xref: /linux/drivers/net/ethernet/renesas/sh_eth.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  *  SuperH Ethernet device driver
3  *
4  *  Copyright (C) 2006-2008 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2009 Renesas Solutions Corp.
6  *
7  *  This program is free software; you can redistribute it and/or modify it
8  *  under the terms and conditions of the GNU General Public License,
9  *  version 2, as published by the Free Software Foundation.
10  *
11  *  This program is distributed in the hope it will be useful, but WITHOUT
12  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  *  more details.
15  *  You should have received a copy of the GNU General Public License along with
16  *  this program; if not, write to the Free Software Foundation, Inc.,
17  *  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  *  The full GNU General Public License is included in this distribution in
20  *  the file called "COPYING".
21  */
22 
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/spinlock.h>
27 #include <linux/interrupt.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/etherdevice.h>
30 #include <linux/delay.h>
31 #include <linux/platform_device.h>
32 #include <linux/mdio-bitbang.h>
33 #include <linux/netdevice.h>
34 #include <linux/phy.h>
35 #include <linux/cache.h>
36 #include <linux/io.h>
37 #include <linux/interrupt.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/slab.h>
40 #include <linux/ethtool.h>
41 #include <linux/sh_eth.h>
42 
43 #include "sh_eth.h"
44 
45 #define SH_ETH_DEF_MSG_ENABLE \
46 		(NETIF_MSG_LINK	| \
47 		NETIF_MSG_TIMER	| \
48 		NETIF_MSG_RX_ERR| \
49 		NETIF_MSG_TX_ERR)
50 
51 /* There is CPU dependent code */
52 #if defined(CONFIG_CPU_SUBTYPE_SH7724)
53 #define SH_ETH_RESET_DEFAULT	1
54 static void sh_eth_set_duplex(struct net_device *ndev)
55 {
56 	struct sh_eth_private *mdp = netdev_priv(ndev);
57 
58 	if (mdp->duplex) /* Full */
59 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
60 	else		/* Half */
61 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
62 }
63 
64 static void sh_eth_set_rate(struct net_device *ndev)
65 {
66 	struct sh_eth_private *mdp = netdev_priv(ndev);
67 
68 	switch (mdp->speed) {
69 	case 10: /* 10BASE */
70 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
71 		break;
72 	case 100:/* 100BASE */
73 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
74 		break;
75 	default:
76 		break;
77 	}
78 }
79 
80 /* SH7724 */
81 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
82 	.set_duplex	= sh_eth_set_duplex,
83 	.set_rate	= sh_eth_set_rate,
84 
85 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
86 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
87 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
88 
89 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
90 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
91 			  EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
92 	.tx_error_check	= EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
93 
94 	.apr		= 1,
95 	.mpr		= 1,
96 	.tpauser	= 1,
97 	.hw_swap	= 1,
98 	.rpadir		= 1,
99 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
100 };
101 #elif defined(CONFIG_CPU_SUBTYPE_SH7757)
102 #define SH_ETH_HAS_BOTH_MODULES	1
103 #define SH_ETH_HAS_TSU	1
104 static void sh_eth_set_duplex(struct net_device *ndev)
105 {
106 	struct sh_eth_private *mdp = netdev_priv(ndev);
107 
108 	if (mdp->duplex) /* Full */
109 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
110 	else		/* Half */
111 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
112 }
113 
114 static void sh_eth_set_rate(struct net_device *ndev)
115 {
116 	struct sh_eth_private *mdp = netdev_priv(ndev);
117 
118 	switch (mdp->speed) {
119 	case 10: /* 10BASE */
120 		sh_eth_write(ndev, 0, RTRATE);
121 		break;
122 	case 100:/* 100BASE */
123 		sh_eth_write(ndev, 1, RTRATE);
124 		break;
125 	default:
126 		break;
127 	}
128 }
129 
130 /* SH7757 */
131 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
132 	.set_duplex		= sh_eth_set_duplex,
133 	.set_rate		= sh_eth_set_rate,
134 
135 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
136 	.rmcr_value	= 0x00000001,
137 
138 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
139 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
140 			  EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
141 	.tx_error_check	= EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
142 
143 	.apr		= 1,
144 	.mpr		= 1,
145 	.tpauser	= 1,
146 	.hw_swap	= 1,
147 	.no_ade		= 1,
148 	.rpadir		= 1,
149 	.rpadir_value   = 2 << 16,
150 };
151 
152 #define SH_GIGA_ETH_BASE	0xfee00000
153 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
154 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
155 static void sh_eth_chip_reset_giga(struct net_device *ndev)
156 {
157 	int i;
158 	unsigned long mahr[2], malr[2];
159 
160 	/* save MAHR and MALR */
161 	for (i = 0; i < 2; i++) {
162 		malr[i] = ioread32((void *)GIGA_MALR(i));
163 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
164 	}
165 
166 	/* reset device */
167 	iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
168 	mdelay(1);
169 
170 	/* restore MAHR and MALR */
171 	for (i = 0; i < 2; i++) {
172 		iowrite32(malr[i], (void *)GIGA_MALR(i));
173 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
174 	}
175 }
176 
177 static int sh_eth_is_gether(struct sh_eth_private *mdp);
178 static void sh_eth_reset(struct net_device *ndev)
179 {
180 	struct sh_eth_private *mdp = netdev_priv(ndev);
181 	int cnt = 100;
182 
183 	if (sh_eth_is_gether(mdp)) {
184 		sh_eth_write(ndev, 0x03, EDSR);
185 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
186 				EDMR);
187 		while (cnt > 0) {
188 			if (!(sh_eth_read(ndev, EDMR) & 0x3))
189 				break;
190 			mdelay(1);
191 			cnt--;
192 		}
193 		if (cnt < 0)
194 			printk(KERN_ERR "Device reset fail\n");
195 
196 		/* Table Init */
197 		sh_eth_write(ndev, 0x0, TDLAR);
198 		sh_eth_write(ndev, 0x0, TDFAR);
199 		sh_eth_write(ndev, 0x0, TDFXR);
200 		sh_eth_write(ndev, 0x0, TDFFR);
201 		sh_eth_write(ndev, 0x0, RDLAR);
202 		sh_eth_write(ndev, 0x0, RDFAR);
203 		sh_eth_write(ndev, 0x0, RDFXR);
204 		sh_eth_write(ndev, 0x0, RDFFR);
205 	} else {
206 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
207 				EDMR);
208 		mdelay(3);
209 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
210 				EDMR);
211 	}
212 }
213 
214 static void sh_eth_set_duplex_giga(struct net_device *ndev)
215 {
216 	struct sh_eth_private *mdp = netdev_priv(ndev);
217 
218 	if (mdp->duplex) /* Full */
219 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
220 	else		/* Half */
221 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
222 }
223 
224 static void sh_eth_set_rate_giga(struct net_device *ndev)
225 {
226 	struct sh_eth_private *mdp = netdev_priv(ndev);
227 
228 	switch (mdp->speed) {
229 	case 10: /* 10BASE */
230 		sh_eth_write(ndev, 0x00000000, GECMR);
231 		break;
232 	case 100:/* 100BASE */
233 		sh_eth_write(ndev, 0x00000010, GECMR);
