xref: /linux/drivers/net/ethernet/renesas/sh_eth.c (revision b76960c0f6b25d447a1493c4388defb9e8e76c63)
1 /*  SuperH Ethernet device driver
2  *
3  *  Copyright (C) 2014 Renesas Electronics Corporation
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
6  *  Copyright (C) 2013-2017 Cogent Embedded, Inc.
7  *  Copyright (C) 2014 Codethink Limited
8  *
9  *  This program is free software; you can redistribute it and/or modify it
10  *  under the terms and conditions of the GNU General Public License,
11  *  version 2, as published by the Free Software Foundation.
12  *
13  *  This program is distributed in the hope it will be useful, but WITHOUT
14  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  *  more details.
17  *
18  *  The full GNU General Public License is included in this distribution in
19  *  the file called "COPYING".
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
38 #include <linux/io.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/sh_eth.h>
44 #include <linux/of_mdio.h>
45 
46 #include "sh_eth.h"
47 
48 #define SH_ETH_DEF_MSG_ENABLE \
49 		(NETIF_MSG_LINK	| \
50 		NETIF_MSG_TIMER	| \
51 		NETIF_MSG_RX_ERR| \
52 		NETIF_MSG_TX_ERR)
53 
54 #define SH_ETH_OFFSET_INVALID	((u16)~0)
55 
56 #define SH_ETH_OFFSET_DEFAULTS			\
57 	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
58 
59 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
60 	SH_ETH_OFFSET_DEFAULTS,
61 
62 	[EDSR]		= 0x0000,
63 	[EDMR]		= 0x0400,
64 	[EDTRR]		= 0x0408,
65 	[EDRRR]		= 0x0410,
66 	[EESR]		= 0x0428,
67 	[EESIPR]	= 0x0430,
68 	[TDLAR]		= 0x0010,
69 	[TDFAR]		= 0x0014,
70 	[TDFXR]		= 0x0018,
71 	[TDFFR]		= 0x001c,
72 	[RDLAR]		= 0x0030,
73 	[RDFAR]		= 0x0034,
74 	[RDFXR]		= 0x0038,
75 	[RDFFR]		= 0x003c,
76 	[TRSCER]	= 0x0438,
77 	[RMFCR]		= 0x0440,
78 	[TFTR]		= 0x0448,
79 	[FDR]		= 0x0450,
80 	[RMCR]		= 0x0458,
81 	[RPADIR]	= 0x0460,
82 	[FCFTR]		= 0x0468,
83 	[CSMR]		= 0x04E4,
84 
85 	[ECMR]		= 0x0500,
86 	[ECSR]		= 0x0510,
87 	[ECSIPR]	= 0x0518,
88 	[PIR]		= 0x0520,
89 	[PSR]		= 0x0528,
90 	[PIPR]		= 0x052c,
91 	[RFLR]		= 0x0508,
92 	[APR]		= 0x0554,
93 	[MPR]		= 0x0558,
94 	[PFTCR]		= 0x055c,
95 	[PFRCR]		= 0x0560,
96 	[TPAUSER]	= 0x0564,
97 	[GECMR]		= 0x05b0,
98 	[BCULR]		= 0x05b4,
99 	[MAHR]		= 0x05c0,
100 	[MALR]		= 0x05c8,
101 	[TROCR]		= 0x0700,
102 	[CDCR]		= 0x0708,
103 	[LCCR]		= 0x0710,
104 	[CEFCR]		= 0x0740,
105 	[FRECR]		= 0x0748,
106 	[TSFRCR]	= 0x0750,
107 	[TLFRCR]	= 0x0758,
108 	[RFCR]		= 0x0760,
109 	[CERCR]		= 0x0768,
110 	[CEECR]		= 0x0770,
111 	[MAFCR]		= 0x0778,
112 	[RMII_MII]	= 0x0790,
113 
114 	[ARSTR]		= 0x0000,
115 	[TSU_CTRST]	= 0x0004,
116 	[TSU_FWEN0]	= 0x0010,
117 	[TSU_FWEN1]	= 0x0014,
118 	[TSU_FCM]	= 0x0018,
119 	[TSU_BSYSL0]	= 0x0020,
120 	[TSU_BSYSL1]	= 0x0024,
121 	[TSU_PRISL0]	= 0x0028,
122 	[TSU_PRISL1]	= 0x002c,
123 	[TSU_FWSL0]	= 0x0030,
124 	[TSU_FWSL1]	= 0x0034,
125 	[TSU_FWSLC]	= 0x0038,
126 	[TSU_QTAG0]	= 0x0040,
127 	[TSU_QTAG1]	= 0x0044,
128 	[TSU_FWSR]	= 0x0050,
129 	[TSU_FWINMK]	= 0x0054,
130 	[TSU_ADQT0]	= 0x0048,
131 	[TSU_ADQT1]	= 0x004c,
132 	[TSU_VTAG0]	= 0x0058,
133 	[TSU_VTAG1]	= 0x005c,
134 	[TSU_ADSBSY]	= 0x0060,
135 	[TSU_TEN]	= 0x0064,
136 	[TSU_POST1]	= 0x0070,
137 	[TSU_POST2]	= 0x0074,
138 	[TSU_POST3]	= 0x0078,
139 	[TSU_POST4]	= 0x007c,
140 	[TSU_ADRH0]	= 0x0100,
141 
142 	[TXNLCR0]	= 0x0080,
143 	[TXALCR0]	= 0x0084,
144 	[RXNLCR0]	= 0x0088,
145 	[RXALCR0]	= 0x008c,
146 	[FWNLCR0]	= 0x0090,
147 	[FWALCR0]	= 0x0094,
148 	[TXNLCR1]	= 0x00a0,
149 	[TXALCR1]	= 0x00a4,
150 	[RXNLCR1]	= 0x00a8,
151 	[RXALCR1]	= 0x00ac,
152 	[FWNLCR1]	= 0x00b0,
153 	[FWALCR1]	= 0x00b4,
154 };
155 
156 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
157 	SH_ETH_OFFSET_DEFAULTS,
158 
159 	[EDSR]		= 0x0000,
160 	[EDMR]		= 0x0400,
161 	[EDTRR]		= 0x0408,
162 	[EDRRR]		= 0x0410,
163 	[EESR]		= 0x0428,
164 	[EESIPR]	= 0x0430,
165 	[TDLAR]		= 0x0010,
166 	[TDFAR]		= 0x0014,
167 	[TDFXR]		= 0x0018,
168 	[TDFFR]		= 0x001c,
169 	[RDLAR]		= 0x0030,
170 	[RDFAR]		= 0x0034,
171 	[RDFXR]		= 0x0038,
172 	[RDFFR]		= 0x003c,
173 	[TRSCER]	= 0x0438,
174 	[RMFCR]		= 0x0440,
175 	[TFTR]		= 0x0448,
176 	[FDR]		= 0x0450,
177 	[RMCR]		= 0x0458,
178 	[RPADIR]	= 0x0460,
179 	[FCFTR]		= 0x0468,
180 	[CSMR]		= 0x04E4,
181 
182 	[ECMR]		= 0x0500,
183 	[RFLR]		= 0x0508,
184 	[ECSR]		= 0x0510,
185 	[ECSIPR]	= 0x0518,
186 	[PIR]		= 0x0520,
187 	[APR]		= 0x0554,
188 	[MPR]		= 0x0558,
189 	[PFTCR]		= 0x055c,
190 	[PFRCR]		= 0x0560,
191 	[TPAUSER]	= 0x0564,
192 	[MAHR]		= 0x05c0,
193 	[MALR]		= 0x05c8,
194 	[CEFCR]		= 0x0740,
195 	[FRECR]		= 0x0748,
196 	[TSFRCR]	= 0x0750,
197 	[TLFRCR]	= 0x0758,
198 	[RFCR]		= 0x0760,
199 	[MAFCR]		= 0x0778,
200 
201 	[ARSTR]		= 0x0000,
202 	[TSU_CTRST]	= 0x0004,
203 	[TSU_FWSLC]	= 0x0038,
204 	[TSU_VTAG0]	= 0x0058,
205 	[TSU_ADSBSY]	= 0x0060,
206 	[TSU_TEN]	= 0x0064,
207 	[TSU_POST1]	= 0x0070,
208 	[TSU_POST2]	= 0x0074,
209 	[TSU_POST3]	= 0x0078,
210 	[TSU_POST4]	= 0x007c,
211 	[TSU_ADRH0]	= 0x0100,
212 
213 	[TXNLCR0]	= 0x0080,
214 	[TXALCR0]	= 0x0084,
215 	[RXNLCR0]	= 0x0088,
216 	[RXALCR0]	= 0x008C,
217 };
218 
219 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
220 	SH_ETH_OFFSET_DEFAULTS,
221 
222 	[ECMR]		= 0x0300,
223 	[RFLR]		= 0x0308,
224 	[ECSR]		= 0x0310,
225 	[ECSIPR]	= 0x0318,
226 	[PIR]		= 0x0320,
227 	[PSR]		= 0x0328,
228 	[RDMLR]		= 0x0340,
229 	[IPGR]		= 0x0350,
230 	[APR]		= 0x0354,
231 	[MPR]		= 0x0358,
232 	[RFCF]		= 0x0360,
233 	[TPAUSER]	= 0x0364,
234 	[TPAUSECR]	= 0x0368,
235 	[MAHR]		= 0x03c0,
236 	[MALR]		= 0x03c8,
237 	[TROCR]		= 0x03d0,
238 	[CDCR]		= 0x03d4,
239 	[LCCR]		= 0x03d8,
240 	[CNDCR]		= 0x03dc,
241 	[CEFCR]		= 0x03e4,
242 	[FRECR]		= 0x03e8,
243 	[TSFRCR]	= 0x03ec,
244 	[TLFRCR]	= 0x03f0,
245 	[RFCR]		= 0x03f4,
246 	[MAFCR]		= 0x03f8,
247 
248 	[EDMR]		= 0x0200,
249 	[EDTRR]		= 0x0208,
250 	[EDRRR]		= 0x0210,
251 	[TDLAR]		= 0x0218,
252 	[RDLAR]		= 0x0220,
253 	[EESR]		= 0x0228,
254 	[EESIPR]	= 0x0230,
255 	[TRSCER]	= 0x0238,
256 	[RMFCR]		= 0x0240,
257 	[TFTR]		= 0x0248,
258 	[FDR]		= 0x0250,
259 	[RMCR]		= 0x0258,
260 	[TFUCR]		= 0x0264,
261 	[RFOCR]		= 0x0268,
262 	[RMIIMODE]      = 0x026c,
263 	[FCFTR]		= 0x0270,
264 	[TRIMD]		= 0x027c,
265 };
266 
267 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
268 	SH_ETH_OFFSET_DEFAULTS,
269 
270 	[ECMR]		= 0x0100,
271 	[RFLR]		= 0x0108,
272 	[ECSR]		= 0x0110,
273 	[ECSIPR]	= 0x0118,
274 	[PIR]		= 0x0120,
275 	[PSR]		= 0x0128,
276 	[RDMLR]		= 0x0140,
277 	[IPGR]		= 0x0150,
278 	[APR]		= 0x0154,
279 	[MPR]		= 0x0158,
280 	[TPAUSER]	= 0x0164,
281 	[RFCF]		= 0x0160,
282 	[TPAUSECR]	= 0x0168,
283 	[BCFRR]		= 0x016c,
284 	[MAHR]		= 0x01c0,
285 	[MALR]		= 0x01c8,
286 	[TROCR]		= 0x01d0,
287 	[CDCR]		= 0x01d4,
288 	[LCCR]		= 0x01d8,
289 	[CNDCR]		= 0x01dc,
290 	[CEFCR]		= 0x01e4,
291 	[FRECR]		= 0x01e8,
292 	[TSFRCR]	= 0x01ec,
293 	[TLFRCR]	= 0x01f0,
294 	[RFCR]		= 0x01f4,
295 	[MAFCR]		= 0x01f8,
296 	[RTRATE]	= 0x01fc,
297 
298 	[EDMR]		= 0x0000,
299 	[EDTRR]		= 0x0008,
300 	[EDRRR]		= 0x0010,
301 	[TDLAR]		= 0x0018,
302 	[RDLAR]		= 0x0020,
303 	[EESR]		= 0x0028,
304 	[EESIPR]	= 0x0030,
305 	[TRSCER]	= 0x0038,
306 	[RMFCR]		= 0x0040,
307 	[TFTR]		= 0x0048,
308 	[FDR]		= 0x0050,
309 	[RMCR]		= 0x0058,
310 	[TFUCR]		= 0x0064,
311 	[RFOCR]		= 0x0068,
312 	[FCFTR]		= 0x0070,
313 	[RPADIR]	= 0x0078,
314 	[TRIMD]		= 0x007c,
315 	[RBWAR]		= 0x00c8,
316 	[RDFAR]		= 0x00cc,
317 	[TBRAR]		= 0x00d4,
318 	[TDFAR]		= 0x00d8,
319 };
320 
321 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
322 	SH_ETH_OFFSET_DEFAULTS,
323 
324 	[EDMR]		= 0x0000,
325 	[EDTRR]		= 0x0004,
326 	[EDRRR]		= 0x0008,
327 	[TDLAR]		= 0x000c,
328 	[RDLAR]		= 0x0010,
329 	[EESR]		= 0x0014,
330 	[EESIPR]	= 0x0018,
331 	[TRSCER]	= 0x001c,
332 	[RMFCR]		= 0x0020,
333 	[TFTR]		= 0x0024,
334 	[FDR]		= 0x0028,
335 	[RMCR]		= 0x002c,
336 	[EDOCR]		= 0x0030,
337 	[FCFTR]		= 0x0034,
338 	[RPADIR]	= 0x0038,
339 	[TRIMD]		= 0x003c,
340 	[RBWAR]		= 0x0040,
341 	[RDFAR]		= 0x0044,
342 	[TBRAR]		= 0x004c,
343 	[TDFAR]		= 0x0050,
344 
345 	[ECMR]		= 0x0160,
346 	[ECSR]		= 0x0164,
347 	[ECSIPR]	= 0x0168,
348 	[PIR]		= 0x016c,
349 	[MAHR]		= 0x0170,
350 	[MALR]		= 0x0174,
351 	[RFLR]		= 0x0178,
352 	[PSR]		= 0x017c,
353 	[TROCR]		= 0x0180,
354 	[CDCR]		= 0x0184,
355 	[LCCR]		= 0x0188,
356 	[CNDCR]		= 0x018c,
357 	[CEFCR]		= 0x0194,
358 	[FRECR]		= 0x0198,
359 	[TSFRCR]	= 0x019c,
360 	[TLFRCR]	= 0x01a0,
361 	[RFCR]		= 0x01a4,
362 	[MAFCR]		= 0x01a8,
363 	[IPGR]		= 0x01b4,
364 	[APR]		= 0x01b8,
365 	[MPR]		= 0x01bc,
366 	[TPAUSER]	= 0x01c4,
367 	[BCFR]		= 0x01cc,
368 
369 	[ARSTR]		= 0x0000,
370 	[TSU_CTRST]	= 0x0004,
371 	[TSU_FWEN0]	= 0x0010,
372 	[TSU_FWEN1]	= 0x0014,
373 	[TSU_FCM]	= 0x0018,
374 	[TSU_BSYSL0]	= 0x0020,
375 	[TSU_BSYSL1]	= 0x0024,
376 	[TSU_PRISL0]	= 0x0028,
377 	[TSU_PRISL1]	= 0x002c,
378 	[TSU_FWSL0]	= 0x0030,
379 	[TSU_FWSL1]	= 0x0034,
380 	[TSU_FWSLC]	= 0x0038,
381 	[TSU_QTAGM0]	= 0x0040,
382 	[TSU_QTAGM1]	= 0x0044,
383 	[TSU_ADQT0]	= 0x0048,
384 	[TSU_ADQT1]	= 0x004c,
385 	[TSU_FWSR]	= 0x0050,
386 	[TSU_FWINMK]	= 0x0054,
387 	[TSU_ADSBSY]	= 0x0060,
388 	[TSU_TEN]	= 0x0064,
389 	[TSU_POST1]	= 0x0070,
390 	[TSU_POST2]	= 0x0074,
391 	[TSU_POST3]	= 0x0078,
392 	[TSU_POST4]	= 0x007c,
393 
394 	[TXNLCR0]	= 0x0080,
395 	[TXALCR0]	= 0x0084,
396 	[RXNLCR0]	= 0x0088,
397 	[RXALCR0]	= 0x008c,
398 	[FWNLCR0]	= 0x0090,
399 	[FWALCR0]	= 0x0094,
400 	[TXNLCR1]	= 0x00a0,
401 	[TXALCR1]	= 0x00a4,
402 	[RXNLCR1]	= 0x00a8,
403 	[RXALCR1]	= 0x00ac,
404 	[FWNLCR1]	= 0x00b0,
405 	[FWALCR1]	= 0x00b4,
406 
407 	[TSU_ADRH0]	= 0x0100,
408 };
409 
410 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
411 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
412 
413 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
414 {
415 	struct sh_eth_private *mdp = netdev_priv(ndev);
416 	u16 offset = mdp->reg_offset[enum_index];
417 
418 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
419 		return;
420 
421 	iowrite32(data, mdp->addr + offset);
422 }
423 
424 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
425 {
426 	struct sh_eth_private *mdp = netdev_priv(ndev);
427 	u16 offset = mdp->reg_offset[enum_index];
428 
429 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
430 		return ~0U;
431 
432 	return ioread32(mdp->addr + offset);
433 }
434 
435 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
436 			  u32 set)
437 {
438 	sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
439 		     enum_index);
440 }
441 
442 static void sh_eth_tsu_write(struct sh_eth_private *mdp, u32 data,
443 			     int enum_index)
444 {
445 	iowrite32(data, mdp->tsu_addr + mdp->reg_offset[enum_index]);
446 }
447 
448 static u32 sh_eth_tsu_read(struct sh_eth_private *mdp, int enum_index)
449 {
450 	return ioread32(mdp->tsu_addr + mdp->reg_offset[enum_index]);
451 }
452 
453 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
454 {
455 	return mdp->reg_offset == sh_eth_offset_gigabit;
456 }
457 
458 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
459 {
460 	return mdp->reg_offset == sh_eth_offset_fast_rz;
461 }
462 
463 static void sh_eth_select_mii(struct net_device *ndev)
464 {
465 	struct sh_eth_private *mdp = netdev_priv(ndev);
466 	u32 value;
467 
468 	switch (mdp->phy_interface) {
469 	case PHY_INTERFACE_MODE_GMII:
470 		value = 0x2;
471 		break;
472 	case PHY_INTERFACE_MODE_MII:
473 		value = 0x1;
474 		break;
475 	case PHY_INTERFACE_MODE_RMII:
476 		value = 0x0;
477 		break;
478 	default:
479 		netdev_warn(ndev,
480 			    "PHY interface mode was not setup. Set to MII.\n");
481 		value = 0x1;
482 		break;
483 	}
484 
485 	sh_eth_write(ndev, value, RMII_MII);
486 }
487 
488 static void sh_eth_set_duplex(struct net_device *ndev)
489 {
490 	struct sh_eth_private *mdp = netdev_priv(ndev);
491 
492 	sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
493 }
494 
495 static void sh_eth_chip_reset(struct net_device *ndev)
496 {
497 	struct sh_eth_private *mdp = netdev_priv(ndev);
498 
499 	/* reset device */
500 	sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
501 	mdelay(1);
502 }
503 
504 static void sh_eth_set_rate_gether(struct net_device *ndev)
505 {
506 	struct sh_eth_private *mdp = netdev_priv(ndev);
507 
508 	switch (mdp->speed) {
509 	case 10: /* 10BASE */
510 		sh_eth_write(ndev, GECMR_10, GECMR);
511 		break;
512 	case 100:/* 100BASE */
513 		sh_eth_write(ndev, GECMR_100, GECMR);
514 		break;
515 	case 1000: /* 1000BASE */
