xref: /linux/drivers/net/ethernet/renesas/sh_eth.c (revision b04df400c30235fa347313c9e2a0695549bd2c8e)
1 /*  SuperH Ethernet device driver
2  *
3  *  Copyright (C) 2014 Renesas Electronics Corporation
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
6  *  Copyright (C) 2013-2017 Cogent Embedded, Inc.
7  *  Copyright (C) 2014 Codethink Limited
8  *
9  *  This program is free software; you can redistribute it and/or modify it
10  *  under the terms and conditions of the GNU General Public License,
11  *  version 2, as published by the Free Software Foundation.
12  *
13  *  This program is distributed in the hope it will be useful, but WITHOUT
14  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  *  more details.
17  *
18  *  The full GNU General Public License is included in this distribution in
19  *  the file called "COPYING".
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/etherdevice.h>
28 #include <linux/delay.h>
29 #include <linux/platform_device.h>
30 #include <linux/mdio-bitbang.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_irq.h>
35 #include <linux/of_net.h>
36 #include <linux/phy.h>
37 #include <linux/cache.h>
38 #include <linux/io.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/slab.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/sh_eth.h>
44 #include <linux/of_mdio.h>
45 
46 #include "sh_eth.h"
47 
48 #define SH_ETH_DEF_MSG_ENABLE \
49 		(NETIF_MSG_LINK	| \
50 		NETIF_MSG_TIMER	| \
51 		NETIF_MSG_RX_ERR| \
52 		NETIF_MSG_TX_ERR)
53 
54 #define SH_ETH_OFFSET_INVALID	((u16)~0)
55 
56 #define SH_ETH_OFFSET_DEFAULTS			\
57 	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
58 
59 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
60 	SH_ETH_OFFSET_DEFAULTS,
61 
62 	[EDSR]		= 0x0000,
63 	[EDMR]		= 0x0400,
64 	[EDTRR]		= 0x0408,
65 	[EDRRR]		= 0x0410,
66 	[EESR]		= 0x0428,
67 	[EESIPR]	= 0x0430,
68 	[TDLAR]		= 0x0010,
69 	[TDFAR]		= 0x0014,
70 	[TDFXR]		= 0x0018,
71 	[TDFFR]		= 0x001c,
72 	[RDLAR]		= 0x0030,
73 	[RDFAR]		= 0x0034,
74 	[RDFXR]		= 0x0038,
75 	[RDFFR]		= 0x003c,
76 	[TRSCER]	= 0x0438,
77 	[RMFCR]		= 0x0440,
78 	[TFTR]		= 0x0448,
79 	[FDR]		= 0x0450,
80 	[RMCR]		= 0x0458,
81 	[RPADIR]	= 0x0460,
82 	[FCFTR]		= 0x0468,
83 	[CSMR]		= 0x04E4,
84 
85 	[ECMR]		= 0x0500,
86 	[ECSR]		= 0x0510,
87 	[ECSIPR]	= 0x0518,
88 	[PIR]		= 0x0520,
89 	[PSR]		= 0x0528,
90 	[PIPR]		= 0x052c,
91 	[RFLR]		= 0x0508,
92 	[APR]		= 0x0554,
93 	[MPR]		= 0x0558,
94 	[PFTCR]		= 0x055c,
95 	[PFRCR]		= 0x0560,
96 	[TPAUSER]	= 0x0564,
97 	[GECMR]		= 0x05b0,
98 	[BCULR]		= 0x05b4,
99 	[MAHR]		= 0x05c0,
100 	[MALR]		= 0x05c8,
101 	[TROCR]		= 0x0700,
102 	[CDCR]		= 0x0708,
103 	[LCCR]		= 0x0710,
104 	[CEFCR]		= 0x0740,
105 	[FRECR]		= 0x0748,
106 	[TSFRCR]	= 0x0750,
107 	[TLFRCR]	= 0x0758,
108 	[RFCR]		= 0x0760,
109 	[CERCR]		= 0x0768,
110 	[CEECR]		= 0x0770,
111 	[MAFCR]		= 0x0778,
112 	[RMII_MII]	= 0x0790,
113 
114 	[ARSTR]		= 0x0000,
115 	[TSU_CTRST]	= 0x0004,
116 	[TSU_FWEN0]	= 0x0010,
117 	[TSU_FWEN1]	= 0x0014,
118 	[TSU_FCM]	= 0x0018,
119 	[TSU_BSYSL0]	= 0x0020,
120 	[TSU_BSYSL1]	= 0x0024,
121 	[TSU_PRISL0]	= 0x0028,
122 	[TSU_PRISL1]	= 0x002c,
123 	[TSU_FWSL0]	= 0x0030,
124 	[TSU_FWSL1]	= 0x0034,
125 	[TSU_FWSLC]	= 0x0038,
126 	[TSU_QTAGM0]	= 0x0040,
127 	[TSU_QTAGM1]	= 0x0044,
128 	[TSU_FWSR]	= 0x0050,
129 	[TSU_FWINMK]	= 0x0054,
130 	[TSU_ADQT0]	= 0x0048,
131 	[TSU_ADQT1]	= 0x004c,
132 	[TSU_VTAG0]	= 0x0058,
133 	[TSU_VTAG1]	= 0x005c,
134 	[TSU_ADSBSY]	= 0x0060,
135 	[TSU_TEN]	= 0x0064,
136 	[TSU_POST1]	= 0x0070,
137 	[TSU_POST2]	= 0x0074,
138 	[TSU_POST3]	= 0x0078,
139 	[TSU_POST4]	= 0x007c,
140 	[TSU_ADRH0]	= 0x0100,
141 
142 	[TXNLCR0]	= 0x0080,
143 	[TXALCR0]	= 0x0084,
144 	[RXNLCR0]	= 0x0088,
145 	[RXALCR0]	= 0x008c,
146 	[FWNLCR0]	= 0x0090,
147 	[FWALCR0]	= 0x0094,
148 	[TXNLCR1]	= 0x00a0,
149 	[TXALCR1]	= 0x00a4,
150 	[RXNLCR1]	= 0x00a8,
151 	[RXALCR1]	= 0x00ac,
152 	[FWNLCR1]	= 0x00b0,
153 	[FWALCR1]	= 0x00b4,
154 };
155 
156 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
157 	SH_ETH_OFFSET_DEFAULTS,
158 
159 	[EDSR]		= 0x0000,
160 	[EDMR]		= 0x0400,
161 	[EDTRR]		= 0x0408,
162 	[EDRRR]		= 0x0410,
163 	[EESR]		= 0x0428,
164 	[EESIPR]	= 0x0430,
165 	[TDLAR]		= 0x0010,
166 	[TDFAR]		= 0x0014,
167 	[TDFXR]		= 0x0018,
168 	[TDFFR]		= 0x001c,
169 	[RDLAR]		= 0x0030,
170 	[RDFAR]		= 0x0034,
171 	[RDFXR]		= 0x0038,
172 	[RDFFR]		= 0x003c,
173 	[TRSCER]	= 0x0438,
174 	[RMFCR]		= 0x0440,
175 	[TFTR]		= 0x0448,
176 	[FDR]		= 0x0450,
177 	[RMCR]		= 0x0458,
178 	[RPADIR]	= 0x0460,
179 	[FCFTR]		= 0x0468,
180 	[CSMR]		= 0x04E4,
181 
182 	[ECMR]		= 0x0500,
183 	[RFLR]		= 0x0508,
184 	[ECSR]		= 0x0510,
185 	[ECSIPR]	= 0x0518,
186 	[PIR]		= 0x0520,
187 	[APR]		= 0x0554,
188 	[MPR]		= 0x0558,
189 	[PFTCR]		= 0x055c,
190 	[PFRCR]		= 0x0560,
191 	[TPAUSER]	= 0x0564,
192 	[MAHR]		= 0x05c0,
193 	[MALR]		= 0x05c8,
194 	[CEFCR]		= 0x0740,
195 	[FRECR]		= 0x0748,
196 	[TSFRCR]	= 0x0750,
197 	[TLFRCR]	= 0x0758,
198 	[RFCR]		= 0x0760,
199 	[MAFCR]		= 0x0778,
200 
201 	[ARSTR]		= 0x0000,
202 	[TSU_CTRST]	= 0x0004,
203 	[TSU_FWSLC]	= 0x0038,
204 	[TSU_VTAG0]	= 0x0058,
205 	[TSU_ADSBSY]	= 0x0060,
206 	[TSU_TEN]	= 0x0064,
207 	[TSU_POST1]	= 0x0070,
208 	[TSU_POST2]	= 0x0074,
209 	[TSU_POST3]	= 0x0078,
210 	[TSU_POST4]	= 0x007c,
211 	[TSU_ADRH0]	= 0x0100,
212 
213 	[TXNLCR0]	= 0x0080,
214 	[TXALCR0]	= 0x0084,
215 	[RXNLCR0]	= 0x0088,
216 	[RXALCR0]	= 0x008C,
217 };
218 
219 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
220 	SH_ETH_OFFSET_DEFAULTS,
221 
222 	[ECMR]		= 0x0300,
223 	[RFLR]		= 0x0308,
224 	[ECSR]		= 0x0310,
225 	[ECSIPR]	= 0x0318,
226 	[PIR]		= 0x0320,
227 	[PSR]		= 0x0328,
228 	[RDMLR]		= 0x0340,
229 	[IPGR]		= 0x0350,
230 	[APR]		= 0x0354,
231 	[MPR]		= 0x0358,
232 	[RFCF]		= 0x0360,
233 	[TPAUSER]	= 0x0364,
234 	[TPAUSECR]	= 0x0368,
235 	[MAHR]		= 0x03c0,
236 	[MALR]		= 0x03c8,
237 	[TROCR]		= 0x03d0,
238 	[CDCR]		= 0x03d4,
239 	[LCCR]		= 0x03d8,
240 	[CNDCR]		= 0x03dc,
241 	[CEFCR]		= 0x03e4,
242 	[FRECR]		= 0x03e8,
243 	[TSFRCR]	= 0x03ec,
244 	[TLFRCR]	= 0x03f0,
245 	[RFCR]		= 0x03f4,
246 	[MAFCR]		= 0x03f8,
247 
248 	[EDMR]		= 0x0200,
249 	[EDTRR]		= 0x0208,
250 	[EDRRR]		= 0x0210,
251 	[TDLAR]		= 0x0218,
252 	[RDLAR]		= 0x0220,
253 	[EESR]		= 0x0228,
254 	[EESIPR]	= 0x0230,
255 	[TRSCER]	= 0x0238,
256 	[RMFCR]		= 0x0240,
257 	[TFTR]		= 0x0248,
258 	[FDR]		= 0x0250,
259 	[RMCR]		= 0x0258,
260 	[TFUCR]		= 0x0264,
261 	[RFOCR]		= 0x0268,
262 	[RMIIMODE]      = 0x026c,
263 	[FCFTR]		= 0x0270,
264 	[TRIMD]		= 0x027c,
265 };
266 
267 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
268 	SH_ETH_OFFSET_DEFAULTS,
269 
270 	[ECMR]		= 0x0100,
271 	[RFLR]		= 0x0108,
272 	[ECSR]		= 0x0110,
273 	[ECSIPR]	= 0x0118,
274 	[PIR]		= 0x0120,
275 	[PSR]		= 0x0128,
276 	[RDMLR]		= 0x0140,
277 	[IPGR]		= 0x0150,
278 	[APR]		= 0x0154,
279 	[MPR]		= 0x0158,
280 	[TPAUSER]	= 0x0164,
281 	[RFCF]		= 0x0160,
282 	[TPAUSECR]	= 0x0168,
283 	[BCFRR]		= 0x016c,
284 	[MAHR]		= 0x01c0,
285 	[MALR]		= 0x01c8,
286 	[TROCR]		= 0x01d0,
287 	[CDCR]		= 0x01d4,
288 	[LCCR]		= 0x01d8,
289 	[CNDCR]		= 0x01dc,
290 	[CEFCR]		= 0x01e4,
291 	[FRECR]		= 0x01e8,
292 	[TSFRCR]	= 0x01ec,
293 	[TLFRCR]	= 0x01f0,
294 	[RFCR]		= 0x01f4,
295 	[MAFCR]		= 0x01f8,
296 	[RTRATE]	= 0x01fc,
297 
298 	[EDMR]		= 0x0000,
299 	[EDTRR]		= 0x0008,
300 	[EDRRR]		= 0x0010,
301 	[TDLAR]		= 0x0018,
302 	[RDLAR]		= 0x0020,
303 	[EESR]		= 0x0028,
304 	[EESIPR]	= 0x0030,
305 	[TRSCER]	= 0x0038,
306 	[RMFCR]		= 0x0040,
307 	[TFTR]		= 0x0048,
308 	[FDR]		= 0x0050,
309 	[RMCR]		= 0x0058,
310 	[TFUCR]		= 0x0064,
311 	[RFOCR]		= 0x0068,
312 	[FCFTR]		= 0x0070,
313 	[RPADIR]	= 0x0078,
314 	[TRIMD]		= 0x007c,
315 	[RBWAR]		= 0x00c8,
316 	[RDFAR]		= 0x00cc,
317 	[TBRAR]		= 0x00d4,
318 	[TDFAR]		= 0x00d8,
319 };
320 
321 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
322 	SH_ETH_OFFSET_DEFAULTS,
323 
324 	[EDMR]		= 0x0000,
325 	[EDTRR]		= 0x0004,
326 	[EDRRR]		= 0x0008,
327 	[TDLAR]		= 0x000c,
328 	[RDLAR]		= 0x0010,
329 	[EESR]		= 0x0014,
330 	[EESIPR]	= 0x0018,
331 	[TRSCER]	= 0x001c,
332 	[RMFCR]		= 0x0020,
333 	[TFTR]		= 0x0024,
334 	[FDR]		= 0x0028,
335 	[RMCR]		= 0x002c,
336 	[EDOCR]		= 0x0030,
337 	[FCFTR]		= 0x0034,
338 	[RPADIR]	= 0x0038,
339 	[TRIMD]		= 0x003c,
340 	[RBWAR]		= 0x0040,
341 	[RDFAR]		= 0x0044,
342 	[TBRAR]		= 0x004c,
343 	[TDFAR]		= 0x0050,
344 
345 	[ECMR]		= 0x0160,
346 	[ECSR]		= 0x0164,
347 	[ECSIPR]	= 0x0168,
348 	[PIR]		= 0x016c,
349 	[MAHR]		= 0x0170,
350 	[MALR]		= 0x0174,
351 	[RFLR]		= 0x0178,
352 	[PSR]		= 0x017c,
353 	[TROCR]		= 0x0180,
354 	[CDCR]		= 0x0184,
355 	[LCCR]		= 0x0188,
356 	[CNDCR]		= 0x018c,
357 	[CEFCR]		= 0x0194,
358 	[FRECR]		= 0x0198,
359 	[TSFRCR]	= 0x019c,
360 	[TLFRCR]	= 0x01a0,
361 	[RFCR]		= 0x01a4,
362 	[MAFCR]		= 0x01a8,
363 	[IPGR]		= 0x01b4,
364 	[APR]		= 0x01b8,
365 	[MPR]		= 0x01bc,
366 	[TPAUSER]	= 0x01c4,
367 	[BCFR]		= 0x01cc,
368 
369 	[ARSTR]		= 0x0000,
370 	[TSU_CTRST]	= 0x0004,
371 	[TSU_FWEN0]	= 0x0010,
372 	[TSU_FWEN1]	= 0x0014,
373 	[TSU_FCM]	= 0x0018,
374 	[TSU_BSYSL0]	= 0x0020,
375 	[TSU_BSYSL1]	= 0x0024,
376 	[TSU_PRISL0]	= 0x0028,
377 	[TSU_PRISL1]	= 0x002c,
378 	[TSU_FWSL0]	= 0x0030,
379 	[TSU_FWSL1]	= 0x0034,
380 	[TSU_FWSLC]	= 0x0038,
381 	[TSU_QTAGM0]	= 0x0040,
382 	[TSU_QTAGM1]	= 0x0044,
383 	[TSU_ADQT0]	= 0x0048,
384 	[TSU_ADQT1]	= 0x004c,
385 	[TSU_FWSR]	= 0x0050,
386 	[TSU_FWINMK]	= 0x0054,
387 	[TSU_ADSBSY]	= 0x0060,
388 	[TSU_TEN]	= 0x0064,
389 	[TSU_POST1]	= 0x0070,
390 	[TSU_POST2]	= 0x0074,
391 	[TSU_POST3]	= 0x0078,
392 	[TSU_POST4]	= 0x007c,
393 
394 	[TXNLCR0]	= 0x0080,
395 	[TXALCR0]	= 0x0084,
396 	[RXNLCR0]	= 0x0088,
397 	[RXALCR0]	= 0x008c,
398 	[FWNLCR0]	= 0x0090,
399 	[FWALCR0]	= 0x0094,
400 	[TXNLCR1]	= 0x00a0,
401 	[TXALCR1]	= 0x00a4,
402 	[RXNLCR1]	= 0x00a8,
403 	[RXALCR1]	= 0x00ac,
404 	[FWNLCR1]	= 0x00b0,
405 	[FWALCR1]	= 0x00b4,
406 
407 	[TSU_ADRH0]	= 0x0100,
408 };
409 
410 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
411 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
412 
413 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
414 {
415 	struct sh_eth_private *mdp = netdev_priv(ndev);
416 	u16 offset = mdp->reg_offset[enum_index];
417 
418 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
419 		return;
420 
421 	iowrite32(data, mdp->addr + offset);
422 }
423 
424 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
425 {
426 	struct sh_eth_private *mdp = netdev_priv(ndev);
427 	u16 offset = mdp->reg_offset[enum_index];
428 
429 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
430 		return ~0U;
431 
432 	return ioread32(mdp->addr + offset);
433 }
434 
435 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
436 			  u32 set)
437 {
438 	sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
439 		     enum_index);
440 }
441 
442 static void sh_eth_tsu_write(struct sh_eth_private *mdp, u32 data,
443 			     int enum_index)
444 {
445 	u16 offset = mdp->reg_offset[enum_index];
446 
447 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
448 		return;
449 
450 	iowrite32(data, mdp->tsu_addr + offset);
451 }
452 
453 static u32 sh_eth_tsu_read(struct sh_eth_private *mdp, int enum_index)
454 {
455 	u16 offset = mdp->reg_offset[enum_index];
456 
457 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
458 		return ~0U;
459 
460 	return ioread32(mdp->tsu_addr + offset);
461 }
462 
463 static void sh_eth_select_mii(struct net_device *ndev)
464 {
465 	struct sh_eth_private *mdp = netdev_priv(ndev);
466 	u32 value;
467 
468 	switch (mdp->phy_interface) {
469 	case PHY_INTERFACE_MODE_GMII:
470 		value = 0x2;
471 		break;
472 	case PHY_INTERFACE_MODE_MII:
473 		value = 0x1;
474 		break;
475 	case PHY_INTERFACE_MODE_RMII:
476 		value = 0x0;
477 		break;
478 	default:
479 		netdev_warn(ndev,
480 			    "PHY interface mode was not setup. Set to MII.\n");
481 		value = 0x1;
482 		break;
483 	}
484 
485 	sh_eth_write(ndev, value, RMII_MII);
486 }
487 
488 static void sh_eth_set_duplex(struct net_device *ndev)
489 {
490 	struct sh_eth_private *mdp = netdev_priv(ndev);
491 
492 	sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
493 }
494 
495 static void sh_eth_chip_reset(struct net_device *ndev)
496 {
497 	struct sh_eth_private *mdp = netdev_priv(ndev);
498 
499 	/* reset device */
500 	sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
501 	mdelay(1);
502 }
503 
504 static int sh_eth_soft_reset(struct net_device *ndev)
505 {
506 	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
507 	mdelay(3);
508 	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
509 
510 	return 0;
511 }
512 
513 static int sh_eth_check_soft_reset(struct net_device *ndev)
514 {
515 	int cnt;
516 
517 	for (cnt = 100; cnt > 0; cnt--) {
518 		if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
519 			return 0;
520 		mdelay(1);
521 	}
522 