234 		break;
235 	case 1000: /* 1000BASE */
236 		sh_eth_write(ndev, 0x00000020, GECMR);
237 		break;
238 	default:
239 		break;
240 	}
241 }
242 
243 /* SH7757(GETHERC) */
244 static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
245 	.chip_reset	= sh_eth_chip_reset_giga,
246 	.set_duplex	= sh_eth_set_duplex_giga,
247 	.set_rate	= sh_eth_set_rate_giga,
248 
249 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
250 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
251 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
252 
253 	.tx_check	= EESR_TC1 | EESR_FTC,
254 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
255 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
256 			  EESR_ECI,
257 	.tx_error_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
258 			  EESR_TFE,
259 	.fdr_value	= 0x0000072f,
260 	.rmcr_value	= 0x00000001,
261 
262 	.apr		= 1,
263 	.mpr		= 1,
264 	.tpauser	= 1,
265 	.bculr		= 1,
266 	.hw_swap	= 1,
267 	.rpadir		= 1,
268 	.rpadir_value   = 2 << 16,
269 	.no_trimd	= 1,
270 	.no_ade		= 1,
271 };
272 
273 static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
274 {
275 	if (sh_eth_is_gether(mdp))
276 		return &sh_eth_my_cpu_data_giga;
277 	else
278 		return &sh_eth_my_cpu_data;
279 }
280 
281 #elif defined(CONFIG_CPU_SUBTYPE_SH7763)
282 #define SH_ETH_HAS_TSU	1
283 static void sh_eth_chip_reset(struct net_device *ndev)
284 {
285 	struct sh_eth_private *mdp = netdev_priv(ndev);
286 
287 	/* reset device */
288 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
289 	mdelay(1);
290 }
291 
292 static void sh_eth_reset(struct net_device *ndev)
293 {
294 	int cnt = 100;
295 
296 	sh_eth_write(ndev, EDSR_ENALL, EDSR);
297 	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
298 	while (cnt > 0) {
299 		if (!(sh_eth_read(ndev, EDMR) & 0x3))
300 			break;
301 		mdelay(1);
302 		cnt--;
303 	}
304 	if (cnt == 0)
305 		printk(KERN_ERR "Device reset fail\n");
306 
307 	/* Table Init */
308 	sh_eth_write(ndev, 0x0, TDLAR);
309 	sh_eth_write(ndev, 0x0, TDFAR);
310 	sh_eth_write(ndev, 0x0, TDFXR);
311 	sh_eth_write(ndev, 0x0, TDFFR);
312 	sh_eth_write(ndev, 0x0, RDLAR);
313 	sh_eth_write(ndev, 0x0, RDFAR);
314 	sh_eth_write(ndev, 0x0, RDFXR);
315 	sh_eth_write(ndev, 0x0, RDFFR);
316 }
317 
318 static void sh_eth_set_duplex(struct net_device *ndev)
319 {
320 	struct sh_eth_private *mdp = netdev_priv(ndev);
321 
322 	if (mdp->duplex) /* Full */
323 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
324 	else		/* Half */
325 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
326 }
327 
328 static void sh_eth_set_rate(struct net_device *ndev)
329 {
330 	struct sh_eth_private *mdp = netdev_priv(ndev);
331 
332 	switch (mdp->speed) {
333 	case 10: /* 10BASE */
334 		sh_eth_write(ndev, GECMR_10, GECMR);
335 		break;
336 	case 100:/* 100BASE */
337 		sh_eth_write(ndev, GECMR_100, GECMR);
338 		break;
339 	case 1000: /* 1000BASE */
340 		sh_eth_write(ndev, GECMR_1000, GECMR);
341 		break;
342 	default:
343 		break;
344 	}
345 }
346 
347 /* sh7763 */
348 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
349 	.chip_reset	= sh_eth_chip_reset,
350 	.set_duplex	= sh_eth_set_duplex,
351 	.set_rate	= sh_eth_set_rate,
352 
353 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
354 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
355 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
356 
357 	.tx_check	= EESR_TC1 | EESR_FTC,
358 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
359 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
360 			  EESR_ECI,
361 	.tx_error_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
362 			  EESR_TFE,
363 
364 	.apr		= 1,
365 	.mpr		= 1,
366 	.tpauser	= 1,
367 	.bculr		= 1,
368 	.hw_swap	= 1,
369 	.no_trimd	= 1,
370 	.no_ade		= 1,
371 	.tsu		= 1,
372 };
373 
374 #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
375 #define SH_ETH_RESET_DEFAULT	1
376 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
377 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
378 
379 	.apr		= 1,
380 	.mpr		= 1,
381 	.tpauser	= 1,
382 	.hw_swap	= 1,
383 };
384 #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
385 #define SH_ETH_RESET_DEFAULT	1
386 #define SH_ETH_HAS_TSU	1
387 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
388 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
389 	.tsu		= 1,
390 };
391 #endif
392 
393 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
394 {
395 	if (!cd->ecsr_value)
396 		cd->ecsr_value = DEFAULT_ECSR_INIT;
397 
398 	if (!cd->ecsipr_value)
399 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
400 
401 	if (!cd->fcftr_value)
402 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
403 				  DEFAULT_FIFO_F_D_RFD;
404 
405 	if (!cd->fdr_value)
406 		cd->fdr_value = DEFAULT_FDR_INIT;
407 
408 	if (!cd->rmcr_value)
409 		cd->rmcr_value = DEFAULT_RMCR_VALUE;
410 
411 	if (!cd->tx_check)
412 		cd->tx_check = DEFAULT_TX_CHECK;
413 
414 	if (!cd->eesr_err_check)
415 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
416 
417 	if (!cd->tx_error_check)
418 		cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
419 }
420 
421 #if defined(SH_ETH_RESET_DEFAULT)
422 /* Chip Reset */
423 static void sh_eth_reset(struct net_device *ndev)
424 {
425 	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
426 	mdelay(3);
427 	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
428 }
429 #endif
430 
431 #if defined(CONFIG_CPU_SH4)
432 static void sh_eth_set_receive_align(struct sk_buff *skb)
433 {
434 	int reserve;
435 
436 	reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
437 	if (reserve)
438 		skb_reserve(skb, reserve);
439 }
440 #else
441 static void sh_eth_set_receive_align(struct sk_buff *skb)
442 {
443 	skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
444 }
445 #endif
446 
447 
448 /* CPU <-> EDMAC endian convert */
449 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
450 {
451 	switch (mdp->edmac_endian) {
452 	case EDMAC_LITTLE_ENDIAN:
453 		return cpu_to_le32(x);
454 	case EDMAC_BIG_ENDIAN:
455 		return cpu_to_be32(x);
456 	}
457 	return x;
458 }
459 
460 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
461 {
462 	switch (mdp->edmac_endian) {
463 	case EDMAC_LITTLE_ENDIAN:
464 		return le32_to_cpu(x);
465 	case EDMAC_BIG_ENDIAN:
466 		return be32_to_cpu(x);
467 	}
468 	return x;
469 }
470 
471 /*
472  * Program the hardware MAC address from dev->dev_addr.
473  */
474 static void update_mac_address(struct net_device *ndev)
475 {
476 	sh_eth_write(ndev,
477 		(ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
478 		(ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
479 	sh_eth_write(ndev,
480 		(ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
481 }
482 
483 /*
484  * Get MAC address from SuperH MAC address register
485  *
486  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
487  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
488  * When you want use this device, you must set MAC address in bootloader.