516 		sh_eth_write(ndev, GECMR_1000, GECMR);
517 		break;
518 	}
519 }
520 
521 #ifdef CONFIG_OF
522 /* R7S72100 */
523 static struct sh_eth_cpu_data r7s72100_data = {
524 	.chip_reset	= sh_eth_chip_reset,
525 	.set_duplex	= sh_eth_set_duplex,
526 
527 	.register_type	= SH_ETH_REG_FAST_RZ,
528 
529 	.ecsr_value	= ECSR_ICD,
530 	.ecsipr_value	= ECSIPR_ICDIP,
531 	.eesipr_value	= EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP |
532 			  EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP |
533 			  EESIPR_ECIIP |
534 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
535 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
536 			  EESIPR_RMAFIP | EESIPR_RRFIP |
537 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
538 			  EESIPR_PREIP | EESIPR_CERFIP,
539 
540 	.tx_check	= EESR_TC1 | EESR_FTC,
541 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
542 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
543 			  EESR_TDE,
544 	.fdr_value	= 0x0000070f,
545 
546 	.no_psr		= 1,
547 	.apr		= 1,
548 	.mpr		= 1,
549 	.tpauser	= 1,
550 	.hw_swap	= 1,
551 	.rpadir		= 1,
552 	.rpadir_value   = 2 << 16,
553 	.no_trimd	= 1,
554 	.no_ade		= 1,
555 	.hw_checksum	= 1,
556 	.tsu		= 1,
557 };
558 
559 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
560 {
561 	sh_eth_chip_reset(ndev);
562 
563 	sh_eth_select_mii(ndev);
564 }
565 
566 /* R8A7740 */
567 static struct sh_eth_cpu_data r8a7740_data = {
568 	.chip_reset	= sh_eth_chip_reset_r8a7740,
569 	.set_duplex	= sh_eth_set_duplex,
570 	.set_rate	= sh_eth_set_rate_gether,
571 
572 	.register_type	= SH_ETH_REG_GIGABIT,
573 
574 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
575 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
576 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
577 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
578 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
579 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
580 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
581 			  EESIPR_CEEFIP | EESIPR_CELFIP |
582 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
583 			  EESIPR_PREIP | EESIPR_CERFIP,
584 
585 	.tx_check	= EESR_TC1 | EESR_FTC,
586 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
587 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
588 			  EESR_TDE,
589 	.fdr_value	= 0x0000070f,
590 
591 	.apr		= 1,
592 	.mpr		= 1,
593 	.tpauser	= 1,
594 	.bculr		= 1,
595 	.hw_swap	= 1,
596 	.rpadir		= 1,
597 	.rpadir_value   = 2 << 16,
598 	.no_trimd	= 1,
599 	.no_ade		= 1,
600 	.hw_checksum	= 1,
601 	.tsu		= 1,
602 	.select_mii	= 1,
603 	.magic		= 1,
604 };
605 
606 /* There is CPU dependent code */
607 static void sh_eth_set_rate_rcar(struct net_device *ndev)
608 {
609 	struct sh_eth_private *mdp = netdev_priv(ndev);
610 
611 	switch (mdp->speed) {
612 	case 10: /* 10BASE */
613 		sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
614 		break;
615 	case 100:/* 100BASE */
616 		sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
617 		break;
618 	}
619 }
620 
621 /* R-Car Gen1 */
622 static struct sh_eth_cpu_data rcar_gen1_data = {
623 	.set_duplex	= sh_eth_set_duplex,
624 	.set_rate	= sh_eth_set_rate_rcar,
625 
626 	.register_type	= SH_ETH_REG_FAST_RCAR,
627 
628 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
629 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
630 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
631 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
632 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
633 			  EESIPR_RMAFIP | EESIPR_RRFIP |
634 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
635 			  EESIPR_PREIP | EESIPR_CERFIP,
636 
637 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
638 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
639 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
640 	.fdr_value	= 0x00000f0f,
641 
642 	.apr		= 1,
643 	.mpr		= 1,
644 	.tpauser	= 1,
645 	.hw_swap	= 1,
646 };
647 
648 /* R-Car Gen2 and RZ/G1 */
649 static struct sh_eth_cpu_data rcar_gen2_data = {
650 	.set_duplex	= sh_eth_set_duplex,
651 	.set_rate	= sh_eth_set_rate_rcar,
652 
653 	.register_type	= SH_ETH_REG_FAST_RCAR,
654 
655 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
656 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
657 			  ECSIPR_MPDIP,
658 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
659 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
660 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
661 			  EESIPR_RMAFIP | EESIPR_RRFIP |
662 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
663 			  EESIPR_PREIP | EESIPR_CERFIP,
664 
665 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
666 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
667 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
668 	.fdr_value	= 0x00000f0f,
669 
670 	.trscer_err_mask = DESC_I_RINT8,
671 
672 	.apr		= 1,
673 	.mpr		= 1,
674 	.tpauser	= 1,
675 	.hw_swap	= 1,
676 	.rmiimode	= 1,
677 	.magic		= 1,
678 };
679 #endif /* CONFIG_OF */
680 
681 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
682 {
683 	struct sh_eth_private *mdp = netdev_priv(ndev);
684 
685 	switch (mdp->speed) {
686 	case 10: /* 10BASE */
687 		sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
688 		break;
689 	case 100:/* 100BASE */
690 		sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
691 		break;
692 	}
693 }
694 
695 /* SH7724 */
696 static struct sh_eth_cpu_data sh7724_data = {
697 	.set_duplex	= sh_eth_set_duplex,
698 	.set_rate	= sh_eth_set_rate_sh7724,
699 
700 	.register_type	= SH_ETH_REG_FAST_SH4,
701 
702 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
703 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
704 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
705 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
706 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
707 			  EESIPR_RMAFIP | EESIPR_RRFIP |
708 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
709 			  EESIPR_PREIP | EESIPR_CERFIP,
710 
711 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
712 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
713 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
714 
715 	.apr		= 1,
716 	.mpr		= 1,
717 	.tpauser	= 1,
718 	.hw_swap	= 1,
719 	.rpadir		= 1,
720 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
721 };
722 
723 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
724 {
725 	struct sh_eth_private *mdp = netdev_priv(ndev);
726 
727 	switch (mdp->speed) {
728 	case 10: /* 10BASE */
729 		sh_eth_write(ndev, 0, RTRATE);
730 		break;
731 	case 100:/* 100BASE */
732 		sh_eth_write(ndev, 1, RTRATE);
733 		break;
734 	}
735 }
736 
737 /* SH7757 */
738 static struct sh_eth_cpu_data sh7757_data = {
739 	.set_duplex	= sh_eth_set_duplex,
740 	.set_rate	= sh_eth_set_rate_sh7757,
741 
742 	.register_type	= SH_ETH_REG_FAST_SH4,
743 
744 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
745 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
746 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
747 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
748 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
749 			  EESIPR_CEEFIP | EESIPR_CELFIP |
750 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
751 			  EESIPR_PREIP | EESIPR_CERFIP,
752 
753 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
754 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
755 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
756 
757 	.irq_flags	= IRQF_SHARED,
758 	.apr		= 1,
759 	.mpr		= 1,
760 	.tpauser	= 1,
761 	.hw_swap	= 1,
762 	.no_ade		= 1,
763 	.rpadir		= 1,
764 	.rpadir_value   = 2 << 16,
765 	.rtrate		= 1,
766 };
767 
768 #define SH_GIGA_ETH_BASE	0xfee00000UL
769 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
770 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
771 static void sh_eth_chip_reset_giga(struct net_device *ndev)
772 {
773 	u32 mahr[2], malr[2];
774 	int i;
775 
776 	/* save MAHR and MALR */
777 	for (i = 0; i < 2; i++) {
778 		malr[i] = ioread32((void *)GIGA_MALR(i));
779 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
780 	}
781 
782 	sh_eth_chip_reset(ndev);
783 
784 	/* restore MAHR and MALR */
785 	for (i = 0; i < 2; i++) {
786 		iowrite32(malr[i], (void *)GIGA_MALR(i));
787 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
788 	}
789 }
790 
791 static void sh_eth_set_rate_giga(struct net_device *ndev)
792 {
793 	struct sh_eth_private *mdp = netdev_priv(ndev);
794 
795 	switch (mdp->speed) {
796 	case 10: /* 10BASE */
797 		sh_eth_write(ndev, 0x00000000, GECMR);
798 		break;
799 	case 100:/* 100BASE */
800 		sh_eth_write(ndev, 0x00000010, GECMR);
801 		break;
802 	case 1000: /* 1000BASE */
803 		sh_eth_write(ndev, 0x00000020, GECMR);
804 		break;
805 	}
806 }
807 
808 /* SH7757(GETHERC) */
809 static struct sh_eth_cpu_data sh7757_data_giga = {
810 	.chip_reset	= sh_eth_chip_reset_giga,
811 	.set_duplex	= sh_eth_set_duplex,
812 	.set_rate	= sh_eth_set_rate_giga,
813 
814 	.register_type	= SH_ETH_REG_GIGABIT,
815 
816 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
817 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
818 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
819 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
820 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
821 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
822 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
823 			  EESIPR_CEEFIP | EESIPR_CELFIP |
824 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
825 			  EESIPR_PREIP | EESIPR_CERFIP,
826 
827 	.tx_check	= EESR_TC1 | EESR_FTC,
828 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
829 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
830 			  EESR_TDE,
831 	.fdr_value	= 0x0000072f,
832 
833 	.irq_flags	= IRQF_SHARED,
834 	.apr		= 1,
835 	.mpr		= 1,
836 	.tpauser	= 1,
837 	.bculr		= 1,
838 	.hw_swap	= 1,
839 	.rpadir		= 1,
840 	.rpadir_value   = 2 << 16,
841 	.no_trimd	= 1,
842 	.no_ade		= 1,
843 	.tsu		= 1,
844 };
845 
846 /* SH7734 */
847 static struct sh_eth_cpu_data sh7734_data = {
848 	.chip_reset	= sh_eth_chip_reset,
849 	.set_duplex	= sh_eth_set_duplex,
850 	.set_rate	= sh_eth_set_rate_gether,
851 
852 	.register_type	= SH_ETH_REG_GIGABIT,
853 
854 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
855 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
856 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
857 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
858 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
859 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
860 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
861 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
862 			  EESIPR_PREIP | EESIPR_CERFIP,
863 
864 	.tx_check	= EESR_TC1 | EESR_FTC,
865 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
866 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
867 			  EESR_TDE,
868 
869 	.apr		= 1,
870 	.mpr		= 1,
871 	.tpauser	= 1,
872 	.bculr		= 1,
873 	.hw_swap	= 1,
874 	.no_trimd	= 1,
875 	.no_ade		= 1,
876 	.tsu		= 1,
877 	.hw_checksum	= 1,
878 	.select_mii	= 1,
879 	.magic		= 1,
880 };
881 
882 /* SH7763 */
883 static struct sh_eth_cpu_data sh7763_data = {
884 	.chip_reset	= sh_eth_chip_reset,
885 	.set_duplex	= sh_eth_set_duplex,
886 	.set_rate	= sh_eth_set_rate_gether,
887 
888 	.register_type	= SH_ETH_REG_GIGABIT,
889 
890 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
891 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
892 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
893 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
894 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
895 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
896 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
897 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
898 			  EESIPR_PREIP | EESIPR_CERFIP,
899 
900 	.tx_check	= EESR_TC1 | EESR_FTC,
901 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
902 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
903 
904 	.apr		= 1,
905 	.mpr		= 1,
906 	.tpauser	= 1,
907 	.bculr		= 1,
908 	.hw_swap	= 1,
909 	.no_trimd	= 1,
910 	.no_ade		= 1,
911 	.tsu		= 1,
912 	.irq_flags	= IRQF_SHARED,
913 	.magic		= 1,
914 };
915 
916 static struct sh_eth_cpu_data sh7619_data = {
