xref: /linux/drivers/net/ethernet/renesas/sh_eth.c (revision a508da6cc0093171833efb8376b00473f24221b9)
1 /*
2  *  SuperH Ethernet device driver
3  *
4  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
5  *  Copyright (C) 2008-2012 Renesas Solutions Corp.
6  *
7  *  This program is free software; you can redistribute it and/or modify it
8  *  under the terms and conditions of the GNU General Public License,
9  *  version 2, as published by the Free Software Foundation.
10  *
11  *  This program is distributed in the hope it will be useful, but WITHOUT
12  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  *  more details.
15  *  You should have received a copy of the GNU General Public License along with
16  *  this program; if not, write to the Free Software Foundation, Inc.,
17  *  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  *  The full GNU General Public License is included in this distribution in
20  *  the file called "COPYING".
21  */
22 
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/spinlock.h>
27 #include <linux/interrupt.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/etherdevice.h>
30 #include <linux/delay.h>
31 #include <linux/platform_device.h>
32 #include <linux/mdio-bitbang.h>
33 #include <linux/netdevice.h>
34 #include <linux/phy.h>
35 #include <linux/cache.h>
36 #include <linux/io.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/slab.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/clk.h>
42 #include <linux/sh_eth.h>
43 
44 #include "sh_eth.h"
45 
46 #define SH_ETH_DEF_MSG_ENABLE \
47 		(NETIF_MSG_LINK	| \
48 		NETIF_MSG_TIMER	| \
49 		NETIF_MSG_RX_ERR| \
50 		NETIF_MSG_TX_ERR)
51 
52 /* There is CPU dependent code */
53 #if defined(CONFIG_CPU_SUBTYPE_SH7724)
54 #define SH_ETH_RESET_DEFAULT	1
55 static void sh_eth_set_duplex(struct net_device *ndev)
56 {
57 	struct sh_eth_private *mdp = netdev_priv(ndev);
58 
59 	if (mdp->duplex) /* Full */
60 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
61 	else		/* Half */
62 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
63 }
64 
65 static void sh_eth_set_rate(struct net_device *ndev)
66 {
67 	struct sh_eth_private *mdp = netdev_priv(ndev);
68 
69 	switch (mdp->speed) {
70 	case 10: /* 10BASE */
71 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
72 		break;
73 	case 100:/* 100BASE */
74 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
75 		break;
76 	default:
77 		break;
78 	}
79 }
80 
81 /* SH7724 */
82 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
83 	.set_duplex	= sh_eth_set_duplex,
84 	.set_rate	= sh_eth_set_rate,
85 
86 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
87 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
88 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
89 
90 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
91 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
92 			  EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
93 	.tx_error_check	= EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
94 
95 	.apr		= 1,
96 	.mpr		= 1,
97 	.tpauser	= 1,
98 	.hw_swap	= 1,
99 	.rpadir		= 1,
100 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
101 };
102 #elif defined(CONFIG_CPU_SUBTYPE_SH7757)
103 #define SH_ETH_HAS_BOTH_MODULES	1
104 #define SH_ETH_HAS_TSU	1
105 static void sh_eth_set_duplex(struct net_device *ndev)
106 {
107 	struct sh_eth_private *mdp = netdev_priv(ndev);
108 
109 	if (mdp->duplex) /* Full */
110 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
111 	else		/* Half */
112 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
113 }
114 
115 static void sh_eth_set_rate(struct net_device *ndev)
116 {
117 	struct sh_eth_private *mdp = netdev_priv(ndev);
118 
119 	switch (mdp->speed) {
120 	case 10: /* 10BASE */
121 		sh_eth_write(ndev, 0, RTRATE);
122 		break;
123 	case 100:/* 100BASE */
124 		sh_eth_write(ndev, 1, RTRATE);
125 		break;
126 	default:
127 		break;
128 	}
129 }
130 
131 /* SH7757 */
132 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
133 	.set_duplex		= sh_eth_set_duplex,
134 	.set_rate		= sh_eth_set_rate,
135 
136 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
137 	.rmcr_value	= 0x00000001,
138 
139 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
140 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
141 			  EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
142 	.tx_error_check	= EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
143 
144 	.apr		= 1,
145 	.mpr		= 1,
146 	.tpauser	= 1,
147 	.hw_swap	= 1,
148 	.no_ade		= 1,
149 	.rpadir		= 1,
150 	.rpadir_value   = 2 << 16,
151 };
152 
153 #define SH_GIGA_ETH_BASE	0xfee00000
154 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
155 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
156 static void sh_eth_chip_reset_giga(struct net_device *ndev)
157 {
158 	int i;
159 	unsigned long mahr[2], malr[2];
160 
161 	/* save MAHR and MALR */
162 	for (i = 0; i < 2; i++) {
163 		malr[i] = ioread32((void *)GIGA_MALR(i));
164 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
165 	}
166 
167 	/* reset device */
168 	iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
169 	mdelay(1);
170 
171 	/* restore MAHR and MALR */
172 	for (i = 0; i < 2; i++) {
173 		iowrite32(malr[i], (void *)GIGA_MALR(i));
174 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
175 	}
176 }
177 
178 static int sh_eth_is_gether(struct sh_eth_private *mdp);
179 static void sh_eth_reset(struct net_device *ndev)
180 {
181 	struct sh_eth_private *mdp = netdev_priv(ndev);
182 	int cnt = 100;
183 
184 	if (sh_eth_is_gether(mdp)) {
185 		sh_eth_write(ndev, 0x03, EDSR);
186 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
187 				EDMR);
188 		while (cnt > 0) {
189 			if (!(sh_eth_read(ndev, EDMR) & 0x3))
190 				break;
191 			mdelay(1);
192 			cnt--;
193 		}
194 		if (cnt < 0)
195 			printk(KERN_ERR "Device reset fail\n");
196 
197 		/* Table Init */
198 		sh_eth_write(ndev, 0x0, TDLAR);
199 		sh_eth_write(ndev, 0x0, TDFAR);
200 		sh_eth_write(ndev, 0x0, TDFXR);
201 		sh_eth_write(ndev, 0x0, TDFFR);
202 		sh_eth_write(ndev, 0x0, RDLAR);
203 		sh_eth_write(ndev, 0x0, RDFAR);
204 		sh_eth_write(ndev, 0x0, RDFXR);
205 		sh_eth_write(ndev, 0x0, RDFFR);
206 	} else {
207 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
208 				EDMR);
209 		mdelay(3);
210 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
211 				EDMR);
212 	}
213 }
214 
215 static void sh_eth_set_duplex_giga(struct net_device *ndev)
216 {
217 	struct sh_eth_private *mdp = netdev_priv(ndev);
218 
219 	if (mdp->duplex) /* Full */
220 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
221 	else		/* Half */
222 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
223 }
224 
225 static void sh_eth_set_rate_giga(struct net_device *ndev)
226 {
227 	struct sh_eth_private *mdp = netdev_priv(ndev);
228 
229 	switch (mdp->speed) {
230 	case 10: /* 10BASE */
231 		sh_eth_write(ndev, 0x00000000, GECMR);
232 		break;
233 	case 100:/* 100BASE */
234 		sh_eth_write(ndev, 0x00000010, GECMR);
235 		break;
236 	case 1000: /* 1000BASE */
237 		sh_eth_write(ndev, 0x00000020, GECMR);
238 		break;
239 	default:
240 		break;
241 	}
242 }
243 
244 /* SH7757(GETHERC) */
245 static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
246 	.chip_reset	= sh_eth_chip_reset_giga,
247 	.set_duplex	= sh_eth_set_duplex_giga,
248 	.set_rate	= sh_eth_set_rate_giga,
249 
250 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
251 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
252 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
253 
254 	.tx_check	= EESR_TC1 | EESR_FTC,
255 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
256 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
257 			  EESR_ECI,
258 	.tx_error_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
259 			  EESR_TFE,
260 	.fdr_value	= 0x0000072f,
261 	.rmcr_value	= 0x00000001,
262 
263 	.apr		= 1,
264 	.mpr		= 1,
265 	.tpauser	= 1,
266 	.bculr		= 1,
267 	.hw_swap	= 1,
268 	.rpadir		= 1,
269 	.rpadir_value   = 2 << 16,
270 	.no_trimd	= 1,
271 	.no_ade		= 1,
272 	.tsu		= 1,
273 };
274 
275 static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
276 {
277 	if (sh_eth_is_gether(mdp))
278 		return &sh_eth_my_cpu_data_giga;
279 	else
280 		return &sh_eth_my_cpu_data;
281 }
282 
283 #elif defined(CONFIG_CPU_SUBTYPE_SH7734) || defined(CONFIG_CPU_SUBTYPE_SH7763)
284 #define SH_ETH_HAS_TSU	1
285 static void sh_eth_reset_hw_crc(struct net_device *ndev);
286 static void sh_eth_chip_reset(struct net_device *ndev)
287 {
288 	struct sh_eth_private *mdp = netdev_priv(ndev);
289 
290 	/* reset device */
291 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