489  *
490  */
491 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
492 {
493 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
494 		memcpy(ndev->dev_addr, mac, 6);
495 	} else {
496 		ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
497 		ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
498 		ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
499 		ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
500 		ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
501 		ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
502 	}
503 }
504 
505 static int sh_eth_is_gether(struct sh_eth_private *mdp)
506 {
507 	if (mdp->reg_offset == sh_eth_offset_gigabit)
508 		return 1;
509 	else
510 		return 0;
511 }
512 
513 static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
514 {
515 	if (sh_eth_is_gether(mdp))
516 		return EDTRR_TRNS_GETHER;
517 	else
518 		return EDTRR_TRNS_ETHER;
519 }
520 
521 struct bb_info {
522 	void (*set_gate)(void *addr);
523 	struct mdiobb_ctrl ctrl;
524 	void *addr;
525 	u32 mmd_msk;/* MMD */
526 	u32 mdo_msk;
527 	u32 mdi_msk;
528 	u32 mdc_msk;
529 };
530 
531 /* PHY bit set */
532 static void bb_set(void *addr, u32 msk)
533 {
534 	iowrite32(ioread32(addr) | msk, addr);
535 }
536 
537 /* PHY bit clear */
538 static void bb_clr(void *addr, u32 msk)
539 {
540 	iowrite32((ioread32(addr) & ~msk), addr);
541 }
542 
543 /* PHY bit read */
544 static int bb_read(void *addr, u32 msk)
545 {
546 	return (ioread32(addr) & msk) != 0;
547 }
548 
549 /* Data I/O pin control */
550 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
551 {
552 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
553 
554 	if (bitbang->set_gate)
555 		bitbang->set_gate(bitbang->addr);
556 
557 	if (bit)
558 		bb_set(bitbang->addr, bitbang->mmd_msk);
559 	else
560 		bb_clr(bitbang->addr, bitbang->mmd_msk);
561 }
562 
563 /* Set bit data*/
564 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
565 {
566 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
567 
568 	if (bitbang->set_gate)
569 		bitbang->set_gate(bitbang->addr);
570 
571 	if (bit)
572 		bb_set(bitbang->addr, bitbang->mdo_msk);
573 	else
574 		bb_clr(bitbang->addr, bitbang->mdo_msk);
575 }
576 
577 /* Get bit data*/
578 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
579 {
580 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
581 
582 	if (bitbang->set_gate)
583 		bitbang->set_gate(bitbang->addr);
584 
585 	return bb_read(bitbang->addr, bitbang->mdi_msk);
586 }
587 
588 /* MDC pin control */
589 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
590 {
591 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
592 
593 	if (bitbang->set_gate)
594 		bitbang->set_gate(bitbang->addr);
595 
596 	if (bit)
597 		bb_set(bitbang->addr, bitbang->mdc_msk);
598 	else
599 		bb_clr(bitbang->addr, bitbang->mdc_msk);
600 }
601 
602 /* mdio bus control struct */
603 static struct mdiobb_ops bb_ops = {
604 	.owner = THIS_MODULE,
605 	.set_mdc = sh_mdc_ctrl,
606 	.set_mdio_dir = sh_mmd_ctrl,
607 	.set_mdio_data = sh_set_mdio,
608 	.get_mdio_data = sh_get_mdio,
609 };
610 
611 /* free skb and descriptor buffer */
612 static void sh_eth_ring_free(struct net_device *ndev)
613 {
614 	struct sh_eth_private *mdp = netdev_priv(ndev);
615 	int i;
616 
617 	/* Free Rx skb ringbuffer */
618 	if (mdp->rx_skbuff) {
619 		for (i = 0; i < RX_RING_SIZE; i++) {
620 			if (mdp->rx_skbuff[i])
621 				dev_kfree_skb(mdp->rx_skbuff[i]);
622 		}
623 	}
624 	kfree(mdp->rx_skbuff);
625 
626 	/* Free Tx skb ringbuffer */
627 	if (mdp->tx_skbuff) {
628 		for (i = 0; i < TX_RING_SIZE; i++) {
629 			if (mdp->tx_skbuff[i])
630 				dev_kfree_skb(mdp->tx_skbuff[i]);
631 		}
632 	}
633 	kfree(mdp->tx_skbuff);
634 }
635 
636 /* format skb and descriptor buffer */
637 static void sh_eth_ring_format(struct net_device *ndev)
638 {
639 	struct sh_eth_private *mdp = netdev_priv(ndev);
640 	int i;
641 	struct sk_buff *skb;
642 	struct sh_eth_rxdesc *rxdesc = NULL;
643 	struct sh_eth_txdesc *txdesc = NULL;
644 	int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
645 	int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;
646 
647 	mdp->cur_rx = mdp->cur_tx = 0;
648 	mdp->dirty_rx = mdp->dirty_tx = 0;
649 
650 	memset(mdp->rx_ring, 0, rx_ringsize);
651 
652 	/* build Rx ring buffer */
653 	for (i = 0; i < RX_RING_SIZE; i++) {
654 		/* skb */
655 		mdp->rx_skbuff[i] = NULL;
656 		skb = dev_alloc_skb(mdp->rx_buf_sz);
657 		mdp->rx_skbuff[i] = skb;
658 		if (skb == NULL)
659 			break;
660 		dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
661 				DMA_FROM_DEVICE);
662 		skb->dev = ndev; /* Mark as being used by this device. */
663 		sh_eth_set_receive_align(skb);
664 
665 		/* RX descriptor */
666 		rxdesc = &mdp->rx_ring[i];
667 		rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
668 		rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
669 
670 		/* The size of the buffer is 16 byte boundary. */
671 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
672 		/* Rx descriptor address set */
673 		if (i == 0) {
674 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
675 			if (sh_eth_is_gether(mdp))
676 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
677 		}
678 	}
679 
680 	mdp->dirty_rx = (u32) (i - RX_RING_SIZE);
681 
682 	/* Mark the last entry as wrapping the ring. */
683 	rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
684 
685 	memset(mdp->tx_ring, 0, tx_ringsize);
686 
687 	/* build Tx ring buffer */
688 	for (i = 0; i < TX_RING_SIZE; i++) {
689 		mdp->tx_skbuff[i] = NULL;
690 		txdesc = &mdp->tx_ring[i];
691 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
692 		txdesc->buffer_length = 0;
693 		if (i == 0) {
694 			/* Tx descriptor address set */
695 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
696 			if (sh_eth_is_gether(mdp))
697 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
698 		}
699 	}
700 
701 	txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
702 }
703 
704 /* Get skb and descriptor buffer */
705 static int sh_eth_ring_init(struct net_device *ndev)
706 {
707 	struct sh_eth_private *mdp = netdev_priv(ndev);
708 	int rx_ringsize, tx_ringsize, ret = 0;
709 
710 	/*
711 	 * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
712 	 * card needs room to do 8 byte alignment, +2 so we can reserve
713 	 * the first 2 bytes, and +16 gets room for the status word from the
714 	 * card.
715 	 */
716 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
717 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
718 	if (mdp->cd->rpadir)
719 		mdp->rx_buf_sz += NET_IP_ALIGN;
720 
721 	/* Allocate RX and TX skb rings */
722 	mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
723 				GFP_KERNEL);
724 	if (!mdp->rx_skbuff) {
725 		dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
726 		ret = -ENOMEM;
727 		return ret;
728 	}
729 
730 	mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
731 				GFP_KERNEL);
732 	if (!mdp->tx_skbuff) {
733 		dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
734 		ret = -ENOMEM;
735 		goto skb_ring_free;
736 	}
737 
738 	/* Allocate all Rx descriptors. */
739 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
740 	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
