xref: /linux/drivers/net/ethernet/renesas/sh_eth.c (revision 6684f97981c528965d7458dd4f89cfbc8fa980b2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*  SuperH Ethernet device driver
3  *
4  *  Copyright (C) 2014 Renesas Electronics Corporation
5  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
6  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
7  *  Copyright (C) 2013-2017 Cogent Embedded, Inc.
8  *  Copyright (C) 2014 Codethink Limited
9  */
10 
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/etherdevice.h>
17 #include <linux/delay.h>
18 #include <linux/platform_device.h>
19 #include <linux/mdio-bitbang.h>
20 #include <linux/netdevice.h>
21 #include <linux/of.h>
22 #include <linux/of_net.h>
23 #include <linux/phy.h>
24 #include <linux/cache.h>
25 #include <linux/io.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/slab.h>
28 #include <linux/ethtool.h>
29 #include <linux/if_vlan.h>
30 #include <linux/sh_eth.h>
31 #include <linux/of_mdio.h>
32 
33 #include "sh_eth.h"
34 
35 #define SH_ETH_DEF_MSG_ENABLE \
36 		(NETIF_MSG_LINK	| \
37 		NETIF_MSG_TIMER	| \
38 		NETIF_MSG_RX_ERR| \
39 		NETIF_MSG_TX_ERR)
40 
41 #define SH_ETH_OFFSET_INVALID	((u16)~0)
42 
43 #define SH_ETH_OFFSET_DEFAULTS			\
44 	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
45 
46 /* use some intentionally tricky logic here to initialize the whole struct to
47  * 0xffff, but then override certain fields, requiring us to indicate that we
48  * "know" that there are overrides in this structure, and we'll need to disable
49  * that warning from W=1 builds. GCC has supported this option since 4.2.X, but
50  * the macros available to do this only define GCC 8.
51  */
52 __diag_push();
53 __diag_ignore_all("-Woverride-init",
54 	      "logic to initialize all and then override some is OK");
55 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
56 	SH_ETH_OFFSET_DEFAULTS,
57 
58 	[EDSR]		= 0x0000,
59 	[EDMR]		= 0x0400,
60 	[EDTRR]		= 0x0408,
61 	[EDRRR]		= 0x0410,
62 	[EESR]		= 0x0428,
63 	[EESIPR]	= 0x0430,
64 	[TDLAR]		= 0x0010,
65 	[TDFAR]		= 0x0014,
66 	[TDFXR]		= 0x0018,
67 	[TDFFR]		= 0x001c,
68 	[RDLAR]		= 0x0030,
69 	[RDFAR]		= 0x0034,
70 	[RDFXR]		= 0x0038,
71 	[RDFFR]		= 0x003c,
72 	[TRSCER]	= 0x0438,
73 	[RMFCR]		= 0x0440,
74 	[TFTR]		= 0x0448,
75 	[FDR]		= 0x0450,
76 	[RMCR]		= 0x0458,
77 	[RPADIR]	= 0x0460,
78 	[FCFTR]		= 0x0468,
79 	[CSMR]		= 0x04E4,
80 
81 	[ECMR]		= 0x0500,
82 	[ECSR]		= 0x0510,
83 	[ECSIPR]	= 0x0518,
84 	[PIR]		= 0x0520,
85 	[PSR]		= 0x0528,
86 	[PIPR]		= 0x052c,
87 	[RFLR]		= 0x0508,
88 	[APR]		= 0x0554,
89 	[MPR]		= 0x0558,
90 	[PFTCR]		= 0x055c,
91 	[PFRCR]		= 0x0560,
92 	[TPAUSER]	= 0x0564,
93 	[GECMR]		= 0x05b0,
94 	[BCULR]		= 0x05b4,
95 	[MAHR]		= 0x05c0,
96 	[MALR]		= 0x05c8,
97 	[TROCR]		= 0x0700,
98 	[CDCR]		= 0x0708,
99 	[LCCR]		= 0x0710,
100 	[CEFCR]		= 0x0740,
101 	[FRECR]		= 0x0748,
102 	[TSFRCR]	= 0x0750,
103 	[TLFRCR]	= 0x0758,
104 	[RFCR]		= 0x0760,
105 	[CERCR]		= 0x0768,
106 	[CEECR]		= 0x0770,
107 	[MAFCR]		= 0x0778,
108 	[RMII_MII]	= 0x0790,
109 
110 	[ARSTR]		= 0x0000,
111 	[TSU_CTRST]	= 0x0004,
112 	[TSU_FWEN0]	= 0x0010,
113 	[TSU_FWEN1]	= 0x0014,
114 	[TSU_FCM]	= 0x0018,
115 	[TSU_BSYSL0]	= 0x0020,
116 	[TSU_BSYSL1]	= 0x0024,
117 	[TSU_PRISL0]	= 0x0028,
118 	[TSU_PRISL1]	= 0x002c,
119 	[TSU_FWSL0]	= 0x0030,
120 	[TSU_FWSL1]	= 0x0034,
121 	[TSU_FWSLC]	= 0x0038,
122 	[TSU_QTAGM0]	= 0x0040,
123 	[TSU_QTAGM1]	= 0x0044,
124 	[TSU_FWSR]	= 0x0050,
125 	[TSU_FWINMK]	= 0x0054,
126 	[TSU_ADQT0]	= 0x0048,
127 	[TSU_ADQT1]	= 0x004c,
128 	[TSU_VTAG0]	= 0x0058,
129 	[TSU_VTAG1]	= 0x005c,
130 	[TSU_ADSBSY]	= 0x0060,
131 	[TSU_TEN]	= 0x0064,
132 	[TSU_POST1]	= 0x0070,
133 	[TSU_POST2]	= 0x0074,
134 	[TSU_POST3]	= 0x0078,
135 	[TSU_POST4]	= 0x007c,
136 	[TSU_ADRH0]	= 0x0100,
137 
138 	[TXNLCR0]	= 0x0080,
139 	[TXALCR0]	= 0x0084,
140 	[RXNLCR0]	= 0x0088,
141 	[RXALCR0]	= 0x008c,
142 	[FWNLCR0]	= 0x0090,
143 	[FWALCR0]	= 0x0094,
144 	[TXNLCR1]	= 0x00a0,
145 	[TXALCR1]	= 0x00a4,
146 	[RXNLCR1]	= 0x00a8,
147 	[RXALCR1]	= 0x00ac,
148 	[FWNLCR1]	= 0x00b0,
149 	[FWALCR1]	= 0x00b4,
150 };
151 
152 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
153 	SH_ETH_OFFSET_DEFAULTS,
154 
155 	[ECMR]		= 0x0300,
156 	[RFLR]		= 0x0308,
157 	[ECSR]		= 0x0310,
158 	[ECSIPR]	= 0x0318,
159 	[PIR]		= 0x0320,
160 	[PSR]		= 0x0328,
161 	[RDMLR]		= 0x0340,
162 	[IPGR]		= 0x0350,
163 	[APR]		= 0x0354,
164 	[MPR]		= 0x0358,
165 	[RFCF]		= 0x0360,
166 	[TPAUSER]	= 0x0364,
167 	[TPAUSECR]	= 0x0368,
168 	[MAHR]		= 0x03c0,
169 	[MALR]		= 0x03c8,
170 	[TROCR]		= 0x03d0,
171 	[CDCR]		= 0x03d4,
172 	[LCCR]		= 0x03d8,
173 	[CNDCR]		= 0x03dc,
174 	[CEFCR]		= 0x03e4,
175 	[FRECR]		= 0x03e8,
176 	[TSFRCR]	= 0x03ec,
177 	[TLFRCR]	= 0x03f0,
178 	[RFCR]		= 0x03f4,
179 	[MAFCR]		= 0x03f8,
180 
181 	[EDMR]		= 0x0200,
182 	[EDTRR]		= 0x0208,
183 	[EDRRR]		= 0x0210,
184 	[TDLAR]		= 0x0218,
185 	[RDLAR]		= 0x0220,
186 	[EESR]		= 0x0228,
187 	[EESIPR]	= 0x0230,
188 	[TRSCER]	= 0x0238,
189 	[RMFCR]		= 0x0240,
190 	[TFTR]		= 0x0248,
191 	[FDR]		= 0x0250,
192 	[RMCR]		= 0x0258,
193 	[TFUCR]		= 0x0264,
194 	[RFOCR]		= 0x0268,
195 	[RMIIMODE]      = 0x026c,
196 	[FCFTR]		= 0x0270,
197 	[TRIMD]		= 0x027c,
198 };
199 
200 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
201 	SH_ETH_OFFSET_DEFAULTS,
202 
203 	[ECMR]		= 0x0100,
204 	[RFLR]		= 0x0108,
205 	[ECSR]		= 0x0110,
206 	[ECSIPR]	= 0x0118,
207 	[PIR]		= 0x0120,
208 	[PSR]		= 0x0128,
209 	[RDMLR]		= 0x0140,
210 	[IPGR]		= 0x0150,
211 	[APR]		= 0x0154,
212 	[MPR]		= 0x0158,
213 	[TPAUSER]	= 0x0164,
214 	[RFCF]		= 0x0160,
215 	[TPAUSECR]	= 0x0168,
216 	[BCFRR]		= 0x016c,
217 	[MAHR]		= 0x01c0,
218 	[MALR]		= 0x01c8,
219 	[TROCR]		= 0x01d0,
220 	[CDCR]		= 0x01d4,
221 	[LCCR]		= 0x01d8,
222 	[CNDCR]		= 0x01dc,
223 	[CEFCR]		= 0x01e4,
224 	[FRECR]		= 0x01e8,
225 	[TSFRCR]	= 0x01ec,
226 	[TLFRCR]	= 0x01f0,
227 	[RFCR]		= 0x01f4,
228 	[MAFCR]		= 0x01f8,
229 	[RTRATE]	= 0x01fc,
230 
231 	[EDMR]		= 0x0000,
232 	[EDTRR]		= 0x0008,
233 	[EDRRR]		= 0x0010,
234 	[TDLAR]		= 0x0018,
235 	[RDLAR]		= 0x0020,
236 	[EESR]		= 0x0028,
237 	[EESIPR]	= 0x0030,
238 	[TRSCER]	= 0x0038,
239 	[RMFCR]		= 0x0040,
240 	[TFTR]		= 0x0048,
241 	[FDR]		= 0x0050,
242 	[RMCR]		= 0x0058,
243 	[TFUCR]		= 0x0064,
244 	[RFOCR]		= 0x0068,
245 	[FCFTR]		= 0x0070,
246 	[RPADIR]	= 0x0078,
247 	[TRIMD]		= 0x007c,
248 	[RBWAR]		= 0x00c8,
249 	[RDFAR]		= 0x00cc,
250 	[TBRAR]		= 0x00d4,
251 	[TDFAR]		= 0x00d8,
252 };
253 
254 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
255 	SH_ETH_OFFSET_DEFAULTS,
256 
257 	[EDMR]		= 0x0000,
258 	[EDTRR]		= 0x0004,
259 	[EDRRR]		= 0x0008,
260 	[TDLAR]		= 0x000c,
261 	[RDLAR]		= 0x0010,
262 	[EESR]		= 0x0014,
263 	[EESIPR]	= 0x0018,
264 	[TRSCER]	= 0x001c,
265 	[RMFCR]		= 0x0020,
266 	[TFTR]		= 0x0024,
267 	[FDR]		= 0x0028,
268 	[RMCR]		= 0x002c,
269 	[EDOCR]		= 0x0030,
270 	[FCFTR]		= 0x0034,
271 	[RPADIR]	= 0x0038,
272 	[TRIMD]		= 0x003c,
273 	[RBWAR]		= 0x0040,
274 	[RDFAR]		= 0x0044,
275 	[TBRAR]		= 0x004c,
276 	[TDFAR]		= 0x0050,
277 
278 	[ECMR]		= 0x0160,
279 	[ECSR]		= 0x0164,
280 	[ECSIPR]	= 0x0168,
281 	[PIR]		= 0x016c,
282 	[MAHR]		= 0x0170,
283 	[MALR]		= 0x0174,
284 	[RFLR]		= 0x0178,
285 	[PSR]		= 0x017c,
286 	[TROCR]		= 0x0180,
287 	[CDCR]		= 0x0184,
288 	[LCCR]		= 0x0188,
289 	[CNDCR]		= 0x018c,
290 	[CEFCR]		= 0x0194,
291 	[FRECR]		= 0x0198,
292 	[TSFRCR]	= 0x019c,
293 	[TLFRCR]	= 0x01a0,
294 	[RFCR]		= 0x01a4,
295 	[MAFCR]		= 0x01a8,
296 	[IPGR]		= 0x01b4,
297 	[APR]		= 0x01b8,
298 	[MPR]		= 0x01bc,
299 	[TPAUSER]	= 0x01c4,
300 	[BCFR]		= 0x01cc,
301 
302 	[ARSTR]		= 0x0000,
303 	[TSU_CTRST]	= 0x0004,
304 	[TSU_FWEN0]	= 0x0010,
305 	[TSU_FWEN1]	= 0x0014,
306 	[TSU_FCM]	= 0x0018,
307 	[TSU_BSYSL0]	= 0x0020,
308 	[TSU_BSYSL1]	= 0x0024,
309 	[TSU_PRISL0]	= 0x0028,
310 	[TSU_PRISL1]	= 0x002c,
311 	[TSU_FWSL0]	= 0x0030,
312 	[TSU_FWSL1]	= 0x0034,
313 	[TSU_FWSLC]	= 0x0038,
314 	[TSU_QTAGM0]	= 0x0040,
315 	[TSU_QTAGM1]	= 0x0044,
316 	[TSU_ADQT0]	= 0x0048,
317 	[TSU_ADQT1]	= 0x004c,
318 	[TSU_FWSR]	= 0x0050,
319 	[TSU_FWINMK]	= 0x0054,
320 	[TSU_ADSBSY]	= 0x0060,
321 	[TSU_TEN]	= 0x0064,
322 	[TSU_POST1]	= 0x0070,
323 	[TSU_POST2]	= 0x0074,
324 	[TSU_POST3]	= 0x0078,
325 	[TSU_POST4]	= 0x007c,
326 
327 	[TXNLCR0]	= 0x0080,
328 	[TXALCR0]	= 0x0084,
329 	[RXNLCR0]	= 0x0088,
330 	[RXALCR0]	= 0x008c,
331 	[FWNLCR0]	= 0x0090,
332 	[FWALCR0]	= 0x0094,
333 	[TXNLCR1]	= 0x00a0,
334 	[TXALCR1]	= 0x00a4,
335 	[RXNLCR1]	= 0x00a8,
336 	[RXALCR1]	= 0x00ac,
337 	[FWNLCR1]	= 0x00b0,
338 	[FWALCR1]	= 0x00b4,
339 
340 	[TSU_ADRH0]	= 0x0100,
341 };
342 __diag_pop();
343 
344 static void sh_eth_rcv_snd_disable(struct net_device *ndev);
345 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
346 
347 static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
348 {
349 	struct sh_eth_private *mdp = netdev_priv(ndev);
350 	u16 offset = mdp->reg_offset[enum_index];
351 
352 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
353 		return;
354 
355 	iowrite32(data, mdp->addr + offset);
356 }
357 
358 static u32 sh_eth_read(struct net_device *ndev, int enum_index)
359 {
360 	struct sh_eth_private *mdp = netdev_priv(ndev);
361 	u16 offset = mdp->reg_offset[enum_index];
362 
363 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
364 		return ~0U;
365 
366 	return ioread32(mdp->addr + offset);
367 }
368 
369 static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
370 			  u32 set)
371 {
372 	sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
373 		     enum_index);
374 }
375 
376 static u16 sh_eth_tsu_get_offset(struct sh_eth_private *mdp, int enum_index)
377 {
378 	return mdp->reg_offset[enum_index];
379 }
380 
381 static void sh_eth_tsu_write(struct sh_eth_private *mdp, u32 data,
382 			     int enum_index)
383 {
384 	u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
385 
386 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
387 		return;
388 
389 	iowrite32(data, mdp->tsu_addr + offset);
390 }
391 
392 static u32 sh_eth_tsu_read(struct sh_eth_private *mdp, int enum_index)
393 {
394 	u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
395 
396 	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
397 		return ~0U;
398 
399 	return ioread32(mdp->tsu_addr + offset);
400 }
401 
402 static void sh_eth_soft_swap(char *src, int len)
403 {
404 #ifdef __LITTLE_ENDIAN
405 	u32 *p = (u32 *)src;
406 	u32 *maxp = p + DIV_ROUND_UP(len, sizeof(u32));
407 
408 	for (; p < maxp; p++)
409 		*p = swab32(*p);
410 #endif
411 }
412 
413 static void sh_eth_select_mii(struct net_device *ndev)
414 {
415 	struct sh_eth_private *mdp = netdev_priv(ndev);
416 	u32 value;
417 
418 	switch (mdp->phy_interface) {
419 	case PHY_INTERFACE_MODE_RGMII ... PHY_INTERFACE_MODE_RGMII_TXID:
420 		value = 0x3;
421 		break;
422 	case PHY_INTERFACE_MODE_GMII:
423 		value = 0x2;