292 	mdelay(1);
293 }
294 
295 static void sh_eth_reset(struct net_device *ndev)
296 {
297 	int cnt = 100;
298 
299 	sh_eth_write(ndev, EDSR_ENALL, EDSR);
300 	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
301 	while (cnt > 0) {
302 		if (!(sh_eth_read(ndev, EDMR) & 0x3))
303 			break;
304 		mdelay(1);
305 		cnt--;
306 	}
307 	if (cnt == 0)
308 		printk(KERN_ERR "Device reset fail\n");
309 
310 	/* Table Init */
311 	sh_eth_write(ndev, 0x0, TDLAR);
312 	sh_eth_write(ndev, 0x0, TDFAR);
313 	sh_eth_write(ndev, 0x0, TDFXR);
314 	sh_eth_write(ndev, 0x0, TDFFR);
315 	sh_eth_write(ndev, 0x0, RDLAR);
316 	sh_eth_write(ndev, 0x0, RDFAR);
317 	sh_eth_write(ndev, 0x0, RDFXR);
318 	sh_eth_write(ndev, 0x0, RDFFR);
319 
320 	/* Reset HW CRC register */
321 	sh_eth_reset_hw_crc(ndev);
322 }
323 
324 static void sh_eth_set_duplex(struct net_device *ndev)
325 {
326 	struct sh_eth_private *mdp = netdev_priv(ndev);
327 
328 	if (mdp->duplex) /* Full */
329 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
330 	else		/* Half */
331 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
332 }
333 
334 static void sh_eth_set_rate(struct net_device *ndev)
335 {
336 	struct sh_eth_private *mdp = netdev_priv(ndev);
337 
338 	switch (mdp->speed) {
339 	case 10: /* 10BASE */
340 		sh_eth_write(ndev, GECMR_10, GECMR);
341 		break;
342 	case 100:/* 100BASE */
343 		sh_eth_write(ndev, GECMR_100, GECMR);
344 		break;
345 	case 1000: /* 1000BASE */
346 		sh_eth_write(ndev, GECMR_1000, GECMR);
347 		break;
348 	default:
349 		break;
350 	}
351 }
352 
353 /* sh7763 */
354 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
355 	.chip_reset	= sh_eth_chip_reset,
356 	.set_duplex	= sh_eth_set_duplex,
357 	.set_rate	= sh_eth_set_rate,
358 
359 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
360 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
361 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
362 
363 	.tx_check	= EESR_TC1 | EESR_FTC,
364 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
365 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
366 			  EESR_ECI,
367 	.tx_error_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
368 			  EESR_TFE,
369 
370 	.apr		= 1,
371 	.mpr		= 1,
372 	.tpauser	= 1,
373 	.bculr		= 1,
374 	.hw_swap	= 1,
375 	.no_trimd	= 1,
376 	.no_ade		= 1,
377 	.tsu		= 1,
378 #if defined(CONFIG_CPU_SUBTYPE_SH7734)
379 	.hw_crc     = 1,
380 #endif
381 };
382 
383 static void sh_eth_reset_hw_crc(struct net_device *ndev)
384 {
385 	if (sh_eth_my_cpu_data.hw_crc)
386 		sh_eth_write(ndev, 0x0, CSMR);
387 }
388 
389 #elif defined(CONFIG_ARCH_R8A7740)
390 #define SH_ETH_HAS_TSU	1
391 static void sh_eth_chip_reset(struct net_device *ndev)
392 {
393 	struct sh_eth_private *mdp = netdev_priv(ndev);
394 	unsigned long mii;
395 
396 	/* reset device */
397 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
398 	mdelay(1);
399 
400 	switch (mdp->phy_interface) {
401 	case PHY_INTERFACE_MODE_GMII:
402 		mii = 2;
403 		break;
404 	case PHY_INTERFACE_MODE_MII:
405 		mii = 1;
406 		break;
407 	case PHY_INTERFACE_MODE_RMII:
408 	default:
409 		mii = 0;
410 		break;
411 	}
412 	sh_eth_write(ndev, mii, RMII_MII);
413 }
414 
415 static void sh_eth_reset(struct net_device *ndev)
416 {
417 	int cnt = 100;
418 
419 	sh_eth_write(ndev, EDSR_ENALL, EDSR);
420 	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
421 	while (cnt > 0) {
422 		if (!(sh_eth_read(ndev, EDMR) & 0x3))
423 			break;
424 		mdelay(1);
425 		cnt--;
426 	}
427 	if (cnt == 0)
428 		printk(KERN_ERR "Device reset fail\n");
429 
430 	/* Table Init */
431 	sh_eth_write(ndev, 0x0, TDLAR);
432 	sh_eth_write(ndev, 0x0, TDFAR);
433 	sh_eth_write(ndev, 0x0, TDFXR);
434 	sh_eth_write(ndev, 0x0, TDFFR);
435 	sh_eth_write(ndev, 0x0, RDLAR);
436 	sh_eth_write(ndev, 0x0, RDFAR);
437 	sh_eth_write(ndev, 0x0, RDFXR);
438 	sh_eth_write(ndev, 0x0, RDFFR);
439 }
440 
441 static void sh_eth_set_duplex(struct net_device *ndev)
442 {
443 	struct sh_eth_private *mdp = netdev_priv(ndev);
444 
445 	if (mdp->duplex) /* Full */
446 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
447 	else		/* Half */
448 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
449 }
450 
451 static void sh_eth_set_rate(struct net_device *ndev)
452 {
453 	struct sh_eth_private *mdp = netdev_priv(ndev);
454 
455 	switch (mdp->speed) {
456 	case 10: /* 10BASE */
457 		sh_eth_write(ndev, GECMR_10, GECMR);
458 		break;
459 	case 100:/* 100BASE */
460 		sh_eth_write(ndev, GECMR_100, GECMR);
461 		break;
462 	case 1000: /* 1000BASE */
463 		sh_eth_write(ndev, GECMR_1000, GECMR);
464 		break;
465 	default:
466 		break;
467 	}
468 }
469 
470 /* R8A7740 */
471 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
472 	.chip_reset	= sh_eth_chip_reset,
473 	.set_duplex	= sh_eth_set_duplex,
474 	.set_rate	= sh_eth_set_rate,
475 
476 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
477 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
478 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
479 
480 	.tx_check	= EESR_TC1 | EESR_FTC,
481 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
482 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
483 			  EESR_ECI,
484 	.tx_error_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
485 			  EESR_TFE,
486 
487 	.apr		= 1,
488 	.mpr		= 1,
489 	.tpauser	= 1,
490 	.bculr		= 1,
491 	.hw_swap	= 1,
492 	.no_trimd	= 1,
493 	.no_ade		= 1,
494 	.tsu		= 1,
495 };
496 
497 #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
498 #define SH_ETH_RESET_DEFAULT	1
499 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
500 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
501 
502 	.apr		= 1,
503 	.mpr		= 1,
504 	.tpauser	= 1,
505 	.hw_swap	= 1,
506 };
507 #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
508 #define SH_ETH_RESET_DEFAULT	1
509 #define SH_ETH_HAS_TSU	1
510 static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
511 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
512 	.tsu		= 1,
513 };
514 #endif
515 
516 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
517 {
518 	if (!cd->ecsr_value)
519 		cd->ecsr_value = DEFAULT_ECSR_INIT;
520 
521 	if (!cd->ecsipr_value)
522 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
523 
524 	if (!cd->fcftr_value)
525 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
526 				  DEFAULT_FIFO_F_D_RFD;
527 
528 	if (!cd->fdr_value)
529 		cd->fdr_value = DEFAULT_FDR_INIT;
530 
531 	if (!cd->rmcr_value)
532 		cd->rmcr_value = DEFAULT_RMCR_VALUE;
533 
534 	if (!cd->tx_check)
535 		cd->tx_check = DEFAULT_TX_CHECK;
536 
537 	if (!cd->eesr_err_check)
538 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
539 
540 	if (!cd->tx_error_check)
541 		cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
542 }
543 
544 #if defined(SH_ETH_RESET_DEFAULT)
545 /* Chip Reset */
546 static void sh_eth_reset(struct net_device *ndev)
547 {
548 	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
549 	mdelay(3);
550 	sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
551 }
552 #endif
553 
554 #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
555 static void sh_eth_set_receive_align(struct sk_buff *skb)
556 {
557 	int reserve;
558 
559 	reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
560 	if (reserve)
561 		skb_reserve(skb, reserve);
562 }
563 #else
564 static void sh_eth_set_receive_align(struct sk_buff *skb)
565 {
566 	skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
567 }
568 #endif
569 
570 
571 /* CPU <-> EDMAC endian convert */
572 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
573 {
574 	switch (mdp->edmac_endian) {
575 	case EDMAC_LITTLE_ENDIAN:
576 		return cpu_to_le32(x);
577 	case EDMAC_BIG_ENDIAN:
578 		return cpu_to_be32(x);
579 	}
580 	return x;
581 }
582 
583 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
584 {
585 	switch (mdp->edmac_endian) {
586 	case EDMAC_LITTLE_ENDIAN:
587 		return le32_to_cpu(x);
588 	case EDMAC_BIG_ENDIAN:
589 		return be32_to_cpu(x);
590 	}
591 	return x;
592 }
593 
594 /*
595  * Program the hardware MAC address from dev->dev_addr.
596  */
597 static void update_mac_address(struct net_device *ndev)
598 {
599 	sh_eth_write(ndev,
600 		(ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
601 		(ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
602 	sh_eth_write(ndev,
603 		(ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
604 }
605 
606 /*
607  * Get MAC address from SuperH MAC address register
608  *
609  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
610  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
611  * When you want use this device, you must set MAC address in bootloader.