741 			GFP_KERNEL);
742 
743 	if (!mdp->rx_ring) {
744 		dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
745 			rx_ringsize);
746 		ret = -ENOMEM;
747 		goto desc_ring_free;
748 	}
749 
750 	mdp->dirty_rx = 0;
751 
752 	/* Allocate all Tx descriptors. */
753 	tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
754 	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
755 			GFP_KERNEL);
756 	if (!mdp->tx_ring) {
757 		dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
758 			tx_ringsize);
759 		ret = -ENOMEM;
760 		goto desc_ring_free;
761 	}
762 	return ret;
763 
764 desc_ring_free:
765 	/* free DMA buffer */
766 	dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
767 
768 skb_ring_free:
769 	/* Free Rx and Tx skb ring buffer */
770 	sh_eth_ring_free(ndev);
771 
772 	return ret;
773 }
774 
775 static int sh_eth_dev_init(struct net_device *ndev)
776 {
777 	int ret = 0;
778 	struct sh_eth_private *mdp = netdev_priv(ndev);
779 	u_int32_t rx_int_var, tx_int_var;
780 	u32 val;
781 
782 	/* Soft Reset */
783 	sh_eth_reset(ndev);
784 
785 	/* Descriptor format */
786 	sh_eth_ring_format(ndev);
787 	if (mdp->cd->rpadir)
788 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
789 
790 	/* all sh_eth int mask */
791 	sh_eth_write(ndev, 0, EESIPR);
792 
793 #if defined(__LITTLE_ENDIAN__)
794 	if (mdp->cd->hw_swap)
795 		sh_eth_write(ndev, EDMR_EL, EDMR);
796 	else
797 #endif
798 		sh_eth_write(ndev, 0, EDMR);
799 
800 	/* FIFO size set */
801 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
802 	sh_eth_write(ndev, 0, TFTR);
803 
804 	/* Frame recv control */
805 	sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
806 
807 	rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
808 	tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
809 	sh_eth_write(ndev, rx_int_var | tx_int_var, TRSCER);
810 
811 	if (mdp->cd->bculr)
812 		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
813 
814 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
815 
816 	if (!mdp->cd->no_trimd)
817 		sh_eth_write(ndev, 0, TRIMD);
818 
819 	/* Recv frame limit set register */
820 	sh_eth_write(ndev, RFLR_VALUE, RFLR);
821 
822 	sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
823 	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
824 
825 	/* PAUSE Prohibition */
826 	val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
827 		ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
828 
829 	sh_eth_write(ndev, val, ECMR);
830 
831 	if (mdp->cd->set_rate)
832 		mdp->cd->set_rate(ndev);
833 
834 	/* E-MAC Status Register clear */
835 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
836 
837 	/* E-MAC Interrupt Enable register */
838 	sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
839 
840 	/* Set MAC address */
841 	update_mac_address(ndev);
842 
843 	/* mask reset */
844 	if (mdp->cd->apr)
845 		sh_eth_write(ndev, APR_AP, APR);
846 	if (mdp->cd->mpr)
847 		sh_eth_write(ndev, MPR_MP, MPR);
848 	if (mdp->cd->tpauser)
849 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
850 
851 	/* Setting the Rx mode will start the Rx process. */
852 	sh_eth_write(ndev, EDRRR_R, EDRRR);
853 
854 	netif_start_queue(ndev);
855 
856 	return ret;
857 }
858 
859 /* free Tx skb function */
860 static int sh_eth_txfree(struct net_device *ndev)
861 {
862 	struct sh_eth_private *mdp = netdev_priv(ndev);
863 	struct sh_eth_txdesc *txdesc;
864 	int freeNum = 0;
865 	int entry = 0;
866 
867 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
868 		entry = mdp->dirty_tx % TX_RING_SIZE;
869 		txdesc = &mdp->tx_ring[entry];
870 		if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
871 			break;
872 		/* Free the original skb. */
873 		if (mdp->tx_skbuff[entry]) {
874 			dma_unmap_single(&ndev->dev, txdesc->addr,
875 					 txdesc->buffer_length, DMA_TO_DEVICE);
876 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
877 			mdp->tx_skbuff[entry] = NULL;
878 			freeNum++;
879 		}
880 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
881 		if (entry >= TX_RING_SIZE - 1)
882 			txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
883 
884 		mdp->stats.tx_packets++;
885 		mdp->stats.tx_bytes += txdesc->buffer_length;
886 	}
887 	return freeNum;
888 }
889 
890 /* Packet receive function */
891 static int sh_eth_rx(struct net_device *ndev)
892 {
893 	struct sh_eth_private *mdp = netdev_priv(ndev);
894 	struct sh_eth_rxdesc *rxdesc;
895 
896 	int entry = mdp->cur_rx % RX_RING_SIZE;
897 	int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
898 	struct sk_buff *skb;
899 	u16 pkt_len = 0;
900 	u32 desc_status;
901 
902 	rxdesc = &mdp->rx_ring[entry];
903 	while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
904 		desc_status = edmac_to_cpu(mdp, rxdesc->status);
905 		pkt_len = rxdesc->frame_length;
906 
907 		if (--boguscnt < 0)
908 			break;
909 
910 		if (!(desc_status & RDFEND))
911 			mdp->stats.rx_length_errors++;
912 
913 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
914 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
915 			mdp->stats.rx_errors++;
916 			if (desc_status & RD_RFS1)
917 				mdp->stats.rx_crc_errors++;
918 			if (desc_status & RD_RFS2)
919 				mdp->stats.rx_frame_errors++;
920 			if (desc_status & RD_RFS3)
921 				mdp->stats.rx_length_errors++;
922 			if (desc_status & RD_RFS4)
923 				mdp->stats.rx_length_errors++;
924 			if (desc_status & RD_RFS6)
925 				mdp->stats.rx_missed_errors++;
926 			if (desc_status & RD_RFS10)
927 				mdp->stats.rx_over_errors++;
928 		} else {
929 			if (!mdp->cd->hw_swap)
930 				sh_eth_soft_swap(
931 					phys_to_virt(ALIGN(rxdesc->addr, 4)),
932 					pkt_len + 2);
933 			skb = mdp->rx_skbuff[entry];
934 			mdp->rx_skbuff[entry] = NULL;
935 			if (mdp->cd->rpadir)
936 				skb_reserve(skb, NET_IP_ALIGN);
937 			skb_put(skb, pkt_len);
938 			skb->protocol = eth_type_trans(skb, ndev);
939 			netif_rx(skb);
940 			mdp->stats.rx_packets++;
941 			mdp->stats.rx_bytes += pkt_len;
942 		}
943 		rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
944 		entry = (++mdp->cur_rx) % RX_RING_SIZE;
945 		rxdesc = &mdp->rx_ring[entry];
946 	}
947 
948 	/* Refill the Rx ring buffers. */
949 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
950 		entry = mdp->dirty_rx % RX_RING_SIZE;
951 		rxdesc = &mdp->rx_ring[entry];
952 		/* The size of the buffer is 16 byte boundary. */
953 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
954 
955 		if (mdp->rx_skbuff[entry] == NULL) {
956 			skb = dev_alloc_skb(mdp->rx_buf_sz);
957 			mdp->rx_skbuff[entry] = skb;
958 			if (skb == NULL)
959 				break;	/* Better luck next round. */
960 			dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
961 					DMA_FROM_DEVICE);
962 			skb->dev = ndev;
963 			sh_eth_set_receive_align(skb);
964 
965 			skb_checksum_none_assert(skb);
966 			rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
967 		}
968 		if (entry >= RX_RING_SIZE - 1)
969 			rxdesc->status |=
970 				cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
971 		else
972 			rxdesc->status |=
973 				cpu_to_edmac(mdp, RD_RACT | RD_RFP);
974 	}
975 
976 	/* Restart Rx engine if stopped. */
977 	/* If we don't need to check status, don't. -KDU */
978 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R))