523 	netdev_err(ndev, "Device reset failed\n");
524 	return -ETIMEDOUT;
525 }
526 
527 static int sh_eth_soft_reset_gether(struct net_device *ndev)
528 {
529 	struct sh_eth_private *mdp = netdev_priv(ndev);
530 	int ret;
531 
532 	sh_eth_write(ndev, EDSR_ENALL, EDSR);
533 	sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
534 
535 	ret = sh_eth_check_soft_reset(ndev);
536 	if (ret)
537 		return ret;
538 
539 	/* Table Init */
540 	sh_eth_write(ndev, 0, TDLAR);
541 	sh_eth_write(ndev, 0, TDFAR);
542 	sh_eth_write(ndev, 0, TDFXR);
543 	sh_eth_write(ndev, 0, TDFFR);
544 	sh_eth_write(ndev, 0, RDLAR);
545 	sh_eth_write(ndev, 0, RDFAR);
546 	sh_eth_write(ndev, 0, RDFXR);
547 	sh_eth_write(ndev, 0, RDFFR);
548 
549 	/* Reset HW CRC register */
550 	if (mdp->cd->hw_checksum)
551 		sh_eth_write(ndev, 0, CSMR);
552 
553 	/* Select MII mode */
554 	if (mdp->cd->select_mii)
555 		sh_eth_select_mii(ndev);
556 
557 	return ret;
558 }
559 
560 static void sh_eth_set_rate_gether(struct net_device *ndev)
561 {
562 	struct sh_eth_private *mdp = netdev_priv(ndev);
563 
564 	switch (mdp->speed) {
565 	case 10: /* 10BASE */
566 		sh_eth_write(ndev, GECMR_10, GECMR);
567 		break;
568 	case 100:/* 100BASE */
569 		sh_eth_write(ndev, GECMR_100, GECMR);
570 		break;
571 	case 1000: /* 1000BASE */
572 		sh_eth_write(ndev, GECMR_1000, GECMR);
573 		break;
574 	}
575 }
576 
577 #ifdef CONFIG_OF
578 /* R7S72100 */
579 static struct sh_eth_cpu_data r7s72100_data = {
580 	.soft_reset	= sh_eth_soft_reset_gether,
581 
582 	.chip_reset	= sh_eth_chip_reset,
583 	.set_duplex	= sh_eth_set_duplex,
584 
585 	.register_type	= SH_ETH_REG_FAST_RZ,
586 
587 	.edtrr_trns	= EDTRR_TRNS_GETHER,
588 	.ecsr_value	= ECSR_ICD,
589 	.ecsipr_value	= ECSIPR_ICDIP,
590 	.eesipr_value	= EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP |
591 			  EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP |
592 			  EESIPR_ECIIP |
593 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
594 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
595 			  EESIPR_RMAFIP | EESIPR_RRFIP |
596 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
597 			  EESIPR_PREIP | EESIPR_CERFIP,
598 
599 	.tx_check	= EESR_TC1 | EESR_FTC,
600 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
601 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
602 			  EESR_TDE,
603 	.fdr_value	= 0x0000070f,
604 
605 	.no_psr		= 1,
606 	.apr		= 1,
607 	.mpr		= 1,
608 	.tpauser	= 1,
609 	.hw_swap	= 1,
610 	.rpadir		= 1,
611 	.rpadir_value   = 2 << 16,
612 	.no_trimd	= 1,
613 	.no_ade		= 1,
614 	.xdfar_rw	= 1,
615 	.hw_checksum	= 1,
616 	.tsu		= 1,
617 	.no_tx_cntrs	= 1,
618 };
619 
620 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
621 {
622 	sh_eth_chip_reset(ndev);
623 
624 	sh_eth_select_mii(ndev);
625 }
626 
627 /* R8A7740 */
628 static struct sh_eth_cpu_data r8a7740_data = {
629 	.soft_reset	= sh_eth_soft_reset_gether,
630 
631 	.chip_reset	= sh_eth_chip_reset_r8a7740,
632 	.set_duplex	= sh_eth_set_duplex,
633 	.set_rate	= sh_eth_set_rate_gether,
634 
635 	.register_type	= SH_ETH_REG_GIGABIT,
636 
637 	.edtrr_trns	= EDTRR_TRNS_GETHER,
638 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
639 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
640 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
641 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
642 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
643 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
644 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
645 			  EESIPR_CEEFIP | EESIPR_CELFIP |
646 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
647 			  EESIPR_PREIP | EESIPR_CERFIP,
648 
649 	.tx_check	= EESR_TC1 | EESR_FTC,
650 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
651 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
652 			  EESR_TDE,
653 	.fdr_value	= 0x0000070f,
654 
655 	.apr		= 1,
656 	.mpr		= 1,
657 	.tpauser	= 1,
658 	.bculr		= 1,
659 	.hw_swap	= 1,
660 	.rpadir		= 1,
661 	.rpadir_value   = 2 << 16,
662 	.no_trimd	= 1,
663 	.no_ade		= 1,
664 	.xdfar_rw	= 1,
665 	.hw_checksum	= 1,
666 	.tsu		= 1,
667 	.select_mii	= 1,
668 	.magic		= 1,
669 	.cexcr		= 1,
670 };
671 
672 /* There is CPU dependent code */
673 static void sh_eth_set_rate_rcar(struct net_device *ndev)
674 {
675 	struct sh_eth_private *mdp = netdev_priv(ndev);
676 
677 	switch (mdp->speed) {
678 	case 10: /* 10BASE */
679 		sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
680 		break;
681 	case 100:/* 100BASE */
682 		sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
683 		break;
684 	}
685 }
686 
687 /* R-Car Gen1 */
688 static struct sh_eth_cpu_data rcar_gen1_data = {
689 	.soft_reset	= sh_eth_soft_reset,
690 
691 	.set_duplex	= sh_eth_set_duplex,
692 	.set_rate	= sh_eth_set_rate_rcar,
693 
694 	.register_type	= SH_ETH_REG_FAST_RCAR,
695 
696 	.edtrr_trns	= EDTRR_TRNS_ETHER,
697 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
698 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
699 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
700 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
701 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
702 			  EESIPR_RMAFIP | EESIPR_RRFIP |
703 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
704 			  EESIPR_PREIP | EESIPR_CERFIP,
705 
706 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
707 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
708 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
709 	.fdr_value	= 0x00000f0f,
710 
711 	.apr		= 1,
712 	.mpr		= 1,
713 	.tpauser	= 1,
714 	.hw_swap	= 1,
715 	.no_xdfar	= 1,
716 };
717 
718 /* R-Car Gen2 and RZ/G1 */
719 static struct sh_eth_cpu_data rcar_gen2_data = {
720 	.soft_reset	= sh_eth_soft_reset,
721 
722 	.set_duplex	= sh_eth_set_duplex,
723 	.set_rate	= sh_eth_set_rate_rcar,
724 
725 	.register_type	= SH_ETH_REG_FAST_RCAR,
726 
727 	.edtrr_trns	= EDTRR_TRNS_ETHER,
728 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
729 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
730 			  ECSIPR_MPDIP,
731 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
732 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
733 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
734 			  EESIPR_RMAFIP | EESIPR_RRFIP |
735 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
736 			  EESIPR_PREIP | EESIPR_CERFIP,
737 
738 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
739 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
740 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
741 	.fdr_value	= 0x00000f0f,
742 
743 	.trscer_err_mask = DESC_I_RINT8,
744 
745 	.apr		= 1,
746 	.mpr		= 1,
747 	.tpauser	= 1,
748 	.hw_swap	= 1,
749 	.no_xdfar	= 1,
750 	.rmiimode	= 1,
751 	.magic		= 1,
752 };
753 #endif /* CONFIG_OF */
754 
755 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
756 {
757 	struct sh_eth_private *mdp = netdev_priv(ndev);
758 
759 	switch (mdp->speed) {
760 	case 10: /* 10BASE */
761 		sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
762 		break;
763 	case 100:/* 100BASE */
764 		sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
765 		break;
766 	}
767 }
768 
769 /* SH7724 */
770 static struct sh_eth_cpu_data sh7724_data = {
771 	.soft_reset	= sh_eth_soft_reset,
772 
773 	.set_duplex	= sh_eth_set_duplex,
774 	.set_rate	= sh_eth_set_rate_sh7724,
775 
776 	.register_type	= SH_ETH_REG_FAST_SH4,
777 
778 	.edtrr_trns	= EDTRR_TRNS_ETHER,
779 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
780 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
781 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
782 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
783 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
784 			  EESIPR_RMAFIP | EESIPR_RRFIP |
785 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
786 			  EESIPR_PREIP | EESIPR_CERFIP,
787 
788 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
789 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
790 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
791 
792 	.apr		= 1,
793 	.mpr		= 1,
794 	.tpauser	= 1,
795 	.hw_swap	= 1,
796 	.rpadir		= 1,
797 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
798 };
799 
800 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
801 {
802 	struct sh_eth_private *mdp = netdev_priv(ndev);
803 
804 	switch (mdp->speed) {
805 	case 10: /* 10BASE */
806 		sh_eth_write(ndev, 0, RTRATE);
807 		break;
808 	case 100:/* 100BASE */
809 		sh_eth_write(ndev, 1, RTRATE);
810 		break;
811 	}
812 }
813 
814 /* SH7757 */
815 static struct sh_eth_cpu_data sh7757_data = {
816 	.soft_reset	= sh_eth_soft_reset,
817 
818 	.set_duplex	= sh_eth_set_duplex,
819 	.set_rate	= sh_eth_set_rate_sh7757,
820 
821 	.register_type	= SH_ETH_REG_FAST_SH4,
822 
823 	.edtrr_trns	= EDTRR_TRNS_ETHER,
824 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
825 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
826 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
827 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
828 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
829 			  EESIPR_CEEFIP | EESIPR_CELFIP |
830 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
831 			  EESIPR_PREIP | EESIPR_CERFIP,
832 
833 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
834 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
835 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
836 
837 	.irq_flags	= IRQF_SHARED,
838 	.apr		= 1,
839 	.mpr		= 1,
840 	.tpauser	= 1,
841 	.hw_swap	= 1,
842 	.no_ade		= 1,
843 	.rpadir		= 1,
844 	.rpadir_value   = 2 << 16,
845 	.rtrate		= 1,
846 	.dual_port	= 1,
847 };
848 
849 #define SH_GIGA_ETH_BASE	0xfee00000UL
850 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
851 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
852 static void sh_eth_chip_reset_giga(struct net_device *ndev)
853 {
854 	u32 mahr[2], malr[2];
855 	int i;
856 
857 	/* save MAHR and MALR */
858 	for (i = 0; i < 2; i++) {
859 		malr[i] = ioread32((void *)GIGA_MALR(i));
860 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
861 	}
862 
863 	sh_eth_chip_reset(ndev);
864 
865 	/* restore MAHR and MALR */
866 	for (i = 0; i < 2; i++) {
867 		iowrite32(malr[i], (void *)GIGA_MALR(i));
868 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
869 	}
870 }
871 
872 static void sh_eth_set_rate_giga(struct net_device *ndev)
873 {
874 	struct sh_eth_private *mdp = netdev_priv(ndev);
875 
876 	switch (mdp->speed) {
877 	case 10: /* 10BASE */
878 		sh_eth_write(ndev, 0x00000000, GECMR);
879 		break;
880 	case 100:/* 100BASE */
881 		sh_eth_write(ndev, 0x00000010, GECMR);
882 		break;
883 	case 1000: /* 1000BASE */
884 		sh_eth_write(ndev, 0x00000020, GECMR);
885 		break;
886 	}
887 }
888 
889 /* SH7757(GETHERC) */
890 static struct sh_eth_cpu_data sh7757_data_giga = {
891 	.soft_reset	= sh_eth_soft_reset_gether,
892 
893 	.chip_reset	= sh_eth_chip_reset_giga,
894 	.set_duplex	= sh_eth_set_duplex,
895 	.set_rate	= sh_eth_set_rate_giga,
896 
897 	.register_type	= SH_ETH_REG_GIGABIT,
898 
899 	.edtrr_trns	= EDTRR_TRNS_GETHER,
900 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
901 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
902 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
903 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
904 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
905 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
906 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
907 			  EESIPR_CEEFIP | EESIPR_CELFIP |
908 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
909 			  EESIPR_PREIP | EESIPR_CERFIP,
910 
911 	.tx_check	= EESR_TC1 | EESR_FTC,
912 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
913 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
914 			  EESR_TDE,
915 	.fdr_value	= 0x0000072f,
916 
917 	.irq_flags	= IRQF_SHARED,
918 	.apr		= 1,
919 	.mpr		= 1,
920 	.tpauser	= 1,
921 	.bculr		= 1,
922 	.hw_swap	= 1,
923 	.rpadir		= 1,
924 	.rpadir_value   = 2 << 16,
925 	.no_trimd	= 1,
926 	.no_ade		= 1,
927 	.xdfar_rw	= 1,
928 	.tsu		= 1,
929 	.cexcr		= 1,
930 	.dual_port	= 1,
931 };
932 
933 /* SH7734 */
934 static struct sh_eth_cpu_data sh7734_data = {
935 	.soft_reset	= sh_eth_soft_reset_gether,
936 
937 	.chip_reset	= sh_eth_chip_reset,
938 	.set_duplex	= sh_eth_set_duplex,
939 	.set_rate	= sh_eth_set_rate_gether,
940 
941 	.register_type	= SH_ETH_REG_GIGABIT,
942 
943 	.edtrr_trns	= EDTRR_TRNS_GETHER,
944 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
945 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
946 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
947 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
948 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