612  *
613  */
614 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
615 {
616 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
617 		memcpy(ndev->dev_addr, mac, 6);
618 	} else {
619 		ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
620 		ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
621 		ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
622 		ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
623 		ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
624 		ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
625 	}
626 }
627 
628 static int sh_eth_is_gether(struct sh_eth_private *mdp)
629 {
630 	if (mdp->reg_offset == sh_eth_offset_gigabit)
631 		return 1;
632 	else
633 		return 0;
634 }
635 
636 static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
637 {
638 	if (sh_eth_is_gether(mdp))
639 		return EDTRR_TRNS_GETHER;
640 	else
641 		return EDTRR_TRNS_ETHER;
642 }
643 
644 struct bb_info {
645 	void (*set_gate)(void *addr);
646 	struct mdiobb_ctrl ctrl;
647 	void *addr;
648 	u32 mmd_msk;/* MMD */
649 	u32 mdo_msk;
650 	u32 mdi_msk;
651 	u32 mdc_msk;
652 };
653 
654 /* PHY bit set */
655 static void bb_set(void *addr, u32 msk)
656 {
657 	iowrite32(ioread32(addr) | msk, addr);
658 }
659 
660 /* PHY bit clear */
661 static void bb_clr(void *addr, u32 msk)
662 {
663 	iowrite32((ioread32(addr) & ~msk), addr);
664 }
665 
666 /* PHY bit read */
667 static int bb_read(void *addr, u32 msk)
668 {
669 	return (ioread32(addr) & msk) != 0;
670 }
671 
672 /* Data I/O pin control */
673 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
674 {
675 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
676 
677 	if (bitbang->set_gate)
678 		bitbang->set_gate(bitbang->addr);
679 
680 	if (bit)
681 		bb_set(bitbang->addr, bitbang->mmd_msk);
682 	else
683 		bb_clr(bitbang->addr, bitbang->mmd_msk);
684 }
685 
686 /* Set bit data*/
687 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
688 {
689 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
690 
691 	if (bitbang->set_gate)
692 		bitbang->set_gate(bitbang->addr);
693 
694 	if (bit)
695 		bb_set(bitbang->addr, bitbang->mdo_msk);
696 	else
697 		bb_clr(bitbang->addr, bitbang->mdo_msk);
698 }
699 
700 /* Get bit data*/
701 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
702 {
703 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
704 
705 	if (bitbang->set_gate)
706 		bitbang->set_gate(bitbang->addr);
707 
708 	return bb_read(bitbang->addr, bitbang->mdi_msk);
709 }
710 
711 /* MDC pin control */
712 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
713 {
714 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
715 
716 	if (bitbang->set_gate)
717 		bitbang->set_gate(bitbang->addr);
718 
719 	if (bit)
720 		bb_set(bitbang->addr, bitbang->mdc_msk);
721 	else
722 		bb_clr(bitbang->addr, bitbang->mdc_msk);
723 }
724 
725 /* mdio bus control struct */
726 static struct mdiobb_ops bb_ops = {
727 	.owner = THIS_MODULE,
728 	.set_mdc = sh_mdc_ctrl,
729 	.set_mdio_dir = sh_mmd_ctrl,
730 	.set_mdio_data = sh_set_mdio,
731 	.get_mdio_data = sh_get_mdio,
732 };
733 
734 /* free skb and descriptor buffer */
735 static void sh_eth_ring_free(struct net_device *ndev)
736 {
737 	struct sh_eth_private *mdp = netdev_priv(ndev);
738 	int i;
739 
740 	/* Free Rx skb ringbuffer */
741 	if (mdp->rx_skbuff) {
742 		for (i = 0; i < RX_RING_SIZE; i++) {
743 			if (mdp->rx_skbuff[i])
744 				dev_kfree_skb(mdp->rx_skbuff[i]);
745 		}
746 	}
747 	kfree(mdp->rx_skbuff);
748 
749 	/* Free Tx skb ringbuffer */
750 	if (mdp->tx_skbuff) {
751 		for (i = 0; i < TX_RING_SIZE; i++) {
752 			if (mdp->tx_skbuff[i])
753 				dev_kfree_skb(mdp->tx_skbuff[i]);
754 		}
755 	}
756 	kfree(mdp->tx_skbuff);
757 }
758 
759 /* format skb and descriptor buffer */
760 static void sh_eth_ring_format(struct net_device *ndev)
761 {
762 	struct sh_eth_private *mdp = netdev_priv(ndev);
763 	int i;
764 	struct sk_buff *skb;
765 	struct sh_eth_rxdesc *rxdesc = NULL;
766 	struct sh_eth_txdesc *txdesc = NULL;
767 	int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
768 	int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;
769 
770 	mdp->cur_rx = mdp->cur_tx = 0;
771 	mdp->dirty_rx = mdp->dirty_tx = 0;
772 
773 	memset(mdp->rx_ring, 0, rx_ringsize);
774 
775 	/* build Rx ring buffer */
776 	for (i = 0; i < RX_RING_SIZE; i++) {
777 		/* skb */
778 		mdp->rx_skbuff[i] = NULL;
779 		skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
780 		mdp->rx_skbuff[i] = skb;
781 		if (skb == NULL)
782 			break;
783 		dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
784 				DMA_FROM_DEVICE);
785 		sh_eth_set_receive_align(skb);
786 
787 		/* RX descriptor */
788 		rxdesc = &mdp->rx_ring[i];
789 		rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
790 		rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
791 
792 		/* The size of the buffer is 16 byte boundary. */
793 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
794 		/* Rx descriptor address set */
795 		if (i == 0) {
796 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
797 			if (sh_eth_is_gether(mdp))
798 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
799 		}
800 	}
801 
802 	mdp->dirty_rx = (u32) (i - RX_RING_SIZE);
803 
804 	/* Mark the last entry as wrapping the ring. */
805 	rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
806 
807 	memset(mdp->tx_ring, 0, tx_ringsize);
808 
809 	/* build Tx ring buffer */
810 	for (i = 0; i < TX_RING_SIZE; i++) {
811 		mdp->tx_skbuff[i] = NULL;
812 		txdesc = &mdp->tx_ring[i];
813 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
814 		txdesc->buffer_length = 0;
815 		if (i == 0) {
816 			/* Tx descriptor address set */
817 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
818 			if (sh_eth_is_gether(mdp))
819 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
820 		}
821 	}
822 
823 	txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
824 }
825 
826 /* Get skb and descriptor buffer */
827 static int sh_eth_ring_init(struct net_device *ndev)
828 {
829 	struct sh_eth_private *mdp = netdev_priv(ndev);
830 	int rx_ringsize, tx_ringsize, ret = 0;
831 
832 	/*
833 	 * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
834 	 * card needs room to do 8 byte alignment, +2 so we can reserve
835 	 * the first 2 bytes, and +16 gets room for the status word from the
836 	 * card.
837 	 */
838 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
839 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
840 	if (mdp->cd->rpadir)
841 		mdp->rx_buf_sz += NET_IP_ALIGN;
842 
843 	/* Allocate RX and TX skb rings */
844 	mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
845 				GFP_KERNEL);
846 	if (!mdp->rx_skbuff) {
847 		dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
848 		ret = -ENOMEM;
849 		return ret;
850 	}
851 
852 	mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
853 				GFP_KERNEL);
854 	if (!mdp->tx_skbuff) {
855 		dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
856 		ret = -ENOMEM;
857 		goto skb_ring_free;
858 	}
859 
860 	/* Allocate all Rx descriptors. */
861 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
862 	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
863 			GFP_KERNEL);
864 
865 	if (!mdp->rx_ring) {
866 		dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
867 			rx_ringsize);
868 		ret = -ENOMEM;
869 		goto desc_ring_free;
870 	}
871 
872 	mdp->dirty_rx = 0;
873 
874 	/* Allocate all Tx descriptors. */
875 	tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
876 	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
877 			GFP_KERNEL);
878 	if (!mdp->tx_ring) {
879 		dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
880 			tx_ringsize);
881 		ret = -ENOMEM;
882 		goto desc_ring_free;
883 	}
884 	return ret;
885 
886 desc_ring_free:
887 	/* free DMA buffer */
888 	dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
889 
890 skb_ring_free:
891 	/* Free Rx and Tx skb ring buffer */
892 	sh_eth_ring_free(ndev);
893 
894 	return ret;
895 }
896 
897 static int sh_eth_dev_init(struct net_device *ndev)
898 {
899 	int ret = 0;
900 	struct sh_eth_private *mdp = netdev_priv(ndev);
901 	u_int32_t rx_int_var, tx_int_var;
902 	u32 val;
903 
904 	/* Soft Reset */
905 	sh_eth_reset(ndev);
906 
907 	/* Descriptor format */
908 	sh_eth_ring_format(ndev);
909 	if (mdp->cd->rpadir)
910 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
911 
912 	/* all sh_eth int mask */
913 	sh_eth_write(ndev, 0, EESIPR);
914 
915 #if defined(__LITTLE_ENDIAN)
916 	if (mdp->cd->hw_swap)
917 		sh_eth_write(ndev, EDMR_EL, EDMR);
918 	else
919 #endif
920 		sh_eth_write(ndev, 0, EDMR);
921 
922 	/* FIFO size set */
923 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
924 	sh_eth_write(ndev, 0, TFTR);
925 