917 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
918 
919 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
920 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
921 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
922 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
923 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
924 			  EESIPR_CEEFIP | EESIPR_CELFIP |
925 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
926 			  EESIPR_PREIP | EESIPR_CERFIP,
927 
928 	.apr		= 1,
929 	.mpr		= 1,
930 	.tpauser	= 1,
931 	.hw_swap	= 1,
932 };
933 
934 static struct sh_eth_cpu_data sh771x_data = {
935 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
936 
937 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
938 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
939 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
940 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
941 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
942 			  EESIPR_CEEFIP | EESIPR_CELFIP |
943 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
944 			  EESIPR_PREIP | EESIPR_CERFIP,
945 	.tsu		= 1,
946 };
947 
948 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
949 {
950 	if (!cd->ecsr_value)
951 		cd->ecsr_value = DEFAULT_ECSR_INIT;
952 
953 	if (!cd->ecsipr_value)
954 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
955 
956 	if (!cd->fcftr_value)
957 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
958 				  DEFAULT_FIFO_F_D_RFD;
959 
960 	if (!cd->fdr_value)
961 		cd->fdr_value = DEFAULT_FDR_INIT;
962 
963 	if (!cd->tx_check)
964 		cd->tx_check = DEFAULT_TX_CHECK;
965 
966 	if (!cd->eesr_err_check)
967 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
968 
969 	if (!cd->trscer_err_mask)
970 		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
971 }
972 
973 static int sh_eth_check_reset(struct net_device *ndev)
974 {
975 	int ret = 0;
976 	int cnt = 100;
977 
978 	while (cnt > 0) {
979 		if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
980 			break;
981 		mdelay(1);
982 		cnt--;
983 	}
984 	if (cnt <= 0) {
985 		netdev_err(ndev, "Device reset failed\n");
986 		ret = -ETIMEDOUT;
987 	}
988 	return ret;
989 }
990 
991 static int sh_eth_reset(struct net_device *ndev)
992 {
993 	struct sh_eth_private *mdp = netdev_priv(ndev);
994 	int ret = 0;
995 
996 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
997 		sh_eth_write(ndev, EDSR_ENALL, EDSR);
998 		sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
999 
1000 		ret = sh_eth_check_reset(ndev);
1001 		if (ret)
1002 			return ret;
1003 
1004 		/* Table Init */
1005 		sh_eth_write(ndev, 0x0, TDLAR);
1006 		sh_eth_write(ndev, 0x0, TDFAR);
1007 		sh_eth_write(ndev, 0x0, TDFXR);
1008 		sh_eth_write(ndev, 0x0, TDFFR);
1009 		sh_eth_write(ndev, 0x0, RDLAR);
1010 		sh_eth_write(ndev, 0x0, RDFAR);
1011 		sh_eth_write(ndev, 0x0, RDFXR);
1012 		sh_eth_write(ndev, 0x0, RDFFR);
1013 
1014 		/* Reset HW CRC register */
1015 		if (mdp->cd->hw_checksum)
1016 			sh_eth_write(ndev, 0x0, CSMR);
1017 
1018 		/* Select MII mode */
1019 		if (mdp->cd->select_mii)
1020 			sh_eth_select_mii(ndev);
1021 	} else {
1022 		sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
1023 		mdelay(3);
1024 		sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
1025 	}
1026 
1027 	return ret;
1028 }
1029 
1030 static void sh_eth_set_receive_align(struct sk_buff *skb)
1031 {
1032 	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
1033 
1034 	if (reserve)
1035 		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
1036 }
1037 
1038 /* Program the hardware MAC address from dev->dev_addr. */
1039 static void update_mac_address(struct net_device *ndev)
1040 {
1041 	sh_eth_write(ndev,
1042 		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
1043 		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
1044 	sh_eth_write(ndev,
1045 		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1046 }
1047 
1048 /* Get MAC address from SuperH MAC address register
1049  *
1050  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1051  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1052  * When you want use this device, you must set MAC address in bootloader.
1053  *
1054  */
1055 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1056 {
1057 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1058 		memcpy(ndev->dev_addr, mac, ETH_ALEN);
1059 	} else {
1060 		u32 mahr = sh_eth_read(ndev, MAHR);
1061 		u32 malr = sh_eth_read(ndev, MALR);
1062 
1063 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
1064 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
1065 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
1066 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
1067 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
1068 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
1069 	}
1070 }
1071 
1072 static u32 sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
1073 {
1074 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
1075 		return EDTRR_TRNS_GETHER;
1076 	else
1077 		return EDTRR_TRNS_ETHER;
1078 }
1079 
1080 struct bb_info {
1081 	void (*set_gate)(void *addr);
1082 	struct mdiobb_ctrl ctrl;
1083 	void *addr;
1084 };
1085 
1086 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1087 {
1088 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1089 	u32 pir;
1090 
1091 	if (bitbang->set_gate)
1092 		bitbang->set_gate(bitbang->addr);
1093 
1094 	pir = ioread32(bitbang->addr);
1095 	if (set)
1096 		pir |=  mask;
1097 	else
1098 		pir &= ~mask;
1099 	iowrite32(pir, bitbang->addr);
1100 }
1101 
1102 /* Data I/O pin control */
1103 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1104 {
1105 	sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1106 }
1107 
1108 /* Set bit data*/
1109 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1110 {
1111 	sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1112 }
1113 
1114 /* Get bit data*/
1115 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1116 {
1117 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1118 
1119 	if (bitbang->set_gate)
1120 		bitbang->set_gate(bitbang->addr);
1121 
1122 	return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1123 }
1124 
1125 /* MDC pin control */
1126 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1127 {
1128 	sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1129 }
1130 
1131 /* mdio bus control struct */
1132 static struct mdiobb_ops bb_ops = {
1133 	.owner = THIS_MODULE,
1134 	.set_mdc = sh_mdc_ctrl,
1135 	.set_mdio_dir = sh_mmd_ctrl,
1136 	.set_mdio_data = sh_set_mdio,
1137 	.get_mdio_data = sh_get_mdio,
1138 };
1139 
1140 /* free Tx skb function */
1141 static int sh_eth_tx_free(struct net_device *ndev, bool sent_only)
1142 {
1143 	struct sh_eth_private *mdp = netdev_priv(ndev);
1144 	struct sh_eth_txdesc *txdesc;
1145 	int free_num = 0;
1146 	int entry;
1147 	bool sent;
1148 
1149 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1150 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1151 		txdesc = &mdp->tx_ring[entry];
1152 		sent = !(txdesc->status & cpu_to_le32(TD_TACT));
1153 		if (sent_only && !sent)
1154 			break;
1155 		/* TACT bit must be checked before all the following reads */
1156 		dma_rmb();
1157 		netif_info(mdp, tx_done, ndev,
1158 			   "tx entry %d status 0x%08x\n",
1159 			   entry, le32_to_cpu(txdesc->status));
1160 		/* Free the original skb. */
1161 		if (mdp->tx_skbuff[entry]) {
1162 			dma_unmap_single(&mdp->pdev->dev,
1163 					 le32_to_cpu(txdesc->addr),
1164 					 le32_to_cpu(txdesc->len) >> 16,
1165 					 DMA_TO_DEVICE);
1166 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1167 			mdp->tx_skbuff[entry] = NULL;
1168 			free_num++;
1169 		}
1170 		txdesc->status = cpu_to_le32(TD_TFP);
1171 		if (entry >= mdp->num_tx_ring - 1)
1172 			txdesc->status |= cpu_to_le32(TD_TDLE);
1173 
1174 		if (sent) {
1175 			ndev->stats.tx_packets++;
1176 			ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1177 		}
1178 	}
1179 	return free_num;
1180 }
1181 
1182 /* free skb and descriptor buffer */
1183 static void sh_eth_ring_free(struct net_device *ndev)
1184 {
1185 	struct sh_eth_private *mdp = netdev_priv(ndev);
1186 	int ringsize, i;
1187 
1188 	if (mdp->rx_ring) {
1189 		for (i = 0; i < mdp->num_rx_ring; i++) {
1190 			if (mdp->rx_skbuff[i]) {
1191 				struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i];
1192 
1193 				dma_unmap_single(&mdp->pdev->dev,
1194 						 le32_to_cpu(rxdesc->addr),
1195 						 ALIGN(mdp->rx_buf_sz, 32),
1196 						 DMA_FROM_DEVICE);
1197 			}
1198 		}
1199 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1200 		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->rx_ring,
1201 				  mdp->rx_desc_dma);
1202 		mdp->rx_ring = NULL;
1203 	}
1204 
1205 	/* Free Rx skb ringbuffer */
1206 	if (mdp->rx_skbuff) {
1207 		for (i = 0; i < mdp->num_rx_ring; i++)
1208 			dev_kfree_skb(mdp->rx_skbuff[i]);
1209 	}
1210 	kfree(mdp->rx_skbuff);
1211 	mdp->rx_skbuff = NULL;
1212 
1213 	if (mdp->tx_ring) {
1214 		sh_eth_tx_free(ndev, false);
1215 
1216 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1217 		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->tx_ring,
1218 				  mdp->tx_desc_dma);
1219 		mdp->tx_ring = NULL;
1220 	}
1221 
1222 	/* Free Tx skb ringbuffer */
1223 	kfree(mdp->tx_skbuff);
1224 	mdp->tx_skbuff = NULL;
1225 }
1226 
1227 /* format skb and descriptor buffer */
1228 static void sh_eth_ring_format(struct net_device *ndev)
1229 {
1230 	struct sh_eth_private *mdp = netdev_priv(ndev);
1231 	int i;
1232 	struct sk_buff *skb;
1233 	struct sh_eth_rxdesc *rxdesc = NULL;
1234 	struct sh_eth_txdesc *txdesc = NULL;
1235 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1236 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1237 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1238 	dma_addr_t dma_addr;
1239 	u32 buf_len;
1240 
1241 	mdp->cur_rx = 0;
1242 	mdp->cur_tx = 0;
1243 	mdp->dirty_rx = 0;
1244 	mdp->dirty_tx = 0;
1245 
1246 	memset(mdp->rx_ring, 0, rx_ringsize);
1247 
1248 	/* build Rx ring buffer */
1249 	for (i = 0; i < mdp->num_rx_ring; i++) {
1250 		/* skb */
1251 		mdp->rx_skbuff[i] = NULL;
1252 		skb = netdev_alloc_skb(ndev, skbuff_size);
1253 		if (skb == NULL)
1254 			break;
1255 		sh_eth_set_receive_align(skb);
1256 
1257 		/* The size of the buffer is a multiple of 32 bytes. */
1258 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1259 		dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len,
1260 					  DMA_FROM_DEVICE);
1261 		if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1262 			kfree_skb(skb);
1263 			break;
1264 		}
1265 		mdp->rx_skbuff[i] = skb;
1266 
1267 		/* RX descriptor */
1268 		rxdesc = &mdp->rx_ring[i];
1269 		rxdesc->len = cpu_to_le32(buf_len << 16);
1270 		rxdesc->addr = cpu_to_le32(dma_addr);
1271 		rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1272 
1273 		/* Rx descriptor address set */
1274 		if (i == 0) {
1275 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1276 			if (sh_eth_is_gether(mdp) ||
1277 			    sh_eth_is_rz_fast_ether(mdp))
1278 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1279 		}
1280 	}
1281 
1282 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1283 
1284 	/* Mark the last entry as wrapping the ring. */
1285 	if (rxdesc)
1286 		rxdesc->status |= cpu_to_le32(RD_RDLE);
1287 
1288 	memset(mdp->tx_ring, 0, tx_ringsize);
1289 
1290 	/* build Tx ring buffer */
1291 	for (i = 0; i < mdp->num_tx_ring; i++) {
1292 		mdp->tx_skbuff[i] = NULL;
1293 		txdesc = &mdp->tx_ring[i];
1294 		txdesc->status = cpu_to_le32(TD_TFP);
1295 		txdesc->len = cpu_to_le32(0);
1296 		if (i == 0) {
1297 			/* Tx descriptor address set */
1298 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1299 			if (sh_eth_is_gether(mdp) ||
1300 			    sh_eth_is_rz_fast_ether(mdp))
1301 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1302 		}
1303 	}
1304 
1305 	txdesc->status |= cpu_to_le32(TD_TDLE);
1306 }
1307 
1308 /* Get skb and descriptor buffer */
1309 static int sh_eth_ring_init(struct net_device *ndev)
1310 {
1311 	struct sh_eth_private *mdp = netdev_priv(ndev);
1312 	int rx_ringsize, tx_ringsize;
1313 
1314 	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1315 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1316 	 * the first 2 bytes, and +16 gets room for the status word from the
1317 	 * card.