949 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
950 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
951 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
952 			  EESIPR_PREIP | EESIPR_CERFIP,
953 
954 	.tx_check	= EESR_TC1 | EESR_FTC,
955 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
956 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
957 			  EESR_TDE,
958 
959 	.apr		= 1,
960 	.mpr		= 1,
961 	.tpauser	= 1,
962 	.bculr		= 1,
963 	.hw_swap	= 1,
964 	.no_trimd	= 1,
965 	.no_ade		= 1,
966 	.xdfar_rw	= 1,
967 	.tsu		= 1,
968 	.hw_checksum	= 1,
969 	.select_mii	= 1,
970 	.magic		= 1,
971 	.cexcr		= 1,
972 };
973 
974 /* SH7763 */
975 static struct sh_eth_cpu_data sh7763_data = {
976 	.soft_reset	= sh_eth_soft_reset_gether,
977 
978 	.chip_reset	= sh_eth_chip_reset,
979 	.set_duplex	= sh_eth_set_duplex,
980 	.set_rate	= sh_eth_set_rate_gether,
981 
982 	.register_type	= SH_ETH_REG_GIGABIT,
983 
984 	.edtrr_trns	= EDTRR_TRNS_GETHER,
985 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
986 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
987 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
988 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
989 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
990 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
991 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
992 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
993 			  EESIPR_PREIP | EESIPR_CERFIP,
994 
995 	.tx_check	= EESR_TC1 | EESR_FTC,
996 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
997 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
998 
999 	.apr		= 1,
1000 	.mpr		= 1,
1001 	.tpauser	= 1,
1002 	.bculr		= 1,
1003 	.hw_swap	= 1,
1004 	.no_trimd	= 1,
1005 	.no_ade		= 1,
1006 	.xdfar_rw	= 1,
1007 	.tsu		= 1,
1008 	.irq_flags	= IRQF_SHARED,
1009 	.magic		= 1,
1010 	.cexcr		= 1,
1011 	.dual_port	= 1,
1012 };
1013 
1014 static struct sh_eth_cpu_data sh7619_data = {
1015 	.soft_reset	= sh_eth_soft_reset,
1016 
1017 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1018 
1019 	.edtrr_trns	= EDTRR_TRNS_ETHER,
1020 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1021 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1022 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1023 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1024 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1025 			  EESIPR_CEEFIP | EESIPR_CELFIP |
1026 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1027 			  EESIPR_PREIP | EESIPR_CERFIP,
1028 
1029 	.apr		= 1,
1030 	.mpr		= 1,
1031 	.tpauser	= 1,
1032 	.hw_swap	= 1,
1033 };
1034 
1035 static struct sh_eth_cpu_data sh771x_data = {
1036 	.soft_reset	= sh_eth_soft_reset,
1037 
1038 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1039 
1040 	.edtrr_trns	= EDTRR_TRNS_ETHER,
1041 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1042 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1043 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1044 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1045 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1046 			  EESIPR_CEEFIP | EESIPR_CELFIP |
1047 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1048 			  EESIPR_PREIP | EESIPR_CERFIP,
1049 	.tsu		= 1,
1050 	.dual_port	= 1,
1051 };
1052 
1053 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
1054 {
1055 	if (!cd->ecsr_value)
1056 		cd->ecsr_value = DEFAULT_ECSR_INIT;
1057 
1058 	if (!cd->ecsipr_value)
1059 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
1060 
1061 	if (!cd->fcftr_value)
1062 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
1063 				  DEFAULT_FIFO_F_D_RFD;
1064 
1065 	if (!cd->fdr_value)
1066 		cd->fdr_value = DEFAULT_FDR_INIT;
1067 
1068 	if (!cd->tx_check)
1069 		cd->tx_check = DEFAULT_TX_CHECK;
1070 
1071 	if (!cd->eesr_err_check)
1072 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
1073 
1074 	if (!cd->trscer_err_mask)
1075 		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
1076 }
1077 
1078 static void sh_eth_set_receive_align(struct sk_buff *skb)
1079 {
1080 	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
1081 
1082 	if (reserve)
1083 		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
1084 }
1085 
1086 /* Program the hardware MAC address from dev->dev_addr. */
1087 static void update_mac_address(struct net_device *ndev)
1088 {
1089 	sh_eth_write(ndev,
1090 		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
1091 		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
1092 	sh_eth_write(ndev,
1093 		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1094 }
1095 
1096 /* Get MAC address from SuperH MAC address register
1097  *
1098  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1099  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1100  * When you want use this device, you must set MAC address in bootloader.
1101  *
1102  */
1103 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1104 {
1105 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1106 		memcpy(ndev->dev_addr, mac, ETH_ALEN);
1107 	} else {
1108 		u32 mahr = sh_eth_read(ndev, MAHR);
1109 		u32 malr = sh_eth_read(ndev, MALR);
1110 
1111 		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
1112 		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
1113 		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
1114 		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
1115 		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
1116 		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
1117 	}
1118 }
1119 
1120 struct bb_info {
1121 	void (*set_gate)(void *addr);
1122 	struct mdiobb_ctrl ctrl;
1123 	void *addr;
1124 };
1125 
1126 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1127 {
1128 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1129 	u32 pir;
1130 
1131 	if (bitbang->set_gate)
1132 		bitbang->set_gate(bitbang->addr);
1133 
1134 	pir = ioread32(bitbang->addr);
1135 	if (set)
1136 		pir |=  mask;
1137 	else
1138 		pir &= ~mask;
1139 	iowrite32(pir, bitbang->addr);
1140 }
1141 
1142 /* Data I/O pin control */
1143 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1144 {
1145 	sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1146 }
1147 
1148 /* Set bit data*/
1149 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1150 {
1151 	sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1152 }
1153 
1154 /* Get bit data*/
1155 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1156 {
1157 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1158 
1159 	if (bitbang->set_gate)
1160 		bitbang->set_gate(bitbang->addr);
1161 
1162 	return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1163 }
1164 
1165 /* MDC pin control */
1166 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1167 {
1168 	sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1169 }
1170 
1171 /* mdio bus control struct */
1172 static struct mdiobb_ops bb_ops = {
1173 	.owner = THIS_MODULE,
1174 	.set_mdc = sh_mdc_ctrl,
1175 	.set_mdio_dir = sh_mmd_ctrl,
1176 	.set_mdio_data = sh_set_mdio,
1177 	.get_mdio_data = sh_get_mdio,
1178 };
1179 
1180 /* free Tx skb function */
1181 static int sh_eth_tx_free(struct net_device *ndev, bool sent_only)
1182 {
1183 	struct sh_eth_private *mdp = netdev_priv(ndev);
1184 	struct sh_eth_txdesc *txdesc;
1185 	int free_num = 0;
1186 	int entry;
1187 	bool sent;
1188 
1189 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1190 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1191 		txdesc = &mdp->tx_ring[entry];
1192 		sent = !(txdesc->status & cpu_to_le32(TD_TACT));
1193 		if (sent_only && !sent)
1194 			break;
1195 		/* TACT bit must be checked before all the following reads */
1196 		dma_rmb();
1197 		netif_info(mdp, tx_done, ndev,
1198 			   "tx entry %d status 0x%08x\n",
1199 			   entry, le32_to_cpu(txdesc->status));
1200 		/* Free the original skb. */
1201 		if (mdp->tx_skbuff[entry]) {
1202 			dma_unmap_single(&mdp->pdev->dev,
1203 					 le32_to_cpu(txdesc->addr),
1204 					 le32_to_cpu(txdesc->len) >> 16,
1205 					 DMA_TO_DEVICE);
1206 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1207 			mdp->tx_skbuff[entry] = NULL;
1208 			free_num++;
1209 		}
1210 		txdesc->status = cpu_to_le32(TD_TFP);
1211 		if (entry >= mdp->num_tx_ring - 1)
1212 			txdesc->status |= cpu_to_le32(TD_TDLE);
1213 
1214 		if (sent) {
1215 			ndev->stats.tx_packets++;
1216 			ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1217 		}
1218 	}
1219 	return free_num;
1220 }
1221 
1222 /* free skb and descriptor buffer */
1223 static void sh_eth_ring_free(struct net_device *ndev)
1224 {
1225 	struct sh_eth_private *mdp = netdev_priv(ndev);
1226 	int ringsize, i;
1227 
1228 	if (mdp->rx_ring) {
1229 		for (i = 0; i < mdp->num_rx_ring; i++) {
1230 			if (mdp->rx_skbuff[i]) {
1231 				struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i];
1232 
1233 				dma_unmap_single(&mdp->pdev->dev,
1234 						 le32_to_cpu(rxdesc->addr),
1235 						 ALIGN(mdp->rx_buf_sz, 32),
1236 						 DMA_FROM_DEVICE);
1237 			}
1238 		}
1239 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1240 		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->rx_ring,
1241 				  mdp->rx_desc_dma);
1242 		mdp->rx_ring = NULL;
1243 	}
1244 
1245 	/* Free Rx skb ringbuffer */
1246 	if (mdp->rx_skbuff) {
1247 		for (i = 0; i < mdp->num_rx_ring; i++)
1248 			dev_kfree_skb(mdp->rx_skbuff[i]);
1249 	}
1250 	kfree(mdp->rx_skbuff);
1251 	mdp->rx_skbuff = NULL;
1252 
1253 	if (mdp->tx_ring) {
1254 		sh_eth_tx_free(ndev, false);
1255 
1256 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1257 		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->tx_ring,
1258 				  mdp->tx_desc_dma);
1259 		mdp->tx_ring = NULL;
1260 	}
1261 
1262 	/* Free Tx skb ringbuffer */
1263 	kfree(mdp->tx_skbuff);
1264 	mdp->tx_skbuff = NULL;
1265 }
1266 
1267 /* format skb and descriptor buffer */
1268 static void sh_eth_ring_format(struct net_device *ndev)
1269 {
1270 	struct sh_eth_private *mdp = netdev_priv(ndev);
1271 	int i;
1272 	struct sk_buff *skb;
1273 	struct sh_eth_rxdesc *rxdesc = NULL;
1274 	struct sh_eth_txdesc *txdesc = NULL;
1275 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1276 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1277 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1278 	dma_addr_t dma_addr;
1279 	u32 buf_len;
1280 
1281 	mdp->cur_rx = 0;
1282 	mdp->cur_tx = 0;
1283 	mdp->dirty_rx = 0;
1284 	mdp->dirty_tx = 0;
1285 
1286 	memset(mdp->rx_ring, 0, rx_ringsize);
1287 
1288 	/* build Rx ring buffer */
1289 	for (i = 0; i < mdp->num_rx_ring; i++) {
1290 		/* skb */
1291 		mdp->rx_skbuff[i] = NULL;
1292 		skb = netdev_alloc_skb(ndev, skbuff_size);
1293 		if (skb == NULL)
1294 			break;
1295 		sh_eth_set_receive_align(skb);
1296 
1297 		/* The size of the buffer is a multiple of 32 bytes. */
1298 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1299 		dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len,
1300 					  DMA_FROM_DEVICE);
1301 		if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1302 			kfree_skb(skb);
1303 			break;
1304 		}
1305 		mdp->rx_skbuff[i] = skb;
1306 
1307 		/* RX descriptor */
1308 		rxdesc = &mdp->rx_ring[i];
1309 		rxdesc->len = cpu_to_le32(buf_len << 16);
1310 		rxdesc->addr = cpu_to_le32(dma_addr);
1311 		rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1312 
1313 		/* Rx descriptor address set */
1314 		if (i == 0) {
1315 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1316 			if (mdp->cd->xdfar_rw)
1317 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1318 		}
1319 	}
1320 
1321 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1322 
1323 	/* Mark the last entry as wrapping the ring. */
1324 	if (rxdesc)
1325 		rxdesc->status |= cpu_to_le32(RD_RDLE);
1326 
1327 	memset(mdp->tx_ring, 0, tx_ringsize);
1328 
1329 	/* build Tx ring buffer */
1330 	for (i = 0; i < mdp->num_tx_ring; i++) {
1331 		mdp->tx_skbuff[i] = NULL;
1332 		txdesc = &mdp->tx_ring[i];
1333 		txdesc->status = cpu_to_le32(TD_TFP);
1334 		txdesc->len = cpu_to_le32(0);
1335 		if (i == 0) {
1336 			/* Tx descriptor address set */
1337 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1338 			if (mdp->cd->xdfar_rw)
1339 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1340 		}
1341 	}
1342 
1343 	txdesc->status |= cpu_to_le32(TD_TDLE);
1344 }
1345 
1346 /* Get skb and descriptor buffer */
1347 static int sh_eth_ring_init(struct net_device *ndev)
1348 {
1349 	struct sh_eth_private *mdp = netdev_priv(ndev);
1350 	int rx_ringsize, tx_ringsize;
1351 
1352 	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1353 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1354 	 * the first 2 bytes, and +16 gets room for the status word from the
1355 	 * card.