424 		break;
425 	case PHY_INTERFACE_MODE_MII:
426 		value = 0x1;
427 		break;
428 	case PHY_INTERFACE_MODE_RMII:
429 		value = 0x0;
430 		break;
431 	default:
432 		netdev_warn(ndev,
433 			    "PHY interface mode was not setup. Set to MII.\n");
434 		value = 0x1;
435 		break;
436 	}
437 
438 	sh_eth_write(ndev, value, RMII_MII);
439 }
440 
441 static void sh_eth_set_duplex(struct net_device *ndev)
442 {
443 	struct sh_eth_private *mdp = netdev_priv(ndev);
444 
445 	sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
446 }
447 
448 static void sh_eth_chip_reset(struct net_device *ndev)
449 {
450 	struct sh_eth_private *mdp = netdev_priv(ndev);
451 
452 	/* reset device */
453 	sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
454 	mdelay(1);
455 }
456 
457 static int sh_eth_soft_reset(struct net_device *ndev)
458 {
459 	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
460 	mdelay(3);
461 	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
462 
463 	return 0;
464 }
465 
466 static int sh_eth_check_soft_reset(struct net_device *ndev)
467 {
468 	int cnt;
469 
470 	for (cnt = 100; cnt > 0; cnt--) {
471 		if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
472 			return 0;
473 		mdelay(1);
474 	}
475 
476 	netdev_err(ndev, "Device reset failed\n");
477 	return -ETIMEDOUT;
478 }
479 
480 static int sh_eth_soft_reset_gether(struct net_device *ndev)
481 {
482 	struct sh_eth_private *mdp = netdev_priv(ndev);
483 	int ret;
484 
485 	sh_eth_write(ndev, EDSR_ENALL, EDSR);
486 	sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
487 
488 	ret = sh_eth_check_soft_reset(ndev);
489 	if (ret)
490 		return ret;
491 
492 	/* Table Init */
493 	sh_eth_write(ndev, 0, TDLAR);
494 	sh_eth_write(ndev, 0, TDFAR);
495 	sh_eth_write(ndev, 0, TDFXR);
496 	sh_eth_write(ndev, 0, TDFFR);
497 	sh_eth_write(ndev, 0, RDLAR);
498 	sh_eth_write(ndev, 0, RDFAR);
499 	sh_eth_write(ndev, 0, RDFXR);
500 	sh_eth_write(ndev, 0, RDFFR);
501 
502 	/* Reset HW CRC register */
503 	if (mdp->cd->csmr)
504 		sh_eth_write(ndev, 0, CSMR);
505 
506 	/* Select MII mode */
507 	if (mdp->cd->select_mii)
508 		sh_eth_select_mii(ndev);
509 
510 	return ret;
511 }
512 
513 static void sh_eth_set_rate_gether(struct net_device *ndev)
514 {
515 	struct sh_eth_private *mdp = netdev_priv(ndev);
516 
517 	if (WARN_ON(!mdp->cd->gecmr))
518 		return;
519 
520 	switch (mdp->speed) {
521 	case 10: /* 10BASE */
522 		sh_eth_write(ndev, GECMR_10, GECMR);
523 		break;
524 	case 100:/* 100BASE */
525 		sh_eth_write(ndev, GECMR_100, GECMR);
526 		break;
527 	case 1000: /* 1000BASE */
528 		sh_eth_write(ndev, GECMR_1000, GECMR);
529 		break;
530 	}
531 }
532 
533 #ifdef CONFIG_OF
534 /* R7S72100 */
535 static struct sh_eth_cpu_data r7s72100_data = {
536 	.soft_reset	= sh_eth_soft_reset_gether,
537 
538 	.chip_reset	= sh_eth_chip_reset,
539 	.set_duplex	= sh_eth_set_duplex,
540 
541 	.register_type	= SH_ETH_REG_GIGABIT,
542 
543 	.edtrr_trns	= EDTRR_TRNS_GETHER,
544 	.ecsr_value	= ECSR_ICD,
545 	.ecsipr_value	= ECSIPR_ICDIP,
546 	.eesipr_value	= EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP |
547 			  EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP |
548 			  EESIPR_ECIIP |
549 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
550 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
551 			  EESIPR_RMAFIP | EESIPR_RRFIP |
552 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
553 			  EESIPR_PREIP | EESIPR_CERFIP,
554 
555 	.tx_check	= EESR_TC1 | EESR_FTC,
556 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
557 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
558 			  EESR_TDE,
559 	.fdr_value	= 0x0000070f,
560 
561 	.trscer_err_mask = TRSCER_RMAFCE | TRSCER_RRFCE,
562 
563 	.no_psr		= 1,
564 	.apr		= 1,
565 	.mpr		= 1,
566 	.tpauser	= 1,
567 	.hw_swap	= 1,
568 	.rpadir		= 1,
569 	.no_trimd	= 1,
570 	.no_ade		= 1,
571 	.xdfar_rw	= 1,
572 	.csmr		= 1,
573 	.rx_csum	= 1,
574 	.tsu		= 1,
575 	.no_tx_cntrs	= 1,
576 };
577 
578 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
579 {
580 	sh_eth_chip_reset(ndev);
581 
582 	sh_eth_select_mii(ndev);
583 }
584 
585 /* R8A7740 */
586 static struct sh_eth_cpu_data r8a7740_data = {
587 	.soft_reset	= sh_eth_soft_reset_gether,
588 
589 	.chip_reset	= sh_eth_chip_reset_r8a7740,
590 	.set_duplex	= sh_eth_set_duplex,
591 	.set_rate	= sh_eth_set_rate_gether,
592 
593 	.register_type	= SH_ETH_REG_GIGABIT,
594 
595 	.edtrr_trns	= EDTRR_TRNS_GETHER,
596 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
597 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
598 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
599 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
600 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
601 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
602 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
603 			  EESIPR_CEEFIP | EESIPR_CELFIP |
604 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
605 			  EESIPR_PREIP | EESIPR_CERFIP,
606 
607 	.tx_check	= EESR_TC1 | EESR_FTC,
608 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
609 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
610 			  EESR_TDE,
611 	.fdr_value	= 0x0000070f,
612 
613 	.apr		= 1,
614 	.mpr		= 1,
615 	.tpauser	= 1,
616 	.gecmr		= 1,
617 	.bculr		= 1,
618 	.hw_swap	= 1,
619 	.rpadir		= 1,
620 	.no_trimd	= 1,
621 	.no_ade		= 1,
622 	.xdfar_rw	= 1,
623 	.csmr		= 1,
624 	.rx_csum	= 1,
625 	.tsu		= 1,
626 	.select_mii	= 1,
627 	.magic		= 1,
628 	.cexcr		= 1,
629 };
630 
631 /* There is CPU dependent code */
632 static void sh_eth_set_rate_rcar(struct net_device *ndev)
633 {
634 	struct sh_eth_private *mdp = netdev_priv(ndev);
635 
636 	switch (mdp->speed) {
637 	case 10: /* 10BASE */
638 		sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
639 		break;
640 	case 100:/* 100BASE */
641 		sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
642 		break;
643 	}
644 }
645 
646 /* R-Car Gen1 */
647 static struct sh_eth_cpu_data rcar_gen1_data = {
648 	.soft_reset	= sh_eth_soft_reset,
649 
650 	.set_duplex	= sh_eth_set_duplex,
651 	.set_rate	= sh_eth_set_rate_rcar,
652 
653 	.register_type	= SH_ETH_REG_FAST_RCAR,
654 
655 	.edtrr_trns	= EDTRR_TRNS_ETHER,
656 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
657 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
658 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
659 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
660 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
661 			  EESIPR_RMAFIP | EESIPR_RRFIP |
662 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
663 			  EESIPR_PREIP | EESIPR_CERFIP,
664 
665 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
666 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
667 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
668 	.fdr_value	= 0x00000f0f,
669 
670 	.apr		= 1,
671 	.mpr		= 1,
672 	.tpauser	= 1,
673 	.hw_swap	= 1,
674 	.no_xdfar	= 1,
675 };
676 
677 /* R-Car Gen2 and RZ/G1 */
678 static struct sh_eth_cpu_data rcar_gen2_data = {
679 	.soft_reset	= sh_eth_soft_reset,
680 
681 	.set_duplex	= sh_eth_set_duplex,
682 	.set_rate	= sh_eth_set_rate_rcar,
683 
684 	.register_type	= SH_ETH_REG_FAST_RCAR,
685 
686 	.edtrr_trns	= EDTRR_TRNS_ETHER,
687 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
688 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
689 			  ECSIPR_MPDIP,
690 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
691 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
692 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
693 			  EESIPR_RMAFIP | EESIPR_RRFIP |
694 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
695 			  EESIPR_PREIP | EESIPR_CERFIP,
696 
697 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
698 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
699 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
700 	.fdr_value	= 0x00000f0f,
701 
702 	.trscer_err_mask = TRSCER_RMAFCE,
703 
704 	.apr		= 1,
705 	.mpr		= 1,
706 	.tpauser	= 1,
707 	.hw_swap	= 1,
708 	.no_xdfar	= 1,
709 	.rmiimode	= 1,
710 	.magic		= 1,
711 };
712 
713 /* R8A77980 */
714 static struct sh_eth_cpu_data r8a77980_data = {
715 	.soft_reset	= sh_eth_soft_reset_gether,
716 
717 	.set_duplex	= sh_eth_set_duplex,
718 	.set_rate	= sh_eth_set_rate_gether,
719 
720 	.register_type  = SH_ETH_REG_GIGABIT,
721 
722 	.edtrr_trns	= EDTRR_TRNS_GETHER,
723 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
724 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
725 			  ECSIPR_MPDIP,
726 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
727 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
728 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
729 			  EESIPR_RMAFIP | EESIPR_RRFIP |
730 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
731 			  EESIPR_PREIP | EESIPR_CERFIP,
732 
733 	.tx_check       = EESR_FTC | EESR_CD | EESR_TRO,
734 	.eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
735 			  EESR_RFE | EESR_RDE | EESR_RFRMER |
736 			  EESR_TFE | EESR_TDE | EESR_ECI,
737 	.fdr_value	= 0x0000070f,
738 
739 	.apr		= 1,
740 	.mpr		= 1,
741 	.tpauser	= 1,
742 	.gecmr		= 1,
743 	.bculr		= 1,
744 	.hw_swap	= 1,
745 	.nbst		= 1,
746 	.rpadir		= 1,
747 	.no_trimd	= 1,
748 	.no_ade		= 1,
749 	.xdfar_rw	= 1,
750 	.csmr		= 1,
751 	.rx_csum	= 1,
752 	.select_mii	= 1,
753 	.magic		= 1,
754 	.cexcr		= 1,
755 };
756 
757 /* R7S9210 */
758 static struct sh_eth_cpu_data r7s9210_data = {
759 	.soft_reset	= sh_eth_soft_reset,
760 
761 	.set_duplex	= sh_eth_set_duplex,
762 	.set_rate	= sh_eth_set_rate_rcar,
763 
764 	.register_type	= SH_ETH_REG_FAST_SH4,
765 
766 	.edtrr_trns	= EDTRR_TRNS_ETHER,
767 	.ecsr_value	= ECSR_ICD,
768 	.ecsipr_value	= ECSIPR_ICDIP,
769 	.eesipr_value	= EESIPR_TWBIP | EESIPR_TABTIP | EESIPR_RABTIP |
770 			  EESIPR_RFCOFIP | EESIPR_ECIIP | EESIPR_FTCIP |
771 			  EESIPR_TDEIP | EESIPR_TFUFIP | EESIPR_FRIP |
772 			  EESIPR_RDEIP | EESIPR_RFOFIP | EESIPR_CNDIP |
773 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
774 			  EESIPR_RMAFIP | EESIPR_RRFIP | EESIPR_RTLFIP |
775 			  EESIPR_RTSFIP | EESIPR_PREIP | EESIPR_CERFIP,
776 
777 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
778 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
779 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
780 
781 	.fdr_value	= 0x0000070f,
782 
783 	.trscer_err_mask = TRSCER_RMAFCE | TRSCER_RRFCE,
784 
785 	.apr		= 1,
786 	.mpr		= 1,
787 	.tpauser	= 1,
788 	.hw_swap	= 1,
789 	.rpadir		= 1,
790 	.no_ade		= 1,
791 	.xdfar_rw	= 1,
792 };
793 #endif /* CONFIG_OF */
794 
795 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
796 {
797 	struct sh_eth_private *mdp = netdev_priv(ndev);
798 
799 	switch (mdp->speed) {
800 	case 10: /* 10BASE */
