_ERR(mdp->addr)) {
3103 		ret = PTR_ERR(mdp->addr);
3104 		goto out_release;
3105 	}
3106 
3107 	ndev->base_addr = res->start;
3108 
3109 	spin_lock_init(&mdp->lock);
3110 	mdp->pdev = pdev;
3111 
3112 	if (pdev->dev.of_node)
3113 		pd = sh_eth_parse_dt(&pdev->dev);
3114 	if (!pd) {
3115 		dev_err(&pdev->dev, "no platform data\n");
3116 		ret = -EINVAL;
3117 		goto out_release;
3118 	}
3119 
3120 	/* get PHY ID */
3121 	mdp->phy_id = pd->phy;
3122 	mdp->phy_interface = pd->phy_interface;
3123 	/* EDMAC endian */
3124 	mdp->edmac_endian = pd->edmac_endian;
3125 	mdp->no_ether_link = pd->no_ether_link;
3126 	mdp->ether_link_active_low = pd->ether_link_active_low;
3127 
3128 	/* set cpu data */
3129 	if (id) {
3130 		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3131 	} else	{
3132 		const struct of_device_id *match;
3133 
3134 		match = of_match_device(of_match_ptr(sh_eth_match_table),
3135 					&pdev->dev);
3136 		mdp->cd = (struct sh_eth_cpu_data *)match->data;
3137 	}
3138 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3139 	if (!mdp->reg_offset) {
3140 		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3141 			mdp->cd->register_type);
3142 		ret = -EINVAL;
3143 		goto out_release;
3144 	}
3145 	sh_eth_set_default_cpu_data(mdp->cd);
3146 
3147 	/* set function */
3148 	if (mdp->cd->tsu)
3149 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3150 	else
3151 		ndev->netdev_ops = &sh_eth_netdev_ops;
3152 	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3153 	ndev->watchdog_timeo = TX_TIMEOUT;
3154 
3155 	/* debug message level */
3156 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3157 
3158 	/* read and set MAC address */
3159 	read_mac_address(ndev, pd->mac_addr);
3160 	if (!is_valid_ether_addr(ndev->dev_addr)) {
3161 		dev_warn(&pdev->dev,
3162 			 "no valid MAC address supplied, using a random one.\n");
3163 		eth_hw_addr_random(ndev);
3164 	}
3165 
3166 	/* ioremap the TSU registers */
3167 	if (mdp->cd->tsu) {
3168 		struct resource *rtsu;
3169 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3170 		mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
3171 		if (IS_ERR(mdp->tsu_addr)) {
3172 			ret = PTR_ERR(mdp->tsu_addr);
3173 			goto out_release;
3174 		}
3175 		mdp->port = devno % 2;
3176 		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3177 	}
3178 
3179 	/* initialize first or needed device */
3180 	if (!devno || pd->needs_init) {
3181 		if (mdp->cd->chip_reset)
3182 			mdp->cd->chip_reset(ndev);
3183 
3184 		if (mdp->cd->tsu) {
3185 			/* TSU init (Init only)*/
3186 			sh_eth_tsu_init(mdp);
3187 		}
3188 	}
3189 
3190 	if (mdp->cd->rmiimode)
3191 		sh_eth_write(ndev, 0x1, RMIIMODE);
3192 
3193 	/* MDIO bus init */
3194 	ret = sh_mdio_init(mdp, pd);
3195 	if (ret) {
3196 		dev_err(&ndev->dev, "failed to initialise MDIO\n");
3197 		goto out_release;
3198 	}
3199 
3200 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3201 
3202 	/* network device register */
3203 	ret = register_netdev(ndev);
3204 	if (ret)
3205 		goto out_napi_del;
3206 
3207 	/* print device information */
3208 	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3209 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3210 
3211 	pm_runtime_put(&pdev->dev);
3212 	platform_set_drvdata(pdev, ndev);
3213 
3214 	return ret;
3215 
3216 out_napi_del:
3217 	netif_napi_del(&mdp->napi);
3218 	sh_mdio_release(mdp);
3219 