926 	/* Frame recv control */
927 	sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
928 
929 	rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
930 	tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
931 	sh_eth_write(ndev, rx_int_var | tx_int_var, TRSCER);
932 
933 	if (mdp->cd->bculr)
934 		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
935 
936 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
937 
938 	if (!mdp->cd->no_trimd)
939 		sh_eth_write(ndev, 0, TRIMD);
940 
941 	/* Recv frame limit set register */
942 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
943 		     RFLR);
944 
945 	sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
946 	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
947 
948 	/* PAUSE Prohibition */
949 	val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
950 		ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
951 
952 	sh_eth_write(ndev, val, ECMR);
953 
954 	if (mdp->cd->set_rate)
955 		mdp->cd->set_rate(ndev);
956 
957 	/* E-MAC Status Register clear */
958 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
959 
960 	/* E-MAC Interrupt Enable register */
961 	sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
962 
963 	/* Set MAC address */
964 	update_mac_address(ndev);
965 
966 	/* mask reset */
967 	if (mdp->cd->apr)
968 		sh_eth_write(ndev, APR_AP, APR);
969 	if (mdp->cd->mpr)
970 		sh_eth_write(ndev, MPR_MP, MPR);
971 	if (mdp->cd->tpauser)
972 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
973 
974 	/* Setting the Rx mode will start the Rx process. */
975 	sh_eth_write(ndev, EDRRR_R, EDRRR);
976 
977 	netif_start_queue(ndev);
978 
979 	return ret;
980 }
981 
982 /* free Tx skb function */
983 static int sh_eth_txfree(struct net_device *ndev)
984 {
985 	struct sh_eth_private *mdp = netdev_priv(ndev);
986 	struct sh_eth_txdesc *txdesc;
987 	int freeNum = 0;
988 	int entry = 0;
989 
990 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
991 		entry = mdp->dirty_tx % TX_RING_SIZE;
992 		txdesc = &mdp->tx_ring[entry];
993 		if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
994 			break;
995 		/* Free the original skb. */
996 		if (mdp->tx_skbuff[entry]) {
997 			dma_unmap_single(&ndev->dev, txdesc->addr,
998 					 txdesc->buffer_length, DMA_TO_DEVICE);
999 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1000 			mdp->tx_skbuff[entry] = NULL;
1001 			freeNum++;
1002 		}
1003 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1004 		if (entry >= TX_RING_SIZE - 1)
1005 			txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1006 
1007 		ndev->stats.tx_packets++;
1008 		ndev->stats.tx_bytes += txdesc->buffer_length;
1009 	}
1010 	return freeNum;
1011 }
1012 
1013 /* Packet receive function */
1014 static int sh_eth_rx(struct net_device *ndev)
1015 {
1016 	struct sh_eth_private *mdp = netdev_priv(ndev);
1017 	struct sh_eth_rxdesc *rxdesc;
1018 
1019 	int entry = mdp->cur_rx % RX_RING_SIZE;
1020 	int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
1021 	struct sk_buff *skb;
1022 	u16 pkt_len = 0;
1023 	u32 desc_status;
1024 
1025 	rxdesc = &mdp->rx_ring[entry];
1026 	while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1027 		desc_status = edmac_to_cpu(mdp, rxdesc->status);
1028 		pkt_len = rxdesc->frame_length;
1029 
1030 #if defined(CONFIG_ARCH_R8A7740)
1031 		desc_status >>= 16;
1032 #endif
1033 
1034 		if (--boguscnt < 0)
1035 			break;
1036 
1037 		if (!(desc_status & RDFEND))
1038 			ndev->stats.rx_length_errors++;
1039 
1040 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1041 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1042 			ndev->stats.rx_errors++;
1043 			if (desc_status & RD_RFS1)
1044 				ndev->stats.rx_crc_errors++;
1045 			if (desc_status & RD_RFS2)
1046 				ndev->stats.rx_frame_errors++;
1047 			if (desc_status & RD_RFS3)
1048 				ndev->stats.rx_length_errors++;
1049 			if (desc_status & RD_RFS4)
1050 				ndev->stats.rx_length_errors++;
1051 			if (desc_status & RD_RFS6)
1052 				ndev->stats.rx_missed_errors++;
1053 			if (desc_status & RD_RFS10)
1054 				ndev->stats.rx_over_errors++;
1055 		} else {
1056 			if (!mdp->cd->hw_swap)
1057 				sh_eth_soft_swap(
1058 					phys_to_virt(ALIGN(rxdesc->addr, 4)),
1059 					pkt_len + 2);
1060 			skb = mdp->rx_skbuff[entry];
1061 			mdp->rx_skbuff[entry] = NULL;
1062 			if (mdp->cd->rpadir)
1063 				skb_reserve(skb, NET_IP_ALIGN);
1064 			skb_put(skb, pkt_len);
1065 			skb->protocol = eth_type_trans(skb, ndev);
1066 			netif_rx(skb);
1067 			ndev->stats.rx_packets++;
1068 			ndev->stats.rx_bytes += pkt_len;
1069 		}
1070 		rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
1071 		entry = (++mdp->cur_rx) % RX_RING_SIZE;
1072 		rxdesc = &mdp->rx_ring[entry];
1073 	}
1074 
1075 	/* Refill the Rx ring buffers. */
1076 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1077 		entry = mdp->dirty_rx % RX_RING_SIZE;
1078 		rxdesc = &mdp->rx_ring[entry];
1079 		/* The size of the buffer is 16 byte boundary. */
1080 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1081 
1082 		if (mdp->rx_skbuff[entry] == NULL) {
1083 			skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1084 			mdp->rx_skbuff[entry] = skb;
1085 			if (skb == NULL)
1086 				break;	/* Better luck next round. */
1087 			dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1088 					DMA_FROM_DEVICE);
1089 			sh_eth_set_receive_align(skb);
1090 
1091 			skb_checksum_none_assert(skb);
1092 			rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1093 		}
1094 		if (entry >= RX_RING_SIZE - 1)
1095 			rxdesc->status |=
1096 				cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
1097 		else
1098 			rxdesc->status |=
1099 				cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1100 	}
1101 
1102 	/* Restart Rx engine if stopped. */
1103 	/* If we don't need to check status, don't. -KDU */
1104 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R))
1105 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1106 
1107 	return 0;
1108 }
1109 
1110 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1111 {
1112 	/* disable tx and rx */
1113 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1114 		~(ECMR_RE | ECMR_TE), ECMR);
1115 }
1116 
1117 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1118 {
1119 	/* enable tx and rx */
1120 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1121 		(ECMR_RE | ECMR_TE), ECMR);
1122 }
1123 
1124 /* error control function */
1125 static void sh_eth_error(struct net_device *ndev, int intr_status)
1126 {
1127 	struct sh_eth_private *mdp = netdev_priv(ndev);
1128 	u32 felic_stat;
1129 	u32 link_stat;
1130 	u32 mask;
1131 
1132 	if (intr_status & EESR_ECI) {
1133 		felic_stat = sh_eth_read(ndev, ECSR);
1134 		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1135 		if (felic_stat & ECSR_ICD)
1136 			ndev->stats.tx_carrier_errors++;
1137 		if (felic_stat & ECSR_LCHNG) {
1138 			/* Link Changed */
1139 			if (mdp->cd->no_psr || mdp->no_ether_link) {
1140 				if (mdp->link == PHY_DOWN)
1141 					link_stat = 0;
1142 				else
1143 					link_stat = PHY_ST_LINK;
1144 			} else {
1145 				link_stat = (sh_eth_read(ndev, PSR));
1146 				if (mdp->ether_link_active_low)
1147 					link_stat = ~link_stat;
1148 			}
1149 			if (!(link_stat & PHY_ST_LINK))
1150 				sh_eth_rcv_snd_disable(ndev);
1151 			else {
1152 				/* Link Up */
1153 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1154 					  ~DMAC_M_ECI, EESIPR);
1155 				/*clear int */
1156 				sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1157 					  ECSR);
1158 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1159 					  DMAC_M_ECI, EESIPR);
1160 				/* enable tx and rx */
1161 				sh_eth_rcv_snd_enable(ndev);
1162 			}
1163 		}
1164 	}
1165 
1166 	if (intr_status & EESR_TWB) {
1167 		/* Write buck end. unused write back interrupt */
1168 		if (intr_status & EESR_TABT)	/* Transmit Abort int */
1169 			ndev->stats.tx_aborted_errors++;
1170 			if (netif_msg_tx_err(mdp))
1171 				dev_err(&ndev->dev, "Transmit Abort\n");
1172 	}
1173 
1174 	if (intr_status & EESR_RABT) {
1175 		/* Receive Abort int */
1176 		if (intr_status & EESR_RFRMER) {
1177 			/* Receive Frame Overflow int */
1178 			ndev->stats.rx_frame_errors++;
1179 			if (netif_msg_rx_err(mdp))
1180 				dev_err(&ndev->dev, "Receive Abort\n");
1181 		}
1182 	}
1183 
1184 	if (intr_status & EESR_TDE) {
1185 		/* Transmit Descriptor Empty int */
1186 		ndev->stats.tx_fifo_errors++;
1187 		if (netif_msg_tx_err(mdp))
1188 			dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
1189 	}
1190 
1191 	if (intr_status & EESR_TFE) {
1192 		/* FIFO under flow */
1193 		ndev->stats.tx_fifo_errors++;
1194 		if (netif_msg_tx_err(mdp))
1195 			dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
1196 	}
1197 