1318 	 */
1319 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1320 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1321 	if (mdp->cd->rpadir)
1322 		mdp->rx_buf_sz += NET_IP_ALIGN;
1323 
1324 	/* Allocate RX and TX skb rings */
1325 	mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1326 				 GFP_KERNEL);
1327 	if (!mdp->rx_skbuff)
1328 		return -ENOMEM;
1329 
1330 	mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1331 				 GFP_KERNEL);
1332 	if (!mdp->tx_skbuff)
1333 		goto ring_free;
1334 
1335 	/* Allocate all Rx descriptors. */
1336 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1337 	mdp->rx_ring = dma_alloc_coherent(&mdp->pdev->dev, rx_ringsize,
1338 					  &mdp->rx_desc_dma, GFP_KERNEL);
1339 	if (!mdp->rx_ring)
1340 		goto ring_free;
1341 
1342 	mdp->dirty_rx = 0;
1343 
1344 	/* Allocate all Tx descriptors. */
1345 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1346 	mdp->tx_ring = dma_alloc_coherent(&mdp->pdev->dev, tx_ringsize,
1347 					  &mdp->tx_desc_dma, GFP_KERNEL);
1348 	if (!mdp->tx_ring)
1349 		goto ring_free;
1350 	return 0;
1351 
1352 ring_free:
1353 	/* Free Rx and Tx skb ring buffer and DMA buffer */
1354 	sh_eth_ring_free(ndev);
1355 
1356 	return -ENOMEM;
1357 }
1358 
1359 static int sh_eth_dev_init(struct net_device *ndev)
1360 {
1361 	struct sh_eth_private *mdp = netdev_priv(ndev);
1362 	int ret;
1363 
1364 	/* Soft Reset */
1365 	ret = sh_eth_reset(ndev);
1366 	if (ret)
1367 		return ret;
1368 
1369 	if (mdp->cd->rmiimode)
1370 		sh_eth_write(ndev, 0x1, RMIIMODE);
1371 
1372 	/* Descriptor format */
1373 	sh_eth_ring_format(ndev);
1374 	if (mdp->cd->rpadir)
1375 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1376 
1377 	/* all sh_eth int mask */
1378 	sh_eth_write(ndev, 0, EESIPR);
1379 
1380 #if defined(__LITTLE_ENDIAN)
1381 	if (mdp->cd->hw_swap)
1382 		sh_eth_write(ndev, EDMR_EL, EDMR);
1383 	else
1384 #endif
1385 		sh_eth_write(ndev, 0, EDMR);
1386 
1387 	/* FIFO size set */
1388 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1389 	sh_eth_write(ndev, 0, TFTR);
1390 
1391 	/* Frame recv control (enable multiple-packets per rx irq) */
1392 	sh_eth_write(ndev, RMCR_RNC, RMCR);
1393 
1394 	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1395 
1396 	if (mdp->cd->bculr)
1397 		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1398 
1399 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1400 
1401 	if (!mdp->cd->no_trimd)
1402 		sh_eth_write(ndev, 0, TRIMD);
1403 
1404 	/* Recv frame limit set register */
1405 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1406 		     RFLR);
1407 
1408 	sh_eth_modify(ndev, EESR, 0, 0);
1409 	mdp->irq_enabled = true;
1410 	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1411 
1412 	/* PAUSE Prohibition */
1413 	sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1414 		     ECMR_TE | ECMR_RE, ECMR);
1415 
1416 	if (mdp->cd->set_rate)
1417 		mdp->cd->set_rate(ndev);
1418 
1419 	/* E-MAC Status Register clear */
1420 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1421 
1422 	/* E-MAC Interrupt Enable register */
1423 	sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1424 
1425 	/* Set MAC address */
1426 	update_mac_address(ndev);
1427 
1428 	/* mask reset */
1429 	if (mdp->cd->apr)
1430 		sh_eth_write(ndev, APR_AP, APR);
1431 	if (mdp->cd->mpr)
1432 		sh_eth_write(ndev, MPR_MP, MPR);
1433 	if (mdp->cd->tpauser)
1434 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1435 
1436 	/* Setting the Rx mode will start the Rx process. */
1437 	sh_eth_write(ndev, EDRRR_R, EDRRR);
1438 
1439 	return ret;
1440 }
1441 
1442 static void sh_eth_dev_exit(struct net_device *ndev)
1443 {
1444 	struct sh_eth_private *mdp = netdev_priv(ndev);
1445 	int i;
1446 
1447 	/* Deactivate all TX descriptors, so DMA should stop at next
1448 	 * packet boundary if it's currently running
1449 	 */
1450 	for (i = 0; i < mdp->num_tx_ring; i++)
1451 		mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1452 
1453 	/* Disable TX FIFO egress to MAC */
1454 	sh_eth_rcv_snd_disable(ndev);
1455 
1456 	/* Stop RX DMA at next packet boundary */
1457 	sh_eth_write(ndev, 0, EDRRR);
1458 
1459 	/* Aside from TX DMA, we can't tell when the hardware is
1460 	 * really stopped, so we need to reset to make sure.
1461 	 * Before doing that, wait for long enough to *probably*
1462 	 * finish transmitting the last packet and poll stats.
1463 	 */
1464 	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1465 	sh_eth_get_stats(ndev);
1466 	sh_eth_reset(ndev);
1467 
1468 	/* Set MAC address again */
1469 	update_mac_address(ndev);
1470 }
1471 
1472 /* Packet receive function */
1473 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1474 {
1475 	struct sh_eth_private *mdp = netdev_priv(ndev);
1476 	struct sh_eth_rxdesc *rxdesc;
1477 
1478 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1479 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1480 	int limit;
1481 	struct sk_buff *skb;
1482 	u32 desc_status;
1483 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1484 	dma_addr_t dma_addr;
1485 	u16 pkt_len;
1486 	u32 buf_len;
1487 
1488 	boguscnt = min(boguscnt, *quota);
1489 	limit = boguscnt;
1490 	rxdesc = &mdp->rx_ring[entry];
1491 	while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1492 		/* RACT bit must be checked before all the following reads */
1493 		dma_rmb();
1494 		desc_status = le32_to_cpu(rxdesc->status);
1495 		pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1496 
1497 		if (--boguscnt < 0)
1498 			break;
1499 
1500 		netif_info(mdp, rx_status, ndev,
1501 			   "rx entry %d status 0x%08x len %d\n",
1502 			   entry, desc_status, pkt_len);
1503 
1504 		if (!(desc_status & RDFEND))
1505 			ndev->stats.rx_length_errors++;
1506 
1507 		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1508 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1509 		 * bit 0. However, in case of the R8A7740 and R7S72100
1510 		 * the RFS bits are from bit 25 to bit 16. So, the
1511 		 * driver needs right shifting by 16.
1512 		 */
1513 		if (mdp->cd->hw_checksum)
1514 			desc_status >>= 16;
1515 
1516 		skb = mdp->rx_skbuff[entry];
1517 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1518 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1519 			ndev->stats.rx_errors++;
1520 			if (desc_status & RD_RFS1)
1521 				ndev->stats.rx_crc_errors++;
1522 			if (desc_status & RD_RFS2)
1523 				ndev->stats.rx_frame_errors++;
1524 			if (desc_status & RD_RFS3)
1525 				ndev->stats.rx_length_errors++;
1526 			if (desc_status & RD_RFS4)
1527 				ndev->stats.rx_length_errors++;
1528 			if (desc_status & RD_RFS6)
1529 				ndev->stats.rx_missed_errors++;
1530 			if (desc_status & RD_RFS10)
1531 				ndev->stats.rx_over_errors++;
1532 		} else	if (skb) {
1533 			dma_addr = le32_to_cpu(rxdesc->addr);
1534 			if (!mdp->cd->hw_swap)
1535 				sh_eth_soft_swap(
1536 					phys_to_virt(ALIGN(dma_addr, 4)),
1537 					pkt_len + 2);
1538 			mdp->rx_skbuff[entry] = NULL;
1539 			if (mdp->cd->rpadir)
1540 				skb_reserve(skb, NET_IP_ALIGN);
1541 			dma_unmap_single(&mdp->pdev->dev, dma_addr,
1542 					 ALIGN(mdp->rx_buf_sz, 32),
1543 					 DMA_FROM_DEVICE);
1544 			skb_put(skb, pkt_len);
1545 			skb->protocol = eth_type_trans(skb, ndev);
1546 			netif_receive_skb(skb);
1547 			ndev->stats.rx_packets++;
1548 			ndev->stats.rx_bytes += pkt_len;
1549 			if (desc_status & RD_RFS8)
1550 				ndev->stats.multicast++;
1551 		}
1552 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1553 		rxdesc = &mdp->rx_ring[entry];
1554 	}
1555 
1556 	/* Refill the Rx ring buffers. */
1557 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1558 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1559 		rxdesc = &mdp->rx_ring[entry];
1560 		/* The size of the buffer is 32 byte boundary. */
1561 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1562 		rxdesc->len = cpu_to_le32(buf_len << 16);
1563 
1564 		if (mdp->rx_skbuff[entry] == NULL) {
1565 			skb = netdev_alloc_skb(ndev, skbuff_size);
1566 			if (skb == NULL)
1567 				break;	/* Better luck next round. */
1568 			sh_eth_set_receive_align(skb);
1569 			dma_addr = dma_map_single(&mdp->pdev->dev, skb->data,
1570 						  buf_len, DMA_FROM_DEVICE);
1571 			if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1572 				kfree_skb(skb);
1573 				break;
1574 			}
1575 			mdp->rx_skbuff[entry] = skb;
1576 
1577 			skb_checksum_none_assert(skb);
1578 			rxdesc->addr = cpu_to_le32(dma_addr);
1579 		}
1580 		dma_wmb(); /* RACT bit must be set after all the above writes */
1581 		if (entry >= mdp->num_rx_ring - 1)
1582 			rxdesc->status |=
1583 				cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1584 		else
1585 			rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1586 	}
1587 
1588 	/* Restart Rx engine if stopped. */
1589 	/* If we don't need to check status, don't. -KDU */
1590 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1591 		/* fix the values for the next receiving if RDE is set */
1592 		if (intr_status & EESR_RDE &&
1593 		    mdp->reg_offset[RDFAR] != SH_ETH_OFFSET_INVALID) {
1594 			u32 count = (sh_eth_read(ndev, RDFAR) -
1595 				     sh_eth_read(ndev, RDLAR)) >> 4;
1596 
1597 			mdp->cur_rx = count;
1598 			mdp->dirty_rx = count;
1599 		}
1600 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1601 	}
1602 
1603 	*quota -= limit - boguscnt - 1;
1604 
1605 	return *quota <= 0;
1606 }
1607 
1608 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1609 {
1610 	/* disable tx and rx */
1611 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1612 }
1613 
1614 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1615 {
1616 	/* enable tx and rx */
1617 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1618 }
1619 
1620 /* E-MAC interrupt handler */
1621 static void sh_eth_emac_interrupt(struct net_device *ndev)
1622 {
1623 	struct sh_eth_private *mdp = netdev_priv(ndev);
1624 	u32 felic_stat;
1625 	u32 link_stat;
1626 
1627 	felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR);
1628 	sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1629 	if (felic_stat & ECSR_ICD)
1630 		ndev->stats.tx_carrier_errors++;
1631 	if (felic_stat & ECSR_MPD)
1632 		pm_wakeup_event(&mdp->pdev->dev, 0);
1633 	if (felic_stat & ECSR_LCHNG) {
1634 		/* Link Changed */
1635 		if (mdp->cd->no_psr || mdp->no_ether_link)
1636 			return;
1637 		link_stat = sh_eth_read(ndev, PSR);
1638 		if (mdp->ether_link_active_low)
1639 			link_stat = ~link_stat;
1640 		if (!(link_stat & PHY_ST_LINK)) {
1641 			sh_eth_rcv_snd_disable(ndev);
1642 		} else {
1643 			/* Link Up */
1644 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0);
1645 			/* clear int */
1646 			sh_eth_modify(ndev, ECSR, 0, 0);
1647 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP);
1648 			/* enable tx and rx */
1649 			sh_eth_rcv_snd_enable(ndev);
1650 		}
1651 	}
1652 }
1653 
1654 /* error control function */
1655 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1656 {
1657 	struct sh_eth_private *mdp = netdev_priv(ndev);
1658 	u32 mask;
1659 
1660 	if (intr_status & EESR_TWB) {
1661 		/* Unused write back interrupt */
1662 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1663 			ndev->stats.tx_aborted_errors++;
1664 			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1665 		}
1666 	}
1667 
1668 	if (intr_status & EESR_RABT) {
1669 		/* Receive Abort int */
1670 		if (intr_status & EESR_RFRMER) {
1671 			/* Receive Frame Overflow int */
1672 			ndev->stats.rx_frame_errors++;
1673 		}
1674 	}
1675 
1676 	if (intr_status & EESR_TDE) {
1677 		/* Transmit Descriptor Empty int */
1678 		ndev->stats.tx_fifo_errors++;
1679 		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1680 	}
1681 
1682 	if (intr_status & EESR_TFE) {
1683 		/* FIFO under flow */
1684 		ndev->stats.tx_fifo_errors++;
1685 		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1686 	}
1687 
1688 	if (intr_status & EESR_RDE) {
1689 		/* Receive Descriptor Empty int */
1690 		ndev->stats.rx_over_errors++;
1691 	}
1692 
1693 	if (intr_status & EESR_RFE) {
1694 		/* Receive FIFO Overflow int */
1695 		ndev->stats.rx_fifo_errors++;
1696 	}
1697 
1698 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1699 		/* Address Error */
1700 		ndev->stats.tx_fifo_errors++;
1701 		netif_err(mdp, tx_err, ndev, "Address Error\n");
1702 	}
1703 
1704 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1705 	if (mdp->cd->no_ade)
1706 		mask &= ~EESR_ADE;
1707 	if (intr_status & mask) {
1708 		/* Tx error */
1709 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1710 
1711 		/* dmesg */
1712 		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1713 			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1714 			   (u32)ndev->state, edtrr);
1715 		/* dirty buffer free */
1716 		sh_eth_tx_free(ndev, true);
1717 
1718 		/* SH7712 BUG */
1719 		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1720 			/* tx dma start */
1721 			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1722 		}
1723 		/* wakeup */
1724 		netif_wake_queue(ndev);
1725 	}
1726 }
1727 
1728 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1729 {
1730 	struct net_device *ndev = netdev;
1731 	struct sh_eth_private *mdp = netdev_priv(ndev);
1732 	struct sh_eth_cpu_data *cd = mdp->cd;
1733 	irqreturn_t ret = IRQ_NONE;
1734 	u32 intr_status, intr_enable;
1735 
1736 	spin_lock(&mdp->lock);
1737 
1738 	/* Get interrupt status */
1739 	intr_status = sh_eth_read(ndev, EESR);
1740 	/* Mask it with the interrupt mask, forcing ECI interrupt  to be always
1741 	 * enabled since it's the one that  comes  thru regardless of the mask,
1742 	 * and  we need to fully handle it  in sh_eth_emac_interrupt() in order
1743 	 * to quench it as it doesn't get cleared by just writing 1 to the  ECI
1744 	 * bit...