1356 	 */
1357 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1358 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1359 	if (mdp->cd->rpadir)
1360 		mdp->rx_buf_sz += NET_IP_ALIGN;
1361 
1362 	/* Allocate RX and TX skb rings */
1363 	mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1364 				 GFP_KERNEL);
1365 	if (!mdp->rx_skbuff)
1366 		return -ENOMEM;
1367 
1368 	mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1369 				 GFP_KERNEL);
1370 	if (!mdp->tx_skbuff)
1371 		goto ring_free;
1372 
1373 	/* Allocate all Rx descriptors. */
1374 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1375 	mdp->rx_ring = dma_alloc_coherent(&mdp->pdev->dev, rx_ringsize,
1376 					  &mdp->rx_desc_dma, GFP_KERNEL);
1377 	if (!mdp->rx_ring)
1378 		goto ring_free;
1379 
1380 	mdp->dirty_rx = 0;
1381 
1382 	/* Allocate all Tx descriptors. */
1383 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1384 	mdp->tx_ring = dma_alloc_coherent(&mdp->pdev->dev, tx_ringsize,
1385 					  &mdp->tx_desc_dma, GFP_KERNEL);
1386 	if (!mdp->tx_ring)
1387 		goto ring_free;
1388 	return 0;
1389 
1390 ring_free:
1391 	/* Free Rx and Tx skb ring buffer and DMA buffer */
1392 	sh_eth_ring_free(ndev);
1393 
1394 	return -ENOMEM;
1395 }
1396 
1397 static int sh_eth_dev_init(struct net_device *ndev)
1398 {
1399 	struct sh_eth_private *mdp = netdev_priv(ndev);
1400 	int ret;
1401 
1402 	/* Soft Reset */
1403 	ret = mdp->cd->soft_reset(ndev);
1404 	if (ret)
1405 		return ret;
1406 
1407 	if (mdp->cd->rmiimode)
1408 		sh_eth_write(ndev, 0x1, RMIIMODE);
1409 
1410 	/* Descriptor format */
1411 	sh_eth_ring_format(ndev);
1412 	if (mdp->cd->rpadir)
1413 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1414 
1415 	/* all sh_eth int mask */
1416 	sh_eth_write(ndev, 0, EESIPR);
1417 
1418 #if defined(__LITTLE_ENDIAN)
1419 	if (mdp->cd->hw_swap)
1420 		sh_eth_write(ndev, EDMR_EL, EDMR);
1421 	else
1422 #endif
1423 		sh_eth_write(ndev, 0, EDMR);
1424 
1425 	/* FIFO size set */
1426 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1427 	sh_eth_write(ndev, 0, TFTR);
1428 
1429 	/* Frame recv control (enable multiple-packets per rx irq) */
1430 	sh_eth_write(ndev, RMCR_RNC, RMCR);
1431 
1432 	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1433 
1434 	if (mdp->cd->bculr)
1435 		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1436 
1437 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1438 
1439 	if (!mdp->cd->no_trimd)
1440 		sh_eth_write(ndev, 0, TRIMD);
1441 
1442 	/* Recv frame limit set register */
1443 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1444 		     RFLR);
1445 
1446 	sh_eth_modify(ndev, EESR, 0, 0);
1447 	mdp->irq_enabled = true;
1448 	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1449 
1450 	/* PAUSE Prohibition */
1451 	sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1452 		     ECMR_TE | ECMR_RE, ECMR);
1453 
1454 	if (mdp->cd->set_rate)
1455 		mdp->cd->set_rate(ndev);
1456 
1457 	/* E-MAC Status Register clear */
1458 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1459 
1460 	/* E-MAC Interrupt Enable register */
1461 	sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1462 
1463 	/* Set MAC address */
1464 	update_mac_address(ndev);
1465 
1466 	/* mask reset */
1467 	if (mdp->cd->apr)
1468 		sh_eth_write(ndev, APR_AP, APR);
1469 	if (mdp->cd->mpr)
1470 		sh_eth_write(ndev, MPR_MP, MPR);
1471 	if (mdp->cd->tpauser)
1472 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1473 
1474 	/* Setting the Rx mode will start the Rx process. */
1475 	sh_eth_write(ndev, EDRRR_R, EDRRR);
1476 
1477 	return ret;
1478 }
1479 
1480 static void sh_eth_dev_exit(struct net_device *ndev)
1481 {
1482 	struct sh_eth_private *mdp = netdev_priv(ndev);
1483 	int i;
1484 
1485 	/* Deactivate all TX descriptors, so DMA should stop at next
1486 	 * packet boundary if it's currently running
1487 	 */
1488 	for (i = 0; i < mdp->num_tx_ring; i++)
1489 		mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1490 
1491 	/* Disable TX FIFO egress to MAC */
1492 	sh_eth_rcv_snd_disable(ndev);
1493 
1494 	/* Stop RX DMA at next packet boundary */
1495 	sh_eth_write(ndev, 0, EDRRR);
1496 
1497 	/* Aside from TX DMA, we can't tell when the hardware is
1498 	 * really stopped, so we need to reset to make sure.
1499 	 * Before doing that, wait for long enough to *probably*
1500 	 * finish transmitting the last packet and poll stats.
1501 	 */
1502 	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1503 	sh_eth_get_stats(ndev);
1504 	mdp->cd->soft_reset(ndev);
1505 
1506 	/* Set MAC address again */
1507 	update_mac_address(ndev);
1508 }
1509 
1510 /* Packet receive function */
1511 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1512 {
1513 	struct sh_eth_private *mdp = netdev_priv(ndev);
1514 	struct sh_eth_rxdesc *rxdesc;
1515 
1516 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1517 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1518 	int limit;
1519 	struct sk_buff *skb;
1520 	u32 desc_status;
1521 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1522 	dma_addr_t dma_addr;
1523 	u16 pkt_len;
1524 	u32 buf_len;
1525 
1526 	boguscnt = min(boguscnt, *quota);
1527 	limit = boguscnt;
1528 	rxdesc = &mdp->rx_ring[entry];
1529 	while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1530 		/* RACT bit must be checked before all the following reads */
1531 		dma_rmb();
1532 		desc_status = le32_to_cpu(rxdesc->status);
1533 		pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1534 
1535 		if (--boguscnt < 0)
1536 			break;
1537 
1538 		netif_info(mdp, rx_status, ndev,
1539 			   "rx entry %d status 0x%08x len %d\n",
1540 			   entry, desc_status, pkt_len);
1541 
1542 		if (!(desc_status & RDFEND))
1543 			ndev->stats.rx_length_errors++;
1544 
1545 		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1546 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1547 		 * bit 0. However, in case of the R8A7740 and R7S72100
1548 		 * the RFS bits are from bit 25 to bit 16. So, the
1549 		 * driver needs right shifting by 16.
1550 		 */
1551 		if (mdp->cd->hw_checksum)
1552 			desc_status >>= 16;
1553 
1554 		skb = mdp->rx_skbuff[entry];
1555 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1556 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1557 			ndev->stats.rx_errors++;
1558 			if (desc_status & RD_RFS1)
1559 				ndev->stats.rx_crc_errors++;
1560 			if (desc_status & RD_RFS2)
1561 				ndev->stats.rx_frame_errors++;
1562 			if (desc_status & RD_RFS3)
1563 				ndev->stats.rx_length_errors++;
1564 			if (desc_status & RD_RFS4)
1565 				ndev->stats.rx_length_errors++;
1566 			if (desc_status & RD_RFS6)
1567 				ndev->stats.rx_missed_errors++;
1568 			if (desc_status & RD_RFS10)
1569 				ndev->stats.rx_over_errors++;
1570 		} else	if (skb) {
1571 			dma_addr = le32_to_cpu(rxdesc->addr);
1572 			if (!mdp->cd->hw_swap)
1573 				sh_eth_soft_swap(
1574 					phys_to_virt(ALIGN(dma_addr, 4)),
1575 					pkt_len + 2);
1576 			mdp->rx_skbuff[entry] = NULL;
1577 			if (mdp->cd->rpadir)
1578 				skb_reserve(skb, NET_IP_ALIGN);
1579 			dma_unmap_single(&mdp->pdev->dev, dma_addr,
1580 					 ALIGN(mdp->rx_buf_sz, 32),
1581 					 DMA_FROM_DEVICE);
1582 			skb_put(skb, pkt_len);
1583 			skb->protocol = eth_type_trans(skb, ndev);
1584 			netif_receive_skb(skb);
1585 			ndev->stats.rx_packets++;
1586 			ndev->stats.rx_bytes += pkt_len;
1587 			if (desc_status & RD_RFS8)
1588 				ndev->stats.multicast++;
1589 		}
1590 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1591 		rxdesc = &mdp->rx_ring[entry];
1592 	}
1593 
1594 	/* Refill the Rx ring buffers. */
1595 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1596 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1597 		rxdesc = &mdp->rx_ring[entry];
1598 		/* The size of the buffer is 32 byte boundary. */
1599 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1600 		rxdesc->len = cpu_to_le32(buf_len << 16);
1601 
1602 		if (mdp->rx_skbuff[entry] == NULL) {
1603 			skb = netdev_alloc_skb(ndev, skbuff_size);
1604 			if (skb == NULL)
1605 				break;	/* Better luck next round. */
1606 			sh_eth_set_receive_align(skb);
1607 			dma_addr = dma_map_single(&mdp->pdev->dev, skb->data,
1608 						  buf_len, DMA_FROM_DEVICE);
1609 			if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1610 				kfree_skb(skb);
1611 				break;
1612 			}
1613 			mdp->rx_skbuff[entry] = skb;
1614 
1615 			skb_checksum_none_assert(skb);
1616 			rxdesc->addr = cpu_to_le32(dma_addr);
1617 		}
1618 		dma_wmb(); /* RACT bit must be set after all the above writes */
1619 		if (entry >= mdp->num_rx_ring - 1)
1620 			rxdesc->status |=
1621 				cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1622 		else
1623 			rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1624 	}
1625 
1626 	/* Restart Rx engine if stopped. */
1627 	/* If we don't need to check status, don't. -KDU */
1628 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1629 		/* fix the values for the next receiving if RDE is set */
1630 		if (intr_status & EESR_RDE && !mdp->cd->no_xdfar) {
1631 			u32 count = (sh_eth_read(ndev, RDFAR) -
1632 				     sh_eth_read(ndev, RDLAR)) >> 4;
1633 
1634 			mdp->cur_rx = count;
1635 			mdp->dirty_rx = count;
1636 		}
1637 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1638 	}
1639 
1640 	*quota -= limit - boguscnt - 1;
1641 
1642 	return *quota <= 0;
1643 }
1644 
1645 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1646 {
1647 	/* disable tx and rx */
1648 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1649 }
1650 
1651 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1652 {
1653 	/* enable tx and rx */
1654 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1655 }
1656 
1657 /* E-MAC interrupt handler */
1658 static void sh_eth_emac_interrupt(struct net_device *ndev)
1659 {
1660 	struct sh_eth_private *mdp = netdev_priv(ndev);
1661 	u32 felic_stat;
1662 	u32 link_stat;
1663 
1664 	felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR);
1665 	sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1666 	if (felic_stat & ECSR_ICD)
1667 		ndev->stats.tx_carrier_errors++;
1668 	if (felic_stat & ECSR_MPD)
1669 		pm_wakeup_event(&mdp->pdev->dev, 0);
1670 	if (felic_stat & ECSR_LCHNG) {
1671 		/* Link Changed */
1672 		if (mdp->cd->no_psr || mdp->no_ether_link)
1673 			return;
1674 		link_stat = sh_eth_read(ndev, PSR);
1675 		if (mdp->ether_link_active_low)
1676 			link_stat = ~link_stat;
1677 		if (!(link_stat & PHY_ST_LINK)) {
1678 			sh_eth_rcv_snd_disable(ndev);
1679 		} else {
1680 			/* Link Up */
1681 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0);
1682 			/* clear int */
1683 			sh_eth_modify(ndev, ECSR, 0, 0);
1684 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP);
1685 			/* enable tx and rx */
1686 			sh_eth_rcv_snd_enable(ndev);
1687 		}
1688 	}
1689 }
1690 
1691 /* error control function */
1692 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1693 {
1694 	struct sh_eth_private *mdp = netdev_priv(ndev);
1695 	u32 mask;
1696 
1697 	if (intr_status & EESR_TWB) {
1698 		/* Unused write back interrupt */
1699 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1700 			ndev->stats.tx_aborted_errors++;
1701 			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1702 		}
1703 	}
1704 
1705 	if (intr_status & EESR_RABT) {
1706 		/* Receive Abort int */
1707 		if (intr_status & EESR_RFRMER) {
1708 			/* Receive Frame Overflow int */
1709 			ndev->stats.rx_frame_errors++;
1710 		}
1711 	}
1712 
1713 	if (intr_status & EESR_TDE) {
1714 		/* Transmit Descriptor Empty int */
1715 		ndev->stats.tx_fifo_errors++;
1716 		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1717 	}
1718 
1719 	if (intr_status & EESR_TFE) {
1720 		/* FIFO under flow */
1721 		ndev->stats.tx_fifo_errors++;
1722 		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1723 	}
1724 
1725 	if (intr_status & EESR_RDE) {
1726 		/* Receive Descriptor Empty int */
1727 		ndev->stats.rx_over_errors++;
1728 	}
1729 
1730 	if (intr_status & EESR_RFE) {
1731 		/* Receive FIFO Overflow int */
1732 		ndev->stats.rx_fifo_errors++;
1733 	}
1734 
1735 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1736 		/* Address Error */
1737 		ndev->stats.tx_fifo_errors++;
1738 		netif_err(mdp, tx_err, ndev, "Address Error\n");
1739 	}
1740 
1741 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1742 	if (mdp->cd->no_ade)
1743 		mask &= ~EESR_ADE;
1744 	if (intr_status & mask) {
1745 		/* Tx error */
1746 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1747 
1748 		/* dmesg */
1749 		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1750 			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1751 			   (u32)ndev->state, edtrr);
1752 		/* dirty buffer free */
1753 		sh_eth_tx_free(ndev, true);
1754 
1755 		/* SH7712 BUG */
1756 		if (edtrr ^ mdp->cd->edtrr_trns) {
1757 			/* tx dma start */
1758 			sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
1759 		}
1760 		/* wakeup */
1761 		netif_wake_queue(ndev);
1762 	}
1763 }
1764 
1765 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1766 {
1767 	struct net_device *ndev = netdev;
1768 	struct sh_eth_private *mdp = netdev_priv(ndev);
1769 	struct sh_eth_cpu_data *cd = mdp->cd;
1770 	irqreturn_t ret = IRQ_NONE;
1771 	u32 intr_status, intr_enable;
1772 
1773 	spin_lock(&mdp->lock);
1774 
1775 	/* Get interrupt status */
1776 	intr_status = sh_eth_read(ndev, EESR);
1777 	/* Mask it with the interrupt mask, forcing ECI interrupt  to be always
1778 	 * enabled since it's the one that  comes  thru regardless of the mask,
1779 	 * and  we need to fully handle it  in sh_eth_emac_interrupt() in order
1780 	 * to quench it as it doesn't get cleared by just writing 1 to the  ECI
1781 	 * bit...