979 		sh_eth_write(ndev, EDRRR_R, EDRRR);
980 
981 	return 0;
982 }
983 
984 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
985 {
986 	/* disable tx and rx */
987 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
988 		~(ECMR_RE | ECMR_TE), ECMR);
989 }
990 
991 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
992 {
993 	/* enable tx and rx */
994 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
995 		(ECMR_RE | ECMR_TE), ECMR);
996 }
997 
998 /* error control function */
999 static void sh_eth_error(struct net_device *ndev, int intr_status)
1000 {
1001 	struct sh_eth_private *mdp = netdev_priv(ndev);
1002 	u32 felic_stat;
1003 	u32 link_stat;
1004 	u32 mask;
1005 
1006 	if (intr_status & EESR_ECI) {
1007 		felic_stat = sh_eth_read(ndev, ECSR);
1008 		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1009 		if (felic_stat & ECSR_ICD)
1010 			mdp->stats.tx_carrier_errors++;
1011 		if (felic_stat & ECSR_LCHNG) {
1012 			/* Link Changed */
1013 			if (mdp->cd->no_psr || mdp->no_ether_link) {
1014 				if (mdp->link == PHY_DOWN)
1015 					link_stat = 0;
1016 				else
1017 					link_stat = PHY_ST_LINK;
1018 			} else {
1019 				link_stat = (sh_eth_read(ndev, PSR));
1020 				if (mdp->ether_link_active_low)
1021 					link_stat = ~link_stat;
1022 			}
1023 			if (!(link_stat & PHY_ST_LINK))
1024 				sh_eth_rcv_snd_disable(ndev);
1025 			else {
1026 				/* Link Up */
1027 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1028 					  ~DMAC_M_ECI, EESIPR);
1029 				/*clear int */
1030 				sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1031 					  ECSR);
1032 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1033 					  DMAC_M_ECI, EESIPR);
1034 				/* enable tx and rx */
1035 				sh_eth_rcv_snd_enable(ndev);
1036 			}
1037 		}
1038 	}
1039 
1040 	if (intr_status & EESR_TWB) {
1041 		/* Write buck end. unused write back interrupt */
1042 		if (intr_status & EESR_TABT)	/* Transmit Abort int */
1043 			mdp->stats.tx_aborted_errors++;
1044 			if (netif_msg_tx_err(mdp))
1045 				dev_err(&ndev->dev, "Transmit Abort\n");
1046 	}
1047 
1048 	if (intr_status & EESR_RABT) {
1049 		/* Receive Abort int */
1050 		if (intr_status & EESR_RFRMER) {
1051 			/* Receive Frame Overflow int */
1052 			mdp->stats.rx_frame_errors++;
1053 			if (netif_msg_rx_err(mdp))
1054 				dev_err(&ndev->dev, "Receive Abort\n");
1055 		}
1056 	}
1057 
1058 	if (intr_status & EESR_TDE) {
1059 		/* Transmit Descriptor Empty int */
1060 		mdp->stats.tx_fifo_errors++;
1061 		if (netif_msg_tx_err(mdp))
1062 			dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
1063 	}
1064 
1065 	if (intr_status & EESR_TFE) {
1066 		/* FIFO under flow */
1067 		mdp->stats.tx_fifo_errors++;
1068 		if (netif_msg_tx_err(mdp))
1069 			dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
1070 	}
1071 
1072 	if (intr_status & EESR_RDE) {
1073 		/* Receive Descriptor Empty int */
1074 		mdp->stats.rx_over_errors++;
1075 
1076 		if (sh_eth_read(ndev, EDRRR) ^ EDRRR_R)
1077 			sh_eth_write(ndev, EDRRR_R, EDRRR);
1078 		if (netif_msg_rx_err(mdp))
1079 			dev_err(&ndev->dev, "Receive Descriptor Empty\n");
1080 	}
1081 
1082 	if (intr_status & EESR_RFE) {
1083 		/* Receive FIFO Overflow int */
1084 		mdp->stats.rx_fifo_errors++;
1085 		if (netif_msg_rx_err(mdp))
1086 			dev_err(&ndev->dev, "Receive FIFO Overflow\n");
1087 	}
1088 
1089 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1090 		/* Address Error */
1091 		mdp->stats.tx_fifo_errors++;
1092 		if (netif_msg_tx_err(mdp))
1093 			dev_err(&ndev->dev, "Address Error\n");
1094 	}
1095 
1096 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1097 	if (mdp->cd->no_ade)
1098 		mask &= ~EESR_ADE;
1099 	if (intr_status & mask) {
1100 		/* Tx error */
1101 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1102 		/* dmesg */
1103 		dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
1104 				intr_status, mdp->cur_tx);
1105 		dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1106 				mdp->dirty_tx, (u32) ndev->state, edtrr);
1107 		/* dirty buffer free */
1108 		sh_eth_txfree(ndev);
1109 
1110 		/* SH7712 BUG */
1111 		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1112 			/* tx dma start */
1113 			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1114 		}
1115 		/* wakeup */
1116 		netif_wake_queue(ndev);
1117 	}
1118 }
1119 
1120 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1121 {
1122 	struct net_device *ndev = netdev;
1123 	struct sh_eth_private *mdp = netdev_priv(ndev);
1124 	struct sh_eth_cpu_data *cd = mdp->cd;
1125 	irqreturn_t ret = IRQ_NONE;
1126 	u32 intr_status = 0;
1127 
1128 	spin_lock(&mdp->lock);
1129 
1130 	/* Get interrpt stat */
1131 	intr_status = sh_eth_read(ndev, EESR);
1132 	/* Clear interrupt */
1133 	if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
1134 			EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
1135 			cd->tx_check | cd->eesr_err_check)) {
1136 		sh_eth_write(ndev, intr_status, EESR);
1137 		ret = IRQ_HANDLED;
1138 	} else
1139 		goto other_irq;
1140 
1141 	if (intr_status & (EESR_FRC | /* Frame recv*/
1142 			EESR_RMAF | /* Multi cast address recv*/
1143 			EESR_RRF  | /* Bit frame recv */
1144 			EESR_RTLF | /* Long frame recv*/
1145 			EESR_RTSF | /* short frame recv */
1146 			EESR_PRE  | /* PHY-LSI recv error */
1147 			EESR_CERF)){ /* recv frame CRC error */
1148 		sh_eth_rx(ndev);
1149 	}
1150 
1151 	/* Tx Check */
1152 	if (intr_status & cd->tx_check) {
1153 		sh_eth_txfree(ndev);
1154 		netif_wake_queue(ndev);
1155 	}
1156 
1157 	if (intr_status & cd->eesr_err_check)
1158 		sh_eth_error(ndev, intr_status);
1159 
1160 other_irq:
1161 	spin_unlock(&mdp->lock);
1162 
1163 	return ret;
1164 }
1165 
1166 static void sh_eth_timer(unsigned long data)
1167 {
1168 	struct net_device *ndev = (struct net_device *)data;
1169 	struct sh_eth_private *mdp = netdev_priv(ndev);
1170 
1171 	mod_timer(&mdp->timer, jiffies + (10 * HZ));
1172 }
1173 
1174 /* PHY state control function */
1175 static void sh_eth_adjust_link(struct net_device *ndev)
1176 {
1177 	struct sh_eth_private *mdp = netdev_priv(ndev);
1178 	struct phy_device *phydev = mdp->phydev;
1179 	int new_state = 0;
1180 
1181 	if (phydev->link != PHY_DOWN) {
1182 		if (phydev->duplex != mdp->duplex) {
1183 			new_state = 1;
1184 			mdp->duplex = phydev->duplex;
1185 			if (mdp->cd->set_duplex)
1186 				mdp->cd->set_duplex(ndev);
1187 		}
1188 
1189 		if (phydev->speed != mdp->speed) {
1190 			new_state = 1;
1191 			mdp->speed = phydev->speed;
1192 			if (mdp->cd->set_rate)
1193 				mdp->cd->set_rate(ndev);
1194 		}
1195 		if (mdp->link == PHY_DOWN) {
1196 			sh_eth_write(ndev,
1197 				(sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
1198 			new_state = 1;
1199 			mdp->link = phydev->link;
1200 		}
1201 	} else if (mdp->link) {
1202 		new_state = 1;
1203 		mdp->link = PHY_DOWN;
1204 		mdp->speed = 0;
1205 		mdp->duplex = -1;
1206 	}
1207 
1208 	if (new_state && netif_msg_link(mdp))
1209 		phy_print_status(phydev);
1210 }
1211 
1212 /* PHY init function */
1213 static int sh_eth_phy_init(struct net_device *ndev)
1214 {
1215 	struct sh_eth_private *mdp = netdev_priv(ndev);
1216 	char phy_id[MII_BUS_ID_SIZE + 3];
1217 	struct phy_device *phydev = NULL;