3220 out_release:
3221 	/* net_dev free */
3222 	if (ndev)
3223 		free_netdev(ndev);
3224 
3225 	pm_runtime_put(&pdev->dev);
3226 	pm_runtime_disable(&pdev->dev);
3227 	return ret;
3228 }
3229 
3230 static int sh_eth_drv_remove(struct platform_device *pdev)
3231 {
3232 	struct net_device *ndev = platform_get_drvdata(pdev);
3233 	struct sh_eth_private *mdp = netdev_priv(ndev);
3234 
3235 	unregister_netdev(ndev);
3236 	netif_napi_del(&mdp->napi);
3237 	sh_mdio_release(mdp);
3238 	pm_runtime_disable(&pdev->dev);
3239 	free_netdev(ndev);
3240 
3241 	return 0;
3242 }
3243 
3244 #ifdef CONFIG_PM
3245 #ifdef CONFIG_PM_SLEEP
3246 static int sh_eth_suspend(struct device *dev)
3247 {
3248 	struct net_device *ndev = dev_get_drvdata(dev);
3249 	int ret = 0;
3250 
3251 	if (netif_running(ndev)) {
3252 		netif_device_detach(ndev);
3253 		ret = sh_eth_close(ndev);
3254 	}
3255 
3256 	return ret;
3257 }
3258 
3259 static int sh_eth_resume(struct device *dev)
3260 {
3261 	struct net_device *ndev = dev_get_drvdata(dev);
3262 	int ret = 0;
3263 
3264 	if (netif_running(ndev)) {
3265 		ret = sh_eth_open(ndev);
3266 		if (ret < 0)
3267 			return ret;
3268 		netif_device_attach(ndev);
3269 	}
3270 
3271 	return ret;
3272 }
3273 #endif
3274 
3275 static int sh_eth_runtime_nop(struct device *dev)
3276 {
3277 	/* Runtime PM callback shared between ->runtime_suspend()
3278 	 * and ->runtime_resume(). Simply returns success.
3279 	 *
3280 	 * This driver re-initializes all registers after
3281 	 * pm_runtime_get_sync() anyway so there is no need
3282 	 * to save and restore registers here.
3283 	 */
3284 	return 0;
3285 }
3286 
3287 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3288 	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3289 	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3290 };
3291 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3292 #else
3293 #define SH_ETH_PM_OPS NULL
3294 #endif
3295 
3296 static struct platform_device_id sh_eth_id_table[] = {
3297 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3298 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3299 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3300 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3301 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3302 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3303 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3304 	{ "r7s72100-ether", (kernel_ulong_t)&r7s72100_data },
3305 	{ "r8a7740-gether", (kernel_ulong_t)&r8a7740_data },
3306 	{ "r8a777x-ether", (kernel_ulong_t)&r8a777x_data },
3307 	{ "r8a7790-ether", (kernel_ulong_t)&r8a779x_data },
3308 	{ "r8a7791-ether", (kernel_ulong_t)&r8a779x_data },
3309 	{ "r8a7793-ether", (kernel_ulong_t)&r8a779x_data },
3310 	{ "r8a7794-ether", (kernel_ulong_t)&r8a779x_data },
3311 	{ }
3312 };
3313 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3314 
3315 static struct platform_driver sh_eth_driver = {
3316 	.probe = sh_eth_drv_probe,
3317 	.remove = sh_eth_drv_remove,
3318 	.id_table = sh_eth_id_table,
3319 	.driver = {
3320 		   .name = CARDNAME,
3321 		   .pm = SH_ETH_PM_OPS,
3322 		   .of_match_table = of_match_ptr(sh_eth_match_table),
3323 	},
3324 };
3325 
3326 module_platform_driver(sh_eth_driver);
3327 
3328 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3329 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3330 MODULE_LICENSE("GPL v2");
3331