1782 	 */
1783 	intr_enable = sh_eth_read(ndev, EESIPR);
1784 	intr_status &= intr_enable | EESIPR_ECIIP;
1785 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI |
1786 			   cd->eesr_err_check))
1787 		ret = IRQ_HANDLED;
1788 	else
1789 		goto out;
1790 
1791 	if (unlikely(!mdp->irq_enabled)) {
1792 		sh_eth_write(ndev, 0, EESIPR);
1793 		goto out;
1794 	}
1795 
1796 	if (intr_status & EESR_RX_CHECK) {
1797 		if (napi_schedule_prep(&mdp->napi)) {
1798 			/* Mask Rx interrupts */
1799 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1800 				     EESIPR);
1801 			__napi_schedule(&mdp->napi);
1802 		} else {
1803 			netdev_warn(ndev,
1804 				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1805 				    intr_status, intr_enable);
1806 		}
1807 	}
1808 
1809 	/* Tx Check */
1810 	if (intr_status & cd->tx_check) {
1811 		/* Clear Tx interrupts */
1812 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1813 
1814 		sh_eth_tx_free(ndev, true);
1815 		netif_wake_queue(ndev);
1816 	}
1817 
1818 	/* E-MAC interrupt */
1819 	if (intr_status & EESR_ECI)
1820 		sh_eth_emac_interrupt(ndev);
1821 
1822 	if (intr_status & cd->eesr_err_check) {
1823 		/* Clear error interrupts */
1824 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1825 
1826 		sh_eth_error(ndev, intr_status);
1827 	}
1828 
1829 out:
1830 	spin_unlock(&mdp->lock);
1831 
1832 	return ret;
1833 }
1834 
1835 static int sh_eth_poll(struct napi_struct *napi, int budget)
1836 {
1837 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1838 						  napi);
1839 	struct net_device *ndev = napi->dev;
1840 	int quota = budget;
1841 	u32 intr_status;
1842 
1843 	for (;;) {
1844 		intr_status = sh_eth_read(ndev, EESR);
1845 		if (!(intr_status & EESR_RX_CHECK))
1846 			break;
1847 		/* Clear Rx interrupts */
1848 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1849 
1850 		if (sh_eth_rx(ndev, intr_status, &quota))
1851 			goto out;
1852 	}
1853 
1854 	napi_complete(napi);
1855 
1856 	/* Reenable Rx interrupts */
1857 	if (mdp->irq_enabled)
1858 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1859 out:
1860 	return budget - quota;
1861 }
1862 
1863 /* PHY state control function */
1864 static void sh_eth_adjust_link(struct net_device *ndev)
1865 {
1866 	struct sh_eth_private *mdp = netdev_priv(ndev);
1867 	struct phy_device *phydev = ndev->phydev;
1868 	int new_state = 0;
1869 
1870 	if (phydev->link) {
1871 		if (phydev->duplex != mdp->duplex) {
1872 			new_state = 1;
1873 			mdp->duplex = phydev->duplex;
1874 			if (mdp->cd->set_duplex)
1875 				mdp->cd->set_duplex(ndev);
1876 		}
1877 
1878 		if (phydev->speed != mdp->speed) {
1879 			new_state = 1;
1880 			mdp->speed = phydev->speed;
1881 			if (mdp->cd->set_rate)
1882 				mdp->cd->set_rate(ndev);
1883 		}
1884 		if (!mdp->link) {
1885 			sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1886 			new_state = 1;
1887 			mdp->link = phydev->link;
1888 			if (mdp->cd->no_psr || mdp->no_ether_link)
1889 				sh_eth_rcv_snd_enable(ndev);
1890 		}
1891 	} else if (mdp->link) {
1892 		new_state = 1;
1893 		mdp->link = 0;
1894 		mdp->speed = 0;
1895 		mdp->duplex = -1;
1896 		if (mdp->cd->no_psr || mdp->no_ether_link)
1897 			sh_eth_rcv_snd_disable(ndev);
1898 	}
1899 
1900 	if (new_state && netif_msg_link(mdp))
1901 		phy_print_status(phydev);
1902 }
1903 
1904 /* PHY init function */
1905 static int sh_eth_phy_init(struct net_device *ndev)
1906 {
1907 	struct device_node *np = ndev->dev.parent->of_node;
1908 	struct sh_eth_private *mdp = netdev_priv(ndev);
1909 	struct phy_device *phydev;
1910 
1911 	mdp->link = 0;
1912 	mdp->speed = 0;
1913 	mdp->duplex = -1;
1914 
1915 	/* Try connect to PHY */
1916 	if (np) {
1917 		struct device_node *pn;
1918 
1919 		pn = of_parse_phandle(np, "phy-handle", 0);
1920 		phydev = of_phy_connect(ndev, pn,
1921 					sh_eth_adjust_link, 0,
1922 					mdp->phy_interface);
1923 
1924 		of_node_put(pn);
1925 		if (!phydev)
1926 			phydev = ERR_PTR(-ENOENT);
1927 	} else {
1928 		char phy_id[MII_BUS_ID_SIZE + 3];
1929 
1930 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1931 			 mdp->mii_bus->id, mdp->phy_id);
1932 
1933 		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1934 				     mdp->phy_interface);
1935 	}
1936 
1937 	if (IS_ERR(phydev)) {
1938 		netdev_err(ndev, "failed to connect PHY\n");
1939 		return PTR_ERR(phydev);
1940 	}
1941 
1942 	/* mask with MAC supported features */
1943 	if (mdp->cd->register_type != SH_ETH_REG_GIGABIT) {
1944 		int err = phy_set_max_speed(phydev, SPEED_100);
1945 		if (err) {
1946 			netdev_err(ndev, "failed to limit PHY to 100 Mbit/s\n");
1947 			phy_disconnect(phydev);
1948 			return err;
1949 		}
1950 	}
1951 
1952 	phy_attached_info(phydev);
1953 
1954 	return 0;
1955 }
1956 
1957 /* PHY control start function */
1958 static int sh_eth_phy_start(struct net_device *ndev)
1959 {
1960 	int ret;
1961 
1962 	ret = sh_eth_phy_init(ndev);
1963 	if (ret)
1964 		return ret;
1965 
1966 	phy_start(ndev->phydev);
1967 
1968 	return 0;
1969 }
1970 
1971 static int sh_eth_get_link_ksettings(struct net_device *ndev,
1972 				     struct ethtool_link_ksettings *cmd)
1973 {
1974 	struct sh_eth_private *mdp = netdev_priv(ndev);
1975 	unsigned long flags;
1976 
1977 	if (!ndev->phydev)
1978 		return -ENODEV;
1979 
1980 	spin_lock_irqsave(&mdp->lock, flags);
1981 	phy_ethtool_ksettings_get(ndev->phydev, cmd);
1982 	spin_unlock_irqrestore(&mdp->lock, flags);
1983 
1984 	return 0;
1985 }
1986 
1987 static int sh_eth_set_link_ksettings(struct net_device *ndev,
1988 				     const struct ethtool_link_ksettings *cmd)
1989 {
1990 	struct sh_eth_private *mdp = netdev_priv(ndev);
1991 	unsigned long flags;
1992 	int ret;
1993 
1994 	if (!ndev->phydev)
1995 		return -ENODEV;
1996 
1997 	spin_lock_irqsave(&mdp->lock, flags);
1998 
1999 	/* disable tx and rx */
2000 	sh_eth_rcv_snd_disable(ndev);
2001 
2002 	ret = phy_ethtool_ksettings_set(ndev->phydev, cmd);
2003 	if (ret)
2004 		goto error_exit;
2005 
2006 	if (cmd->base.duplex == DUPLEX_FULL)
2007 		mdp->duplex = 1;
2008 	else
2009 		mdp->duplex = 0;
2010 
2011 	if (mdp->cd->set_duplex)
2012 		mdp->cd->set_duplex(ndev);
2013 
2014 error_exit:
2015 	mdelay(1);
2016 
2017 	/* enable tx and rx */
2018 	sh_eth_rcv_snd_enable(ndev);
2019 
2020 	spin_unlock_irqrestore(&mdp->lock, flags);
2021 
2022 	return ret;
2023 }
2024 
2025 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
2026  * version must be bumped as well.  Just adding registers up to that
2027  * limit is fine, as long as the existing register indices don't
2028  * change.
2029  */
2030 #define SH_ETH_REG_DUMP_VERSION		1
2031 #define SH_ETH_REG_DUMP_MAX_REGS	256
2032 
2033 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
2034 {
2035 	struct sh_eth_private *mdp = netdev_priv(ndev);
2036 	struct sh_eth_cpu_data *cd = mdp->cd;
2037 	u32 *valid_map;
2038 	size_t len;
2039 
2040 	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
2041 
2042 	/* Dump starts with a bitmap that tells ethtool which
2043 	 * registers are defined for this chip.
2044 	 */
2045 	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
2046 	if (buf) {
2047 		valid_map = buf;
2048 		buf += len;
2049 	} else {
2050 		valid_map = NULL;
2051 	}
2052 
2053 	/* Add a register to the dump, if it has a defined offset.
2054 	 * This automatically skips most undefined registers, but for
2055 	 * some it is also necessary to check a capability flag in
2056 	 * struct sh_eth_cpu_data.