1218 
1219 	snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1220 		mdp->mii_bus->id , mdp->phy_id);
1221 
1222 	mdp->link = PHY_DOWN;
1223 	mdp->speed = 0;
1224 	mdp->duplex = -1;
1225 
1226 	/* Try connect to PHY */
1227 	phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1228 				0, mdp->phy_interface);
1229 	if (IS_ERR(phydev)) {
1230 		dev_err(&ndev->dev, "phy_connect failed\n");
1231 		return PTR_ERR(phydev);
1232 	}
1233 
1234 	dev_info(&ndev->dev, "attached phy %i to driver %s\n",
1235 		phydev->addr, phydev->drv->name);
1236 
1237 	mdp->phydev = phydev;
1238 
1239 	return 0;
1240 }
1241 
1242 /* PHY control start function */
1243 static int sh_eth_phy_start(struct net_device *ndev)
1244 {
1245 	struct sh_eth_private *mdp = netdev_priv(ndev);
1246 	int ret;
1247 
1248 	ret = sh_eth_phy_init(ndev);
1249 	if (ret)
1250 		return ret;
1251 
1252 	/* reset phy - this also wakes it from PDOWN */
1253 	phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
1254 	phy_start(mdp->phydev);
1255 
1256 	return 0;
1257 }
1258 
1259 static int sh_eth_get_settings(struct net_device *ndev,
1260 			struct ethtool_cmd *ecmd)
1261 {
1262 	struct sh_eth_private *mdp = netdev_priv(ndev);
1263 	unsigned long flags;
1264 	int ret;
1265 
1266 	spin_lock_irqsave(&mdp->lock, flags);
1267 	ret = phy_ethtool_gset(mdp->phydev, ecmd);
1268 	spin_unlock_irqrestore(&mdp->lock, flags);
1269 
1270 	return ret;
1271 }
1272 
1273 static int sh_eth_set_settings(struct net_device *ndev,
1274 		struct ethtool_cmd *ecmd)
1275 {
1276 	struct sh_eth_private *mdp = netdev_priv(ndev);
1277 	unsigned long flags;
1278 	int ret;
1279 
1280 	spin_lock_irqsave(&mdp->lock, flags);
1281 
1282 	/* disable tx and rx */
1283 	sh_eth_rcv_snd_disable(ndev);
1284 
1285 	ret = phy_ethtool_sset(mdp->phydev, ecmd);
1286 	if (ret)
1287 		goto error_exit;
1288 
1289 	if (ecmd->duplex == DUPLEX_FULL)
1290 		mdp->duplex = 1;
1291 	else
1292 		mdp->duplex = 0;
1293 
1294 	if (mdp->cd->set_duplex)
1295 		mdp->cd->set_duplex(ndev);
1296 
1297 error_exit:
1298 	mdelay(1);
1299 
1300 	/* enable tx and rx */
1301 	sh_eth_rcv_snd_enable(ndev);
1302 
1303 	spin_unlock_irqrestore(&mdp->lock, flags);
1304 
1305 	return ret;
1306 }
1307 
1308 static int sh_eth_nway_reset(struct net_device *ndev)
1309 {
1310 	struct sh_eth_private *mdp = netdev_priv(ndev);
1311 	unsigned long flags;
1312 	int ret;
1313 
1314 	spin_lock_irqsave(&mdp->lock, flags);
1315 	ret = phy_start_aneg(mdp->phydev);
1316 	spin_unlock_irqrestore(&mdp->lock, flags);
1317 
1318 	return ret;
1319 }
1320 
1321 static u32 sh_eth_get_msglevel(struct net_device *ndev)
1322 {
1323 	struct sh_eth_private *mdp = netdev_priv(ndev);
1324 	return mdp->msg_enable;
1325 }
1326 
1327 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1328 {
1329 	struct sh_eth_private *mdp = netdev_priv(ndev);
1330 	mdp->msg_enable = value;
1331 }
1332 
1333 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1334 	"rx_current", "tx_current",
1335 	"rx_dirty", "tx_dirty",
1336 };
1337 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
1338 
1339 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1340 {
1341 	switch (sset) {
1342 	case ETH_SS_STATS:
1343 		return SH_ETH_STATS_LEN;
1344 	default:
1345 		return -EOPNOTSUPP;
1346 	}
1347 }
1348 
1349 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1350 			struct ethtool_stats *stats, u64 *data)
1351 {
1352 	struct sh_eth_private *mdp = netdev_priv(ndev);
1353 	int i = 0;
1354 
1355 	/* device-specific stats */
1356 	data[i++] = mdp->cur_rx;
1357 	data[i++] = mdp->cur_tx;
1358 	data[i++] = mdp->dirty_rx;
1359 	data[i++] = mdp->dirty_tx;
1360 }
1361 
1362 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1363 {
1364 	switch (stringset) {
1365 	case ETH_SS_STATS:
1366 		memcpy(data, *sh_eth_gstrings_stats,
1367 					sizeof(sh_eth_gstrings_stats));
1368 		break;
1369 	}
1370 }
1371 
1372 static const struct ethtool_ops sh_eth_ethtool_ops = {
1373 	.get_settings	= sh_eth_get_settings,
1374 	.set_settings	= sh_eth_set_settings,
1375 	.nway_reset	= sh_eth_nway_reset,
1376 	.get_msglevel	= sh_eth_get_msglevel,
1377 	.set_msglevel	= sh_eth_set_msglevel,
1378 	.get_link	= ethtool_op_get_link,
1379 	.get_strings	= sh_eth_get_strings,
1380 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
1381 	.get_sset_count     = sh_eth_get_sset_count,
1382 };
1383 
1384 /* network device open function */
1385 static int sh_eth_open(struct net_device *ndev)
1386 {
1387 	int ret = 0;
1388 	struct sh_eth_private *mdp = netdev_priv(ndev);
1389 
1390 	pm_runtime_get_sync(&mdp->pdev->dev);
1391 
1392 	ret = request_irq(ndev->irq, sh_eth_interrupt,
1393 #if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
1394 	defined(CONFIG_CPU_SUBTYPE_SH7764) || \
1395 	defined(CONFIG_CPU_SUBTYPE_SH7757)
1396 				IRQF_SHARED,
1397 #else
1398 				0,
1399 #endif
1400 				ndev->name, ndev);
1401 	if (ret) {
1402 		dev_err(&ndev->dev, "Can not assign IRQ number\n");
1403 		return ret;
1404 	}
1405 
1406 	/* Descriptor set */
1407 	ret = sh_eth_ring_init(ndev);
1408 	if (ret)
1409 		goto out_free_irq;
1410 
1411 	/* device init */
1412 	ret = sh_eth_dev_init(ndev);
1413 	if (ret)
1414 		goto out_free_irq;
1415 
1416 	/* PHY control start*/
1417 	ret = sh_eth_phy_start(ndev);
1418 	if (ret)
1419 		goto out_free_irq;
1420 
1421 	/* Set the timer to check for link beat. */
1422 	init_timer(&mdp->timer);
1423 	mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
1424 	setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev);
1425 
1426 	return ret;
1427 
1428 out_free_irq:
1429 	free_irq(ndev->irq, ndev);
1430 	pm_runtime_put_sync(&mdp->pdev->dev);
1431 	return ret;
1432 }
1433 
1434 /* Timeout function */
1435 static void sh_eth_tx_timeout(struct net_device *ndev)
1436 {
1437 	struct sh_eth_private *mdp = netdev_priv(ndev);
1438 	struct sh_eth_rxdesc *rxdesc;
1439 	int i;
1440 
1441 	netif_stop_queue(ndev);
1442 
1443 	if (netif_msg_timer(mdp))
1444 		dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
1445 	       " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
1446 
1447 	/* tx_errors count up */
1448 	mdp->stats.tx_errors++;
1449 
1450 	/* timer off */
1451 	del_timer_sync(&mdp->timer);
1452 
1453 	/* Free all the skbuffs in the Rx queue. */
1454 	for (i = 0; i < RX_RING_SIZE; i++) {
1455 		rxdesc = &mdp->rx_ring[i];
1456 		rxdesc->status = 0;
1457 		rxdesc->addr = 0xBADF00D0;
1458 		if (mdp->rx_skbuff[i])
1459 			dev_kfree_skb(mdp->rx_skbuff[i]);
1460 		mdp->rx_skbuff[i] = NULL;
1461 	}
1462 	for (i = 0; i < TX_RING_SIZE; i++) {
1463 		if (mdp->tx_skbuff[i])
1464 			dev_kfree_skb(mdp->tx_skbuff[i]);
1465 		mdp->tx_skbuff[i] = NULL;
1466 	}
1467 
1468 	/* device init */
1469 	sh_eth_dev_init(ndev);
1470 
1471 	/* timer on */
1472 	mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
1473 	add_timer(&mdp->timer);
1474 }
1475 
1476 /* Packet transmit function */
1477 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1478 {
1479 	struct sh_eth_private *mdp = netdev_priv(ndev);
1480 	struct sh_eth_txdesc *txdesc;
1481 	u32 entry;
1482 	unsigned long flags;
1483 
1484 	spin_lock_irqsave(&mdp->lock, flags);
1485 	if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