1745 	 */
1746 	intr_enable = sh_eth_read(ndev, EESIPR);
1747 	intr_status &= intr_enable | EESIPR_ECIIP;
1748 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI |
1749 			   cd->eesr_err_check))
1750 		ret = IRQ_HANDLED;
1751 	else
1752 		goto out;
1753 
1754 	if (unlikely(!mdp->irq_enabled)) {
1755 		sh_eth_write(ndev, 0, EESIPR);
1756 		goto out;
1757 	}
1758 
1759 	if (intr_status & EESR_RX_CHECK) {
1760 		if (napi_schedule_prep(&mdp->napi)) {
1761 			/* Mask Rx interrupts */
1762 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1763 				     EESIPR);
1764 			__napi_schedule(&mdp->napi);
1765 		} else {
1766 			netdev_warn(ndev,
1767 				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1768 				    intr_status, intr_enable);
1769 		}
1770 	}
1771 
1772 	/* Tx Check */
1773 	if (intr_status & cd->tx_check) {
1774 		/* Clear Tx interrupts */
1775 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1776 
1777 		sh_eth_tx_free(ndev, true);
1778 		netif_wake_queue(ndev);
1779 	}
1780 
1781 	/* E-MAC interrupt */
1782 	if (intr_status & EESR_ECI)
1783 		sh_eth_emac_interrupt(ndev);
1784 
1785 	if (intr_status & cd->eesr_err_check) {
1786 		/* Clear error interrupts */
1787 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1788 
1789 		sh_eth_error(ndev, intr_status);
1790 	}
1791 
1792 out:
1793 	spin_unlock(&mdp->lock);
1794 
1795 	return ret;
1796 }
1797 
1798 static int sh_eth_poll(struct napi_struct *napi, int budget)
1799 {
1800 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1801 						  napi);
1802 	struct net_device *ndev = napi->dev;
1803 	int quota = budget;
1804 	u32 intr_status;
1805 
1806 	for (;;) {
1807 		intr_status = sh_eth_read(ndev, EESR);
1808 		if (!(intr_status & EESR_RX_CHECK))
1809 			break;
1810 		/* Clear Rx interrupts */
1811 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1812 
1813 		if (sh_eth_rx(ndev, intr_status, &quota))
1814 			goto out;
1815 	}
1816 
1817 	napi_complete(napi);
1818 
1819 	/* Reenable Rx interrupts */
1820 	if (mdp->irq_enabled)
1821 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1822 out:
1823 	return budget - quota;
1824 }
1825 
1826 /* PHY state control function */
1827 static void sh_eth_adjust_link(struct net_device *ndev)
1828 {
1829 	struct sh_eth_private *mdp = netdev_priv(ndev);
1830 	struct phy_device *phydev = ndev->phydev;
1831 	int new_state = 0;
1832 
1833 	if (phydev->link) {
1834 		if (phydev->duplex != mdp->duplex) {
1835 			new_state = 1;
1836 			mdp->duplex = phydev->duplex;
1837 			if (mdp->cd->set_duplex)
1838 				mdp->cd->set_duplex(ndev);
1839 		}
1840 
1841 		if (phydev->speed != mdp->speed) {
1842 			new_state = 1;
1843 			mdp->speed = phydev->speed;
1844 			if (mdp->cd->set_rate)
1845 				mdp->cd->set_rate(ndev);
1846 		}
1847 		if (!mdp->link) {
1848 			sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1849 			new_state = 1;
1850 			mdp->link = phydev->link;
1851 			if (mdp->cd->no_psr || mdp->no_ether_link)
1852 				sh_eth_rcv_snd_enable(ndev);
1853 		}
1854 	} else if (mdp->link) {
1855 		new_state = 1;
1856 		mdp->link = 0;
1857 		mdp->speed = 0;
1858 		mdp->duplex = -1;
1859 		if (mdp->cd->no_psr || mdp->no_ether_link)
1860 			sh_eth_rcv_snd_disable(ndev);
1861 	}
1862 
1863 	if (new_state && netif_msg_link(mdp))
1864 		phy_print_status(phydev);
1865 }
1866 
1867 /* PHY init function */
1868 static int sh_eth_phy_init(struct net_device *ndev)
1869 {
1870 	struct device_node *np = ndev->dev.parent->of_node;
1871 	struct sh_eth_private *mdp = netdev_priv(ndev);
1872 	struct phy_device *phydev;
1873 
1874 	mdp->link = 0;
1875 	mdp->speed = 0;
1876 	mdp->duplex = -1;
1877 
1878 	/* Try connect to PHY */
1879 	if (np) {
1880 		struct device_node *pn;
1881 
1882 		pn = of_parse_phandle(np, "phy-handle", 0);
1883 		phydev = of_phy_connect(ndev, pn,
1884 					sh_eth_adjust_link, 0,
1885 					mdp->phy_interface);
1886 
1887 		of_node_put(pn);
1888 		if (!phydev)
1889 			phydev = ERR_PTR(-ENOENT);
1890 	} else {
1891 		char phy_id[MII_BUS_ID_SIZE + 3];
1892 
1893 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1894 			 mdp->mii_bus->id, mdp->phy_id);
1895 
1896 		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1897 				     mdp->phy_interface);
1898 	}
1899 
1900 	if (IS_ERR(phydev)) {
1901 		netdev_err(ndev, "failed to connect PHY\n");
1902 		return PTR_ERR(phydev);
1903 	}
1904 
1905 	/* mask with MAC supported features */
1906 	if (mdp->cd->register_type != SH_ETH_REG_GIGABIT) {
1907 		int err = phy_set_max_speed(phydev, SPEED_100);
1908 		if (err) {
1909 			netdev_err(ndev, "failed to limit PHY to 100 Mbit/s\n");
1910 			phy_disconnect(phydev);
1911 			return err;
1912 		}
1913 	}
1914 
1915 	phy_attached_info(phydev);
1916 
1917 	return 0;
1918 }
1919 
1920 /* PHY control start function */
1921 static int sh_eth_phy_start(struct net_device *ndev)
1922 {
1923 	int ret;
1924 
1925 	ret = sh_eth_phy_init(ndev);
1926 	if (ret)
1927 		return ret;
1928 
1929 	phy_start(ndev->phydev);
1930 
1931 	return 0;
1932 }
1933 
1934 static int sh_eth_get_link_ksettings(struct net_device *ndev,
1935 				     struct ethtool_link_ksettings *cmd)
1936 {
1937 	struct sh_eth_private *mdp = netdev_priv(ndev);
1938 	unsigned long flags;
1939 
1940 	if (!ndev->phydev)
1941 		return -ENODEV;
1942 
1943 	spin_lock_irqsave(&mdp->lock, flags);
1944 	phy_ethtool_ksettings_get(ndev->phydev, cmd);
1945 	spin_unlock_irqrestore(&mdp->lock, flags);
1946 
1947 	return 0;
1948 }
1949 
1950 static int sh_eth_set_link_ksettings(struct net_device *ndev,
1951 				     const struct ethtool_link_ksettings *cmd)
1952 {
1953 	struct sh_eth_private *mdp = netdev_priv(ndev);
1954 	unsigned long flags;
1955 	int ret;
1956 
1957 	if (!ndev->phydev)
1958 		return -ENODEV;
1959 
1960 	spin_lock_irqsave(&mdp->lock, flags);
1961 
1962 	/* disable tx and rx */
1963 	sh_eth_rcv_snd_disable(ndev);
1964 
1965 	ret = phy_ethtool_ksettings_set(ndev->phydev, cmd);
1966 	if (ret)
1967 		goto error_exit;
1968 
1969 	if (cmd->base.duplex == DUPLEX_FULL)
1970 		mdp->duplex = 1;
1971 	else
1972 		mdp->duplex = 0;
1973 
1974 	if (mdp->cd->set_duplex)
1975 		mdp->cd->set_duplex(ndev);
1976 
1977 error_exit:
1978 	mdelay(1);
1979 
1980 	/* enable tx and rx */
1981 	sh_eth_rcv_snd_enable(ndev);
1982 
1983 	spin_unlock_irqrestore(&mdp->lock, flags);
1984 
1985 	return ret;
1986 }
1987 
1988 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
1989  * version must be bumped as well.  Just adding registers up to that
1990  * limit is fine, as long as the existing register indices don't
1991  * change.
1992  */
1993 #define SH_ETH_REG_DUMP_VERSION		1
1994 #define SH_ETH_REG_DUMP_MAX_REGS	256
1995 
1996 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
1997 {
1998 	struct sh_eth_private *mdp = netdev_priv(ndev);
1999 	struct sh_eth_cpu_data *cd = mdp->cd;
2000 	u32 *valid_map;
2001 	size_t len;
2002 
2003 	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
2004 
2005 	/* Dump starts with a bitmap that tells ethtool which
2006 	 * registers are defined for this chip.
2007 	 */
2008 	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
2009 	if (buf) {
2010 		valid_map = buf;
2011 		buf += len;
2012 	} else {
2013 		valid_map = NULL;
2014 	}
2015 
2016 	/* Add a register to the dump, if it has a defined offset.
2017 	 * This automatically skips most undefined registers, but for
2018 	 * some it is also necessary to check a capability flag in
2019 	 * struct sh_eth_cpu_data.
2020 	 */
2021 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
2022 #define add_reg_from(reg, read_expr) do {				\
2023 		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
2024 			if (buf) {					\
2025 				mark_reg_valid(reg);			\
2026 				*buf++ = read_expr;			\
2027 			}						\
2028 			++len;						\
2029 		}							\
2030 	} while (0)
2031 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2032 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2033 
2034 	add_reg(EDSR);
2035 	add_reg(EDMR);
2036 	add_reg(EDTRR);
2037 	add_reg(EDRRR);
2038 	add_reg(EESR);
2039 	add_reg(EESIPR);
2040 	add_reg(TDLAR);
2041 	add_reg(TDFAR);
2042 	add_reg(TDFXR);
2043 	add_reg(TDFFR);
2044 	add_reg(RDLAR);
2045 	add_reg(RDFAR);
2046 	add_reg(RDFXR);
2047 	add_reg(RDFFR);
2048 	add_reg(TRSCER);
2049 	add_reg(RMFCR);
2050 	add_reg(TFTR);
2051 	add_reg(FDR);
2052 	add_reg(RMCR);
2053 	add_reg(TFUCR);
2054 	add_reg(RFOCR);
2055 	if (cd->rmiimode)
2056 		add_reg(RMIIMODE);
2057 	add_reg(FCFTR);
2058 	if (cd->rpadir)
2059 		add_reg(RPADIR);
2060 	if (!cd->no_trimd)
2061 		add_reg(TRIMD);
2062 	add_reg(ECMR);
2063 	add_reg(ECSR);
2064 	add_reg(ECSIPR);
2065 	add_reg(PIR);
2066 	if (!cd->no_psr)
2067 		add_reg(PSR);
2068 	add_reg(RDMLR);
2069 	add_reg(RFLR);
2070 	add_reg(IPGR);
2071 	if (cd->apr)
2072 		add_reg(APR);
2073 	if (cd->mpr)
2074 		add_reg(MPR);
2075 	add_reg(RFCR);
2076 	add_reg(RFCF);
2077 	if (cd->tpauser)
2078 		add_reg(TPAUSER);
2079 	add_reg(TPAUSECR);
2080 	add_reg(GECMR);
2081 	if (cd->bculr)
2082 		add_reg(BCULR);
2083 	add_reg(MAHR);
2084 	add_reg(MALR);
2085 	add_reg(TROCR);
2086 	add_reg(CDCR);
2087 	add_reg(LCCR);
2088 	add_reg(CNDCR);
2089 	add_reg(CEFCR);
2090 	add_reg(FRECR);
2091 	add_reg(TSFRCR);
2092 	add_reg(TLFRCR);
2093 	add_reg(CERCR);
2094 	add_reg(CEECR);
2095 	add_reg(MAFCR);
2096 	if (cd->rtrate)
2097 		add_reg(RTRATE);
2098 	if (cd->hw_checksum)
2099 		add_reg(CSMR);
2100 	if (cd->select_mii)
2101 		add_reg(RMII_MII);
2102 	if (cd->tsu) {
2103 		add_tsu_reg(ARSTR);
2104 		add_tsu_reg(TSU_CTRST);
2105 		add_tsu_reg(TSU_FWEN0);
2106 		add_tsu_reg(TSU_FWEN1);
2107 		add_tsu_reg(TSU_FCM);
2108 		add_tsu_reg(TSU_BSYSL0);
2109 		add_tsu_reg(TSU_BSYSL1);
2110 		add_tsu_reg(TSU_PRISL0);
2111 		add_tsu_reg(TSU_PRISL1);
2112 		add_tsu_reg(TSU_FWSL0);
2113 		add_tsu_reg(TSU_FWSL1);
2114 		add_tsu_reg(TSU_FWSLC);
2115 		add_tsu_reg(TSU_QTAG0);
2116 		add_tsu_reg(TSU_QTAG1);
2117 		add_tsu_reg(TSU_QTAGM0);
2118 		add_tsu_reg(TSU_QTAGM1);
2119 		add_tsu_reg(TSU_FWSR);
2120 		add_tsu_reg(TSU_FWINMK);
2121 		add_tsu_reg(TSU_ADQT0);
2122 		add_tsu_reg(TSU_ADQT1);
2123 		add_tsu_reg(TSU_VTAG0);
2124 		add_tsu_reg(TSU_VTAG1);
2125 		add_tsu_reg(TSU_ADSBSY);
2126 		add_tsu_reg(TSU_TEN);
2127 		add_tsu_reg(TSU_POST1);
2128 		add_tsu_reg(TSU_POST2);
2129 		add_tsu_reg(TSU_POST3);
2130 		add_tsu_reg(TSU_POST4);
2131 		if (mdp->reg_offset[TSU_ADRH0] != SH_ETH_OFFSET_INVALID) {
2132 			/* This is the start of a table, not just a single
2133 			 * register.