2057 	 */
2058 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
2059 #define add_reg_from(reg, read_expr) do {				\
2060 		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
2061 			if (buf) {					\
2062 				mark_reg_valid(reg);			\
2063 				*buf++ = read_expr;			\
2064 			}						\
2065 			++len;						\
2066 		}							\
2067 	} while (0)
2068 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2069 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2070 
2071 	add_reg(EDSR);
2072 	add_reg(EDMR);
2073 	add_reg(EDTRR);
2074 	add_reg(EDRRR);
2075 	add_reg(EESR);
2076 	add_reg(EESIPR);
2077 	add_reg(TDLAR);
2078 	add_reg(TDFAR);
2079 	add_reg(TDFXR);
2080 	add_reg(TDFFR);
2081 	add_reg(RDLAR);
2082 	add_reg(RDFAR);
2083 	add_reg(RDFXR);
2084 	add_reg(RDFFR);
2085 	add_reg(TRSCER);
2086 	add_reg(RMFCR);
2087 	add_reg(TFTR);
2088 	add_reg(FDR);
2089 	add_reg(RMCR);
2090 	add_reg(TFUCR);
2091 	add_reg(RFOCR);
2092 	if (cd->rmiimode)
2093 		add_reg(RMIIMODE);
2094 	add_reg(FCFTR);
2095 	if (cd->rpadir)
2096 		add_reg(RPADIR);
2097 	if (!cd->no_trimd)
2098 		add_reg(TRIMD);
2099 	add_reg(ECMR);
2100 	add_reg(ECSR);
2101 	add_reg(ECSIPR);
2102 	add_reg(PIR);
2103 	if (!cd->no_psr)
2104 		add_reg(PSR);
2105 	add_reg(RDMLR);
2106 	add_reg(RFLR);
2107 	add_reg(IPGR);
2108 	if (cd->apr)
2109 		add_reg(APR);
2110 	if (cd->mpr)
2111 		add_reg(MPR);
2112 	add_reg(RFCR);
2113 	add_reg(RFCF);
2114 	if (cd->tpauser)
2115 		add_reg(TPAUSER);
2116 	add_reg(TPAUSECR);
2117 	add_reg(GECMR);
2118 	if (cd->bculr)
2119 		add_reg(BCULR);
2120 	add_reg(MAHR);
2121 	add_reg(MALR);
2122 	add_reg(TROCR);
2123 	add_reg(CDCR);
2124 	add_reg(LCCR);
2125 	add_reg(CNDCR);
2126 	add_reg(CEFCR);
2127 	add_reg(FRECR);
2128 	add_reg(TSFRCR);
2129 	add_reg(TLFRCR);
2130 	add_reg(CERCR);
2131 	add_reg(CEECR);
2132 	add_reg(MAFCR);
2133 	if (cd->rtrate)
2134 		add_reg(RTRATE);
2135 	if (cd->hw_checksum)
2136 		add_reg(CSMR);
2137 	if (cd->select_mii)
2138 		add_reg(RMII_MII);
2139 	if (cd->tsu) {
2140 		add_tsu_reg(ARSTR);
2141 		add_tsu_reg(TSU_CTRST);
2142 		add_tsu_reg(TSU_FWEN0);
2143 		add_tsu_reg(TSU_FWEN1);
2144 		add_tsu_reg(TSU_FCM);
2145 		add_tsu_reg(TSU_BSYSL0);
2146 		add_tsu_reg(TSU_BSYSL1);
2147 		add_tsu_reg(TSU_PRISL0);
2148 		add_tsu_reg(TSU_PRISL1);
2149 		add_tsu_reg(TSU_FWSL0);
2150 		add_tsu_reg(TSU_FWSL1);
2151 		add_tsu_reg(TSU_FWSLC);
2152 		add_tsu_reg(TSU_QTAGM0);
2153 		add_tsu_reg(TSU_QTAGM1);
2154 		add_tsu_reg(TSU_FWSR);
2155 		add_tsu_reg(TSU_FWINMK);
2156 		add_tsu_reg(TSU_ADQT0);
2157 		add_tsu_reg(TSU_ADQT1);
2158 		add_tsu_reg(TSU_VTAG0);
2159 		add_tsu_reg(TSU_VTAG1);
2160 		add_tsu_reg(TSU_ADSBSY);
2161 		add_tsu_reg(TSU_TEN);
2162 		add_tsu_reg(TSU_POST1);
2163 		add_tsu_reg(TSU_POST2);
2164 		add_tsu_reg(TSU_POST3);
2165 		add_tsu_reg(TSU_POST4);
2166 		/* This is the start of a table, not just a single register. */
2167 		if (buf) {
2168 			unsigned int i;
2169 
2170 			mark_reg_valid(TSU_ADRH0);
2171 			for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2172 				*buf++ = ioread32(mdp->tsu_addr +
2173 						  mdp->reg_offset[TSU_ADRH0] +
2174 						  i * 4);
2175 		}
2176 		len += SH_ETH_TSU_CAM_ENTRIES * 2;
2177 	}
2178 
2179 #undef mark_reg_valid
2180 #undef add_reg_from
2181 #undef add_reg
2182 #undef add_tsu_reg
2183 
2184 	return len * 4;
2185 }
2186 
2187 static int sh_eth_get_regs_len(struct net_device *ndev)
2188 {
2189 	return __sh_eth_get_regs(ndev, NULL);
2190 }
2191 
2192 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2193 			    void *buf)
2194 {
2195 	struct sh_eth_private *mdp = netdev_priv(ndev);
2196 
2197 	regs->version = SH_ETH_REG_DUMP_VERSION;
2198 
2199 	pm_runtime_get_sync(&mdp->pdev->dev);
2200 	__sh_eth_get_regs(ndev, buf);
2201 	pm_runtime_put_sync(&mdp->pdev->dev);
2202 }
2203 
2204 static int sh_eth_nway_reset(struct net_device *ndev)
2205 {
2206 	struct sh_eth_private *mdp = netdev_priv(ndev);
2207 	unsigned long flags;
2208 	int ret;
2209 
2210 	if (!ndev->phydev)
2211 		return -ENODEV;
2212 
2213 	spin_lock_irqsave(&mdp->lock, flags);
2214 	ret = phy_start_aneg(ndev->phydev);
2215 	spin_unlock_irqrestore(&mdp->lock, flags);
2216 
2217 	return ret;
2218 }
2219 
2220 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2221 {
2222 	struct sh_eth_private *mdp = netdev_priv(ndev);
2223 	return mdp->msg_enable;
2224 }
2225 
2226 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2227 {
2228 	struct sh_eth_private *mdp = netdev_priv(ndev);
2229 	mdp->msg_enable = value;
2230 }
2231 
2232 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2233 	"rx_current", "tx_current",
2234 	"rx_dirty", "tx_dirty",
2235 };
2236 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2237 
2238 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2239 {
2240 	switch (sset) {
2241 	case ETH_SS_STATS:
2242 		return SH_ETH_STATS_LEN;
2243 	default:
2244 		return -EOPNOTSUPP;
2245 	}
2246 }
2247 
2248 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2249 				     struct ethtool_stats *stats, u64 *data)
2250 {
2251 	struct sh_eth_private *mdp = netdev_priv(ndev);
2252 	int i = 0;
2253 
2254 	/* device-specific stats */
2255 	data[i++] = mdp->cur_rx;
2256 	data[i++] = mdp->cur_tx;
2257 	data[i++] = mdp->dirty_rx;
2258 	data[i++] = mdp->dirty_tx;
2259 }
2260 
2261 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2262 {
2263 	switch (stringset) {
2264 	case ETH_SS_STATS:
2265 		memcpy(data, *sh_eth_gstrings_stats,
2266 		       sizeof(sh_eth_gstrings_stats));
2267 		break;
2268 	}
2269 }
2270 
2271 static void sh_eth_get_ringparam(struct net_device *ndev,
2272 				 struct ethtool_ringparam *ring)
2273 {
2274 	struct sh_eth_private *mdp = netdev_priv(ndev);
2275 
2276 	ring->rx_max_pending = RX_RING_MAX;
2277 	ring->tx_max_pending = TX_RING_MAX;
2278 	ring->rx_pending = mdp->num_rx_ring;
2279 	ring->tx_pending = mdp->num_tx_ring;
2280 }
2281 
2282 static int sh_eth_set_ringparam(struct net_device *ndev,
2283 				struct ethtool_ringparam *ring)
2284 {
2285 	struct sh_eth_private *mdp = netdev_priv(ndev);
2286 	int ret;
2287 
2288 	if (ring->tx_pending > TX_RING_MAX ||
2289 	    ring->rx_pending > RX_RING_MAX ||
2290 	    ring->tx_pending < TX_RING_MIN ||
2291 	    ring->rx_pending < RX_RING_MIN)
2292 		return -EINVAL;
2293 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2294 		return -EINVAL;
2295 
2296 	if (netif_running(ndev)) {
2297 		netif_device_detach(ndev);
2298 		netif_tx_disable(ndev);
2299 
2300 		/* Serialise with the interrupt handler and NAPI, then
2301 		 * disable interrupts.  We have to clear the
2302 		 * irq_enabled flag first to ensure that interrupts
2303 		 * won't be re-enabled.
2304 		 */
2305 		mdp->irq_enabled = false;
2306 		synchronize_irq(ndev->irq);
2307 		napi_synchronize(&mdp->napi);
2308 		sh_eth_write(ndev, 0x0000, EESIPR);
2309 
2310 		sh_eth_dev_exit(ndev);
2311 
2312 		/* Free all the skbuffs in the Rx queue and the DMA buffers. */
2313 		sh_eth_ring_free(ndev);
2314 	}
2315 
2316 	/* Set new parameters */
2317 	mdp->num_rx_ring = ring->rx_pending;
2318 	mdp->num_tx_ring = ring->tx_pending;
2319 
2320 	if (netif_running(ndev)) {
2321 		ret = sh_eth_ring_init(ndev);
2322 		if (ret < 0) {
2323 			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2324 				   __func__);
2325 			return ret;
2326 		}
2327 		ret = sh_eth_dev_init(ndev);
2328 		if (ret < 0) {
2329 			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2330 				   __func__);
2331 			return ret;
2332 		}
2333 
2334 		netif_device_attach(ndev);
2335 	}
2336 
2337 	return 0;
2338 }
2339 
2340 static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2341 {
2342 	struct sh_eth_private *mdp = netdev_priv(ndev);
2343 
2344 	wol->supported = 0;
2345 	wol->wolopts = 0;
2346 
2347 	if (mdp->cd->magic) {
2348 		wol->supported = WAKE_MAGIC;
2349 		wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0;
2350 	}
2351 }
2352 
2353 static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2354 {
2355 	struct sh_eth_private *mdp = netdev_priv(ndev);
2356 
2357 	if (!mdp->cd->magic || wol->wolopts & ~WAKE_MAGIC)
2358 		return -EOPNOTSUPP;
2359 
2360 	mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
2361 
2362 	device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled);
2363 
2364 	return 0;
2365 }
2366 
2367 static const struct ethtool_ops sh_eth_ethtool_ops = {
2368 	.get_regs_len	= sh_eth_get_regs_len,
2369 	.get_regs	= sh_eth_get_regs,
2370 	.nway_reset	= sh_eth_nway_reset,
2371 	.get_msglevel	= sh_eth_get_msglevel,
2372 	.set_msglevel	= sh_eth_set_msglevel,
2373 	.get_link	= ethtool_op_get_link,
2374 	.get_strings	= sh_eth_get_strings,
2375 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2376 	.get_sset_count     = sh_eth_get_sset_count,
2377 	.get_ringparam	= sh_eth_get_ringparam,
2378 	.set_ringparam	= sh_eth_set_ringparam,
2379 	.get_link_ksettings = sh_eth_get_link_ksettings,
2380 	.set_link_ksettings = sh_eth_set_link_ksettings,
2381 	.get_wol	= sh_eth_get_wol,
2382 	.set_wol	= sh_eth_set_wol,
2383 };
2384 
2385 /* network device open function */
2386 static int sh_eth_open(struct net_device *ndev)
2387 {
2388 	struct sh_eth_private *mdp = netdev_priv(ndev);
2389 	int ret;
2390 
2391 	pm_runtime_get_sync(&mdp->pdev->dev);
2392 
2393 	napi_enable(&mdp->napi);
2394 
2395 	ret = request_irq(ndev->irq, sh_eth_interrupt,
2396 			  mdp->cd->irq_flags, ndev->name, ndev);
2397 	if (ret) {
2398 		netdev_err(ndev, "Can not assign IRQ number\n");
2399 		goto out_napi_off;
2400 	}
2401 
2402 	/* Descriptor set */
2403 	ret = sh_eth_ring_init(ndev);
2404 	if (ret)
2405 		goto out_free_irq;
2406 
2407 	/* device init */
2408 	ret = sh_eth_dev_init(ndev);
2409 	if (ret)
2410 		goto out_free_irq;
2411 
2412 	/* PHY control start*/
2413 	ret = sh_eth_phy_start(ndev);
2414 	if (ret)
2415 		goto out_free_irq;
2416 
2417 	netif_start_queue(ndev);
2418 
2419 	mdp->is_opened = 1;
2420 
2421 	return ret;
2422 
2423 out_free_irq:
2424 	free_irq(ndev->irq, ndev);
2425 out_napi_off:
2426 	napi_disable(&mdp->napi);
2427 	pm_runtime_put_sync(&mdp->pdev->dev);
2428 	return ret;
2429 }
2430 
2431 /* Timeout function */
2432 static void sh_eth_tx_timeout(struct net_device *ndev)
2433 {
2434 	struct sh_eth_private *mdp = netdev_priv(ndev);
2435 	struct sh_eth_rxdesc *rxdesc;
2436 	int i;
2437 
2438 	netif_stop_queue(ndev);
2439 
2440 	netif_err(mdp, timer, ndev,
2441 		  "transmit timed out, status %8.8x, resetting...\n",
2442 		  sh_eth_read(ndev, EESR));
2443 
2444 	/* tx_errors count up */
2445 	ndev->stats.tx_errors++;
2446 
2447 	/* Free all the skbuffs in the Rx queue. */
2448 	for (i = 0; i < mdp->num_rx_ring; i++) {
2449 		rxdesc = &mdp->rx_ring[i];
2450 		rxdesc->status = cpu_to_le32(0);
2451 		rxdesc->addr = cpu_to_le32(0xBADF00D0);
2452 		dev_kfree_skb(mdp->rx_skbuff[i]);
2453 		mdp->rx_skbuff[i] = NULL;
2454 	}
2455 	for (i = 0; i < mdp->num_tx_ring; i++) {
2456 		dev_kfree_skb(mdp->tx_skbuff[i]);
2457 		mdp->tx_skbuff[i] = NULL;
2458 	}
2459 
2460 	/* device init */
2461 	sh_eth_dev_init(ndev);
2462 
2463 	netif_start_queue(ndev);
2464 }
2465 
2466 /* Packet transmit function */
2467 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2468 {
2469 	struct sh_eth_private *mdp = netdev_priv(ndev);
2470 	struct sh_eth_txdesc *txdesc;
2471 	dma_addr_t dma_addr;
2472 	u32 entry;
2473 	unsigned long flags;
2474 
2475 	spin_lock_irqsave(&mdp->lock, flags);
2476 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2477 		if (!sh_eth_tx_free(ndev, true)) {
2478 			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2479 			netif_stop_queue(ndev);
2480 			spin_unlock_irqrestore(&mdp->lock, flags);
2481 			return NETDEV_TX_BUSY;
2482 		}
2483 	}
2484 	spin_unlock_irqrestore(&mdp->lock, flags);
2485 
2486 	if (skb_put_padto(skb, ETH_ZLEN))
2487 		return NETDEV_TX_OK;
2488 
2489 	entry = mdp->cur_tx % mdp->num_tx_ring;
2490 	mdp->tx_skbuff[entry] = skb;
2491 	txdesc = &mdp->tx_ring[entry];
2492 	/* soft swap. */
2493 	if (!mdp->cd->hw_swap)
2494 		sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2495 	dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, skb->len,
2496 				  DMA_TO_DEVICE);
2497 	if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
2498 		kfree_skb(skb);
2499 		return NETDEV_TX_OK;
2500 	}
2501 	txdesc->addr = cpu_to_le32(dma_addr);
2502 	txdesc->len  = cpu_to_le32(skb->len << 16);
2503 
2504 	dma_wmb(); /* TACT bit must be set after all the above writes */
2505 	if (entry >= mdp->num_tx_ring - 1)
2506 		txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2507 	else
2508 		txdesc->status |= cpu_to_le32(TD_TACT);
2509 
2510 	mdp->cur_tx++;
2511 
2512 	if (!(sh_eth_read(ndev, EDTRR) & mdp->cd->edtrr_trns))
2513 		sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
2514 
2515 	return NETDEV_TX_OK;
2516 }
2517 
2518 /* The statistics registers have write-clear behaviour, which means we
2519  * will lose any increment between the read and write.  We mitigate
2520  * this by only clearing when we read a non-zero value, so we will
2521  * never falsely report a total of zero.