801 		sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
802 		break;
803 	case 100:/* 100BASE */
804 		sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
805 		break;
806 	}
807 }
808 
809 /* SH7724 */
810 static struct sh_eth_cpu_data sh7724_data = {
811 	.soft_reset	= sh_eth_soft_reset,
812 
813 	.set_duplex	= sh_eth_set_duplex,
814 	.set_rate	= sh_eth_set_rate_sh7724,
815 
816 	.register_type	= SH_ETH_REG_FAST_SH4,
817 
818 	.edtrr_trns	= EDTRR_TRNS_ETHER,
819 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
820 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
821 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
822 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
823 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
824 			  EESIPR_RMAFIP | EESIPR_RRFIP |
825 			  EESIPR_RTLFIP | EESIPR_RTSFIP |
826 			  EESIPR_PREIP | EESIPR_CERFIP,
827 
828 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
829 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
830 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
831 
832 	.apr		= 1,
833 	.mpr		= 1,
834 	.tpauser	= 1,
835 	.hw_swap	= 1,
836 	.rpadir		= 1,
837 };
838 
839 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
840 {
841 	struct sh_eth_private *mdp = netdev_priv(ndev);
842 
843 	switch (mdp->speed) {
844 	case 10: /* 10BASE */
845 		sh_eth_write(ndev, 0, RTRATE);
846 		break;
847 	case 100:/* 100BASE */
848 		sh_eth_write(ndev, 1, RTRATE);
849 		break;
850 	}
851 }
852 
853 /* SH7757 */
854 static struct sh_eth_cpu_data sh7757_data = {
855 	.soft_reset	= sh_eth_soft_reset,
856 
857 	.set_duplex	= sh_eth_set_duplex,
858 	.set_rate	= sh_eth_set_rate_sh7757,
859 
860 	.register_type	= SH_ETH_REG_FAST_SH4,
861 
862 	.edtrr_trns	= EDTRR_TRNS_ETHER,
863 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
864 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
865 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
866 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
867 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
868 			  EESIPR_CEEFIP | EESIPR_CELFIP |
869 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
870 			  EESIPR_PREIP | EESIPR_CERFIP,
871 
872 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
873 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
874 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
875 
876 	.irq_flags	= IRQF_SHARED,
877 	.apr		= 1,
878 	.mpr		= 1,
879 	.tpauser	= 1,
880 	.hw_swap	= 1,
881 	.no_ade		= 1,
882 	.rpadir		= 1,
883 	.rtrate		= 1,
884 	.dual_port	= 1,
885 };
886 
887 #define SH_GIGA_ETH_BASE	0xfee00000UL
888 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
889 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
890 static void sh_eth_chip_reset_giga(struct net_device *ndev)
891 {
892 	u32 mahr[2], malr[2];
893 	int i;
894 
895 	/* save MAHR and MALR */
896 	for (i = 0; i < 2; i++) {
897 		malr[i] = ioread32((void *)GIGA_MALR(i));
898 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
899 	}
900 
901 	sh_eth_chip_reset(ndev);
902 
903 	/* restore MAHR and MALR */
904 	for (i = 0; i < 2; i++) {
905 		iowrite32(malr[i], (void *)GIGA_MALR(i));
906 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
907 	}
908 }
909 
910 static void sh_eth_set_rate_giga(struct net_device *ndev)
911 {
912 	struct sh_eth_private *mdp = netdev_priv(ndev);
913 
914 	if (WARN_ON(!mdp->cd->gecmr))
915 		return;
916 
917 	switch (mdp->speed) {
918 	case 10: /* 10BASE */
919 		sh_eth_write(ndev, 0x00000000, GECMR);
920 		break;
921 	case 100:/* 100BASE */
922 		sh_eth_write(ndev, 0x00000010, GECMR);
923 		break;
924 	case 1000: /* 1000BASE */
925 		sh_eth_write(ndev, 0x00000020, GECMR);
926 		break;
927 	}
928 }
929 
930 /* SH7757(GETHERC) */
931 static struct sh_eth_cpu_data sh7757_data_giga = {
932 	.soft_reset	= sh_eth_soft_reset_gether,
933 
934 	.chip_reset	= sh_eth_chip_reset_giga,
935 	.set_duplex	= sh_eth_set_duplex,
936 	.set_rate	= sh_eth_set_rate_giga,
937 
938 	.register_type	= SH_ETH_REG_GIGABIT,
939 
940 	.edtrr_trns	= EDTRR_TRNS_GETHER,
941 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
942 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
943 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
944 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
945 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
946 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
947 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
948 			  EESIPR_CEEFIP | EESIPR_CELFIP |
949 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
950 			  EESIPR_PREIP | EESIPR_CERFIP,
951 
952 	.tx_check	= EESR_TC1 | EESR_FTC,
953 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
954 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
955 			  EESR_TDE,
956 	.fdr_value	= 0x0000072f,
957 
958 	.irq_flags	= IRQF_SHARED,
959 	.apr		= 1,
960 	.mpr		= 1,
961 	.tpauser	= 1,
962 	.gecmr		= 1,
963 	.bculr		= 1,
964 	.hw_swap	= 1,
965 	.rpadir		= 1,
966 	.no_trimd	= 1,
967 	.no_ade		= 1,
968 	.xdfar_rw	= 1,
969 	.tsu		= 1,
970 	.cexcr		= 1,
971 	.dual_port	= 1,
972 };
973 
974 /* SH7734 */
975 static struct sh_eth_cpu_data sh7734_data = {
976 	.soft_reset	= sh_eth_soft_reset_gether,
977 
978 	.chip_reset	= sh_eth_chip_reset,
979 	.set_duplex	= sh_eth_set_duplex,
980 	.set_rate	= sh_eth_set_rate_gether,
981 
982 	.register_type	= SH_ETH_REG_GIGABIT,
983 
984 	.edtrr_trns	= EDTRR_TRNS_GETHER,
985 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
986 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
987 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
988 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
989 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
990 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
991 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
992 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
993 			  EESIPR_PREIP | EESIPR_CERFIP,
994 
995 	.tx_check	= EESR_TC1 | EESR_FTC,
996 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
997 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
998 			  EESR_TDE,
999 
1000 	.apr		= 1,
1001 	.mpr		= 1,
1002 	.tpauser	= 1,
1003 	.gecmr		= 1,
1004 	.bculr		= 1,
1005 	.hw_swap	= 1,
1006 	.no_trimd	= 1,
1007 	.no_ade		= 1,
1008 	.xdfar_rw	= 1,
1009 	.tsu		= 1,
1010 	.csmr		= 1,
1011 	.rx_csum	= 1,
1012 	.select_mii	= 1,
1013 	.magic		= 1,
1014 	.cexcr		= 1,
1015 };
1016 
1017 /* SH7763 */
1018 static struct sh_eth_cpu_data sh7763_data = {
1019 	.soft_reset	= sh_eth_soft_reset_gether,
1020 
1021 	.chip_reset	= sh_eth_chip_reset,
1022 	.set_duplex	= sh_eth_set_duplex,
1023 	.set_rate	= sh_eth_set_rate_gether,
1024 
1025 	.register_type	= SH_ETH_REG_GIGABIT,
1026 
1027 	.edtrr_trns	= EDTRR_TRNS_GETHER,
1028 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
1029 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
1030 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1031 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1032 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1033 			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
1034 			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
1035 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1036 			  EESIPR_PREIP | EESIPR_CERFIP,
1037 
1038 	.tx_check	= EESR_TC1 | EESR_FTC,
1039 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
1040 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
1041 
1042 	.apr		= 1,
1043 	.mpr		= 1,
1044 	.tpauser	= 1,
1045 	.gecmr		= 1,
1046 	.bculr		= 1,
1047 	.hw_swap	= 1,
1048 	.no_trimd	= 1,
1049 	.no_ade		= 1,
1050 	.xdfar_rw	= 1,
1051 	.tsu		= 1,
1052 	.irq_flags	= IRQF_SHARED,
1053 	.magic		= 1,
1054 	.cexcr		= 1,
1055 	.rx_csum	= 1,
1056 	.dual_port	= 1,
1057 };
1058 
1059 static struct sh_eth_cpu_data sh7619_data = {
1060 	.soft_reset	= sh_eth_soft_reset,
1061 
1062 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1063 
1064 	.edtrr_trns	= EDTRR_TRNS_ETHER,
1065 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1066 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1067 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1068 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1069 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1070 			  EESIPR_CEEFIP | EESIPR_CELFIP |
1071 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1072 			  EESIPR_PREIP | EESIPR_CERFIP,
1073 
1074 	.apr		= 1,
1075 	.mpr		= 1,
1076 	.tpauser	= 1,
1077 	.hw_swap	= 1,
1078 };
1079 
1080 static struct sh_eth_cpu_data sh771x_data = {
1081 	.soft_reset	= sh_eth_soft_reset,
1082 
1083 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1084 
1085 	.edtrr_trns	= EDTRR_TRNS_ETHER,
1086 	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1087 			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1088 			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1089 			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1090 			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1091 			  EESIPR_CEEFIP | EESIPR_CELFIP |
1092 			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1093 			  EESIPR_PREIP | EESIPR_CERFIP,
1094 
1095 	.trscer_err_mask = TRSCER_RMAFCE,
1096 
1097 	.tsu		= 1,
1098 	.dual_port	= 1,
1099 };
1100 
1101 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
1102 {
1103 	if (!cd->ecsr_value)
1104 		cd->ecsr_value = DEFAULT_ECSR_INIT;
1105 
1106 	if (!cd->ecsipr_value)
1107 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
1108 
1109 	if (!cd->fcftr_value)
1110 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
1111 				  DEFAULT_FIFO_F_D_RFD;
1112 
1113 	if (!cd->fdr_value)
1114 		cd->fdr_value = DEFAULT_FDR_INIT;
1115 
1116 	if (!cd->tx_check)
1117 		cd->tx_check = DEFAULT_TX_CHECK;
1118 
1119 	if (!cd->eesr_err_check)
1120 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
1121 
1122 	if (!cd->trscer_err_mask)
1123 		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
1124 }
1125 
1126 static void sh_eth_set_receive_align(struct sk_buff *skb)
1127 {
1128 	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
1129 
1130 	if (reserve)
1131 		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
1132 }
1133 
1134 /* Program the hardware MAC address from dev->dev_addr. */
1135 static void update_mac_address(struct net_device *ndev)
1136 {
1137 	sh_eth_write(ndev,
1138 		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
1139 		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
1140 	sh_eth_write(ndev,
1141 		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1142 }
1143 
1144 /* Get MAC address from SuperH MAC address register
1145  *
1146  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1147  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1148  * When you want use this device, you must set MAC address in bootloader.