2134 			 */
2135 			if (buf) {
2136 				unsigned int i;
2137 
2138 				mark_reg_valid(TSU_ADRH0);
2139 				for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2140 					*buf++ = ioread32(
2141 						mdp->tsu_addr +
2142 						mdp->reg_offset[TSU_ADRH0] +
2143 						i * 4);
2144 			}
2145 			len += SH_ETH_TSU_CAM_ENTRIES * 2;
2146 		}
2147 	}
2148 
2149 #undef mark_reg_valid
2150 #undef add_reg_from
2151 #undef add_reg
2152 #undef add_tsu_reg
2153 
2154 	return len * 4;
2155 }
2156 
2157 static int sh_eth_get_regs_len(struct net_device *ndev)
2158 {
2159 	return __sh_eth_get_regs(ndev, NULL);
2160 }
2161 
2162 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2163 			    void *buf)
2164 {
2165 	struct sh_eth_private *mdp = netdev_priv(ndev);
2166 
2167 	regs->version = SH_ETH_REG_DUMP_VERSION;
2168 
2169 	pm_runtime_get_sync(&mdp->pdev->dev);
2170 	__sh_eth_get_regs(ndev, buf);
2171 	pm_runtime_put_sync(&mdp->pdev->dev);
2172 }
2173 
2174 static int sh_eth_nway_reset(struct net_device *ndev)
2175 {
2176 	struct sh_eth_private *mdp = netdev_priv(ndev);
2177 	unsigned long flags;
2178 	int ret;
2179 
2180 	if (!ndev->phydev)
2181 		return -ENODEV;
2182 
2183 	spin_lock_irqsave(&mdp->lock, flags);
2184 	ret = phy_start_aneg(ndev->phydev);
2185 	spin_unlock_irqrestore(&mdp->lock, flags);
2186 
2187 	return ret;
2188 }
2189 
2190 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2191 {
2192 	struct sh_eth_private *mdp = netdev_priv(ndev);
2193 	return mdp->msg_enable;
2194 }
2195 
2196 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2197 {
2198 	struct sh_eth_private *mdp = netdev_priv(ndev);
2199 	mdp->msg_enable = value;
2200 }
2201 
2202 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2203 	"rx_current", "tx_current",
2204 	"rx_dirty", "tx_dirty",
2205 };
2206 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2207 
2208 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2209 {
2210 	switch (sset) {
2211 	case ETH_SS_STATS:
2212 		return SH_ETH_STATS_LEN;
2213 	default:
2214 		return -EOPNOTSUPP;
2215 	}
2216 }
2217 
2218 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2219 				     struct ethtool_stats *stats, u64 *data)
2220 {
2221 	struct sh_eth_private *mdp = netdev_priv(ndev);
2222 	int i = 0;
2223 
2224 	/* device-specific stats */
2225 	data[i++] = mdp->cur_rx;
2226 	data[i++] = mdp->cur_tx;
2227 	data[i++] = mdp->dirty_rx;
2228 	data[i++] = mdp->dirty_tx;
2229 }
2230 
2231 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2232 {
2233 	switch (stringset) {
2234 	case ETH_SS_STATS:
2235 		memcpy(data, *sh_eth_gstrings_stats,
2236 		       sizeof(sh_eth_gstrings_stats));
2237 		break;
2238 	}
2239 }
2240 
2241 static void sh_eth_get_ringparam(struct net_device *ndev,
2242 				 struct ethtool_ringparam *ring)
2243 {
2244 	struct sh_eth_private *mdp = netdev_priv(ndev);
2245 
2246 	ring->rx_max_pending = RX_RING_MAX;
2247 	ring->tx_max_pending = TX_RING_MAX;
2248 	ring->rx_pending = mdp->num_rx_ring;
2249 	ring->tx_pending = mdp->num_tx_ring;
2250 }
2251 
2252 static int sh_eth_set_ringparam(struct net_device *ndev,
2253 				struct ethtool_ringparam *ring)
2254 {
2255 	struct sh_eth_private *mdp = netdev_priv(ndev);
2256 	int ret;
2257 
2258 	if (ring->tx_pending > TX_RING_MAX ||
2259 	    ring->rx_pending > RX_RING_MAX ||
2260 	    ring->tx_pending < TX_RING_MIN ||
2261 	    ring->rx_pending < RX_RING_MIN)
2262 		return -EINVAL;
2263 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2264 		return -EINVAL;
2265 
2266 	if (netif_running(ndev)) {
2267 		netif_device_detach(ndev);
2268 		netif_tx_disable(ndev);
2269 
2270 		/* Serialise with the interrupt handler and NAPI, then
2271 		 * disable interrupts.  We have to clear the
2272 		 * irq_enabled flag first to ensure that interrupts
2273 		 * won't be re-enabled.
2274 		 */
2275 		mdp->irq_enabled = false;
2276 		synchronize_irq(ndev->irq);
2277 		napi_synchronize(&mdp->napi);
2278 		sh_eth_write(ndev, 0x0000, EESIPR);
2279 
2280 		sh_eth_dev_exit(ndev);
2281 
2282 		/* Free all the skbuffs in the Rx queue and the DMA buffers. */
2283 		sh_eth_ring_free(ndev);
2284 	}
2285 
2286 	/* Set new parameters */
2287 	mdp->num_rx_ring = ring->rx_pending;
2288 	mdp->num_tx_ring = ring->tx_pending;
2289 
2290 	if (netif_running(ndev)) {
2291 		ret = sh_eth_ring_init(ndev);
2292 		if (ret < 0) {
2293 			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2294 				   __func__);
2295 			return ret;
2296 		}
2297 		ret = sh_eth_dev_init(ndev);
2298 		if (ret < 0) {
2299 			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2300 				   __func__);
2301 			return ret;
2302 		}
2303 
2304 		netif_device_attach(ndev);
2305 	}
2306 
2307 	return 0;
2308 }
2309 
2310 static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2311 {
2312 	struct sh_eth_private *mdp = netdev_priv(ndev);
2313 
2314 	wol->supported = 0;
2315 	wol->wolopts = 0;
2316 
2317 	if (mdp->cd->magic) {
2318 		wol->supported = WAKE_MAGIC;
2319 		wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0;
2320 	}
2321 }
2322 
2323 static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2324 {
2325 	struct sh_eth_private *mdp = netdev_priv(ndev);
2326 
2327 	if (!mdp->cd->magic || wol->wolopts & ~WAKE_MAGIC)
2328 		return -EOPNOTSUPP;
2329 
2330 	mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
2331 
2332 	device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled);
2333 
2334 	return 0;
2335 }
2336 
2337 static const struct ethtool_ops sh_eth_ethtool_ops = {
2338 	.get_regs_len	= sh_eth_get_regs_len,
2339 	.get_regs	= sh_eth_get_regs,
2340 	.nway_reset	= sh_eth_nway_reset,
2341 	.get_msglevel	= sh_eth_get_msglevel,
2342 	.set_msglevel	= sh_eth_set_msglevel,
2343 	.get_link	= ethtool_op_get_link,
2344 	.get_strings	= sh_eth_get_strings,
2345 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2346 	.get_sset_count     = sh_eth_get_sset_count,
2347 	.get_ringparam	= sh_eth_get_ringparam,
2348 	.set_ringparam	= sh_eth_set_ringparam,
2349 	.get_link_ksettings = sh_eth_get_link_ksettings,
2350 	.set_link_ksettings = sh_eth_set_link_ksettings,
2351 	.get_wol	= sh_eth_get_wol,
2352 	.set_wol	= sh_eth_set_wol,
2353 };
2354 
2355 /* network device open function */
2356 static int sh_eth_open(struct net_device *ndev)
2357 {
2358 	struct sh_eth_private *mdp = netdev_priv(ndev);
2359 	int ret;
2360 
2361 	pm_runtime_get_sync(&mdp->pdev->dev);
2362 
2363 	napi_enable(&mdp->napi);
2364 
2365 	ret = request_irq(ndev->irq, sh_eth_interrupt,
2366 			  mdp->cd->irq_flags, ndev->name, ndev);
2367 	if (ret) {
2368 		netdev_err(ndev, "Can not assign IRQ number\n");
2369 		goto out_napi_off;
2370 	}
2371 
2372 	/* Descriptor set */
2373 	ret = sh_eth_ring_init(ndev);
2374 	if (ret)
2375 		goto out_free_irq;
2376 
2377 	/* device init */
2378 	ret = sh_eth_dev_init(ndev);
2379 	if (ret)
2380 		goto out_free_irq;
2381 
2382 	/* PHY control start*/
2383 	ret = sh_eth_phy_start(ndev);
2384 	if (ret)
2385 		goto out_free_irq;
2386 
2387 	netif_start_queue(ndev);
2388 
2389 	mdp->is_opened = 1;
2390 
2391 	return ret;
2392 
2393 out_free_irq:
2394 	free_irq(ndev->irq, ndev);
2395 out_napi_off:
2396 	napi_disable(&mdp->napi);
2397 	pm_runtime_put_sync(&mdp->pdev->dev);
2398 	return ret;
2399 }
2400 
2401 /* Timeout function */
2402 static void sh_eth_tx_timeout(struct net_device *ndev)
2403 {
2404 	struct sh_eth_private *mdp = netdev_priv(ndev);
2405 	struct sh_eth_rxdesc *rxdesc;
2406 	int i;
2407 
2408 	netif_stop_queue(ndev);
2409 
2410 	netif_err(mdp, timer, ndev,
2411 		  "transmit timed out, status %8.8x, resetting...\n",
2412 		  sh_eth_read(ndev, EESR));
2413 
2414 	/* tx_errors count up */
2415 	ndev->stats.tx_errors++;
2416 
2417 	/* Free all the skbuffs in the Rx queue. */
2418 	for (i = 0; i < mdp->num_rx_ring; i++) {
2419 		rxdesc = &mdp->rx_ring[i];
2420 		rxdesc->status = cpu_to_le32(0);
2421 		rxdesc->addr = cpu_to_le32(0xBADF00D0);
2422 		dev_kfree_skb(mdp->rx_skbuff[i]);
2423 		mdp->rx_skbuff[i] = NULL;
2424 	}
2425 	for (i = 0; i < mdp->num_tx_ring; i++) {
2426 		dev_kfree_skb(mdp->tx_skbuff[i]);
2427 		mdp->tx_skbuff[i] = NULL;
2428 	}
2429 
2430 	/* device init */
2431 	sh_eth_dev_init(ndev);
2432 
2433 	netif_start_queue(ndev);
2434 }
2435 
2436 /* Packet transmit function */
2437 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2438 {
2439 	struct sh_eth_private *mdp = netdev_priv(ndev);
2440 	struct sh_eth_txdesc *txdesc;
2441 	dma_addr_t dma_addr;
2442 	u32 entry;
2443 	unsigned long flags;
2444 
2445 	spin_lock_irqsave(&mdp->lock, flags);
2446 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2447 		if (!sh_eth_tx_free(ndev, true)) {
2448 			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2449 			netif_stop_queue(ndev);
2450 			spin_unlock_irqrestore(&mdp->lock, flags);
2451 			return NETDEV_TX_BUSY;
2452 		}
2453 	}
2454 	spin_unlock_irqrestore(&mdp->lock, flags);
2455 
2456 	if (skb_put_padto(skb, ETH_ZLEN))
2457 		return NETDEV_TX_OK;
2458 
2459 	entry = mdp->cur_tx % mdp->num_tx_ring;
2460 	mdp->tx_skbuff[entry] = skb;
2461 	txdesc = &mdp->tx_ring[entry];
2462 	/* soft swap. */
2463 	if (!mdp->cd->hw_swap)
2464 		sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2465 	dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, skb->len,
2466 				  DMA_TO_DEVICE);
2467 	if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
2468 		kfree_skb(skb);
2469 		return NETDEV_TX_OK;
2470 	}
2471 	txdesc->addr = cpu_to_le32(dma_addr);
2472 	txdesc->len  = cpu_to_le32(skb->len << 16);
2473 
2474 	dma_wmb(); /* TACT bit must be set after all the above writes */
2475 	if (entry >= mdp->num_tx_ring - 1)
2476 		txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2477 	else
2478 		txdesc->status |= cpu_to_le32(TD_TACT);
2479 
2480 	mdp->cur_tx++;
2481 
2482 	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2483 		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2484 
2485 	return NETDEV_TX_OK;
2486 }
2487 
2488 /* The statistics registers have write-clear behaviour, which means we
2489  * will lose any increment between the read and write.  We mitigate
2490  * this by only clearing when we read a non-zero value, so we will
2491  * never falsely report a total of zero.
2492  */
2493 static void
2494 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2495 {
2496 	u32 delta = sh_eth_read(ndev, reg);
2497 
2498 	if (delta) {
2499 		*stat += delta;
2500 		sh_eth_write(ndev, 0, reg);
2501 	}
2502 }
2503 
2504 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2505 {
2506 	struct sh_eth_private *mdp = netdev_priv(ndev);
2507 
2508 	if (sh_eth_is_rz_fast_ether(mdp))
2509 		return &ndev->stats;
2510 
2511 	if (!mdp->is_opened)
2512 		return &ndev->stats;
2513 
2514 	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2515 	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2516 	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2517 
2518 	if (sh_eth_is_gether(mdp)) {
2519 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2520 				   CERCR);
2521 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2522 				   CEECR);
2523 	} else {
2524 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2525 				   CNDCR);
2526 	}
2527 
2528 	return &ndev->stats;
2529 }
2530 
2531 /* device close function */
2532 static int sh_eth_close(struct net_device *ndev)
2533 {
2534 	struct sh_eth_private *mdp = netdev_priv(ndev);
2535 
2536 	netif_stop_queue(ndev);
2537 
2538 	/* Serialise with the interrupt handler and NAPI, then disable
2539 	 * interrupts.  We have to clear the irq_enabled flag first to
2540 	 * ensure that interrupts won't be re-enabled.