1198 	if (intr_status & EESR_RDE) {
1199 		/* Receive Descriptor Empty int */
1200 		ndev->stats.rx_over_errors++;
1201 
1202 		if (sh_eth_read(ndev, EDRRR) ^ EDRRR_R)
1203 			sh_eth_write(ndev, EDRRR_R, EDRRR);
1204 		if (netif_msg_rx_err(mdp))
1205 			dev_err(&ndev->dev, "Receive Descriptor Empty\n");
1206 	}
1207 
1208 	if (intr_status & EESR_RFE) {
1209 		/* Receive FIFO Overflow int */
1210 		ndev->stats.rx_fifo_errors++;
1211 		if (netif_msg_rx_err(mdp))
1212 			dev_err(&ndev->dev, "Receive FIFO Overflow\n");
1213 	}
1214 
1215 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1216 		/* Address Error */
1217 		ndev->stats.tx_fifo_errors++;
1218 		if (netif_msg_tx_err(mdp))
1219 			dev_err(&ndev->dev, "Address Error\n");
1220 	}
1221 
1222 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1223 	if (mdp->cd->no_ade)
1224 		mask &= ~EESR_ADE;
1225 	if (intr_status & mask) {
1226 		/* Tx error */
1227 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1228 		/* dmesg */
1229 		dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
1230 				intr_status, mdp->cur_tx);
1231 		dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1232 				mdp->dirty_tx, (u32) ndev->state, edtrr);
1233 		/* dirty buffer free */
1234 		sh_eth_txfree(ndev);
1235 
1236 		/* SH7712 BUG */
1237 		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1238 			/* tx dma start */
1239 			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1240 		}
1241 		/* wakeup */
1242 		netif_wake_queue(ndev);
1243 	}
1244 }
1245 
1246 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1247 {
1248 	struct net_device *ndev = netdev;
1249 	struct sh_eth_private *mdp = netdev_priv(ndev);
1250 	struct sh_eth_cpu_data *cd = mdp->cd;
1251 	irqreturn_t ret = IRQ_NONE;
1252 	u32 intr_status = 0;
1253 
1254 	spin_lock(&mdp->lock);
1255 
1256 	/* Get interrpt stat */
1257 	intr_status = sh_eth_read(ndev, EESR);
1258 	/* Clear interrupt */
1259 	if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
1260 			EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
1261 			cd->tx_check | cd->eesr_err_check)) {
1262 		sh_eth_write(ndev, intr_status, EESR);
1263 		ret = IRQ_HANDLED;
1264 	} else
1265 		goto other_irq;
1266 
1267 	if (intr_status & (EESR_FRC | /* Frame recv*/
1268 			EESR_RMAF | /* Multi cast address recv*/
1269 			EESR_RRF  | /* Bit frame recv */
1270 			EESR_RTLF | /* Long frame recv*/
1271 			EESR_RTSF | /* short frame recv */
1272 			EESR_PRE  | /* PHY-LSI recv error */
1273 			EESR_CERF)){ /* recv frame CRC error */
1274 		sh_eth_rx(ndev);
1275 	}
1276 
1277 	/* Tx Check */
1278 	if (intr_status & cd->tx_check) {
1279 		sh_eth_txfree(ndev);
1280 		netif_wake_queue(ndev);
1281 	}
1282 
1283 	if (intr_status & cd->eesr_err_check)
1284 		sh_eth_error(ndev, intr_status);
1285 
1286 other_irq:
1287 	spin_unlock(&mdp->lock);
1288 
1289 	return ret;
1290 }
1291 
1292 static void sh_eth_timer(unsigned long data)
1293 {
1294 	struct net_device *ndev = (struct net_device *)data;
1295 	struct sh_eth_private *mdp = netdev_priv(ndev);
1296 
1297 	mod_timer(&mdp->timer, jiffies + (10 * HZ));
1298 }
1299 
1300 /* PHY state control function */
1301 static void sh_eth_adjust_link(struct net_device *ndev)
1302 {
1303 	struct sh_eth_private *mdp = netdev_priv(ndev);
1304 	struct phy_device *phydev = mdp->phydev;
1305 	int new_state = 0;
1306 
1307 	if (phydev->link != PHY_DOWN) {
1308 		if (phydev->duplex != mdp->duplex) {
1309 			new_state = 1;
1310 			mdp->duplex = phydev->duplex;
1311 			if (mdp->cd->set_duplex)
1312 				mdp->cd->set_duplex(ndev);
1313 		}
1314 
1315 		if (phydev->speed != mdp->speed) {
1316 			new_state = 1;
1317 			mdp->speed = phydev->speed;
1318 			if (mdp->cd->set_rate)
1319 				mdp->cd->set_rate(ndev);
1320 		}
1321 		if (mdp->link == PHY_DOWN) {
1322 			sh_eth_write(ndev,
1323 				(sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
1324 			new_state = 1;
1325 			mdp->link = phydev->link;
1326 		}
1327 	} else if (mdp->link) {
1328 		new_state = 1;
1329 		mdp->link = PHY_DOWN;
1330 		mdp->speed = 0;
1331 		mdp->duplex = -1;
1332 	}
1333 
1334 	if (new_state && netif_msg_link(mdp))
1335 		phy_print_status(phydev);
1336 }
1337 
1338 /* PHY init function */
1339 static int sh_eth_phy_init(struct net_device *ndev)
1340 {
1341 	struct sh_eth_private *mdp = netdev_priv(ndev);
1342 	char phy_id[MII_BUS_ID_SIZE + 3];
1343 	struct phy_device *phydev = NULL;
1344 
1345 	snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1346 		mdp->mii_bus->id , mdp->phy_id);
1347 
1348 	mdp->link = PHY_DOWN;
1349 	mdp->speed = 0;
1350 	mdp->duplex = -1;
1351 
1352 	/* Try connect to PHY */
1353 	phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1354 				0, mdp->phy_interface);
1355 	if (IS_ERR(phydev)) {
1356 		dev_err(&ndev->dev, "phy_connect failed\n");
1357 		return PTR_ERR(phydev);
1358 	}
1359 
1360 	dev_info(&ndev->dev, "attached phy %i to driver %s\n",
1361 		phydev->addr, phydev->drv->name);
1362 
1363 	mdp->phydev = phydev;
1364 
1365 	return 0;
1366 }
1367 
1368 /* PHY control start function */
1369 static int sh_eth_phy_start(struct net_device *ndev)
1370 {
1371 	struct sh_eth_private *mdp = netdev_priv(ndev);
1372 	int ret;
1373 
1374 	ret = sh_eth_phy_init(ndev);
1375 	if (ret)
1376 		return ret;
1377 
1378 	/* reset phy - this also wakes it from PDOWN */
1379 	phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
1380 	phy_start(mdp->phydev);
1381 
1382 	return 0;
1383 }
1384 
1385 static int sh_eth_get_settings(struct net_device *ndev,
1386 			struct ethtool_cmd *ecmd)
1387 {
1388 	struct sh_eth_private *mdp = netdev_priv(ndev);
1389 	unsigned long flags;
1390 	int ret;
1391 
1392 	spin_lock_irqsave(&mdp->lock, flags);
1393 	ret = phy_ethtool_gset(mdp->phydev, ecmd);
1394 	spin_unlock_irqrestore(&mdp->lock, flags);
1395 
1396 	return ret;
1397 }
1398 
1399 static int sh_eth_set_settings(struct net_device *ndev,
1400 		struct ethtool_cmd *ecmd)
1401 {
1402 	struct sh_eth_private *mdp = netdev_priv(ndev);
1403 	unsigned long flags;
1404 	int ret;
1405 
1406 	spin_lock_irqsave(&mdp->lock, flags);
1407 
1408 	/* disable tx and rx */
1409 	sh_eth_rcv_snd_disable(ndev);
1410 
1411 	ret = phy_ethtool_sset(mdp->phydev, ecmd);
1412 	if (ret)
1413 		goto error_exit;
1414 
1415 	if (ecmd->duplex == DUPLEX_FULL)
1416 		mdp->duplex = 1;
1417 	else
1418 		mdp->duplex = 0;
1419 
1420 	if (mdp->cd->set_duplex)
1421 		mdp->cd->set_duplex(ndev);
1422 
1423 error_exit:
1424 	mdelay(1);
1425 
1426 	/* enable tx and rx */
1427 	sh_eth_rcv_snd_enable(ndev);
1428 
1429 	spin_unlock_irqrestore(&mdp->lock, flags);
1430 
1431 	return ret;
1432 }
1433 
1434 static int sh_eth_nway_reset(struct net_device *ndev)
1435 {
1436 	struct sh_eth_private *mdp = netdev_priv(ndev);
1437 	unsigned long flags;
1438 	int ret;
1439 
1440 	spin_lock_irqsave(&mdp->lock, flags);
1441 	ret = phy_start_aneg(mdp->phydev);
1442 	spin_unlock_irqrestore(&mdp->lock, flags);
1443 
1444 	return ret;
1445 }
1446 
1447 static u32 sh_eth_get_msglevel(struct net_device *ndev)
1448 {
1449 	struct sh_eth_private *mdp = netdev_priv(ndev);
1450 	return mdp->msg_enable;
1451 }
1452 
1453 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1454 {
1455 	struct sh_eth_private *mdp = netdev_priv(ndev);
1456 	mdp->msg_enable = value;
1457 }
1458 
1459 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1460 	"rx_current", "tx_current",
1461 	"rx_dirty", "tx_dirty",
1462 };
1463 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
1464 
1465 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1466 {
1467 	switch (sset) {
1468 	case ETH_SS_STATS:
1469 		return SH_ETH_STATS_LEN;
1470 	default:
1471 		return -EOPNOTSUPP;
1472 	}
1473 }
1474 
1475 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1476 			struct ethtool_stats *stats, u64 *data)
1477 {
1478 	struct sh_eth_private *mdp = netdev_priv(ndev);
1479 	int i = 0;
1480 
1481 	/* device-specific stats */
1482 	data[i++] = mdp->cur_rx;
1483 	data[i++] = mdp->cur_tx;
1484 	data[i++] = mdp->dirty_rx;
1485 	data[i++] = mdp->dirty_tx;
1486 }
1487 
1488 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1489 {
1490 	switch (stringset) {
1491 	case ETH_SS_STATS:
1492 		memcpy(data, *sh_eth_gstrings_stats,
1493 					sizeof(sh_eth_gstrings_stats));
1494 		break;
1495 	}
1496 }
1497 
1498 static const struct ethtool_ops sh_eth_ethtool_ops = {
1499 	.get_settings	= sh_eth_get_settings,
1500 	.set_settings	= sh_eth_set_settings,
1501 	.nway_reset	= sh_eth_nway_reset,
1502 	.get_msglevel	= sh_eth_get_msglevel,
1503 	.set_msglevel	= sh_eth_set_msglevel,
1504 	.get_link	= ethtool_op_get_link,
1505 	.get_strings	= sh_eth_get_strings,
1506 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
1507 	.get_sset_count     = sh_eth_get_sset_count,
1508 };