2522  */
2523 static void
2524 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2525 {
2526 	u32 delta = sh_eth_read(ndev, reg);
2527 
2528 	if (delta) {
2529 		*stat += delta;
2530 		sh_eth_write(ndev, 0, reg);
2531 	}
2532 }
2533 
2534 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2535 {
2536 	struct sh_eth_private *mdp = netdev_priv(ndev);
2537 
2538 	if (mdp->cd->no_tx_cntrs)
2539 		return &ndev->stats;
2540 
2541 	if (!mdp->is_opened)
2542 		return &ndev->stats;
2543 
2544 	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2545 	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2546 	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2547 
2548 	if (mdp->cd->cexcr) {
2549 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2550 				   CERCR);
2551 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2552 				   CEECR);
2553 	} else {
2554 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2555 				   CNDCR);
2556 	}
2557 
2558 	return &ndev->stats;
2559 }
2560 
2561 /* device close function */
2562 static int sh_eth_close(struct net_device *ndev)
2563 {
2564 	struct sh_eth_private *mdp = netdev_priv(ndev);
2565 
2566 	netif_stop_queue(ndev);
2567 
2568 	/* Serialise with the interrupt handler and NAPI, then disable
2569 	 * interrupts.  We have to clear the irq_enabled flag first to
2570 	 * ensure that interrupts won't be re-enabled.
2571 	 */
2572 	mdp->irq_enabled = false;
2573 	synchronize_irq(ndev->irq);
2574 	napi_disable(&mdp->napi);
2575 	sh_eth_write(ndev, 0x0000, EESIPR);
2576 
2577 	sh_eth_dev_exit(ndev);
2578 
2579 	/* PHY Disconnect */
2580 	if (ndev->phydev) {
2581 		phy_stop(ndev->phydev);
2582 		phy_disconnect(ndev->phydev);
2583 	}
2584 
2585 	free_irq(ndev->irq, ndev);
2586 
2587 	/* Free all the skbuffs in the Rx queue and the DMA buffer. */
2588 	sh_eth_ring_free(ndev);
2589 
2590 	pm_runtime_put_sync(&mdp->pdev->dev);
2591 
2592 	mdp->is_opened = 0;
2593 
2594 	return 0;
2595 }
2596 
2597 /* ioctl to device function */
2598 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2599 {
2600 	struct phy_device *phydev = ndev->phydev;
2601 
2602 	if (!netif_running(ndev))
2603 		return -EINVAL;
2604 
2605 	if (!phydev)
2606 		return -ENODEV;
2607 
2608 	return phy_mii_ioctl(phydev, rq, cmd);
2609 }
2610 
2611 static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu)
2612 {
2613 	if (netif_running(ndev))
2614 		return -EBUSY;
2615 
2616 	ndev->mtu = new_mtu;
2617 	netdev_update_features(ndev);
2618 
2619 	return 0;
2620 }
2621 
2622 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2623 static u32 sh_eth_tsu_get_post_mask(int entry)
2624 {
2625 	return 0x0f << (28 - ((entry % 8) * 4));
2626 }
2627 
2628 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2629 {
2630 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2631 }
2632 
2633 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2634 					     int entry)
2635 {
2636 	struct sh_eth_private *mdp = netdev_priv(ndev);
2637 	int reg = TSU_POST1 + entry / 8;
2638 	u32 tmp;
2639 
2640 	tmp = sh_eth_tsu_read(mdp, reg);
2641 	sh_eth_tsu_write(mdp, tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg);
2642 }
2643 
2644 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2645 					      int entry)
2646 {
2647 	struct sh_eth_private *mdp = netdev_priv(ndev);
2648 	int reg = TSU_POST1 + entry / 8;
2649 	u32 post_mask, ref_mask, tmp;
2650 
2651 	post_mask = sh_eth_tsu_get_post_mask(entry);
2652 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2653 
2654 	tmp = sh_eth_tsu_read(mdp, reg);
2655 	sh_eth_tsu_write(mdp, tmp & ~post_mask, reg);
2656 
2657 	/* If other port enables, the function returns "true" */
2658 	return tmp & ref_mask;
2659 }
2660 
2661 static int sh_eth_tsu_busy(struct net_device *ndev)
2662 {
2663 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2664 	struct sh_eth_private *mdp = netdev_priv(ndev);
2665 
2666 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2667 		udelay(10);
2668 		timeout--;
2669 		if (timeout <= 0) {
2670 			netdev_err(ndev, "%s: timeout\n", __func__);
2671 			return -ETIMEDOUT;
2672 		}
2673 	}
2674 
2675 	return 0;
2676 }
2677 
2678 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2679 				  const u8 *addr)
2680 {
2681 	u32 val;
2682 
2683 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2684 	iowrite32(val, reg);
2685 	if (sh_eth_tsu_busy(ndev) < 0)
2686 		return -EBUSY;
2687 
2688 	val = addr[4] << 8 | addr[5];
2689 	iowrite32(val, reg + 4);
2690 	if (sh_eth_tsu_busy(ndev) < 0)
2691 		return -EBUSY;
2692 
2693 	return 0;
2694 }
2695 
2696 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2697 {
2698 	u32 val;
2699 
2700 	val = ioread32(reg);
2701 	addr[0] = (val >> 24) & 0xff;
2702 	addr[1] = (val >> 16) & 0xff;
2703 	addr[2] = (val >> 8) & 0xff;
2704 	addr[3] = val & 0xff;
2705 	val = ioread32(reg + 4);
2706 	addr[4] = (val >> 8) & 0xff;
2707 	addr[5] = val & 0xff;
2708 }
2709 
2710 
2711 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2712 {
2713 	struct sh_eth_private *mdp = netdev_priv(ndev);
2714 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2715 	int i;
2716 	u8 c_addr[ETH_ALEN];
2717 
2718 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2719 		sh_eth_tsu_read_entry(reg_offset, c_addr);
2720 		if (ether_addr_equal(addr, c_addr))
2721 			return i;
2722 	}
2723 
2724 	return -ENOENT;
2725 }
2726 
2727 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2728 {
2729 	u8 blank[ETH_ALEN];
2730 	int entry;
2731 
2732 	memset(blank, 0, sizeof(blank));
2733 	entry = sh_eth_tsu_find_entry(ndev, blank);
2734 	return (entry < 0) ? -ENOMEM : entry;
2735 }
2736 
2737 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2738 					      int entry)
2739 {
2740 	struct sh_eth_private *mdp = netdev_priv(ndev);
2741 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2742 	int ret;
2743 	u8 blank[ETH_ALEN];
2744 
2745 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2746 			 ~(1 << (31 - entry)), TSU_TEN);
2747 
2748 	memset(blank, 0, sizeof(blank));
2749 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2750 	if (ret < 0)
2751 		return ret;
2752 	return 0;
2753 }
2754 
2755 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2756 {
2757 	struct sh_eth_private *mdp = netdev_priv(ndev);
2758 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2759 	int i, ret;
2760 
2761 	if (!mdp->cd->tsu)
2762 		return 0;
2763 
2764 	i = sh_eth_tsu_find_entry(ndev, addr);
2765 	if (i < 0) {
2766 		/* No entry found, create one */
2767 		i = sh_eth_tsu_find_empty(ndev);
2768 		if (i < 0)
2769 			return -ENOMEM;
2770 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2771 		if (ret < 0)
2772 			return ret;
2773 
2774 		/* Enable the entry */
2775 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2776 				 (1 << (31 - i)), TSU_TEN);
2777 	}
2778 
2779 	/* Entry found or created, enable POST */
2780 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2781 
2782 	return 0;
2783 }
2784 
2785 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2786 {
2787 	struct sh_eth_private *mdp = netdev_priv(ndev);
2788 	int i, ret;
2789 
2790 	if (!mdp->cd->tsu)
2791 		return 0;
2792 
2793 	i = sh_eth_tsu_find_entry(ndev, addr);
2794 	if (i) {
2795 		/* Entry found */
2796 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2797 			goto done;
2798 
2799 		/* Disable the entry if both ports was disabled */
2800 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2801 		if (ret < 0)
2802 			return ret;
2803 	}
2804 done:
2805 	return 0;
2806 }
2807 
2808 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2809 {
2810 	struct sh_eth_private *mdp = netdev_priv(ndev);
2811 	int i, ret;
2812 
2813 	if (!mdp->cd->tsu)
2814 		return 0;
2815 
2816 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2817 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2818 			continue;
2819 
2820 		/* Disable the entry if both ports was disabled */
2821 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2822 		if (ret < 0)
2823 			return ret;
2824 	}
2825 
2826 	return 0;
2827 }
2828 
2829 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2830 {
2831 	struct sh_eth_private *mdp = netdev_priv(ndev);
2832 	u8 addr[ETH_ALEN];
2833 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2834 	int i;
2835 
2836 	if (!mdp->cd->tsu)
2837 		return;
2838 
2839 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2840 		sh_eth_tsu_read_entry(reg_offset, addr);
2841 		if (is_multicast_ether_addr(addr))
2842 			sh_eth_tsu_del_entry(ndev, addr);
2843 	}
2844 }
2845 
2846 /* Update promiscuous flag and multicast filter */
2847 static void sh_eth_set_rx_mode(struct net_device *ndev)
2848 {
2849 	struct sh_eth_private *mdp = netdev_priv(ndev);
2850 	u32 ecmr_bits;
2851 	int mcast_all = 0;
2852 	unsigned long flags;
2853 
2854 	spin_lock_irqsave(&mdp->lock, flags);
2855 	/* Initial condition is MCT = 1, PRM = 0.
2856 	 * Depending on ndev->flags, set PRM or clear MCT
2857 	 */
2858 	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2859 	if (mdp->cd->tsu)
2860 		ecmr_bits |= ECMR_MCT;
2861 
2862 	if (!(ndev->flags & IFF_MULTICAST)) {
2863 		sh_eth_tsu_purge_mcast(ndev);
2864 		mcast_all = 1;
2865 	}
2866 	if (ndev->flags & IFF_ALLMULTI) {
2867 		sh_eth_tsu_purge_mcast(ndev);
2868 		ecmr_bits &= ~ECMR_MCT;
2869 		mcast_all = 1;
2870 	}
2871 
2872 	if (ndev->flags & IFF_PROMISC) {
2873 		sh_eth_tsu_purge_all(ndev);
2874 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2875 	} else if (mdp->cd->tsu) {
2876 		struct netdev_hw_addr *ha;
2877 		netdev_for_each_mc_addr(ha, ndev) {
2878 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2879 				continue;
2880 
2881 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2882 				if (!mcast_all) {
2883 					sh_eth_tsu_purge_mcast(ndev);
2884 					ecmr_bits &= ~ECMR_MCT;
2885 					mcast_all = 1;
2886 				}
2887 			}
2888 		}
2889 	}
2890 
2891 	/* update the ethernet mode */
2892 	sh_eth_write(ndev, ecmr_bits, ECMR);
2893 
2894 	spin_unlock_irqrestore(&mdp->lock, flags);
2895 }
2896 
2897 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2898 {
2899 	if (!mdp->port)
2900 		return TSU_VTAG0;
2901 	else
2902 		return TSU_VTAG1;
2903 }
2904 
2905 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2906 				  __be16 proto, u16 vid)
2907 {
2908 	struct sh_eth_private *mdp = netdev_priv(ndev);
2909 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2910 
2911 	if (unlikely(!mdp->cd->tsu))
2912 		return -EPERM;
2913 
2914 	/* No filtering if vid = 0 */
2915 	if (!vid)
2916 		return 0;
2917 
2918 	mdp->vlan_num_ids++;
2919 
2920 	/* The controller has one VLAN tag HW filter. So, if the filter is
2921 	 * already enabled, the driver disables it and the filte
2922 	 */
2923 	if (mdp->vlan_num_ids > 1) {
2924 		/* disable VLAN filter */
2925 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2926 		return 0;
2927 	}
2928 
2929 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2930 			 vtag_reg_index);
2931 
2932 	return 0;
2933 }
2934 
2935 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2936 				   __be16 proto, u16 vid)
2937 {
2938 	struct sh_eth_private *mdp = netdev_priv(ndev);
2939 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2940 
2941 	if (unlikely(!mdp->cd->tsu))
2942 		return -EPERM;
2943 
2944 	/* No filtering if vid = 0 */
2945 	if (!vid)
2946 		return 0;
2947 
2948 	mdp->vlan_num_ids--;
2949 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2950 
2951 	return 0;
2952 }
2953 
2954 /* SuperH's TSU register init function */
2955 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2956 {
2957 	if (!mdp->cd->dual_port) {
2958 		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2959 		sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
2960 				 TSU_FWSLC);	/* Enable POST registers */
2961 		return;
2962 	}
2963 
2964 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2965 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2966 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2967 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2968 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2969 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2970 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2971 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2972 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2973 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2974 	sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2975 	sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2976 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2977 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2978 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2979 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2980 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2981 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2982 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2983 }
2984 
2985 /* MDIO bus release function */
2986 static int sh_mdio_release(struct sh_eth_private *mdp)
2987 {
2988 	/* unregister mdio bus */
2989 	mdiobus_unregister(mdp->mii_bus);
2990 
2991 	/* free bitbang info */
2992 	free_mdio_bitbang(mdp->mii_bus);
2993 
2994 	return 0;
2995 }
2996 
2997 /* MDIO bus init function */
2998 static int sh_mdio_init(struct sh_eth_private *mdp,
2999 			struct sh_eth_plat_data *pd)
3000 {
3001 	int ret;
3002 	struct bb_info *bitbang;
3003 	struct platform_device *pdev = mdp->pdev;
3004 	struct device *dev = &mdp->pdev->dev;
3005 
3006 	/* create bit control struct for PHY */
3007 	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
3008 	if (!bitbang)
3009 		return -ENOMEM;
3010 
3011 	/* bitbang init */
3012 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
3013 	bitbang->set_gate = pd->set_mdio_gate;
3014 	bitbang->ctrl.ops = &bb_ops;
3015 
3016 	/* MII controller setting */
3017 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
3018 	if (!mdp->mii_bus)