2541 	 */
2542 	mdp->irq_enabled = false;
2543 	synchronize_irq(ndev->irq);
2544 	napi_disable(&mdp->napi);
2545 	sh_eth_write(ndev, 0x0000, EESIPR);
2546 
2547 	sh_eth_dev_exit(ndev);
2548 
2549 	/* PHY Disconnect */
2550 	if (ndev->phydev) {
2551 		phy_stop(ndev->phydev);
2552 		phy_disconnect(ndev->phydev);
2553 	}
2554 
2555 	free_irq(ndev->irq, ndev);
2556 
2557 	/* Free all the skbuffs in the Rx queue and the DMA buffer. */
2558 	sh_eth_ring_free(ndev);
2559 
2560 	pm_runtime_put_sync(&mdp->pdev->dev);
2561 
2562 	mdp->is_opened = 0;
2563 
2564 	return 0;
2565 }
2566 
2567 /* ioctl to device function */
2568 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2569 {
2570 	struct phy_device *phydev = ndev->phydev;
2571 
2572 	if (!netif_running(ndev))
2573 		return -EINVAL;
2574 
2575 	if (!phydev)
2576 		return -ENODEV;
2577 
2578 	return phy_mii_ioctl(phydev, rq, cmd);
2579 }
2580 
2581 static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu)
2582 {
2583 	if (netif_running(ndev))
2584 		return -EBUSY;
2585 
2586 	ndev->mtu = new_mtu;
2587 	netdev_update_features(ndev);
2588 
2589 	return 0;
2590 }
2591 
2592 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2593 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2594 					    int entry)
2595 {
2596 	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2597 }
2598 
2599 static u32 sh_eth_tsu_get_post_mask(int entry)
2600 {
2601 	return 0x0f << (28 - ((entry % 8) * 4));
2602 }
2603 
2604 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2605 {
2606 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2607 }
2608 
2609 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2610 					     int entry)
2611 {
2612 	struct sh_eth_private *mdp = netdev_priv(ndev);
2613 	u32 tmp;
2614 	void *reg_offset;
2615 
2616 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2617 	tmp = ioread32(reg_offset);
2618 	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2619 }
2620 
2621 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2622 					      int entry)
2623 {
2624 	struct sh_eth_private *mdp = netdev_priv(ndev);
2625 	u32 post_mask, ref_mask, tmp;
2626 	void *reg_offset;
2627 
2628 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2629 	post_mask = sh_eth_tsu_get_post_mask(entry);
2630 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2631 
2632 	tmp = ioread32(reg_offset);
2633 	iowrite32(tmp & ~post_mask, reg_offset);
2634 
2635 	/* If other port enables, the function returns "true" */
2636 	return tmp & ref_mask;
2637 }
2638 
2639 static int sh_eth_tsu_busy(struct net_device *ndev)
2640 {
2641 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2642 	struct sh_eth_private *mdp = netdev_priv(ndev);
2643 
2644 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2645 		udelay(10);
2646 		timeout--;
2647 		if (timeout <= 0) {
2648 			netdev_err(ndev, "%s: timeout\n", __func__);
2649 			return -ETIMEDOUT;
2650 		}
2651 	}
2652 
2653 	return 0;
2654 }
2655 
2656 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2657 				  const u8 *addr)
2658 {
2659 	u32 val;
2660 
2661 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2662 	iowrite32(val, reg);
2663 	if (sh_eth_tsu_busy(ndev) < 0)
2664 		return -EBUSY;
2665 
2666 	val = addr[4] << 8 | addr[5];
2667 	iowrite32(val, reg + 4);
2668 	if (sh_eth_tsu_busy(ndev) < 0)
2669 		return -EBUSY;
2670 
2671 	return 0;
2672 }
2673 
2674 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2675 {
2676 	u32 val;
2677 
2678 	val = ioread32(reg);
2679 	addr[0] = (val >> 24) & 0xff;
2680 	addr[1] = (val >> 16) & 0xff;
2681 	addr[2] = (val >> 8) & 0xff;
2682 	addr[3] = val & 0xff;
2683 	val = ioread32(reg + 4);
2684 	addr[4] = (val >> 8) & 0xff;
2685 	addr[5] = val & 0xff;
2686 }
2687 
2688 
2689 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2690 {
2691 	struct sh_eth_private *mdp = netdev_priv(ndev);
2692 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2693 	int i;
2694 	u8 c_addr[ETH_ALEN];
2695 
2696 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2697 		sh_eth_tsu_read_entry(reg_offset, c_addr);
2698 		if (ether_addr_equal(addr, c_addr))
2699 			return i;
2700 	}
2701 
2702 	return -ENOENT;
2703 }
2704 
2705 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2706 {
2707 	u8 blank[ETH_ALEN];
2708 	int entry;
2709 
2710 	memset(blank, 0, sizeof(blank));
2711 	entry = sh_eth_tsu_find_entry(ndev, blank);
2712 	return (entry < 0) ? -ENOMEM : entry;
2713 }
2714 
2715 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2716 					      int entry)
2717 {
2718 	struct sh_eth_private *mdp = netdev_priv(ndev);
2719 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2720 	int ret;
2721 	u8 blank[ETH_ALEN];
2722 
2723 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2724 			 ~(1 << (31 - entry)), TSU_TEN);
2725 
2726 	memset(blank, 0, sizeof(blank));
2727 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2728 	if (ret < 0)
2729 		return ret;
2730 	return 0;
2731 }
2732 
2733 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2734 {
2735 	struct sh_eth_private *mdp = netdev_priv(ndev);
2736 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2737 	int i, ret;
2738 
2739 	if (!mdp->cd->tsu)
2740 		return 0;
2741 
2742 	i = sh_eth_tsu_find_entry(ndev, addr);
2743 	if (i < 0) {
2744 		/* No entry found, create one */
2745 		i = sh_eth_tsu_find_empty(ndev);
2746 		if (i < 0)
2747 			return -ENOMEM;
2748 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2749 		if (ret < 0)
2750 			return ret;
2751 
2752 		/* Enable the entry */
2753 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2754 				 (1 << (31 - i)), TSU_TEN);
2755 	}
2756 
2757 	/* Entry found or created, enable POST */
2758 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2759 
2760 	return 0;
2761 }
2762 
2763 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2764 {
2765 	struct sh_eth_private *mdp = netdev_priv(ndev);
2766 	int i, ret;
2767 
2768 	if (!mdp->cd->tsu)
2769 		return 0;
2770 
2771 	i = sh_eth_tsu_find_entry(ndev, addr);
2772 	if (i) {
2773 		/* Entry found */
2774 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2775 			goto done;
2776 
2777 		/* Disable the entry if both ports was disabled */
2778 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2779 		if (ret < 0)
2780 			return ret;
2781 	}
2782 done:
2783 	return 0;
2784 }
2785 
2786 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2787 {
2788 	struct sh_eth_private *mdp = netdev_priv(ndev);
2789 	int i, ret;
2790 
2791 	if (!mdp->cd->tsu)
2792 		return 0;
2793 
2794 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2795 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2796 			continue;
2797 
2798 		/* Disable the entry if both ports was disabled */
2799 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2800 		if (ret < 0)
2801 			return ret;
2802 	}
2803 
2804 	return 0;
2805 }
2806 
2807 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2808 {
2809 	struct sh_eth_private *mdp = netdev_priv(ndev);
2810 	u8 addr[ETH_ALEN];
2811 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2812 	int i;
2813 
2814 	if (!mdp->cd->tsu)
2815 		return;
2816 
2817 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2818 		sh_eth_tsu_read_entry(reg_offset, addr);
2819 		if (is_multicast_ether_addr(addr))
2820 			sh_eth_tsu_del_entry(ndev, addr);
2821 	}
2822 }
2823 
2824 /* Update promiscuous flag and multicast filter */
2825 static void sh_eth_set_rx_mode(struct net_device *ndev)
2826 {
2827 	struct sh_eth_private *mdp = netdev_priv(ndev);
2828 	u32 ecmr_bits;
2829 	int mcast_all = 0;
2830 	unsigned long flags;
2831 
2832 	spin_lock_irqsave(&mdp->lock, flags);
2833 	/* Initial condition is MCT = 1, PRM = 0.
2834 	 * Depending on ndev->flags, set PRM or clear MCT
2835 	 */
2836 	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2837 	if (mdp->cd->tsu)
2838 		ecmr_bits |= ECMR_MCT;
2839 
2840 	if (!(ndev->flags & IFF_MULTICAST)) {
2841 		sh_eth_tsu_purge_mcast(ndev);
2842 		mcast_all = 1;
2843 	}
2844 	if (ndev->flags & IFF_ALLMULTI) {
2845 		sh_eth_tsu_purge_mcast(ndev);
2846 		ecmr_bits &= ~ECMR_MCT;
2847 		mcast_all = 1;
2848 	}
2849 
2850 	if (ndev->flags & IFF_PROMISC) {
2851 		sh_eth_tsu_purge_all(ndev);
2852 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2853 	} else if (mdp->cd->tsu) {
2854 		struct netdev_hw_addr *ha;
2855 		netdev_for_each_mc_addr(ha, ndev) {
2856 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2857 				continue;
2858 
2859 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2860 				if (!mcast_all) {
2861 					sh_eth_tsu_purge_mcast(ndev);
2862 					ecmr_bits &= ~ECMR_MCT;
2863 					mcast_all = 1;
2864 				}
2865 			}
2866 		}
2867 	}
2868 
2869 	/* update the ethernet mode */
2870 	sh_eth_write(ndev, ecmr_bits, ECMR);
2871 
2872 	spin_unlock_irqrestore(&mdp->lock, flags);
2873 }
2874 
2875 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2876 {
2877 	if (!mdp->port)
2878 		return TSU_VTAG0;
2879 	else
2880 		return TSU_VTAG1;
2881 }
2882 
2883 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2884 				  __be16 proto, u16 vid)
2885 {
2886 	struct sh_eth_private *mdp = netdev_priv(ndev);
2887 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2888 
2889 	if (unlikely(!mdp->cd->tsu))
2890 		return -EPERM;
2891 
2892 	/* No filtering if vid = 0 */
2893 	if (!vid)
2894 		return 0;
2895 
2896 	mdp->vlan_num_ids++;
2897 
2898 	/* The controller has one VLAN tag HW filter. So, if the filter is
2899 	 * already enabled, the driver disables it and the filte
2900 	 */
2901 	if (mdp->vlan_num_ids > 1) {
2902 		/* disable VLAN filter */
2903 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2904 		return 0;
2905 	}
2906 
2907 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2908 			 vtag_reg_index);
2909 
2910 	return 0;
2911 }
2912 
2913 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2914 				   __be16 proto, u16 vid)
2915 {
2916 	struct sh_eth_private *mdp = netdev_priv(ndev);
2917 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2918 
2919 	if (unlikely(!mdp->cd->tsu))
2920 		return -EPERM;
2921 
2922 	/* No filtering if vid = 0 */
2923 	if (!vid)
2924 		return 0;
2925 
2926 	mdp->vlan_num_ids--;
2927 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2928 
2929 	return 0;
2930 }
2931 
2932 /* SuperH's TSU register init function */
2933 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2934 {
2935 	if (sh_eth_is_rz_fast_ether(mdp)) {
2936 		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2937 		sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
2938 				 TSU_FWSLC);	/* Enable POST registers */
2939 		return;
2940 	}
2941 
2942 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2943 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2944 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2945 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2946 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2947 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2948 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2949 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2950 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2951 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2952 	if (sh_eth_is_gether(mdp)) {
2953 		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2954 		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2955 	} else {
2956 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2957 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2958 	}
2959 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2960 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2961 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2962 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2963 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2964 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2965 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2966 }
2967 
2968 /* MDIO bus release function */
2969 static int sh_mdio_release(struct sh_eth_private *mdp)
2970 {
2971 	/* unregister mdio bus */
2972 	mdiobus_unregister(mdp->mii_bus);
2973 
2974 	/* free bitbang info */
2975 	free_mdio_bitbang(mdp->mii_bus);
2976 
2977 	return 0;
2978 }
2979 
2980 /* MDIO bus init function */
2981 static int sh_mdio_init(struct sh_eth_private *mdp,
2982 			struct sh_eth_plat_data *pd)
2983 {
2984 	int ret;
2985 	struct bb_info *bitbang;
2986 	struct platform_device *pdev = mdp->pdev;
2987 	struct device *dev = &mdp->pdev->dev;
2988 
2989 	/* create bit control struct for PHY */
2990 	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2991 	if (!bitbang)
2992 		return -ENOMEM;
2993 
2994 	/* bitbang init */
2995 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2996 	bitbang->set_gate = pd->set_mdio_gate;
2997 	bitbang->ctrl.ops = &bb_ops;
2998 
2999 	/* MII controller setting */
3000 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
3001 	if (!mdp->mii_bus)
3002 		return -ENOMEM;
3003 
3004 	/* Hook up MII support for ethtool */
3005 	mdp->mii_bus->name = "sh_mii";
3006 	mdp->mii_bus->parent = dev;
3007 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
3008 		 pdev->name, pdev->id);
3009 
3010 	/* register MDIO bus */
3011 	if (dev->of_node) {
3012 		ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
3013 	} else {
3014 		if (pd->phy_irq > 0)
3015 			mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
3016 
3017 		ret = mdiobus_register(mdp->mii_bus);
3018 	}
3019 
3020 	if (ret)