1509 
1510 /* network device open function */
1511 static int sh_eth_open(struct net_device *ndev)
1512 {
1513 	int ret = 0;
1514 	struct sh_eth_private *mdp = netdev_priv(ndev);
1515 
1516 	pm_runtime_get_sync(&mdp->pdev->dev);
1517 
1518 	ret = request_irq(ndev->irq, sh_eth_interrupt,
1519 #if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
1520 	defined(CONFIG_CPU_SUBTYPE_SH7764) || \
1521 	defined(CONFIG_CPU_SUBTYPE_SH7757)
1522 				IRQF_SHARED,
1523 #else
1524 				0,
1525 #endif
1526 				ndev->name, ndev);
1527 	if (ret) {
1528 		dev_err(&ndev->dev, "Can not assign IRQ number\n");
1529 		return ret;
1530 	}
1531 
1532 	/* Descriptor set */
1533 	ret = sh_eth_ring_init(ndev);
1534 	if (ret)
1535 		goto out_free_irq;
1536 
1537 	/* device init */
1538 	ret = sh_eth_dev_init(ndev);
1539 	if (ret)
1540 		goto out_free_irq;
1541 
1542 	/* PHY control start*/
1543 	ret = sh_eth_phy_start(ndev);
1544 	if (ret)
1545 		goto out_free_irq;
1546 
1547 	/* Set the timer to check for link beat. */
1548 	init_timer(&mdp->timer);
1549 	mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
1550 	setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev);
1551 
1552 	return ret;
1553 
1554 out_free_irq:
1555 	free_irq(ndev->irq, ndev);
1556 	pm_runtime_put_sync(&mdp->pdev->dev);
1557 	return ret;
1558 }
1559 
1560 /* Timeout function */
1561 static void sh_eth_tx_timeout(struct net_device *ndev)
1562 {
1563 	struct sh_eth_private *mdp = netdev_priv(ndev);
1564 	struct sh_eth_rxdesc *rxdesc;
1565 	int i;
1566 
1567 	netif_stop_queue(ndev);
1568 
1569 	if (netif_msg_timer(mdp))
1570 		dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
1571 	       " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
1572 
1573 	/* tx_errors count up */
1574 	ndev->stats.tx_errors++;
1575 
1576 	/* timer off */
1577 	del_timer_sync(&mdp->timer);
1578 
1579 	/* Free all the skbuffs in the Rx queue. */
1580 	for (i = 0; i < RX_RING_SIZE; i++) {
1581 		rxdesc = &mdp->rx_ring[i];
1582 		rxdesc->status = 0;
1583 		rxdesc->addr = 0xBADF00D0;
1584 		if (mdp->rx_skbuff[i])
1585 			dev_kfree_skb(mdp->rx_skbuff[i]);
1586 		mdp->rx_skbuff[i] = NULL;
1587 	}
1588 	for (i = 0; i < TX_RING_SIZE; i++) {
1589 		if (mdp->tx_skbuff[i])
1590 			dev_kfree_skb(mdp->tx_skbuff[i]);
1591 		mdp->tx_skbuff[i] = NULL;
1592 	}
1593 
1594 	/* device init */
1595 	sh_eth_dev_init(ndev);
1596 
1597 	/* timer on */
1598 	mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
1599 	add_timer(&mdp->timer);
1600 }
1601 
1602 /* Packet transmit function */
1603 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1604 {
1605 	struct sh_eth_private *mdp = netdev_priv(ndev);
1606 	struct sh_eth_txdesc *txdesc;
1607 	u32 entry;
1608 	unsigned long flags;
1609 
1610 	spin_lock_irqsave(&mdp->lock, flags);
1611 	if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
1612 		if (!sh_eth_txfree(ndev)) {
1613 			if (netif_msg_tx_queued(mdp))
1614 				dev_warn(&ndev->dev, "TxFD exhausted.\n");
1615 			netif_stop_queue(ndev);
1616 			spin_unlock_irqrestore(&mdp->lock, flags);
1617 			return NETDEV_TX_BUSY;
1618 		}
1619 	}
1620 	spin_unlock_irqrestore(&mdp->lock, flags);
1621 
1622 	entry = mdp->cur_tx % TX_RING_SIZE;
1623 	mdp->tx_skbuff[entry] = skb;
1624 	txdesc = &mdp->tx_ring[entry];
1625 	/* soft swap. */
1626 	if (!mdp->cd->hw_swap)
1627 		sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
1628 				 skb->len + 2);
1629 	txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
1630 				      DMA_TO_DEVICE);
1631 	if (skb->len < ETHERSMALL)
1632 		txdesc->buffer_length = ETHERSMALL;
1633 	else
1634 		txdesc->buffer_length = skb->len;
1635 
1636 	if (entry >= TX_RING_SIZE - 1)
1637 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
1638 	else
1639 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
1640 
1641 	mdp->cur_tx++;
1642 
1643 	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
1644 		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1645 
1646 	return NETDEV_TX_OK;
1647 }
1648 
1649 /* device close function */
1650 static int sh_eth_close(struct net_device *ndev)
1651 {
1652 	struct sh_eth_private *mdp = netdev_priv(ndev);
1653 	int ringsize;
1654 
1655 	netif_stop_queue(ndev);
1656 
1657 	/* Disable interrupts by clearing the interrupt mask. */
1658 	sh_eth_write(ndev, 0x0000, EESIPR);
1659 
1660 	/* Stop the chip's Tx and Rx processes. */
1661 	sh_eth_write(ndev, 0, EDTRR);
1662 	sh_eth_write(ndev, 0, EDRRR);
1663 
1664 	/* PHY Disconnect */
1665 	if (mdp->phydev) {
1666 		phy_stop(mdp->phydev);
1667 		phy_disconnect(mdp->phydev);
1668 	}
1669 
1670 	free_irq(ndev->irq, ndev);
1671 
1672 	del_timer_sync(&mdp->timer);
1673 
1674 	/* Free all the skbuffs in the Rx queue. */
1675 	sh_eth_ring_free(ndev);
1676 
1677 	/* free DMA buffer */
1678 	ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
1679 	dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);
1680 
1681 	/* free DMA buffer */
1682 	ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
1683 	dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);
1684 
1685 	pm_runtime_put_sync(&mdp->pdev->dev);
1686 
1687 	return 0;
1688 }
1689 
1690 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
1691 {
1692 	struct sh_eth_private *mdp = netdev_priv(ndev);
1693 
1694 	pm_runtime_get_sync(&mdp->pdev->dev);
1695 
1696 	ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
1697 	sh_eth_write(ndev, 0, TROCR);	/* (write clear) */
1698 	ndev->stats.collisions += sh_eth_read(ndev, CDCR);
1699 	sh_eth_write(ndev, 0, CDCR);	/* (write clear) */
1700 	ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
1701 	sh_eth_write(ndev, 0, LCCR);	/* (write clear) */
1702 	if (sh_eth_is_gether(mdp)) {
1703 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
1704 		sh_eth_write(ndev, 0, CERCR);	/* (write clear) */
1705 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
1706 		sh_eth_write(ndev, 0, CEECR);	/* (write clear) */
1707 	} else {
1708 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
1709 		sh_eth_write(ndev, 0, CNDCR);	/* (write clear) */
1710 	}
1711 	pm_runtime_put_sync(&mdp->pdev->dev);
1712 
1713 	return &ndev->stats;
1714 }
1715 
1716 /* ioctl to device function */
1717 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
1718 				int cmd)
1719 {
1720 	struct sh_eth_private *mdp = netdev_priv(ndev);
1721 	struct phy_device *phydev = mdp->phydev;
1722 
1723 	if (!netif_running(ndev))
1724 		return -EINVAL;
1725 
1726 	if (!phydev)
1727 		return -ENODEV;
1728 
1729 	return phy_mii_ioctl(phydev, rq, cmd);
1730 }
1731 
1732 #if defined(SH_ETH_HAS_TSU)
1733 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
1734 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
1735 					    int entry)
1736 {
1737 	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
1738 }
1739 
1740 static u32 sh_eth_tsu_get_post_mask(int entry)
1741 {
1742 	return 0x0f << (28 - ((entry % 8) * 4));
1743 }
1744 
1745 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
1746 {
1747 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
1748 }
1749 
1750 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
1751 					     int entry)
1752 {
1753 	struct sh_eth_private *mdp = netdev_priv(ndev);
1754 	u32 tmp;
1755 	void *reg_offset;
1756 
1757 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
1758 	tmp = ioread32(reg_offset);
1759 	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
1760 }
1761 
1762 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
1763 					      int entry)
1764 {
1765 	struct sh_eth_private *mdp = netdev_priv(ndev);
1766 	u32 post_mask, ref_mask, tmp;
1767 	void *reg_offset;
1768 
1769 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
1770 	post_mask = sh_eth_tsu_get_post_mask(entry);
1771 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
1772 
1773 	tmp = ioread32(reg_offset);
1774 	iowrite32(tmp & ~post_mask, reg_offset);
1775 
1776 	/* If other port enables, the function returns "true" */
1777 	return tmp & ref_mask;
1778 }
1779 
1780 static int sh_eth_tsu_busy(struct net_device *ndev)
1781 {
1782 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
1783 	struct sh_eth_private *mdp = netdev_priv(ndev);
1784 
1785 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
1786 		udelay(10);
1787 		timeout--;
1788 		if (timeout <= 0) {
1789 			dev_err(&ndev->dev, "%s: timeout\n", __func__);
1790 			return -ETIMEDOUT;
1791 		}
1792 	}
1793 
1794 	return 0;
1795 }
1796 
1797 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
1798 				  const u8 *addr)
1799 {
1800 	u32 val;
1801 
1802 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
1803 	iowrite32(val, reg);
1804 	if (sh_eth_tsu_busy(ndev) < 0)
1805 		return -EBUSY;
1806 
1807 	val = addr[4] << 8 | addr[5];
1808 	iowrite32(val, reg + 4);