1149  *
1150  */
1151 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1152 {
1153 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1154 		eth_hw_addr_set(ndev, mac);
1155 	} else {
1156 		u32 mahr = sh_eth_read(ndev, MAHR);
1157 		u32 malr = sh_eth_read(ndev, MALR);
1158 		u8 addr[ETH_ALEN];
1159 
1160 		addr[0] = (mahr >> 24) & 0xFF;
1161 		addr[1] = (mahr >> 16) & 0xFF;
1162 		addr[2] = (mahr >>  8) & 0xFF;
1163 		addr[3] = (mahr >>  0) & 0xFF;
1164 		addr[4] = (malr >>  8) & 0xFF;
1165 		addr[5] = (malr >>  0) & 0xFF;
1166 		eth_hw_addr_set(ndev, addr);
1167 	}
1168 }
1169 
1170 struct bb_info {
1171 	void (*set_gate)(void *addr);
1172 	struct mdiobb_ctrl ctrl;
1173 	void *addr;
1174 };
1175 
1176 static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1177 {
1178 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1179 	u32 pir;
1180 
1181 	if (bitbang->set_gate)
1182 		bitbang->set_gate(bitbang->addr);
1183 
1184 	pir = ioread32(bitbang->addr);
1185 	if (set)
1186 		pir |=  mask;
1187 	else
1188 		pir &= ~mask;
1189 	iowrite32(pir, bitbang->addr);
1190 }
1191 
1192 /* Data I/O pin control */
1193 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1194 {
1195 	sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1196 }
1197 
1198 /* Set bit data*/
1199 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1200 {
1201 	sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1202 }
1203 
1204 /* Get bit data*/
1205 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1206 {
1207 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1208 
1209 	if (bitbang->set_gate)
1210 		bitbang->set_gate(bitbang->addr);
1211 
1212 	return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1213 }
1214 
1215 /* MDC pin control */
1216 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1217 {
1218 	sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1219 }
1220 
1221 /* mdio bus control struct */
1222 static const struct mdiobb_ops bb_ops = {
1223 	.owner = THIS_MODULE,
1224 	.set_mdc = sh_mdc_ctrl,
1225 	.set_mdio_dir = sh_mmd_ctrl,
1226 	.set_mdio_data = sh_set_mdio,
1227 	.get_mdio_data = sh_get_mdio,
1228 };
1229 
1230 /* free Tx skb function */
1231 static int sh_eth_tx_free(struct net_device *ndev, bool sent_only)
1232 {
1233 	struct sh_eth_private *mdp = netdev_priv(ndev);
1234 	struct sh_eth_txdesc *txdesc;
1235 	int free_num = 0;
1236 	int entry;
1237 	bool sent;
1238 
1239 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1240 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1241 		txdesc = &mdp->tx_ring[entry];
1242 		sent = !(txdesc->status & cpu_to_le32(TD_TACT));
1243 		if (sent_only && !sent)
1244 			break;
1245 		/* TACT bit must be checked before all the following reads */
1246 		dma_rmb();
1247 		netif_info(mdp, tx_done, ndev,
1248 			   "tx entry %d status 0x%08x\n",
1249 			   entry, le32_to_cpu(txdesc->status));
1250 		/* Free the original skb. */
1251 		if (mdp->tx_skbuff[entry]) {
1252 			dma_unmap_single(&mdp->pdev->dev,
1253 					 le32_to_cpu(txdesc->addr),
1254 					 le32_to_cpu(txdesc->len) >> 16,
1255 					 DMA_TO_DEVICE);
1256 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1257 			mdp->tx_skbuff[entry] = NULL;
1258 			free_num++;
1259 		}
1260 		txdesc->status = cpu_to_le32(TD_TFP);
1261 		if (entry >= mdp->num_tx_ring - 1)
1262 			txdesc->status |= cpu_to_le32(TD_TDLE);
1263 
1264 		if (sent) {
1265 			ndev->stats.tx_packets++;
1266 			ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1267 		}
1268 	}
1269 	return free_num;
1270 }
1271 
1272 /* free skb and descriptor buffer */
1273 static void sh_eth_ring_free(struct net_device *ndev)
1274 {
1275 	struct sh_eth_private *mdp = netdev_priv(ndev);
1276 	int ringsize, i;
1277 
1278 	if (mdp->rx_ring) {
1279 		for (i = 0; i < mdp->num_rx_ring; i++) {
1280 			if (mdp->rx_skbuff[i]) {
1281 				struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i];
1282 
1283 				dma_unmap_single(&mdp->pdev->dev,
1284 						 le32_to_cpu(rxdesc->addr),
1285 						 ALIGN(mdp->rx_buf_sz, 32),
1286 						 DMA_FROM_DEVICE);
1287 			}
1288 		}
1289 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1290 		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->rx_ring,
1291 				  mdp->rx_desc_dma);
1292 		mdp->rx_ring = NULL;
1293 	}
1294 
1295 	/* Free Rx skb ringbuffer */
1296 	if (mdp->rx_skbuff) {
1297 		for (i = 0; i < mdp->num_rx_ring; i++)
1298 			dev_kfree_skb(mdp->rx_skbuff[i]);
1299 	}
1300 	kfree(mdp->rx_skbuff);
1301 	mdp->rx_skbuff = NULL;
1302 
1303 	if (mdp->tx_ring) {
1304 		sh_eth_tx_free(ndev, false);
1305 
1306 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1307 		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->tx_ring,
1308 				  mdp->tx_desc_dma);
1309 		mdp->tx_ring = NULL;
1310 	}
1311 
1312 	/* Free Tx skb ringbuffer */
1313 	kfree(mdp->tx_skbuff);
1314 	mdp->tx_skbuff = NULL;
1315 }
1316 
1317 /* format skb and descriptor buffer */
1318 static void sh_eth_ring_format(struct net_device *ndev)
1319 {
1320 	struct sh_eth_private *mdp = netdev_priv(ndev);
1321 	int i;
1322 	struct sk_buff *skb;
1323 	struct sh_eth_rxdesc *rxdesc = NULL;
1324 	struct sh_eth_txdesc *txdesc = NULL;
1325 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1326 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1327 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1328 	dma_addr_t dma_addr;
1329 	u32 buf_len;
1330 
1331 	mdp->cur_rx = 0;
1332 	mdp->cur_tx = 0;
1333 	mdp->dirty_rx = 0;
1334 	mdp->dirty_tx = 0;
1335 
1336 	memset(mdp->rx_ring, 0, rx_ringsize);
1337 
1338 	/* build Rx ring buffer */
1339 	for (i = 0; i < mdp->num_rx_ring; i++) {
1340 		/* skb */
1341 		mdp->rx_skbuff[i] = NULL;
1342 		skb = netdev_alloc_skb(ndev, skbuff_size);
1343 		if (skb == NULL)
1344 			break;
1345 		sh_eth_set_receive_align(skb);
1346 
1347 		/* The size of the buffer is a multiple of 32 bytes. */
1348 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1349 		dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len,
1350 					  DMA_FROM_DEVICE);
1351 		if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1352 			kfree_skb(skb);
1353 			break;
1354 		}
1355 		mdp->rx_skbuff[i] = skb;
1356 
1357 		/* RX descriptor */
1358 		rxdesc = &mdp->rx_ring[i];
1359 		rxdesc->len = cpu_to_le32(buf_len << 16);
1360 		rxdesc->addr = cpu_to_le32(dma_addr);
1361 		rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1362 
1363 		/* Rx descriptor address set */
1364 		if (i == 0) {
1365 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1366 			if (mdp->cd->xdfar_rw)
1367 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1368 		}
1369 	}
1370 
1371 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1372 
1373 	/* Mark the last entry as wrapping the ring. */
1374 	if (rxdesc)
1375 		rxdesc->status |= cpu_to_le32(RD_RDLE);
1376 
1377 	memset(mdp->tx_ring, 0, tx_ringsize);
1378 
1379 	/* build Tx ring buffer */
1380 	for (i = 0; i < mdp->num_tx_ring; i++) {
1381 		mdp->tx_skbuff[i] = NULL;
1382 		txdesc = &mdp->tx_ring[i];
1383 		txdesc->status = cpu_to_le32(TD_TFP);
1384 		txdesc->len = cpu_to_le32(0);
1385 		if (i == 0) {
1386 			/* Tx descriptor address set */
1387 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1388 			if (mdp->cd->xdfar_rw)
1389 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1390 		}
1391 	}
1392 
1393 	txdesc->status |= cpu_to_le32(TD_TDLE);
1394 }
1395 
1396 /* Get skb and descriptor buffer */
1397 static int sh_eth_ring_init(struct net_device *ndev)
1398 {
1399 	struct sh_eth_private *mdp = netdev_priv(ndev);
1400 	int rx_ringsize, tx_ringsize;
1401 
1402 	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1403 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1404 	 * the first 2 bytes, and +16 gets room for the status word from the
1405 	 * card.