3019 		return -ENOMEM;
3020 
3021 	/* Hook up MII support for ethtool */
3022 	mdp->mii_bus->name = "sh_mii";
3023 	mdp->mii_bus->parent = dev;
3024 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
3025 		 pdev->name, pdev->id);
3026 
3027 	/* register MDIO bus */
3028 	if (pd->phy_irq > 0)
3029 		mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
3030 
3031 	ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
3032 	if (ret)
3033 		goto out_free_bus;
3034 
3035 	return 0;
3036 
3037 out_free_bus:
3038 	free_mdio_bitbang(mdp->mii_bus);
3039 	return ret;
3040 }
3041 
3042 static const u16 *sh_eth_get_register_offset(int register_type)
3043 {
3044 	const u16 *reg_offset = NULL;
3045 
3046 	switch (register_type) {
3047 	case SH_ETH_REG_GIGABIT:
3048 		reg_offset = sh_eth_offset_gigabit;
3049 		break;
3050 	case SH_ETH_REG_FAST_RZ:
3051 		reg_offset = sh_eth_offset_fast_rz;
3052 		break;
3053 	case SH_ETH_REG_FAST_RCAR:
3054 		reg_offset = sh_eth_offset_fast_rcar;
3055 		break;
3056 	case SH_ETH_REG_FAST_SH4:
3057 		reg_offset = sh_eth_offset_fast_sh4;
3058 		break;
3059 	case SH_ETH_REG_FAST_SH3_SH2:
3060 		reg_offset = sh_eth_offset_fast_sh3_sh2;
3061 		break;
3062 	}
3063 
3064 	return reg_offset;
3065 }
3066 
3067 static const struct net_device_ops sh_eth_netdev_ops = {
3068 	.ndo_open		= sh_eth_open,
3069 	.ndo_stop		= sh_eth_close,
3070 	.ndo_start_xmit		= sh_eth_start_xmit,
3071 	.ndo_get_stats		= sh_eth_get_stats,
3072 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3073 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3074 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3075 	.ndo_change_mtu		= sh_eth_change_mtu,
3076 	.ndo_validate_addr	= eth_validate_addr,
3077 	.ndo_set_mac_address	= eth_mac_addr,
3078 };
3079 
3080 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3081 	.ndo_open		= sh_eth_open,
3082 	.ndo_stop		= sh_eth_close,
3083 	.ndo_start_xmit		= sh_eth_start_xmit,
3084 	.ndo_get_stats		= sh_eth_get_stats,
3085 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3086 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
3087 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
3088 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3089 	.ndo_do_ioctl		= sh_eth_do_ioctl,
3090 	.ndo_change_mtu		= sh_eth_change_mtu,
3091 	.ndo_validate_addr	= eth_validate_addr,
3092 	.ndo_set_mac_address	= eth_mac_addr,
3093 };
3094 
3095 #ifdef CONFIG_OF
3096 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3097 {
3098 	struct device_node *np = dev->of_node;
3099 	struct sh_eth_plat_data *pdata;
3100 	const char *mac_addr;
3101 
3102 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3103 	if (!pdata)
3104 		return NULL;
3105 
3106 	pdata->phy_interface = of_get_phy_mode(np);
3107 
3108 	mac_addr = of_get_mac_address(np);
3109 	if (mac_addr)
3110 		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
3111 
3112 	pdata->no_ether_link =
3113 		of_property_read_bool(np, "renesas,no-ether-link");
3114 	pdata->ether_link_active_low =
3115 		of_property_read_bool(np, "renesas,ether-link-active-low");
3116 
3117 	return pdata;
3118 }
3119 
3120 static const struct of_device_id sh_eth_match_table[] = {
3121 	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3122 	{ .compatible = "renesas,ether-r8a7743", .data = &rcar_gen2_data },
3123 	{ .compatible = "renesas,ether-r8a7745", .data = &rcar_gen2_data },
3124 	{ .compatible = "renesas,ether-r8a7778", .data = &rcar_gen1_data },
3125 	{ .compatible = "renesas,ether-r8a7779", .data = &rcar_gen1_data },
3126 	{ .compatible = "renesas,ether-r8a7790", .data = &rcar_gen2_data },
3127 	{ .compatible = "renesas,ether-r8a7791", .data = &rcar_gen2_data },
3128 	{ .compatible = "renesas,ether-r8a7793", .data = &rcar_gen2_data },
3129 	{ .compatible = "renesas,ether-r8a7794", .data = &rcar_gen2_data },
3130 	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3131 	{ .compatible = "renesas,rcar-gen1-ether", .data = &rcar_gen1_data },
3132 	{ .compatible = "renesas,rcar-gen2-ether", .data = &rcar_gen2_data },
3133 	{ }
3134 };
3135 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3136 #else
3137 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3138 {
3139 	return NULL;
3140 }
3141 #endif
3142 
3143 static int sh_eth_drv_probe(struct platform_device *pdev)
3144 {
3145 	struct resource *res;
3146 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3147 	const struct platform_device_id *id = platform_get_device_id(pdev);
3148 	struct sh_eth_private *mdp;
3149 	struct net_device *ndev;
3150 	int ret;
3151 
3152 	/* get base addr */
3153 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3154 
3155 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3156 	if (!ndev)
3157 		return -ENOMEM;
3158 
3159 	pm_runtime_enable(&pdev->dev);
3160 	pm_runtime_get_sync(&pdev->dev);
3161 
3162 	ret = platform_get_irq(pdev, 0);
3163 	if (ret < 0)
3164 		goto out_release;
3165 	ndev->irq = ret;
3166 
3167 	SET_NETDEV_DEV(ndev, &pdev->dev);
3168 
3169 	mdp = netdev_priv(ndev);
3170 	mdp->num_tx_ring = TX_RING_SIZE;
3171 	mdp->num_rx_ring = RX_RING_SIZE;
3172 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3173 	if (IS_ERR(mdp->addr)) {
3174 		ret = PTR_ERR(mdp->addr);
3175 		goto out_release;
3176 	}
3177 
3178 	ndev->base_addr = res->start;
3179 
3180 	spin_lock_init(&mdp->lock);
3181 	mdp->pdev = pdev;
3182 
3183 	if (pdev->dev.of_node)
3184 		pd = sh_eth_parse_dt(&pdev->dev);
3185 	if (!pd) {
3186 		dev_err(&pdev->dev, "no platform data\n");
3187 		ret = -EINVAL;
3188 		goto out_release;
3189 	}
3190 
3191 	/* get PHY ID */
3192 	mdp->phy_id = pd->phy;
3193 	mdp->phy_interface = pd->phy_interface;
3194 	mdp->no_ether_link = pd->no_ether_link;
3195 	mdp->ether_link_active_low = pd->ether_link_active_low;
3196 
3197 	/* set cpu data */
3198 	if (id)
3199 		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3200 	else
3201 		mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3202 
3203 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3204 	if (!mdp->reg_offset) {
3205 		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3206 			mdp->cd->register_type);
3207 		ret = -EINVAL;
3208 		goto out_release;
3209 	}
3210 	sh_eth_set_default_cpu_data(mdp->cd);
3211 
3212 	/* User's manual states max MTU should be 2048 but due to the
3213 	 * alignment calculations in sh_eth_ring_init() the practical
3214 	 * MTU is a bit less. Maybe this can be optimized some more.
3215 	 */
3216 	ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3217 	ndev->min_mtu = ETH_MIN_MTU;
3218 
3219 	/* set function */
3220 	if (mdp->cd->tsu)
3221 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3222 	else
3223 		ndev->netdev_ops = &sh_eth_netdev_ops;
3224 	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3225 	ndev->watchdog_timeo = TX_TIMEOUT;
3226 
3227 	/* debug message level */
3228 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3229 
3230 	/* read and set MAC address */
3231 	read_mac_address(ndev, pd->mac_addr);
3232 	if (!is_valid_ether_addr(ndev->dev_addr)) {
3233 		dev_warn(&pdev->dev,
3234 			 "no valid MAC address supplied, using a random one.\n");
3235 		eth_hw_addr_random(ndev);
3236 	}
3237 
3238 	if (mdp->cd->tsu) {
3239 		int port = pdev->id < 0 ? 0 : pdev->id % 2;
3240 		struct resource *rtsu;
3241 
3242 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3243 		if (!rtsu) {
3244 			dev_err(&pdev->dev, "no TSU resource\n");
3245 			ret = -ENODEV;
3246 			goto out_release;
3247 		}
3248 		/* We can only request the  TSU region  for the first port
3249 		 * of the two  sharing this TSU for the probe to succeed...
3250 		 */
3251 		if (port == 0 &&
3252 		    !devm_request_mem_region(&pdev->dev, rtsu->start,
3253 					     resource_size(rtsu),
3254 					     dev_name(&pdev->dev))) {
3255 			dev_err(&pdev->dev, "can't request TSU resource.\n");
3256 			ret = -EBUSY;
3257 			goto out_release;
3258 		}
3259 		/* ioremap the TSU registers */
3260 		mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start,
3261 					     resource_size(rtsu));
3262 		if (!mdp->tsu_addr) {
3263 			dev_err(&pdev->dev, "TSU region ioremap() failed.\n");
3264 			ret = -ENOMEM;
3265 			goto out_release;
3266 		}
3267 		mdp->port = port;
3268 		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3269 
3270 		/* Need to init only the first port of the two sharing a TSU */
3271 		if (port == 0) {
3272 			if (mdp->cd->chip_reset)
3273 				mdp->cd->chip_reset(ndev);
3274 
3275 			/* TSU init (Init only)*/
3276 			sh_eth_tsu_init(mdp);
3277 		}
3278 	}
3279 
3280 	if (mdp->cd->rmiimode)
3281 		sh_eth_write(ndev, 0x1, RMIIMODE);
3282 
3283 	/* MDIO bus init */
3284 	ret = sh_mdio_init(mdp, pd);
3285 	if (ret) {
3286 		if (ret != -EPROBE_DEFER)
3287 			dev_err(&pdev->dev, "MDIO init failed: %d\n", ret);
3288 		goto out_release;
3289 	}
3290 
3291 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3292 
3293 	/* network device register */
3294 	ret = register_netdev(ndev);
3295 	if (ret)
3296 		goto out_napi_del;
3297 
3298 	if (mdp->cd->magic)
3299 		device_set_wakeup_capable(&pdev->dev, 1);
3300 
3301 	/* print device information */
3302 	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3303 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3304 
3305 	pm_runtime_put(&pdev->dev);
3306 	platform_set_drvdata(pdev, ndev);
3307 
3308 	return ret;
3309 
3310 out_napi_del:
3311 	netif_napi_del(&mdp->napi);
3312 	sh_mdio_release(mdp);
3313 
3314 out_release:
3315 	/* net_dev free */
3316 	free_netdev(ndev);
3317 
3318 	pm_runtime_put(&pdev->dev);
3319 	pm_runtime_disable(&pdev->dev);
3320 	return ret;
3321 }
3322 
3323 static int sh_eth_drv_remove(struct platform_device *pdev)
3324 {
3325 	struct net_device *ndev = platform_get_drvdata(pdev);
3326 	struct sh_eth_private *mdp = netdev_priv(ndev);
3327 
3328 	unregister_netdev(ndev);
3329 	netif_napi_del(&mdp->napi);
3330 	sh_mdio_release(mdp);
3331 	pm_runtime_disable(&pdev->dev);
3332 	free_netdev(ndev);
3333 
3334 	return 0;
3335 }
3336 
3337 #ifdef CONFIG_PM
3338 #ifdef CONFIG_PM_SLEEP
3339 static int sh_eth_wol_setup(struct net_device *ndev)
3340 {
3341 	struct sh_eth_private *mdp = netdev_priv(ndev);
3342 
3343 	/* Only allow ECI interrupts */
3344 	synchronize_irq(ndev->irq);
3345 	napi_disable(&mdp->napi);
3346 	sh_eth_write(ndev, EESIPR_ECIIP, EESIPR);
3347 
3348 	/* Enable MagicPacket */
3349 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3350 
3351 	return enable_irq_wake(ndev->irq);
3352 }
3353 
3354 static int sh_eth_wol_restore(struct net_device *ndev)
3355 {
3356 	struct sh_eth_private *mdp = netdev_priv(ndev);
3357 	int ret;
3358 
3359 	napi_enable(&mdp->napi);
3360 
3361 	/* Disable MagicPacket */
3362 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0);
3363 
3364 	/* The device needs to be reset to restore MagicPacket logic
3365 	 * for next wakeup. If we close and open the device it will
3366 	 * both be reset and all registers restored. This is what
3367 	 * happens during suspend and resume without WoL enabled.
3368 	 */
3369 	ret = sh_eth_close(ndev);
3370 	if (ret < 0)
3371 		return ret;
3372 	ret = sh_eth_open(ndev);
3373 	if (ret < 0)
3374 		return ret;
3375 
3376 	return disable_irq_wake(ndev->irq);
3377 }
3378 
3379 static int sh_eth_suspend(struct device *dev)
3380 {
3381 	struct net_device *ndev = dev_get_drvdata(dev);
3382 	struct sh_eth_private *mdp = netdev_priv(ndev);
3383 	int ret = 0;
3384 
3385 	if (!netif_running(ndev))
3386 		return 0;
3387 
3388 	netif_device_detach(ndev);
3389 
3390 	if (mdp->wol_enabled)
3391 		ret = sh_eth_wol_setup(ndev);
3392 	else
3393 		ret = sh_eth_close(ndev);
3394 
3395 	return ret;
3396 }
3397 
3398 static int sh_eth_resume(struct device *dev)
3399 {
3400 	struct net_device *ndev = dev_get_drvdata(dev);
3401 	struct sh_eth_private *mdp = netdev_priv(ndev);
3402 	int ret = 0;
3403 
3404 	if (!netif_running(ndev))
3405 		return 0;
3406 
3407 	if (mdp->wol_enabled)
3408 		ret = sh_eth_wol_restore(ndev);
3409 	else
3410 		ret = sh_eth_open(ndev);
3411 
3412 	if (ret < 0)
3413 		return ret;
3414 
3415 	netif_device_attach(ndev);
3416 
3417 	return ret;
3418 }
3419 #endif
3420 
3421 static int sh_eth_runtime_nop(struct device *dev)
3422 {
3423 	/* Runtime PM callback shared between ->runtime_suspend()
3424 	 * and ->runtime_resume(). Simply returns success.
3425 	 *
3426 	 * This driver re-initializes all registers after
3427 	 * pm_runtime_get_sync() anyway so there is no need
3428 	 * to save and restore registers here.
3429 	 */
3430 	return 0;
3431 }
3432 
3433 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3434 	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3435 	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3436 };
3437 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3438 #else
3439 #define SH_ETH_PM_OPS NULL
3440 #endif
3441 
3442 static const struct platform_device_id sh_eth_id_table[] = {
3443 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3444 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3445 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3446 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3447 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3448 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3449 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3450 	{ }
3451 };
3452 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3453 
3454 static struct platform_driver sh_eth_driver = {
3455 	.probe = sh_eth_drv_probe,
3456 	.remove = sh_eth_drv_remove,
3457 	.id_table = sh_eth_id_table,
3458 	.driver = {
3459 		   .name = CARDNAME,
3460 		   .pm = SH_ETH_PM_OPS,
3461 		   .of_match_table = of_match_ptr(sh_eth_match_table),
3462 	},
3463 };
3464 
3465 module_platform_driver(sh_eth_driver);
3466 
3467 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3468 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3469 MODULE_LICENSE("GPL v2");
3470