1486 		if (!sh_eth_txfree(ndev)) {
1487 			if (netif_msg_tx_queued(mdp))
1488 				dev_warn(&ndev->dev, "TxFD exhausted.\n");
1489 			netif_stop_queue(ndev);
1490 			spin_unlock_irqrestore(&mdp->lock, flags);
1491 			return NETDEV_TX_BUSY;
1492 		}
1493 	}
1494 	spin_unlock_irqrestore(&mdp->lock, flags);
1495 
1496 	entry = mdp->cur_tx % TX_RING_SIZE;
1497 	mdp->tx_skbuff[entry] = skb;
1498 	txdesc = &mdp->tx_ring[entry];
1499 	/* soft swap. */
1500 	if (!mdp->cd->hw_swap)
1501 		sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
1502 				 skb->len + 2);
1503 	txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
1504 				      DMA_TO_DEVICE);
1505 	if (skb->len < ETHERSMALL)
1506 		txdesc->buffer_length = ETHERSMALL;
1507 	else
1508 		txdesc->buffer_length = skb->len;
1509 
1510 	if (entry >= TX_RING_SIZE - 1)
1511 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
1512 	else
1513 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
1514 
1515 	mdp->cur_tx++;
1516 
1517 	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
1518 		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1519 
1520 	return NETDEV_TX_OK;
1521 }
1522 
1523 /* device close function */
1524 static int sh_eth_close(struct net_device *ndev)
1525 {
1526 	struct sh_eth_private *mdp = netdev_priv(ndev);
1527 	int ringsize;
1528 
1529 	netif_stop_queue(ndev);
1530 
1531 	/* Disable interrupts by clearing the interrupt mask. */
1532 	sh_eth_write(ndev, 0x0000, EESIPR);
1533 
1534 	/* Stop the chip's Tx and Rx processes. */
1535 	sh_eth_write(ndev, 0, EDTRR);
1536 	sh_eth_write(ndev, 0, EDRRR);
1537 
1538 	/* PHY Disconnect */
1539 	if (mdp->phydev) {
1540 		phy_stop(mdp->phydev);
1541 		phy_disconnect(mdp->phydev);
1542 	}
1543 
1544 	free_irq(ndev->irq, ndev);
1545 
1546 	del_timer_sync(&mdp->timer);
1547 
1548 	/* Free all the skbuffs in the Rx queue. */
1549 	sh_eth_ring_free(ndev);
1550 
1551 	/* free DMA buffer */
1552 	ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
1553 	dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);
1554 
1555 	/* free DMA buffer */
1556 	ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
1557 	dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);
1558 
1559 	pm_runtime_put_sync(&mdp->pdev->dev);
1560 
1561 	return 0;
1562 }
1563 
1564 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
1565 {
1566 	struct sh_eth_private *mdp = netdev_priv(ndev);
1567 
1568 	pm_runtime_get_sync(&mdp->pdev->dev);
1569 
1570 	mdp->stats.tx_dropped += sh_eth_read(ndev, TROCR);
1571 	sh_eth_write(ndev, 0, TROCR);	/* (write clear) */
1572 	mdp->stats.collisions += sh_eth_read(ndev, CDCR);
1573 	sh_eth_write(ndev, 0, CDCR);	/* (write clear) */
1574 	mdp->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
1575 	sh_eth_write(ndev, 0, LCCR);	/* (write clear) */
1576 	if (sh_eth_is_gether(mdp)) {
1577 		mdp->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
1578 		sh_eth_write(ndev, 0, CERCR);	/* (write clear) */
1579 		mdp->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
1580 		sh_eth_write(ndev, 0, CEECR);	/* (write clear) */
1581 	} else {
1582 		mdp->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
1583 		sh_eth_write(ndev, 0, CNDCR);	/* (write clear) */
1584 	}
1585 	pm_runtime_put_sync(&mdp->pdev->dev);
1586 
1587 	return &mdp->stats;
1588 }
1589 
1590 /* ioctl to device funciotn*/
1591 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
1592 				int cmd)
1593 {
1594 	struct sh_eth_private *mdp = netdev_priv(ndev);
1595 	struct phy_device *phydev = mdp->phydev;
1596 
1597 	if (!netif_running(ndev))
1598 		return -EINVAL;
1599 
1600 	if (!phydev)
1601 		return -ENODEV;
1602 
1603 	return phy_mii_ioctl(phydev, rq, cmd);
1604 }
1605 
1606 #if defined(SH_ETH_HAS_TSU)
1607 /* Multicast reception directions set */
1608 static void sh_eth_set_multicast_list(struct net_device *ndev)
1609 {
1610 	if (ndev->flags & IFF_PROMISC) {
1611 		/* Set promiscuous. */
1612 		sh_eth_write(ndev, (sh_eth_read(ndev, ECMR) & ~ECMR_MCT) |
1613 				ECMR_PRM, ECMR);
1614 	} else {
1615 		/* Normal, unicast/broadcast-only mode. */
1616 		sh_eth_write(ndev, (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) |
1617 				ECMR_MCT, ECMR);
1618 	}
1619 }
1620 #endif /* SH_ETH_HAS_TSU */
1621 
1622 /* SuperH's TSU register init function */
1623 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
1624 {
1625 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
1626 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
1627 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
1628 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
1629 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
1630 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
1631 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
1632 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
1633 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
1634 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
1635 	if (sh_eth_is_gether(mdp)) {
1636 		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
1637 		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
1638 	} else {
1639 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
1640 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
1641 	}
1642 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
1643 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
1644 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
1645 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
1646 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
1647 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
1648 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
1649 }
1650 
1651 /* MDIO bus release function */
1652 static int sh_mdio_release(struct net_device *ndev)
1653 {
1654 	struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
1655 
1656 	/* unregister mdio bus */
1657 	mdiobus_unregister(bus);
1658 
1659 	/* remove mdio bus info from net_device */
1660 	dev_set_drvdata(&ndev->dev, NULL);
1661 
1662 	/* free interrupts memory */
1663 	kfree(bus->irq);
1664 
1665 	/* free bitbang info */
1666 	free_mdio_bitbang(bus);
1667 
1668 	return 0;
1669 }
1670 
1671 /* MDIO bus init function */
1672 static int sh_mdio_init(struct net_device *ndev, int id,
1673 			struct sh_eth_plat_data *pd)
1674 {
1675 	int ret, i;
1676 	struct bb_info *bitbang;
1677 	struct sh_eth_private *mdp = netdev_priv(ndev);
1678 
1679 	/* create bit control struct for PHY */
1680 	bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
1681 	if (!bitbang) {
1682 		ret = -ENOMEM;
1683 		goto out;
1684 	}
1685 
1686 	/* bitbang init */
1687 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
1688 	bitbang->set_gate = pd->set_mdio_gate;
1689 	bitbang->mdi_msk = 0x08;
1690 	bitbang->mdo_msk = 0x04;
1691 	bitbang->mmd_msk = 0x02;/* MMD */
1692 	bitbang->mdc_msk = 0x01;
1693 	bitbang->ctrl.ops = &bb_ops;
1694 
1695 	/* MII controller setting */
1696 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
1697 	if (!mdp->mii_bus) {
1698 		ret = -ENOMEM;
1699 		goto out_free_bitbang;
1700 	}
1701 
1702 	/* Hook up MII support for ethtool */
1703 	mdp->mii_bus->name = "sh_mii";
1704 	mdp->mii_bus->parent = &ndev->dev;