1406 	 */
1407 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1408 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1409 	if (mdp->cd->rpadir)
1410 		mdp->rx_buf_sz += NET_IP_ALIGN;
1411 
1412 	/* Allocate RX and TX skb rings */
1413 	mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1414 				 GFP_KERNEL);
1415 	if (!mdp->rx_skbuff)
1416 		return -ENOMEM;
1417 
1418 	mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1419 				 GFP_KERNEL);
1420 	if (!mdp->tx_skbuff)
1421 		goto ring_free;
1422 
1423 	/* Allocate all Rx descriptors. */
1424 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1425 	mdp->rx_ring = dma_alloc_coherent(&mdp->pdev->dev, rx_ringsize,
1426 					  &mdp->rx_desc_dma, GFP_KERNEL);
1427 	if (!mdp->rx_ring)
1428 		goto ring_free;
1429 
1430 	mdp->dirty_rx = 0;
1431 
1432 	/* Allocate all Tx descriptors. */
1433 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1434 	mdp->tx_ring = dma_alloc_coherent(&mdp->pdev->dev, tx_ringsize,
1435 					  &mdp->tx_desc_dma, GFP_KERNEL);
1436 	if (!mdp->tx_ring)
1437 		goto ring_free;
1438 	return 0;
1439 
1440 ring_free:
1441 	/* Free Rx and Tx skb ring buffer and DMA buffer */
1442 	sh_eth_ring_free(ndev);
1443 
1444 	return -ENOMEM;
1445 }
1446 
1447 static int sh_eth_dev_init(struct net_device *ndev)
1448 {
1449 	struct sh_eth_private *mdp = netdev_priv(ndev);
1450 	int ret;
1451 
1452 	/* Soft Reset */
1453 	ret = mdp->cd->soft_reset(ndev);
1454 	if (ret)
1455 		return ret;
1456 
1457 	if (mdp->cd->rmiimode)
1458 		sh_eth_write(ndev, 0x1, RMIIMODE);
1459 
1460 	/* Descriptor format */
1461 	sh_eth_ring_format(ndev);
1462 	if (mdp->cd->rpadir)
1463 		sh_eth_write(ndev, NET_IP_ALIGN << 16, RPADIR);
1464 
1465 	/* all sh_eth int mask */
1466 	sh_eth_write(ndev, 0, EESIPR);
1467 
1468 #if defined(__LITTLE_ENDIAN)
1469 	if (mdp->cd->hw_swap)
1470 		sh_eth_write(ndev, EDMR_EL, EDMR);
1471 	else
1472 #endif
1473 		sh_eth_write(ndev, 0, EDMR);
1474 
1475 	/* FIFO size set */
1476 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1477 	sh_eth_write(ndev, 0, TFTR);
1478 
1479 	/* Frame recv control (enable multiple-packets per rx irq) */
1480 	sh_eth_write(ndev, RMCR_RNC, RMCR);
1481 
1482 	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1483 
1484 	/* DMA transfer burst mode */
1485 	if (mdp->cd->nbst)
1486 		sh_eth_modify(ndev, EDMR, EDMR_NBST, EDMR_NBST);
1487 
1488 	/* Burst cycle count upper-limit */
1489 	if (mdp->cd->bculr)
1490 		sh_eth_write(ndev, 0x800, BCULR);
1491 
1492 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1493 
1494 	if (!mdp->cd->no_trimd)
1495 		sh_eth_write(ndev, 0, TRIMD);
1496 
1497 	/* Recv frame limit set register */
1498 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1499 		     RFLR);
1500 
1501 	sh_eth_modify(ndev, EESR, 0, 0);
1502 	mdp->irq_enabled = true;
1503 	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1504 
1505 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
1506 	sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1507 		     (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
1508 		     ECMR_TE | ECMR_RE, ECMR);
1509 
1510 	if (mdp->cd->set_rate)
1511 		mdp->cd->set_rate(ndev);
1512 
1513 	/* E-MAC Status Register clear */
1514 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1515 
1516 	/* E-MAC Interrupt Enable register */
1517 	sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1518 
1519 	/* Set MAC address */
1520 	update_mac_address(ndev);
1521 
1522 	/* mask reset */
1523 	if (mdp->cd->apr)
1524 		sh_eth_write(ndev, 1, APR);
1525 	if (mdp->cd->mpr)
1526 		sh_eth_write(ndev, 1, MPR);
1527 	if (mdp->cd->tpauser)
1528 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1529 
1530 	/* Setting the Rx mode will start the Rx process. */
1531 	sh_eth_write(ndev, EDRRR_R, EDRRR);
1532 
1533 	return ret;
1534 }
1535 
1536 static void sh_eth_dev_exit(struct net_device *ndev)
1537 {
1538 	struct sh_eth_private *mdp = netdev_priv(ndev);
1539 	int i;
1540 
1541 	/* Deactivate all TX descriptors, so DMA should stop at next
1542 	 * packet boundary if it's currently running
1543 	 */
1544 	for (i = 0; i < mdp->num_tx_ring; i++)
1545 		mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1546 
1547 	/* Disable TX FIFO egress to MAC */
1548 	sh_eth_rcv_snd_disable(ndev);
1549 
1550 	/* Stop RX DMA at next packet boundary */
1551 	sh_eth_write(ndev, 0, EDRRR);
1552 
1553 	/* Aside from TX DMA, we can't tell when the hardware is
1554 	 * really stopped, so we need to reset to make sure.
1555 	 * Before doing that, wait for long enough to *probably*
1556 	 * finish transmitting the last packet and poll stats.
1557 	 */
1558 	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1559 	sh_eth_get_stats(ndev);
1560 	mdp->cd->soft_reset(ndev);
1561 
1562 	/* Set the RMII mode again if required */
1563 	if (mdp->cd->rmiimode)
1564 		sh_eth_write(ndev, 0x1, RMIIMODE);
1565 
1566 	/* Set MAC address again */
1567 	update_mac_address(ndev);
1568 }
1569 
1570 static void sh_eth_rx_csum(struct sk_buff *skb)
1571 {
1572 	u8 *hw_csum;
1573 
1574 	/* The hardware checksum is 2 bytes appended to packet data */
1575 	if (unlikely(skb->len < sizeof(__sum16)))
1576 		return;
1577 	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
1578 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
1579 	skb->ip_summed = CHECKSUM_COMPLETE;
1580 	skb_trim(skb, skb->len - sizeof(__sum16));
1581 }
1582 
1583 /* Packet receive function */
1584 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1585 {
1586 	struct sh_eth_private *mdp = netdev_priv(ndev);
1587 	struct sh_eth_rxdesc *rxdesc;
1588 
1589 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1590 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1591 	int limit;
1592 	struct sk_buff *skb;
1593 	u32 desc_status;
1594 	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1595 	dma_addr_t dma_addr;
1596 	u16 pkt_len;
1597 	u32 buf_len;
1598 
1599 	boguscnt = min(boguscnt, *quota);
1600 	limit = boguscnt;
1601 	rxdesc = &mdp->rx_ring[entry];
1602 	while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1603 		/* RACT bit must be checked before all the following reads */
1604 		dma_rmb();
1605 		desc_status = le32_to_cpu(rxdesc->status);
1606 		pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1607 
1608 		if (--boguscnt < 0)
1609 			break;
1610 
1611 		netif_info(mdp, rx_status, ndev,
1612 			   "rx entry %d status 0x%08x len %d\n",
1613 			   entry, desc_status, pkt_len);
1614 
1615 		if (!(desc_status & RDFEND))
1616 			ndev->stats.rx_length_errors++;
1617 
1618 		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1619 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1620 		 * bit 0. However, in case of the R8A7740 and R7S72100
1621 		 * the RFS bits are from bit 25 to bit 16. So, the
1622 		 * driver needs right shifting by 16.
1623 		 */
1624 		if (mdp->cd->csmr)
1625 			desc_status >>= 16;
1626 
1627 		skb = mdp->rx_skbuff[entry];
1628 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1629 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1630 			ndev->stats.rx_errors++;
1631 			if (desc_status & RD_RFS1)
1632 				ndev->stats.rx_crc_errors++;
1633 			if (desc_status & RD_RFS2)
1634 				ndev->stats.rx_frame_errors++;
1635 			if (desc_status & RD_RFS3)
1636 				ndev->stats.rx_length_errors++;
1637 			if (desc_status & RD_RFS4)
1638 				ndev->stats.rx_length_errors++;
1639 			if (desc_status & RD_RFS6)
1640 				ndev->stats.rx_missed_errors++;
1641 			if (desc_status & RD_RFS10)
1642 				ndev->stats.rx_over_errors++;
1643 		} else	if (skb) {
1644 			dma_addr = le32_to_cpu(rxdesc->addr);
1645 			if (!mdp->cd->hw_swap)
1646 				sh_eth_soft_swap(
1647 					phys_to_virt(ALIGN(dma_addr, 4)),
1648 					pkt_len + 2);
1649 			mdp->rx_skbuff[entry] = NULL;
1650 			if (mdp->cd->rpadir)
1651 				skb_reserve(skb, NET_IP_ALIGN);
1652 			dma_unmap_single(&mdp->pdev->dev, dma_addr,
1653 					 ALIGN(mdp->rx_buf_sz, 32),
1654 					 DMA_FROM_DEVICE);
1655 			skb_put(skb, pkt_len);
1656 			skb->protocol = eth_type_trans(skb, ndev);
1657 			if (ndev->features & NETIF_F_RXCSUM)
1658 				sh_eth_rx_csum(skb);
1659 			netif_receive_skb(skb);
1660 			ndev->stats.rx_packets++;
1661 			ndev->stats.rx_bytes += pkt_len;
1662 			if (desc_status & RD_RFS8)
1663 				ndev->stats.multicast++;
1664 		}
1665 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1666 		rxdesc = &mdp->rx_ring[entry];
1667 	}
1668 
1669 	/* Refill the Rx ring buffers. */
1670 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1671 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1672 		rxdesc = &mdp->rx_ring[entry];
1673 		/* The size of the buffer is 32 byte boundary. */
1674 		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1675 		rxdesc->len = cpu_to_le32(buf_len << 16);
1676 
1677 		if (mdp->rx_skbuff[entry] == NULL) {
1678 			skb = netdev_alloc_skb(ndev, skbuff_size);
1679 			if (skb == NULL)
1680 				break;	/* Better luck next round. */
1681 			sh_eth_set_receive_align(skb);
1682 			dma_addr = dma_map_single(&mdp->pdev->dev, skb->data,
1683 						  buf_len, DMA_FROM_DEVICE);
1684 			if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1685 				kfree_skb(skb);
1686 				break;
1687 			}
1688 			mdp->rx_skbuff[entry] = skb;
1689 
1690 			skb_checksum_none_assert(skb);
1691 			rxdesc->addr = cpu_to_le32(dma_addr);
1692 		}
1693 		dma_wmb(); /* RACT bit must be set after all the above writes */
1694 		if (entry >= mdp->num_rx_ring - 1)
1695 			rxdesc->status |=
1696 				cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1697 		else
1698 			rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1699 	}
1700 
1701 	/* Restart Rx engine if stopped. */
1702 	/* If we don't need to check status, don't. -KDU */
1703 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1704 		/* fix the values for the next receiving if RDE is set */
1705 		if (intr_status & EESR_RDE && !mdp->cd->no_xdfar) {
1706 			u32 count = (sh_eth_read(ndev, RDFAR) -
1707 				     sh_eth_read(ndev, RDLAR)) >> 4;
1708 
1709 			mdp->cur_rx = count;
1710 			mdp->dirty_rx = count;
1711 		}
1712 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1713 	}
1714 
1715 	*quota -= limit - boguscnt - 1;
1716 
1717 	return *quota <= 0;
1718 }
1719 
1720 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1721 {
1722 	/* disable tx and rx */
1723 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1724 }
1725 
1726 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1727 {
1728 	/* enable tx and rx */
1729 	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1730 }
1731 
1732 /* E-MAC interrupt handler */
1733 static void sh_eth_emac_interrupt(struct net_device *ndev)
1734 {
1735 	struct sh_eth_private *mdp = netdev_priv(ndev);
1736 	u32 felic_stat;
1737 	u32 link_stat;
1738 
1739 	felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR);
1740 	sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1741 	if (felic_stat & ECSR_ICD)
1742 		ndev->stats.tx_carrier_errors++;
1743 	if (felic_stat & ECSR_MPD)
1744 		pm_wakeup_event(&mdp->pdev->dev, 0);
1745 	if (felic_stat & ECSR_LCHNG) {
1746 		/* Link Changed */
1747 		if (mdp->cd->no_psr || mdp->no_ether_link)
1748 			return;
1749 		link_stat = sh_eth_read(ndev, PSR);
1750 		if (mdp->ether_link_active_low)
1751 			link_stat = ~link_stat;
1752 		if (!(link_stat & PSR_LMON)) {
1753 			sh_eth_rcv_snd_disable(ndev);
1754 		} else {
1755 			/* Link Up */
1756 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0);
1757 			/* clear int */
1758 			sh_eth_modify(ndev, ECSR, 0, 0);
1759 			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP);
1760 			/* enable tx and rx */
1761 			sh_eth_rcv_snd_enable(ndev);
1762 		}
1763 	}
1764 }
1765 
1766 /* error control function */
1767 static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1768 {
1769 	struct sh_eth_private *mdp = netdev_priv(ndev);
1770 	u32 mask;
1771 
1772 	if (intr_status & EESR_TWB) {
1773 		/* Unused write back interrupt */
1774 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1775 			ndev->stats.tx_aborted_errors++;
1776 			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1777 		}
1778 	}
1779 
1780 	if (intr_status & EESR_RABT) {
1781 		/* Receive Abort int */
1782 		if (intr_status & EESR_RFRMER) {
1783 			/* Receive Frame Overflow int */
1784 			ndev->stats.rx_frame_errors++;
1785 		}
1786 	}
1787 
1788 	if (intr_status & EESR_TDE) {
1789 		/* Transmit Descriptor Empty int */
1790 		ndev->stats.tx_fifo_errors++;
1791 		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1792 	}
1793 
1794 	if (intr_status & EESR_TFE) {
1795 		/* FIFO under flow */
1796 		ndev->stats.tx_fifo_errors++;
1797 		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1798 	}
1799 
1800 	if (intr_status & EESR_RDE) {
1801 		/* Receive Descriptor Empty int */
1802 		ndev->stats.rx_over_errors++;
1803 	}
1804 
1805 	if (intr_status & EESR_RFE) {
1806 		/* Receive FIFO Overflow int */
1807 		ndev->stats.rx_fifo_errors++;
1808 	}
1809 
1810 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1811 		/* Address Error */
1812 		ndev->stats.tx_fifo_errors++;
1813 		netif_err(mdp, tx_err, ndev, "Address Error\n");
1814 	}
1815 
1816 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1817 	if (mdp->cd->no_ade)
1818 		mask &= ~EESR_ADE;
1819 	if (intr_status & mask) {
1820 		/* Tx error */
1821 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1822 
1823 		/* dmesg */
1824 		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1825 			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1826 			   (u32)ndev->state, edtrr);
1827 		/* dirty buffer free */
1828 		sh_eth_tx_free(ndev, true);
1829 
1830 		/* SH7712 BUG */
1831 		if (edtrr ^ mdp->cd->edtrr_trns) {
1832 			/* tx dma start */
1833 			sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
1834 		}
1835 		/* wakeup */
1836 		netif_wake_queue(ndev);
1837 	}
1838 }
1839 
1840 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1841 {
1842 	struct net_device *ndev = netdev;
1843 	struct sh_eth_private *mdp = netdev_priv(ndev);
1844 	struct sh_eth_cpu_data *cd = mdp->cd;
1845 	irqreturn_t ret = IRQ_NONE;
1846 	u32 intr_status, intr_enable;
1847 
1848 	spin_lock(&mdp->lock);
1849 
1850 	/* Get interrupt status */
1851 	intr_status = sh_eth_read(ndev, EESR);
1852 	/* Mask it with the interrupt mask, forcing ECI interrupt  to be always
1853 	 * enabled since it's the one that  comes  thru regardless of the mask,
1854 	 * and  we need to fully handle it  in sh_eth_emac_interrupt() in order
1855 	 * to quench it as it doesn't get cleared by just writing 1 to the  ECI
1856 	 * bit...