1809 	if (sh_eth_tsu_busy(ndev) < 0)
1810 		return -EBUSY;
1811 
1812 	return 0;
1813 }
1814 
1815 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
1816 {
1817 	u32 val;
1818 
1819 	val = ioread32(reg);
1820 	addr[0] = (val >> 24) & 0xff;
1821 	addr[1] = (val >> 16) & 0xff;
1822 	addr[2] = (val >> 8) & 0xff;
1823 	addr[3] = val & 0xff;
1824 	val = ioread32(reg + 4);
1825 	addr[4] = (val >> 8) & 0xff;
1826 	addr[5] = val & 0xff;
1827 }
1828 
1829 
1830 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
1831 {
1832 	struct sh_eth_private *mdp = netdev_priv(ndev);
1833 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
1834 	int i;
1835 	u8 c_addr[ETH_ALEN];
1836 
1837 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
1838 		sh_eth_tsu_read_entry(reg_offset, c_addr);
1839 		if (memcmp(addr, c_addr, ETH_ALEN) == 0)
1840 			return i;
1841 	}
1842 
1843 	return -ENOENT;
1844 }
1845 
1846 static int sh_eth_tsu_find_empty(struct net_device *ndev)
1847 {
1848 	u8 blank[ETH_ALEN];
1849 	int entry;
1850 
1851 	memset(blank, 0, sizeof(blank));
1852 	entry = sh_eth_tsu_find_entry(ndev, blank);
1853 	return (entry < 0) ? -ENOMEM : entry;
1854 }
1855 
1856 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
1857 					      int entry)
1858 {
1859 	struct sh_eth_private *mdp = netdev_priv(ndev);
1860 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
1861 	int ret;
1862 	u8 blank[ETH_ALEN];
1863 
1864 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
1865 			 ~(1 << (31 - entry)), TSU_TEN);
1866 
1867 	memset(blank, 0, sizeof(blank));
1868 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
1869 	if (ret < 0)
1870 		return ret;
1871 	return 0;
1872 }
1873 
1874 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
1875 {
1876 	struct sh_eth_private *mdp = netdev_priv(ndev);
1877 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
1878 	int i, ret;
1879 
1880 	if (!mdp->cd->tsu)
1881 		return 0;
1882 
1883 	i = sh_eth_tsu_find_entry(ndev, addr);
1884 	if (i < 0) {
1885 		/* No entry found, create one */
1886 		i = sh_eth_tsu_find_empty(ndev);
1887 		if (i < 0)
1888 			return -ENOMEM;
1889 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
1890 		if (ret < 0)
1891 			return ret;
1892 
1893 		/* Enable the entry */
1894 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
1895 				 (1 << (31 - i)), TSU_TEN);
1896 	}
1897 
1898 	/* Entry found or created, enable POST */
1899 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
1900 
1901 	return 0;
1902 }
1903 
1904 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
1905 {
1906 	struct sh_eth_private *mdp = netdev_priv(ndev);
1907 	int i, ret;
1908 
1909 	if (!mdp->cd->tsu)
1910 		return 0;
1911 
1912 	i = sh_eth_tsu_find_entry(ndev, addr);
1913 	if (i) {
1914 		/* Entry found */
1915 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
1916 			goto done;
1917 
1918 		/* Disable the entry if both ports was disabled */
1919 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
1920 		if (ret < 0)
1921 			return ret;
1922 	}
1923 done:
1924 	return 0;
1925 }
1926 
1927 static int sh_eth_tsu_purge_all(struct net_device *ndev)
1928 {
1929 	struct sh_eth_private *mdp = netdev_priv(ndev);
1930 	int i, ret;
1931 
1932 	if (unlikely(!mdp->cd->tsu))
1933 		return 0;
1934 
1935 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
1936 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
1937 			continue;
1938 
1939 		/* Disable the entry if both ports was disabled */
1940 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
1941 		if (ret < 0)
1942 			return ret;
1943 	}
1944 
1945 	return 0;
1946 }
1947 
1948 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
1949 {
1950 	struct sh_eth_private *mdp = netdev_priv(ndev);
1951 	u8 addr[ETH_ALEN];
1952 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
1953 	int i;
1954 
1955 	if (unlikely(!mdp->cd->tsu))
1956 		return;
1957 
1958 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
1959 		sh_eth_tsu_read_entry(reg_offset, addr);
1960 		if (is_multicast_ether_addr(addr))
1961 			sh_eth_tsu_del_entry(ndev, addr);
1962 	}
1963 }
1964 
1965 /* Multicast reception directions set */
1966 static void sh_eth_set_multicast_list(struct net_device *ndev)
1967 {
1968 	struct sh_eth_private *mdp = netdev_priv(ndev);
1969 	u32 ecmr_bits;
1970 	int mcast_all = 0;
1971 	unsigned long flags;
1972 
1973 	spin_lock_irqsave(&mdp->lock, flags);
1974 	/*
1975 	 * Initial condition is MCT = 1, PRM = 0.
1976 	 * Depending on ndev->flags, set PRM or clear MCT
1977 	 */
1978 	ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
1979 
1980 	if (!(ndev->flags & IFF_MULTICAST)) {
1981 		sh_eth_tsu_purge_mcast(ndev);
1982 		mcast_all = 1;
1983 	}
1984 	if (ndev->flags & IFF_ALLMULTI) {
1985 		sh_eth_tsu_purge_mcast(ndev);
1986 		ecmr_bits &= ~ECMR_MCT;
1987 		mcast_all = 1;
1988 	}
1989 
1990 	if (ndev->flags & IFF_PROMISC) {
1991 		sh_eth_tsu_purge_all(ndev);
1992 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
1993 	} else if (mdp->cd->tsu) {
1994 		struct netdev_hw_addr *ha;
1995 		netdev_for_each_mc_addr(ha, ndev) {
1996 			if (mcast_all && is_multicast_ether_addr(ha->addr))
1997 				continue;
1998 
1999 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2000 				if (!mcast_all) {
2001 					sh_eth_tsu_purge_mcast(ndev);
2002 					ecmr_bits &= ~ECMR_MCT;
2003 					mcast_all = 1;
2004 				}
2005 			}
2006 		}
2007 	} else {
2008 		/* Normal, unicast/broadcast-only mode. */
2009 		ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
2010 	}
2011 
2012 	/* update the ethernet mode */
2013 	sh_eth_write(ndev, ecmr_bits, ECMR);
2014 
2015 	spin_unlock_irqrestore(&mdp->lock, flags);
2016 }
2017 
2018 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2019 {
2020 	if (!mdp->port)
2021 		return TSU_VTAG0;
2022 	else
2023 		return TSU_VTAG1;
2024 }
2025 
2026 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
2027 {
2028 	struct sh_eth_private *mdp = netdev_priv(ndev);
2029 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2030 
2031 	if (unlikely(!mdp->cd->tsu))
2032 		return -EPERM;
2033 
2034 	/* No filtering if vid = 0 */
2035 	if (!vid)
2036 		return 0;
2037 
2038 	mdp->vlan_num_ids++;
2039 
2040 	/*
2041 	 * The controller has one VLAN tag HW filter. So, if the filter is
2042 	 * already enabled, the driver disables it and the filte
2043 	 */
2044 	if (mdp->vlan_num_ids > 1) {
2045 		/* disable VLAN filter */
2046 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2047 		return 0;
2048 	}
2049 
2050 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2051 			 vtag_reg_index);
2052 
2053 	return 0;
2054 }
2055 
2056 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
2057 {
2058 	struct sh_eth_private *mdp = netdev_priv(ndev);
2059 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2060 
2061 	if (unlikely(!mdp->cd->tsu))
2062 		return -EPERM;
2063 
2064 	/* No filtering if vid = 0 */
2065 	if (!vid)
2066 		return 0;
2067 
2068 	mdp->vlan_num_ids--;
2069 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2070 
2071 	return 0;
2072 }
2073 #endif /* SH_ETH_HAS_TSU */
2074 
2075 /* SuperH's TSU register init function */
2076 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2077 {
2078 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2079 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2080 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2081 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2082 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2083 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2084 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2085 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2086 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2087 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2088 	if (sh_eth_is_gether(mdp)) {
2089 		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2090 		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2091 	} else {
2092 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2093 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2094 	}
2095 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2096 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2097 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2098 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2099 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2100 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2101 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2102 }
2103 
2104 /* MDIO bus release function */
2105 static int sh_mdio_release(struct net_device *ndev)
2106 {
2107 	struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
2108 
2109 	/* unregister mdio bus */
2110 	mdiobus_unregister(bus);