3021 		goto out_free_bus;
3022 
3023 	return 0;
3024 
3025 out_free_bus:
3026 	free_mdio_bitbang(mdp->mii_bus);
3027 	return ret;
3028 }
3029 
3030 static const u16 *sh_eth_get_register_offset(int register_type)
3031 {
3032 	const u16 *reg_offset = NULL;
3033 
3034 	switch (register_type) {
3035 	case SH_ETH_REG_GIGABIT:
3036 		reg_offset = sh_eth_offset_gigabit;
3037 		break;
3038 	case SH_ETH_REG_FAST_RZ:
3039 		reg_offset = sh_eth_offset_fast_rz;
3040 		break;
3041 	case SH_ETH_REG_FAST_RCAR:
3042 		reg_offset = sh_eth_offset_fast_rcar;
3043 		break;
3044 	case SH_ETH_REG_FAST_SH4:
3045 		reg_offset = sh_eth_offset_fast_sh4;
3046 		break;
3047 	case SH_ETH_REG_FAST_SH3_SH2:
3048 		reg_offset = sh_eth_offset_fast_sh3_sh2;
3049 		break;
3050 	}
3051 
3052 	return reg_offset;
3053 }
3054 
3055 static const struct net_device_ops sh_eth_netdev_ops = {
3056 	.ndo_open		= sh_eth_open,
3057 	.ndo_stop		= sh_eth_close,
3058 	.ndo_start_xmit		= sh_eth_start_xmit,
3059 	.ndo_get_stats		= sh_eth_get_stats,
3060 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3061 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3062 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3063 	.ndo_change_mtu		= sh_eth_change_mtu,
3064 	.ndo_validate_addr	= eth_validate_addr,
3065 	.ndo_set_mac_address	= eth_mac_addr,
3066 };
3067 
3068 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3069 	.ndo_open		= sh_eth_open,
3070 	.ndo_stop		= sh_eth_close,
3071 	.ndo_start_xmit		= sh_eth_start_xmit,
3072 	.ndo_get_stats		= sh_eth_get_stats,
3073 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3074 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
3075 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
3076 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3077 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3078 	.ndo_change_mtu		= sh_eth_change_mtu,
3079 	.ndo_validate_addr	= eth_validate_addr,
3080 	.ndo_set_mac_address	= eth_mac_addr,
3081 };
3082 
3083 #ifdef CONFIG_OF
3084 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3085 {
3086 	struct device_node *np = dev->of_node;
3087 	struct sh_eth_plat_data *pdata;
3088 	const char *mac_addr;
3089 
3090 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3091 	if (!pdata)
3092 		return NULL;
3093 
3094 	pdata->phy_interface = of_get_phy_mode(np);
3095 
3096 	mac_addr = of_get_mac_address(np);
3097 	if (mac_addr)
3098 		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
3099 
3100 	pdata->no_ether_link =
3101 		of_property_read_bool(np, "renesas,no-ether-link");
3102 	pdata->ether_link_active_low =
3103 		of_property_read_bool(np, "renesas,ether-link-active-low");
3104 
3105 	return pdata;
3106 }
3107 
3108 static const struct of_device_id sh_eth_match_table[] = {
3109 	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3110 	{ .compatible = "renesas,ether-r8a7743", .data = &rcar_gen2_data },
3111 	{ .compatible = "renesas,ether-r8a7745", .data = &rcar_gen2_data },
3112 	{ .compatible = "renesas,ether-r8a7778", .data = &rcar_gen1_data },
3113 	{ .compatible = "renesas,ether-r8a7779", .data = &rcar_gen1_data },
3114 	{ .compatible = "renesas,ether-r8a7790", .data = &rcar_gen2_data },
3115 	{ .compatible = "renesas,ether-r8a7791", .data = &rcar_gen2_data },
3116 	{ .compatible = "renesas,ether-r8a7793", .data = &rcar_gen2_data },
3117 	{ .compatible = "renesas,ether-r8a7794", .data = &rcar_gen2_data },
3118 	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3119 	{ .compatible = "renesas,rcar-gen1-ether", .data = &rcar_gen1_data },
3120 	{ .compatible = "renesas,rcar-gen2-ether", .data = &rcar_gen2_data },
3121 	{ }
3122 };
3123 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3124 #else
3125 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3126 {
3127 	return NULL;
3128 }
3129 #endif
3130 
3131 static int sh_eth_drv_probe(struct platform_device *pdev)
3132 {
3133 	struct resource *res;
3134 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3135 	const struct platform_device_id *id = platform_get_device_id(pdev);
3136 	struct sh_eth_private *mdp;
3137 	struct net_device *ndev;
3138 	int ret;
3139 
3140 	/* get base addr */
3141 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3142 
3143 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3144 	if (!ndev)
3145 		return -ENOMEM;
3146 
3147 	pm_runtime_enable(&pdev->dev);
3148 	pm_runtime_get_sync(&pdev->dev);
3149 
3150 	ret = platform_get_irq(pdev, 0);
3151 	if (ret < 0)
3152 		goto out_release;
3153 	ndev->irq = ret;
3154 
3155 	SET_NETDEV_DEV(ndev, &pdev->dev);
3156 
3157 	mdp = netdev_priv(ndev);
3158 	mdp->num_tx_ring = TX_RING_SIZE;
3159 	mdp->num_rx_ring = RX_RING_SIZE;
3160 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3161 	if (IS_ERR(mdp->addr)) {
3162 		ret = PTR_ERR(mdp->addr);
3163 		goto out_release;
3164 	}
3165 
3166 	ndev->base_addr = res->start;
3167 
3168 	spin_lock_init(&mdp->lock);
3169 	mdp->pdev = pdev;
3170 
3171 	if (pdev->dev.of_node)
3172 		pd = sh_eth_parse_dt(&pdev->dev);
3173 	if (!pd) {
3174 		dev_err(&pdev->dev, "no platform data\n");
3175 		ret = -EINVAL;
3176 		goto out_release;
3177 	}
3178 
3179 	/* get PHY ID */
3180 	mdp->phy_id = pd->phy;
3181 	mdp->phy_interface = pd->phy_interface;
3182 	mdp->no_ether_link = pd->no_ether_link;
3183 	mdp->ether_link_active_low = pd->ether_link_active_low;
3184 
3185 	/* set cpu data */
3186 	if (id)
3187 		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3188 	else
3189 		mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3190 
3191 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3192 	if (!mdp->reg_offset) {
3193 		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3194 			mdp->cd->register_type);
3195 		ret = -EINVAL;
3196 		goto out_release;
3197 	}
3198 	sh_eth_set_default_cpu_data(mdp->cd);
3199 
3200 	/* User's manual states max MTU should be 2048 but due to the
3201 	 * alignment calculations in sh_eth_ring_init() the practical
3202 	 * MTU is a bit less. Maybe this can be optimized some more.
3203 	 */
3204 	ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3205 	ndev->min_mtu = ETH_MIN_MTU;
3206 
3207 	/* set function */
3208 	if (mdp->cd->tsu)
3209 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3210 	else
3211 		ndev->netdev_ops = &sh_eth_netdev_ops;
3212 	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3213 	ndev->watchdog_timeo = TX_TIMEOUT;
3214 
3215 	/* debug message level */
3216 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3217 
3218 	/* read and set MAC address */
3219 	read_mac_address(ndev, pd->mac_addr);
3220 	if (!is_valid_ether_addr(ndev->dev_addr)) {
3221 		dev_warn(&pdev->dev,
3222 			 "no valid MAC address supplied, using a random one.\n");
3223 		eth_hw_addr_random(ndev);
3224 	}
3225 
3226 	if (mdp->cd->tsu) {
3227 		int port = pdev->id < 0 ? 0 : pdev->id % 2;
3228 		struct resource *rtsu;
3229 
3230 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3231 		if (!rtsu) {
3232 			dev_err(&pdev->dev, "no TSU resource\n");
3233 			ret = -ENODEV;
3234 			goto out_release;
3235 		}
3236 		/* We can only request the  TSU region  for the first port
3237 		 * of the two  sharing this TSU for the probe to succeed...
3238 		 */
3239 		if (port == 0 &&
3240 		    !devm_request_mem_region(&pdev->dev, rtsu->start,
3241 					     resource_size(rtsu),
3242 					     dev_name(&pdev->dev))) {
3243 			dev_err(&pdev->dev, "can't request TSU resource.\n");
3244 			ret = -EBUSY;
3245 			goto out_release;
3246 		}
3247 		/* ioremap the TSU registers */
3248 		mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start,
3249 					     resource_size(rtsu));
3250 		if (!mdp->tsu_addr) {
3251 			dev_err(&pdev->dev, "TSU region ioremap() failed.\n");
3252 			ret = -ENOMEM;
3253 			goto out_release;
3254 		}
3255 		mdp->port = port;
3256 		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3257 
3258 		/* Need to init only the first port of the two sharing a TSU */
3259 		if (port == 0) {
3260 			if (mdp->cd->chip_reset)
3261 				mdp->cd->chip_reset(ndev);
3262 
3263 			/* TSU init (Init only)*/
3264 			sh_eth_tsu_init(mdp);
3265 		}
3266 	}
3267 
3268 	if (mdp->cd->rmiimode)
3269 		sh_eth_write(ndev, 0x1, RMIIMODE);
3270 
3271 	/* MDIO bus init */
3272 	ret = sh_mdio_init(mdp, pd);
3273 	if (ret) {
3274 		if (ret != -EPROBE_DEFER)
3275 			dev_err(&pdev->dev, "MDIO init failed: %d\n", ret);
3276 		goto out_release;
3277 	}
3278 
3279 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3280 
3281 	/* network device register */
3282 	ret = register_netdev(ndev);
3283 	if (ret)
3284 		goto out_napi_del;
3285 
3286 	if (mdp->cd->magic)
3287 		device_set_wakeup_capable(&pdev->dev, 1);
3288 
3289 	/* print device information */
3290 	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3291 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3292 
3293 	pm_runtime_put(&pdev->dev);
3294 	platform_set_drvdata(pdev, ndev);
3295 
3296 	return ret;
3297 
3298 out_napi_del:
3299 	netif_napi_del(&mdp->napi);
3300 	sh_mdio_release(mdp);
3301 
3302 out_release:
3303 	/* net_dev free */
3304 	free_netdev(ndev);
3305 
3306 	pm_runtime_put(&pdev->dev);
3307 	pm_runtime_disable(&pdev->dev);
3308 	return ret;
3309 }
3310 
3311 static int sh_eth_drv_remove(struct platform_device *pdev)
3312 {
3313 	struct net_device *ndev = platform_get_drvdata(pdev);
3314 	struct sh_eth_private *mdp = netdev_priv(ndev);
3315 
3316 	unregister_netdev(ndev);
3317 	netif_napi_del(&mdp->napi);
3318 	sh_mdio_release(mdp);
3319 	pm_runtime_disable(&pdev->dev);
3320 	free_netdev(ndev);
3321 
3322 	return 0;
3323 }
3324 
3325 #ifdef CONFIG_PM
3326 #ifdef CONFIG_PM_SLEEP
3327 static int sh_eth_wol_setup(struct net_device *ndev)
3328 {
3329 	struct sh_eth_private *mdp = netdev_priv(ndev);
3330 
3331 	/* Only allow ECI interrupts */
3332 	synchronize_irq(ndev->irq);
3333 	napi_disable(&mdp->napi);
3334 	sh_eth_write(ndev, EESIPR_ECIIP, EESIPR);
3335 
3336 	/* Enable MagicPacket */
3337 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3338 
3339 	return enable_irq_wake(ndev->irq);
3340 }
3341 
3342 static int sh_eth_wol_restore(struct net_device *ndev)
3343 {
3344 	struct sh_eth_private *mdp = netdev_priv(ndev);
3345 	int ret;
3346 
3347 	napi_enable(&mdp->napi);
3348 
3349 	/* Disable MagicPacket */
3350 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0);
3351 
3352 	/* The device needs to be reset to restore MagicPacket logic
3353 	 * for next wakeup. If we close and open the device it will
3354 	 * both be reset and all registers restored. This is what
3355 	 * happens during suspend and resume without WoL enabled.
3356 	 */
3357 	ret = sh_eth_close(ndev);
3358 	if (ret < 0)
3359 		return ret;
3360 	ret = sh_eth_open(ndev);
3361 	if (ret < 0)
3362 		return ret;
3363 
3364 	return disable_irq_wake(ndev->irq);
3365 }
3366 
3367 static int sh_eth_suspend(struct device *dev)
3368 {
3369 	struct net_device *ndev = dev_get_drvdata(dev);
3370 	struct sh_eth_private *mdp = netdev_priv(ndev);
3371 	int ret = 0;
3372 
3373 	if (!netif_running(ndev))
3374 		return 0;
3375 
3376 	netif_device_detach(ndev);
3377 
3378 	if (mdp->wol_enabled)
3379 		ret = sh_eth_wol_setup(ndev);
3380 	else
3381 		ret = sh_eth_close(ndev);
3382 
3383 	return ret;
3384 }
3385 
3386 static int sh_eth_resume(struct device *dev)
3387 {
3388 	struct net_device *ndev = dev_get_drvdata(dev);
3389 	struct sh_eth_private *mdp = netdev_priv(ndev);
3390 	int ret = 0;
3391 
3392 	if (!netif_running(ndev))
3393 		return 0;
3394 
3395 	if (mdp->wol_enabled)
3396 		ret = sh_eth_wol_restore(ndev);
3397 	else
3398 		ret = sh_eth_open(ndev);
3399 
3400 	if (ret < 0)
3401 		return ret;
3402 
3403 	netif_device_attach(ndev);
3404 
3405 	return ret;
3406 }
3407 #endif
3408 
3409 static int sh_eth_runtime_nop(struct device *dev)
3410 {
3411 	/* Runtime PM callback shared between ->runtime_suspend()
3412 	 * and ->runtime_resume(). Simply returns success.
3413 	 *
3414 	 * This driver re-initializes all registers after
3415 	 * pm_runtime_get_sync() anyway so there is no need
3416 	 * to save and restore registers here.
3417 	 */
3418 	return 0;
3419 }
3420 
3421 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3422 	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3423 	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3424 };
3425 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3426 #else
3427 #define SH_ETH_PM_OPS NULL
3428 #endif
3429 
3430 static const struct platform_device_id sh_eth_id_table[] = {
3431 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3432 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3433 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3434 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3435 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3436 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3437 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3438 	{ }
3439 };
3440 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3441 
3442 static struct platform_driver sh_eth_driver = {
3443 	.probe = sh_eth_drv_probe,
3444 	.remove = sh_eth_drv_remove,
3445 	.id_table = sh_eth_id_table,
3446 	.driver = {
3447 		   .name = CARDNAME,
3448 		   .pm = SH_ETH_PM_OPS,
3449 		   .of_match_table = of_match_ptr(sh_eth_match_table),
3450 	},
3451 };
3452 
3453 module_platform_driver(sh_eth_driver);
3454 
3455 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3456 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3457 MODULE_LICENSE("GPL v2");
3458