1857 	 */
1858 	intr_enable = sh_eth_read(ndev, EESIPR);
1859 	intr_status &= intr_enable | EESIPR_ECIIP;
1860 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI |
1861 			   cd->eesr_err_check))
1862 		ret = IRQ_HANDLED;
1863 	else
1864 		goto out;
1865 
1866 	if (unlikely(!mdp->irq_enabled)) {
1867 		sh_eth_write(ndev, 0, EESIPR);
1868 		goto out;
1869 	}
1870 
1871 	if (intr_status & EESR_RX_CHECK) {
1872 		if (napi_schedule_prep(&mdp->napi)) {
1873 			/* Mask Rx interrupts */
1874 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1875 				     EESIPR);
1876 			__napi_schedule(&mdp->napi);
1877 		} else {
1878 			netdev_warn(ndev,
1879 				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1880 				    intr_status, intr_enable);
1881 		}
1882 	}
1883 
1884 	/* Tx Check */
1885 	if (intr_status & cd->tx_check) {
1886 		/* Clear Tx interrupts */
1887 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1888 
1889 		sh_eth_tx_free(ndev, true);
1890 		netif_wake_queue(ndev);
1891 	}
1892 
1893 	/* E-MAC interrupt */
1894 	if (intr_status & EESR_ECI)
1895 		sh_eth_emac_interrupt(ndev);
1896 
1897 	if (intr_status & cd->eesr_err_check) {
1898 		/* Clear error interrupts */
1899 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1900 
1901 		sh_eth_error(ndev, intr_status);
1902 	}
1903 
1904 out:
1905 	spin_unlock(&mdp->lock);
1906 
1907 	return ret;
1908 }
1909 
1910 static int sh_eth_poll(struct napi_struct *napi, int budget)
1911 {
1912 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1913 						  napi);
1914 	struct net_device *ndev = napi->dev;
1915 	int quota = budget;
1916 	u32 intr_status;
1917 
1918 	for (;;) {
1919 		intr_status = sh_eth_read(ndev, EESR);
1920 		if (!(intr_status & EESR_RX_CHECK))
1921 			break;
1922 		/* Clear Rx interrupts */
1923 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1924 
1925 		if (sh_eth_rx(ndev, intr_status, &quota))
1926 			goto out;
1927 	}
1928 
1929 	napi_complete(napi);
1930 
1931 	/* Reenable Rx interrupts */
1932 	if (mdp->irq_enabled)
1933 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1934 out:
1935 	return budget - quota;
1936 }
1937 
1938 /* PHY state control function */
1939 static void sh_eth_adjust_link(struct net_device *ndev)
1940 {
1941 	struct sh_eth_private *mdp = netdev_priv(ndev);
1942 	struct phy_device *phydev = ndev->phydev;
1943 	unsigned long flags;
1944 	int new_state = 0;
1945 
1946 	spin_lock_irqsave(&mdp->lock, flags);
1947 
1948 	/* Disable TX and RX right over here, if E-MAC change is ignored */
1949 	if (mdp->cd->no_psr || mdp->no_ether_link)
1950 		sh_eth_rcv_snd_disable(ndev);
1951 
1952 	if (phydev->link) {
1953 		if (phydev->duplex != mdp->duplex) {
1954 			new_state = 1;
1955 			mdp->duplex = phydev->duplex;
1956 			if (mdp->cd->set_duplex)
1957 				mdp->cd->set_duplex(ndev);
1958 		}
1959 
1960 		if (phydev->speed != mdp->speed) {
1961 			new_state = 1;
1962 			mdp->speed = phydev->speed;
1963 			if (mdp->cd->set_rate)
1964 				mdp->cd->set_rate(ndev);
1965 		}
1966 		if (!mdp->link) {
1967 			sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1968 			new_state = 1;
1969 			mdp->link = phydev->link;
1970 		}
1971 	} else if (mdp->link) {
1972 		new_state = 1;
1973 		mdp->link = 0;
1974 		mdp->speed = 0;
1975 		mdp->duplex = -1;
1976 	}
1977 
1978 	/* Enable TX and RX right over here, if E-MAC change is ignored */
1979 	if ((mdp->cd->no_psr || mdp->no_ether_link) && phydev->link)
1980 		sh_eth_rcv_snd_enable(ndev);
1981 
1982 	spin_unlock_irqrestore(&mdp->lock, flags);
1983 
1984 	if (new_state && netif_msg_link(mdp))
1985 		phy_print_status(phydev);
1986 }
1987 
1988 /* PHY init function */
1989 static int sh_eth_phy_init(struct net_device *ndev)
1990 {
1991 	struct device_node *np = ndev->dev.parent->of_node;
1992 	struct sh_eth_private *mdp = netdev_priv(ndev);
1993 	struct phy_device *phydev;
1994 
1995 	mdp->link = 0;
1996 	mdp->speed = 0;
1997 	mdp->duplex = -1;
1998 
1999 	/* Try connect to PHY */
2000 	if (np) {
2001 		struct device_node *pn;
2002 
2003 		pn = of_parse_phandle(np, "phy-handle", 0);
2004 		phydev = of_phy_connect(ndev, pn,
2005 					sh_eth_adjust_link, 0,
2006 					mdp->phy_interface);
2007 
2008 		of_node_put(pn);
2009 		if (!phydev)
2010 			phydev = ERR_PTR(-ENOENT);
2011 	} else {
2012 		char phy_id[MII_BUS_ID_SIZE + 3];
2013 
2014 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
2015 			 mdp->mii_bus->id, mdp->phy_id);
2016 
2017 		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
2018 				     mdp->phy_interface);
2019 	}
2020 
2021 	if (IS_ERR(phydev)) {
2022 		netdev_err(ndev, "failed to connect PHY\n");
2023 		return PTR_ERR(phydev);
2024 	}
2025 
2026 	/* mask with MAC supported features */
2027 	if (mdp->cd->register_type != SH_ETH_REG_GIGABIT)
2028 		phy_set_max_speed(phydev, SPEED_100);
2029 
2030 	phy_attached_info(phydev);
2031 
2032 	return 0;
2033 }
2034 
2035 /* PHY control start function */
2036 static int sh_eth_phy_start(struct net_device *ndev)
2037 {
2038 	int ret;
2039 
2040 	ret = sh_eth_phy_init(ndev);
2041 	if (ret)
2042 		return ret;
2043 
2044 	phy_start(ndev->phydev);
2045 
2046 	return 0;
2047 }
2048 
2049 /* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
2050  * version must be bumped as well.  Just adding registers up to that
2051  * limit is fine, as long as the existing register indices don't
2052  * change.
2053  */
2054 #define SH_ETH_REG_DUMP_VERSION		1
2055 #define SH_ETH_REG_DUMP_MAX_REGS	256
2056 
2057 static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
2058 {
2059 	struct sh_eth_private *mdp = netdev_priv(ndev);
2060 	struct sh_eth_cpu_data *cd = mdp->cd;
2061 	u32 *valid_map;
2062 	size_t len;
2063 
2064 	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
2065 
2066 	/* Dump starts with a bitmap that tells ethtool which
2067 	 * registers are defined for this chip.
2068 	 */
2069 	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
2070 	if (buf) {
2071 		valid_map = buf;
2072 		buf += len;
2073 	} else {
2074 		valid_map = NULL;
2075 	}
2076 
2077 	/* Add a register to the dump, if it has a defined offset.
2078 	 * This automatically skips most undefined registers, but for
2079 	 * some it is also necessary to check a capability flag in
2080 	 * struct sh_eth_cpu_data.