2111 
2112 	/* remove mdio bus info from net_device */
2113 	dev_set_drvdata(&ndev->dev, NULL);
2114 
2115 	/* free interrupts memory */
2116 	kfree(bus->irq);
2117 
2118 	/* free bitbang info */
2119 	free_mdio_bitbang(bus);
2120 
2121 	return 0;
2122 }
2123 
2124 /* MDIO bus init function */
2125 static int sh_mdio_init(struct net_device *ndev, int id,
2126 			struct sh_eth_plat_data *pd)
2127 {
2128 	int ret, i;
2129 	struct bb_info *bitbang;
2130 	struct sh_eth_private *mdp = netdev_priv(ndev);
2131 
2132 	/* create bit control struct for PHY */
2133 	bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
2134 	if (!bitbang) {
2135 		ret = -ENOMEM;
2136 		goto out;
2137 	}
2138 
2139 	/* bitbang init */
2140 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2141 	bitbang->set_gate = pd->set_mdio_gate;
2142 	bitbang->mdi_msk = 0x08;
2143 	bitbang->mdo_msk = 0x04;
2144 	bitbang->mmd_msk = 0x02;/* MMD */
2145 	bitbang->mdc_msk = 0x01;
2146 	bitbang->ctrl.ops = &bb_ops;
2147 
2148 	/* MII controller setting */
2149 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2150 	if (!mdp->mii_bus) {
2151 		ret = -ENOMEM;
2152 		goto out_free_bitbang;
2153 	}
2154 
2155 	/* Hook up MII support for ethtool */
2156 	mdp->mii_bus->name = "sh_mii";
2157 	mdp->mii_bus->parent = &ndev->dev;
2158 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2159 		mdp->pdev->name, id);
2160 
2161 	/* PHY IRQ */
2162 	mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
2163 	if (!mdp->mii_bus->irq) {
2164 		ret = -ENOMEM;
2165 		goto out_free_bus;
2166 	}
2167 
2168 	for (i = 0; i < PHY_MAX_ADDR; i++)
2169 		mdp->mii_bus->irq[i] = PHY_POLL;
2170 
2171 	/* regist mdio bus */
2172 	ret = mdiobus_register(mdp->mii_bus);
2173 	if (ret)
2174 		goto out_free_irq;
2175 
2176 	dev_set_drvdata(&ndev->dev, mdp->mii_bus);
2177 
2178 	return 0;
2179 
2180 out_free_irq:
2181 	kfree(mdp->mii_bus->irq);
2182 
2183 out_free_bus:
2184 	free_mdio_bitbang(mdp->mii_bus);
2185 
2186 out_free_bitbang:
2187 	kfree(bitbang);
2188 
2189 out:
2190 	return ret;
2191 }
2192 
2193 static const u16 *sh_eth_get_register_offset(int register_type)
2194 {
2195 	const u16 *reg_offset = NULL;
2196 
2197 	switch (register_type) {
2198 	case SH_ETH_REG_GIGABIT:
2199 		reg_offset = sh_eth_offset_gigabit;
2200 		break;
2201 	case SH_ETH_REG_FAST_SH4:
2202 		reg_offset = sh_eth_offset_fast_sh4;
2203 		break;
2204 	case SH_ETH_REG_FAST_SH3_SH2:
2205 		reg_offset = sh_eth_offset_fast_sh3_sh2;
2206 		break;
2207 	default:
2208 		printk(KERN_ERR "Unknown register type (%d)\n", register_type);
2209 		break;
2210 	}
2211 
2212 	return reg_offset;
2213 }
2214 
2215 static const struct net_device_ops sh_eth_netdev_ops = {
2216 	.ndo_open		= sh_eth_open,
2217 	.ndo_stop		= sh_eth_close,
2218 	.ndo_start_xmit		= sh_eth_start_xmit,
2219 	.ndo_get_stats		= sh_eth_get_stats,
2220 #if defined(SH_ETH_HAS_TSU)
2221 	.ndo_set_rx_mode	= sh_eth_set_multicast_list,
2222 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
2223 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
2224 #endif
2225 	.ndo_tx_timeout		= sh_eth_tx_timeout,
2226 	.ndo_do_ioctl		= sh_eth_do_ioctl,
2227 	.ndo_validate_addr	= eth_validate_addr,
2228 	.ndo_set_mac_address	= eth_mac_addr,
2229 	.ndo_change_mtu		= eth_change_mtu,
2230 };
2231 
2232 static int sh_eth_drv_probe(struct platform_device *pdev)
2233 {
2234 	int ret, devno = 0;
2235 	struct resource *res;
2236 	struct net_device *ndev = NULL;
2237 	struct sh_eth_private *mdp = NULL;
2238 	struct sh_eth_plat_data *pd;
2239 
2240 	/* get base addr */
2241 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2242 	if (unlikely(res == NULL)) {
2243 		dev_err(&pdev->dev, "invalid resource\n");
2244 		ret = -EINVAL;
2245 		goto out;
2246 	}
2247 
2248 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2249 	if (!ndev) {
2250 		ret = -ENOMEM;
2251 		goto out;
2252 	}
2253 
2254 	/* The sh Ether-specific entries in the device structure. */
2255 	ndev->base_addr = res->start;
2256 	devno = pdev->id;
2257 	if (devno < 0)
2258 		devno = 0;
2259 
2260 	ndev->dma = -1;
2261 	ret = platform_get_irq(pdev, 0);
2262 	if (ret < 0) {
2263 		ret = -ENODEV;
2264 		goto out_release;
2265 	}
2266 	ndev->irq = ret;
2267 
2268 	SET_NETDEV_DEV(ndev, &pdev->dev);
2269 
2270 	/* Fill in the fields of the device structure with ethernet values. */
2271 	ether_setup(ndev);
2272 
2273 	mdp = netdev_priv(ndev);
2274 	mdp->addr = ioremap(res->start, resource_size(res));
2275 	if (mdp->addr == NULL) {
2276 		ret = -ENOMEM;
2277 		dev_err(&pdev->dev, "ioremap failed.\n");
2278 		goto out_release;
2279 	}
2280 
2281 	spin_lock_init(&mdp->lock);
2282 	mdp->pdev = pdev;
2283 	pm_runtime_enable(&pdev->dev);
2284 	pm_runtime_resume(&pdev->dev);
2285 
2286 	pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
2287 	/* get PHY ID */
2288 	mdp->phy_id = pd->phy;
2289 	mdp->phy_interface = pd->phy_interface;
2290 	/* EDMAC endian */
2291 	mdp->edmac_endian = pd->edmac_endian;
2292 	mdp->no_ether_link = pd->no_ether_link;
2293 	mdp->ether_link_active_low = pd->ether_link_active_low;
2294 	mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
2295 
2296 	/* set cpu data */
2297 #if defined(SH_ETH_HAS_BOTH_MODULES)
2298 	mdp->cd = sh_eth_get_cpu_data(mdp);
2299 #else
2300 	mdp->cd = &sh_eth_my_cpu_data;
2301 #endif
2302 	sh_eth_set_default_cpu_data(mdp->cd);
2303 
2304 	/* set function */
2305 	ndev->netdev_ops = &sh_eth_netdev_ops;
2306 	SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
2307 	ndev->watchdog_timeo = TX_TIMEOUT;
2308 
2309 	/* debug message level */
2310 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
2311 	mdp->post_rx = POST_RX >> (devno << 1);
2312 	mdp->post_fw = POST_FW >> (devno << 1);
2313 
2314 	/* read and set MAC address */
2315 	read_mac_address(ndev, pd->mac_addr);
2316 
2317 	/* ioremap the TSU registers */
2318 	if (mdp->cd->tsu) {
2319 		struct resource *rtsu;
2320 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2321 		if (!rtsu) {
2322 			dev_err(&pdev->dev, "Not found TSU resource\n");
2323 			goto out_release;
2324 		}
2325 		mdp->tsu_addr = ioremap(rtsu->start,
2326 					resource_size(rtsu));
2327 		mdp->port = devno % 2;
2328 		ndev->features = NETIF_F_HW_VLAN_FILTER;
2329 	}
2330 
2331 	/* initialize first or needed device */
2332 	if (!devno || pd->needs_init) {
2333 		if (mdp->cd->chip_reset)
2334 			mdp->cd->chip_reset(ndev);
2335 
2336 		if (mdp->cd->tsu) {
2337 			/* TSU init (Init only)*/
2338 			sh_eth_tsu_init(mdp);
2339 		}
2340 	}
2341 
2342 	/* network device register */
2343 	ret = register_netdev(ndev);
2344 	if (ret)
2345 		goto out_release;
2346 
2347 	/* mdio bus init */
2348 	ret = sh_mdio_init(ndev, pdev->id, pd);
2349 	if (ret)
2350 		goto out_unregister;
2351 
2352 	/* print device information */
2353 	pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
2354 	       (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2355 
2356 	platform_set_drvdata(pdev, ndev);
2357 
2358 	return ret;
2359 
2360 out_unregister:
2361 	unregister_netdev(ndev);
2362 
2363 out_release:
2364 	/* net_dev free */
2365 	if (mdp && mdp->addr)
2366 		iounmap(mdp->addr);
2367 	if (mdp && mdp->tsu_addr)
2368 		iounmap(mdp->tsu_addr);
2369 	if (ndev)
2370 		free_netdev(ndev);
2371 
2372 out:
2373 	return ret;
2374 }
2375 
2376 static int sh_eth_drv_remove(struct platform_device *pdev)
2377 {
2378 	struct net_device *ndev = platform_get_drvdata(pdev);
2379 	struct sh_eth_private *mdp = netdev_priv(ndev);
2380 
2381 	if (mdp->cd->tsu)
2382 		iounmap(mdp->tsu_addr);
2383 	sh_mdio_release(ndev);
2384 	unregister_netdev(ndev);
2385 	pm_runtime_disable(&pdev->dev);
2386 	iounmap(mdp->addr);
2387 	free_netdev(ndev);
2388 	platform_set_drvdata(pdev, NULL);
2389 
2390 	return 0;
2391 }
2392 
2393 static int sh_eth_runtime_nop(struct device *dev)
2394 {
2395 	/*
2396 	 * Runtime PM callback shared between ->runtime_suspend()
2397 	 * and ->runtime_resume(). Simply returns success.
2398 	 *
2399 	 * This driver re-initializes all registers after
2400 	 * pm_runtime_get_sync() anyway so there is no need
2401 	 * to save and restore registers here.
2402 	 */
2403 	return 0;
2404 }
2405 
2406 static struct dev_pm_ops sh_eth_dev_pm_ops = {
2407 	.runtime_suspend = sh_eth_runtime_nop,
2408 	.runtime_resume = sh_eth_runtime_nop,
2409 };
2410 
2411 static struct platform_driver sh_eth_driver = {
2412 	.probe = sh_eth_drv_probe,
2413 	.remove = sh_eth_drv_remove,
2414 	.driver = {
2415 		   .name = CARDNAME,
2416 		   .pm = &sh_eth_dev_pm_ops,
2417 	},
2418 };
2419 
2420 module_platform_driver(sh_eth_driver);
2421 
2422 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
2423 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
2424 MODULE_LICENSE("GPL v2");
2425