1705 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1706 		mdp->pdev->name, id);
1707 
1708 	/* PHY IRQ */
1709 	mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
1710 	if (!mdp->mii_bus->irq) {
1711 		ret = -ENOMEM;
1712 		goto out_free_bus;
1713 	}
1714 
1715 	for (i = 0; i < PHY_MAX_ADDR; i++)
1716 		mdp->mii_bus->irq[i] = PHY_POLL;
1717 
1718 	/* regist mdio bus */
1719 	ret = mdiobus_register(mdp->mii_bus);
1720 	if (ret)
1721 		goto out_free_irq;
1722 
1723 	dev_set_drvdata(&ndev->dev, mdp->mii_bus);
1724 
1725 	return 0;
1726 
1727 out_free_irq:
1728 	kfree(mdp->mii_bus->irq);
1729 
1730 out_free_bus:
1731 	free_mdio_bitbang(mdp->mii_bus);
1732 
1733 out_free_bitbang:
1734 	kfree(bitbang);
1735 
1736 out:
1737 	return ret;
1738 }
1739 
1740 static const u16 *sh_eth_get_register_offset(int register_type)
1741 {
1742 	const u16 *reg_offset = NULL;
1743 
1744 	switch (register_type) {
1745 	case SH_ETH_REG_GIGABIT:
1746 		reg_offset = sh_eth_offset_gigabit;
1747 		break;
1748 	case SH_ETH_REG_FAST_SH4:
1749 		reg_offset = sh_eth_offset_fast_sh4;
1750 		break;
1751 	case SH_ETH_REG_FAST_SH3_SH2:
1752 		reg_offset = sh_eth_offset_fast_sh3_sh2;
1753 		break;
1754 	default:
1755 		printk(KERN_ERR "Unknown register type (%d)\n", register_type);
1756 		break;
1757 	}
1758 
1759 	return reg_offset;
1760 }
1761 
1762 static const struct net_device_ops sh_eth_netdev_ops = {
1763 	.ndo_open		= sh_eth_open,
1764 	.ndo_stop		= sh_eth_close,
1765 	.ndo_start_xmit		= sh_eth_start_xmit,
1766 	.ndo_get_stats		= sh_eth_get_stats,
1767 #if defined(SH_ETH_HAS_TSU)
1768 	.ndo_set_rx_mode	= sh_eth_set_multicast_list,
1769 #endif
1770 	.ndo_tx_timeout		= sh_eth_tx_timeout,
1771 	.ndo_do_ioctl		= sh_eth_do_ioctl,
1772 	.ndo_validate_addr	= eth_validate_addr,
1773 	.ndo_set_mac_address	= eth_mac_addr,
1774 	.ndo_change_mtu		= eth_change_mtu,
1775 };
1776 
1777 static int sh_eth_drv_probe(struct platform_device *pdev)
1778 {
1779 	int ret, devno = 0;
1780 	struct resource *res;
1781 	struct net_device *ndev = NULL;
1782 	struct sh_eth_private *mdp = NULL;
1783 	struct sh_eth_plat_data *pd;
1784 
1785 	/* get base addr */
1786 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1787 	if (unlikely(res == NULL)) {
1788 		dev_err(&pdev->dev, "invalid resource\n");
1789 		ret = -EINVAL;
1790 		goto out;
1791 	}
1792 
1793 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
1794 	if (!ndev) {
1795 		dev_err(&pdev->dev, "Could not allocate device.\n");
1796 		ret = -ENOMEM;
1797 		goto out;
1798 	}
1799 
1800 	/* The sh Ether-specific entries in the device structure. */
1801 	ndev->base_addr = res->start;
1802 	devno = pdev->id;
1803 	if (devno < 0)
1804 		devno = 0;
1805 
1806 	ndev->dma = -1;
1807 	ret = platform_get_irq(pdev, 0);
1808 	if (ret < 0) {
1809 		ret = -ENODEV;
1810 		goto out_release;
1811 	}
1812 	ndev->irq = ret;
1813 
1814 	SET_NETDEV_DEV(ndev, &pdev->dev);
1815 
1816 	/* Fill in the fields of the device structure with ethernet values. */
1817 	ether_setup(ndev);
1818 
1819 	mdp = netdev_priv(ndev);
1820 	mdp->addr = ioremap(res->start, resource_size(res));
1821 	if (mdp->addr == NULL) {
1822 		ret = -ENOMEM;
1823 		dev_err(&pdev->dev, "ioremap failed.\n");
1824 		goto out_release;
1825 	}
1826 
1827 	spin_lock_init(&mdp->lock);
1828 	mdp->pdev = pdev;
1829 	pm_runtime_enable(&pdev->dev);
1830 	pm_runtime_resume(&pdev->dev);
1831 
1832 	pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
1833 	/* get PHY ID */
1834 	mdp->phy_id = pd->phy;
1835 	mdp->phy_interface = pd->phy_interface;
1836 	/* EDMAC endian */
1837 	mdp->edmac_endian = pd->edmac_endian;
1838 	mdp->no_ether_link = pd->no_ether_link;
1839 	mdp->ether_link_active_low = pd->ether_link_active_low;
1840 	mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
1841 
1842 	/* set cpu data */
1843 #if defined(SH_ETH_HAS_BOTH_MODULES)
1844 	mdp->cd = sh_eth_get_cpu_data(mdp);
1845 #else
1846 	mdp->cd = &sh_eth_my_cpu_data;
1847 #endif
1848 	sh_eth_set_default_cpu_data(mdp->cd);
1849 
1850 	/* set function */
1851 	ndev->netdev_ops = &sh_eth_netdev_ops;
1852 	SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
1853 	ndev->watchdog_timeo = TX_TIMEOUT;
1854 
1855 	/* debug message level */
1856 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
1857 	mdp->post_rx = POST_RX >> (devno << 1);
1858 	mdp->post_fw = POST_FW >> (devno << 1);
1859 
1860 	/* read and set MAC address */
1861 	read_mac_address(ndev, pd->mac_addr);
1862 
1863 	/* First device only init */
1864 	if (!devno) {
1865 		if (mdp->cd->tsu) {
1866 			struct resource *rtsu;
1867 			rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1868 			if (!rtsu) {
1869 				dev_err(&pdev->dev, "Not found TSU resource\n");
1870 				goto out_release;
1871 			}
1872 			mdp->tsu_addr = ioremap(rtsu->start,
1873 						resource_size(rtsu));
1874 		}
1875 		if (mdp->cd->chip_reset)
1876 			mdp->cd->chip_reset(ndev);
1877 
1878 		if (mdp->cd->tsu) {
1879 			/* TSU init (Init only)*/
1880 			sh_eth_tsu_init(mdp);
1881 		}
1882 	}
1883 
1884 	/* network device register */
1885 	ret = register_netdev(ndev);
1886 	if (ret)
1887 		goto out_release;
1888 
1889 	/* mdio bus init */
1890 	ret = sh_mdio_init(ndev, pdev->id, pd);
1891 	if (ret)
1892 		goto out_unregister;
1893 
1894 	/* print device information */
1895 	pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
1896 	       (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
1897 
1898 	platform_set_drvdata(pdev, ndev);
1899 
1900 	return ret;
1901 
1902 out_unregister:
1903 	unregister_netdev(ndev);
1904 
1905 out_release:
1906 	/* net_dev free */
1907 	if (mdp && mdp->addr)
1908 		iounmap(mdp->addr);
1909 	if (mdp && mdp->tsu_addr)
1910 		iounmap(mdp->tsu_addr);
1911 	if (ndev)
1912 		free_netdev(ndev);
1913 
1914 out:
1915 	return ret;
1916 }
1917 
1918 static int sh_eth_drv_remove(struct platform_device *pdev)
1919 {
1920 	struct net_device *ndev = platform_get_drvdata(pdev);
1921 	struct sh_eth_private *mdp = netdev_priv(ndev);
1922 
1923 	iounmap(mdp->tsu_addr);
1924 	sh_mdio_release(ndev);
1925 	unregister_netdev(ndev);
1926 	pm_runtime_disable(&pdev->dev);
1927 	iounmap(mdp->addr);
1928 	free_netdev(ndev);
1929 	platform_set_drvdata(pdev, NULL);
1930 
1931 	return 0;
1932 }
1933 
1934 static int sh_eth_runtime_nop(struct device *dev)
1935 {
1936 	/*
1937 	 * Runtime PM callback shared between ->runtime_suspend()
1938 	 * and ->runtime_resume(). Simply returns success.
1939 	 *
1940 	 * This driver re-initializes all registers after
1941 	 * pm_runtime_get_sync() anyway so there is no need
1942 	 * to save and restore registers here.
1943 	 */
1944 	return 0;
1945 }
1946 
1947 static struct dev_pm_ops sh_eth_dev_pm_ops = {
1948 	.runtime_suspend = sh_eth_runtime_nop,
1949 	.runtime_resume = sh_eth_runtime_nop,
1950 };
1951 
1952 static struct platform_driver sh_eth_driver = {
1953 	.probe = sh_eth_drv_probe,
1954 	.remove = sh_eth_drv_remove,
1955 	.driver = {
1956 		   .name = CARDNAME,
1957 		   .pm = &sh_eth_dev_pm_ops,
1958 	},
1959 };
1960 
1961 module_platform_driver(sh_eth_driver);
1962 
1963 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
1964 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
1965 MODULE_LICENSE("GPL v2");
1966