2081 	 */
2082 #define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
2083 #define add_reg_from(reg, read_expr) do {				\
2084 		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
2085 			if (buf) {					\
2086 				mark_reg_valid(reg);			\
2087 				*buf++ = read_expr;			\
2088 			}						\
2089 			++len;						\
2090 		}							\
2091 	} while (0)
2092 #define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2093 #define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2094 
2095 	add_reg(EDSR);
2096 	add_reg(EDMR);
2097 	add_reg(EDTRR);
2098 	add_reg(EDRRR);
2099 	add_reg(EESR);
2100 	add_reg(EESIPR);
2101 	add_reg(TDLAR);
2102 	if (!cd->no_xdfar)
2103 		add_reg(TDFAR);
2104 	add_reg(TDFXR);
2105 	add_reg(TDFFR);
2106 	add_reg(RDLAR);
2107 	if (!cd->no_xdfar)
2108 		add_reg(RDFAR);
2109 	add_reg(RDFXR);
2110 	add_reg(RDFFR);
2111 	add_reg(TRSCER);
2112 	add_reg(RMFCR);
2113 	add_reg(TFTR);
2114 	add_reg(FDR);
2115 	add_reg(RMCR);
2116 	add_reg(TFUCR);
2117 	add_reg(RFOCR);
2118 	if (cd->rmiimode)
2119 		add_reg(RMIIMODE);
2120 	add_reg(FCFTR);
2121 	if (cd->rpadir)
2122 		add_reg(RPADIR);
2123 	if (!cd->no_trimd)
2124 		add_reg(TRIMD);
2125 	add_reg(ECMR);
2126 	add_reg(ECSR);
2127 	add_reg(ECSIPR);
2128 	add_reg(PIR);
2129 	if (!cd->no_psr)
2130 		add_reg(PSR);
2131 	add_reg(RDMLR);
2132 	add_reg(RFLR);
2133 	add_reg(IPGR);
2134 	if (cd->apr)
2135 		add_reg(APR);
2136 	if (cd->mpr)
2137 		add_reg(MPR);
2138 	add_reg(RFCR);
2139 	add_reg(RFCF);
2140 	if (cd->tpauser)
2141 		add_reg(TPAUSER);
2142 	add_reg(TPAUSECR);
2143 	if (cd->gecmr)
2144 		add_reg(GECMR);
2145 	if (cd->bculr)
2146 		add_reg(BCULR);
2147 	add_reg(MAHR);
2148 	add_reg(MALR);
2149 	if (!cd->no_tx_cntrs) {
2150 		add_reg(TROCR);
2151 		add_reg(CDCR);
2152 		add_reg(LCCR);
2153 		add_reg(CNDCR);
2154 	}
2155 	add_reg(CEFCR);
2156 	add_reg(FRECR);
2157 	add_reg(TSFRCR);
2158 	add_reg(TLFRCR);
2159 	if (cd->cexcr) {
2160 		add_reg(CERCR);
2161 		add_reg(CEECR);
2162 	}
2163 	add_reg(MAFCR);
2164 	if (cd->rtrate)
2165 		add_reg(RTRATE);
2166 	if (cd->csmr)
2167 		add_reg(CSMR);
2168 	if (cd->select_mii)
2169 		add_reg(RMII_MII);
2170 	if (cd->tsu) {
2171 		add_tsu_reg(ARSTR);
2172 		add_tsu_reg(TSU_CTRST);
2173 		if (cd->dual_port) {
2174 			add_tsu_reg(TSU_FWEN0);
2175 			add_tsu_reg(TSU_FWEN1);
2176 			add_tsu_reg(TSU_FCM);
2177 			add_tsu_reg(TSU_BSYSL0);
2178 			add_tsu_reg(TSU_BSYSL1);
2179 			add_tsu_reg(TSU_PRISL0);
2180 			add_tsu_reg(TSU_PRISL1);
2181 			add_tsu_reg(TSU_FWSL0);
2182 			add_tsu_reg(TSU_FWSL1);
2183 		}
2184 		add_tsu_reg(TSU_FWSLC);
2185 		if (cd->dual_port) {
2186 			add_tsu_reg(TSU_QTAGM0);
2187 			add_tsu_reg(TSU_QTAGM1);
2188 			add_tsu_reg(TSU_FWSR);
2189 			add_tsu_reg(TSU_FWINMK);
2190 			add_tsu_reg(TSU_ADQT0);
2191 			add_tsu_reg(TSU_ADQT1);
2192 			add_tsu_reg(TSU_VTAG0);
2193 			add_tsu_reg(TSU_VTAG1);
2194 		}
2195 		add_tsu_reg(TSU_ADSBSY);
2196 		add_tsu_reg(TSU_TEN);
2197 		add_tsu_reg(TSU_POST1);
2198 		add_tsu_reg(TSU_POST2);
2199 		add_tsu_reg(TSU_POST3);
2200 		add_tsu_reg(TSU_POST4);
2201 		/* This is the start of a table, not just a single register. */
2202 		if (buf) {
2203 			unsigned int i;
2204 
2205 			mark_reg_valid(TSU_ADRH0);
2206 			for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2207 				*buf++ = ioread32(mdp->tsu_addr +
2208 						  mdp->reg_offset[TSU_ADRH0] +
2209 						  i * 4);
2210 		}
2211 		len += SH_ETH_TSU_CAM_ENTRIES * 2;
2212 	}
2213 
2214 #undef mark_reg_valid
2215 #undef add_reg_from
2216 #undef add_reg
2217 #undef add_tsu_reg
2218 
2219 	return len * 4;
2220 }
2221 
2222 static int sh_eth_get_regs_len(struct net_device *ndev)
2223 {
2224 	return __sh_eth_get_regs(ndev, NULL);
2225 }
2226 
2227 static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2228 			    void *buf)
2229 {
2230 	struct sh_eth_private *mdp = netdev_priv(ndev);
2231 
2232 	regs->version = SH_ETH_REG_DUMP_VERSION;
2233 
2234 	pm_runtime_get_sync(&mdp->pdev->dev);
2235 	__sh_eth_get_regs(ndev, buf);
2236 	pm_runtime_put_sync(&mdp->pdev->dev);
2237 }
2238 
2239 static u32 sh_eth_get_msglevel(struct net_device *ndev)
2240 {
2241 	struct sh_eth_private *mdp = netdev_priv(ndev);
2242 	return mdp->msg_enable;
2243 }
2244 
2245 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2246 {
2247 	struct sh_eth_private *mdp = netdev_priv(ndev);
2248 	mdp->msg_enable = value;
2249 }
2250 
2251 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2252 	"rx_current", "tx_current",
2253 	"rx_dirty", "tx_dirty",
2254 };
2255 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2256 
2257 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2258 {
2259 	switch (sset) {
2260 	case ETH_SS_STATS:
2261 		return SH_ETH_STATS_LEN;
2262 	default:
2263 		return -EOPNOTSUPP;
2264 	}
2265 }
2266 
2267 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2268 				     struct ethtool_stats *stats, u64 *data)
2269 {
2270 	struct sh_eth_private *mdp = netdev_priv(ndev);
2271 	int i = 0;
2272 
2273 	/* device-specific stats */
2274 	data[i++] = mdp->cur_rx;
2275 	data[i++] = mdp->cur_tx;
2276 	data[i++] = mdp->dirty_rx;
2277 	data[i++] = mdp->dirty_tx;
2278 }
2279 
2280 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2281 {
2282 	switch (stringset) {
2283 	case ETH_SS_STATS:
2284 		memcpy(data, sh_eth_gstrings_stats,
2285 		       sizeof(sh_eth_gstrings_stats));
2286 		break;
2287 	}
2288 }
2289 
2290 static void sh_eth_get_ringparam(struct net_device *ndev,
2291 				 struct ethtool_ringparam *ring,
2292 				 struct kernel_ethtool_ringparam *kernel_ring,
2293 				 struct netlink_ext_ack *extack)
2294 {
2295 	struct sh_eth_private *mdp = netdev_priv(ndev);
2296 
2297 	ring->rx_max_pending = RX_RING_MAX;
2298 	ring->tx_max_pending = TX_RING_MAX;
2299 	ring->rx_pending = mdp->num_rx_ring;
2300 	ring->tx_pending = mdp->num_tx_ring;
2301 }
2302 
2303 static int sh_eth_set_ringparam(struct net_device *ndev,
2304 				struct ethtool_ringparam *ring,
2305 				struct kernel_ethtool_ringparam *kernel_ring,
2306 				struct netlink_ext_ack *extack)
2307 {
2308 	struct sh_eth_private *mdp = netdev_priv(ndev);
2309 	int ret;
2310 
2311 	if (ring->tx_pending > TX_RING_MAX ||
2312 	    ring->rx_pending > RX_RING_MAX ||
2313 	    ring->tx_pending < TX_RING_MIN ||
2314 	    ring->rx_pending < RX_RING_MIN)
2315 		return -EINVAL;
2316 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2317 		return -EINVAL;
2318 
2319 	if (netif_running(ndev)) {
2320 		netif_device_detach(ndev);
2321 		netif_tx_disable(ndev);
2322 
2323 		/* Serialise with the interrupt handler and NAPI, then
2324 		 * disable interrupts.  We have to clear the
2325 		 * irq_enabled flag first to ensure that interrupts
2326 		 * won't be re-enabled.
2327 		 */
2328 		mdp->irq_enabled = false;
2329 		synchronize_irq(ndev->irq);
2330 		napi_synchronize(&mdp->napi);
2331 		sh_eth_write(ndev, 0x0000, EESIPR);
2332 
2333 		sh_eth_dev_exit(ndev);
2334 
2335 		/* Free all the skbuffs in the Rx queue and the DMA buffers. */
2336 		sh_eth_ring_free(ndev);
2337 	}
2338 
2339 	/* Set new parameters */
2340 	mdp->num_rx_ring = ring->rx_pending;
2341 	mdp->num_tx_ring = ring->tx_pending;
2342 
2343 	if (netif_running(ndev)) {
2344 		ret = sh_eth_ring_init(ndev);
2345 		if (ret < 0) {
2346 			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2347 				   __func__);
2348 			return ret;
2349 		}
2350 		ret = sh_eth_dev_init(ndev);
2351 		if (ret < 0) {
2352 			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2353 				   __func__);
2354 			return ret;
2355 		}
2356 
2357 		netif_device_attach(ndev);
2358 	}
2359 
2360 	return 0;
2361 }
2362 
2363 static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2364 {
2365 	struct sh_eth_private *mdp = netdev_priv(ndev);
2366 
2367 	wol->supported = 0;
2368 	wol->wolopts = 0;
2369 
2370 	if (mdp->cd->magic) {
2371 		wol->supported = WAKE_MAGIC;
2372 		wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0;
2373 	}
2374 }
2375 
2376 static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2377 {
2378 	struct sh_eth_private *mdp = netdev_priv(ndev);
2379 
2380 	if (!mdp->cd->magic || wol->wolopts & ~WAKE_MAGIC)
2381 		return -EOPNOTSUPP;
2382 
2383 	mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
2384 
2385 	device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled);
2386 
2387 	return 0;
2388 }
2389 
2390 static const struct ethtool_ops sh_eth_ethtool_ops = {
2391 	.get_regs_len	= sh_eth_get_regs_len,
2392 	.get_regs	= sh_eth_get_regs,
2393 	.nway_reset	= phy_ethtool_nway_reset,
2394 	.get_msglevel	= sh_eth_get_msglevel,
2395 	.set_msglevel	= sh_eth_set_msglevel,
2396 	.get_link	= ethtool_op_get_link,
2397 	.get_strings	= sh_eth_get_strings,
2398 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2399 	.get_sset_count     = sh_eth_get_sset_count,
2400 	.get_ringparam	= sh_eth_get_ringparam,
2401 	.set_ringparam	= sh_eth_set_ringparam,
2402 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
2403 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
2404 	.get_wol	= sh_eth_get_wol,
2405 	.set_wol	= sh_eth_set_wol,
2406 };
2407 
2408 /* network device open function */
2409 static int sh_eth_open(struct net_device *ndev)
2410 {
2411 	struct sh_eth_private *mdp = netdev_priv(ndev);
2412 	int ret;
2413 
2414 	pm_runtime_get_sync(&mdp->pdev->dev);
2415 
2416 	napi_enable(&mdp->napi);
2417 
2418 	ret = request_irq(ndev->irq, sh_eth_interrupt,
2419 			  mdp->cd->irq_flags, ndev->name, ndev);
2420 	if (ret) {
2421 		netdev_err(ndev, "Can not assign IRQ number\n");
2422 		goto out_napi_off;
2423 	}
2424 
2425 	/* Descriptor set */
2426 	ret = sh_eth_ring_init(ndev);
2427 	if (ret)
2428 		goto out_free_irq;
2429 
2430 	/* device init */
2431 	ret = sh_eth_dev_init(ndev);
2432 	if (ret)
2433 		goto out_free_irq;
2434 
2435 	/* PHY control start*/
2436 	ret = sh_eth_phy_start(ndev);
2437 	if (ret)
2438 		goto out_free_irq;
2439 
2440 	netif_start_queue(ndev);
2441 
2442 	mdp->is_opened = 1;
2443 
2444 	return ret;
2445 
2446 out_free_irq:
2447 	free_irq(ndev->irq, ndev);
2448 out_napi_off:
2449 	napi_disable(&mdp->napi);
2450 	pm_runtime_put_sync(&mdp->pdev->dev);
2451 	return ret;
2452 }
2453 
2454 /* Timeout function */
2455 static void sh_eth_tx_timeout(struct net_device *ndev, unsigned int txqueue)
2456 {
2457 	struct sh_eth_private *mdp = netdev_priv(ndev);
2458 	struct sh_eth_rxdesc *rxdesc;
2459 	int i;
2460 
2461 	netif_stop_queue(ndev);
2462 
2463 	netif_err(mdp, timer, ndev,
2464 		  "transmit timed out, status %8.8x, resetting...\n",
2465 		  sh_eth_read(ndev, EESR));
2466 
2467 	/* tx_errors count up */
2468 	ndev->stats.tx_errors++;
2469 
2470 	/* Free all the skbuffs in the Rx queue. */
2471 	for (i = 0; i < mdp->num_rx_ring; i++) {
2472 		rxdesc = &mdp->rx_ring[i];
2473 		rxdesc->status = cpu_to_le32(0);
2474 		rxdesc->addr = cpu_to_le32(0xBADF00D0);
2475 		dev_kfree_skb(mdp->rx_skbuff[i]);
2476 		mdp->rx_skbuff[i] = NULL;
2477 	}
2478 	for (i = 0; i < mdp->num_tx_ring; i++) {
2479 		dev_kfree_skb(mdp->tx_skbuff[i]);
2480 		mdp->tx_skbuff[i] = NULL;
2481 	}
2482 
2483 	/* device init */
2484 	sh_eth_dev_init(ndev);
2485 
2486 	netif_start_queue(ndev);
2487 }
2488 
2489 /* Packet transmit function */
2490 static netdev_tx_t sh_eth_start_xmit(struct sk_buff *skb,
2491 				     struct net_device *ndev)
2492 {
2493 	struct sh_eth_private *mdp = netdev_priv(ndev);
2494 	struct sh_eth_txdesc *txdesc;
2495 	dma_addr_t dma_addr;
2496 	u32 entry;
2497 	unsigned long flags;
2498 
2499 	spin_lock_irqsave(&mdp->lock, flags);
2500 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2501 		if (!sh_eth_tx_free(ndev, true)) {
2502 			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2503 			netif_stop_queue(ndev);
2504 			spin_unlock_irqrestore(&mdp->lock, flags);
2505 			return NETDEV_TX_BUSY;
2506 		}
2507 	}
2508 	spin_unlock_irqrestore(&mdp->lock, flags);
2509 
2510 	if (skb_put_padto(skb, ETH_ZLEN))
2511 		return NETDEV_TX_OK;
2512 
2513 	entry = mdp->cur_tx % mdp->num_tx_ring;
2514 	mdp->tx_skbuff[entry] = skb;
2515 	txdesc = &mdp->tx_ring[entry];
2516 	/* soft swap. */
2517 	if (!mdp->cd->hw_swap)
2518 		sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2519 	dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, skb->len,
2520 				  DMA_TO_DEVICE);
2521 	if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
2522 		kfree_skb(skb);
2523 		return NETDEV_TX_OK;
2524 	}
2525 	txdesc->addr = cpu_to_le32(dma_addr);
2526 	txdesc->len  = cpu_to_le32(skb->len << 16);
2527 
2528 	dma_wmb(); /* TACT bit must be set after all the above writes */
2529 	if (entry >= mdp->num_tx_ring - 1)
2530 		txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2531 	else
2532 		txdesc->status |= cpu_to_le32(TD_TACT);
2533 
2534 	wmb(); /* cur_tx must be incremented after TACT bit was set */
2535 	mdp->cur_tx++;
2536 
2537 	if (!(sh_eth_read(ndev, EDTRR) & mdp->cd->edtrr_trns))
2538 		sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
2539 
2540 	return NETDEV_TX_OK;
2541 }
2542 
2543 /* The statistics registers have write-clear behaviour, which means we
2544  * will lose any increment between the read and write.  We mitigate
2545  * this by only clearing when we read a non-zero value, so we will
2546  * never falsely report a total of zero.
2547  */
2548 static void
2549 sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2550 {
2551 	u32 delta = sh_eth_read(ndev, reg);
2552 
2553 	if (delta) {
2554 		*stat += delta;
2555 		sh_eth_write(ndev, 0, reg);
2556 	}
2557 }
2558 
2559 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2560 {
2561 	struct sh_eth_private *mdp = netdev_priv(ndev);
2562 
2563 	if (mdp->cd->no_tx_cntrs)
2564 		return &ndev->stats;
2565 
2566 	if (!mdp->is_opened)
2567 		return &ndev->stats;
2568 
2569 	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2570 	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2571 	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2572 
2573 	if (mdp->cd->cexcr) {
2574 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2575 				   CERCR);
2576 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2577 				   CEECR);
2578 	} else {
2579 		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2580 				   CNDCR);
2581 	}
2582 
2583 	return &ndev->stats;
2584 }
2585 
2586 /* device close function */
2587 static int sh_eth_close(struct net_device *ndev)
2588 {
2589 	struct sh_eth_private *mdp = netdev_priv(ndev);
2590 
2591 	netif_stop_queue(ndev);
2592 
2593 	/* Serialise with the interrupt handler and NAPI, then disable
2594 	 * interrupts.  We have to clear the irq_enabled flag first to
2595 	 * ensure that interrupts won't be re-enabled.
2596 	 */
2597 	mdp->irq_enabled = false;
2598 	synchronize_irq(ndev->irq);
2599 	napi_disable(&mdp->napi);
2600 	sh_eth_write(ndev, 0x0000, EESIPR);
2601 
2602 	sh_eth_dev_exit(ndev);
2603 
2604 	/* PHY Disconnect */
2605 	if (ndev->phydev) {
2606 		phy_stop(ndev->phydev);
2607 		phy_disconnect(ndev->phydev);
2608 	}
2609 
2610 	free_irq(ndev->irq, ndev);
2611 
2612 	/* Free all the skbuffs in the Rx queue and the DMA buffer. */
2613 	sh_eth_ring_free(ndev);
2614 
2615 	mdp->is_opened = 0;
2616 
2617 	pm_runtime_put(&mdp->pdev->dev);
2618 
2619 	return 0;
2620 }
2621 
2622 static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu)
2623 {
2624 	if (netif_running(ndev))
2625 		return -EBUSY;
2626 
2627 	WRITE_ONCE(ndev->mtu, new_mtu);
2628 	netdev_update_features(ndev);
2629 
2630 	return 0;
2631 }
2632 
2633 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2634 static u32 sh_eth_tsu_get_post_mask(int entry)
2635 {
2636 	return 0x0f << (28 - ((entry % 8) * 4));
2637 }
2638 
2639 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2640 {
2641 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2642 }
2643 
2644 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2645 					     int entry)
2646 {
2647 	struct sh_eth_private *mdp = netdev_priv(ndev);
2648 	int reg = TSU_POST1 + entry / 8;
2649 	u32 tmp;
2650 
2651 	tmp = sh_eth_tsu_read(mdp, reg);
2652 	sh_eth_tsu_write(mdp, tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg);
2653 }
2654 
2655 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2656 					      int entry)
2657 {
2658 	struct sh_eth_private *mdp = netdev_priv(ndev);
2659 	int reg = TSU_POST1 + entry / 8;
2660 	u32 post_mask, ref_mask, tmp;
2661 
2662 	post_mask = sh_eth_tsu_get_post_mask(entry);
2663 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2664 
2665 	tmp = sh_eth_tsu_read(mdp, reg);
2666 	sh_eth_tsu_write(mdp, tmp & ~post_mask, reg);
2667 
2668 	/* If other port enables, the function returns "true" */
2669 	return tmp & ref_mask;
2670 }
2671 
2672 static int sh_eth_tsu_busy(struct net_device *ndev)
2673 {
2674 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2675 	struct sh_eth_private *mdp = netdev_priv(ndev);
2676 
2677 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2678 		udelay(10);
2679 		timeout--;
2680 		if (timeout <= 0) {
2681 			netdev_err(ndev, "%s: timeout\n", __func__);
2682 			return -ETIMEDOUT;
2683 		}
2684 	}
2685 
2686 	return 0;
2687 }
2688 
2689 static int sh_eth_tsu_write_entry(struct net_device *ndev, u16 offset,
2690 				  const u8 *addr)
2691 {
2692 	struct sh_eth_private *mdp = netdev_priv(ndev);
2693 	u32 val;
2694 
2695 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2696 	iowrite32(val, mdp->tsu_addr + offset);
2697 	if (sh_eth_tsu_busy(ndev) < 0)
2698 		return -EBUSY;
2699 
2700 	val = addr[4] << 8 | addr[5];
2701 	iowrite32(val, mdp->tsu_addr + offset + 4);
2702 	if (sh_eth_tsu_busy(ndev) < 0)
2703 		return -EBUSY;
2704 
2705 	return 0;
2706 }
2707 
2708 static void sh_eth_tsu_read_entry(struct net_device *ndev, u16 offset, u8 *addr)
2709 {
2710 	struct sh_eth_private *mdp = netdev_priv(ndev);
2711 	u32 val;
2712 
2713 	val = ioread32(mdp->tsu_addr + offset);
2714 	addr[0] = (val >> 24) & 0xff;
2715 	addr[1] = (val >> 16) & 0xff;
2716 	addr[2] = (val >> 8) & 0xff;
2717 	addr[3] = val & 0xff;
2718 	val = ioread32(mdp->tsu_addr + offset + 4);
2719 	addr[4] = (val >> 8) & 0xff;
2720 	addr[5] = val & 0xff;
2721 }
2722 
2723 
2724 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2725 {
2726 	struct sh_eth_private *mdp = netdev_priv(ndev);
2727 	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2728 	int i;
2729 	u8 c_addr[ETH_ALEN];
2730 
2731 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2732 		sh_eth_tsu_read_entry(ndev, reg_offset, c_addr);
2733 		if (ether_addr_equal(addr, c_addr))
2734 			return i;
2735 	}
2736 
2737 	return -ENOENT;
2738 }
2739 
2740 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2741 {
2742 	u8 blank[ETH_ALEN];
2743 	int entry;
2744 
2745 	memset(blank, 0, sizeof(blank));
2746 	entry = sh_eth_tsu_find_entry(ndev, blank);
2747 	return (entry < 0) ? -ENOMEM : entry;
2748 }
2749 
2750 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2751 					      int entry)
2752 {
2753 	struct sh_eth_private *mdp = netdev_priv(ndev);
2754 	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2755 	int ret;
2756 	u8 blank[ETH_ALEN];
2757 
2758 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2759 			 ~(1 << (31 - entry)), TSU_TEN);
2760 
2761 	memset(blank, 0, sizeof(blank));
2762 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2763 	if (ret < 0)
2764 		return ret;
2765 	return 0;
2766 }
2767 
2768 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2769 {
2770 	struct sh_eth_private *mdp = netdev_priv(ndev);
2771 	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2772 	int i, ret;
2773 
2774 	if (!mdp->cd->tsu)
2775 		return 0;
2776 
2777 	i = sh_eth_tsu_find_entry(ndev, addr);
2778 	if (i < 0) {
2779 		/* No entry found, create one */
2780 		i = sh_eth_tsu_find_empty(ndev);
2781 		if (i < 0)
2782 			return -ENOMEM;
2783 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2784 		if (ret < 0)
2785 			return ret;
2786 
2787 		/* Enable the entry */
2788 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2789 				 (1 << (31 - i)), TSU_TEN);
2790 	}
2791 
2792 	/* Entry found or created, enable POST */
2793 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2794 
2795 	return 0;
2796 }
2797 
2798 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2799 {
2800 	struct sh_eth_private *mdp = netdev_priv(ndev);
2801 	int i, ret;
2802 
2803 	if (!mdp->cd->tsu)
2804 		return 0;
2805 
2806 	i = sh_eth_tsu_find_entry(ndev, addr);
2807 	if (i) {
2808 		/* Entry found */
2809 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2810 			goto done;
2811 
2812 		/* Disable the entry if both ports was disabled */
2813 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2814 		if (ret < 0)
2815 			return ret;
2816 	}
2817 done:
2818 	return 0;
2819 }
2820 
2821 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2822 {
2823 	struct sh_eth_private *mdp = netdev_priv(ndev);
2824 	int i, ret;
2825 
2826 	if (!mdp->cd->tsu)
2827 		return 0;
2828 
2829 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2830 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2831 			continue;
2832 
2833 		/* Disable the entry if both ports was disabled */
2834 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2835 		if (ret < 0)
2836 			return ret;
2837 	}
2838 
2839 	return 0;
2840 }
2841 
2842 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2843 {
2844 	struct sh_eth_private *mdp = netdev_priv(ndev);
2845 	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2846 	u8 addr[ETH_ALEN];
2847 	int i;
2848 
2849 	if (!mdp->cd->tsu)
2850 		return;
2851 
2852 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2853 		sh_eth_tsu_read_entry(ndev, reg_offset, addr);
2854 		if (is_multicast_ether_addr(addr))
2855 			sh_eth_tsu_del_entry(ndev, addr);
2856 	}
2857 }
2858 
2859 /* Update promiscuous flag and multicast filter */
2860 static void sh_eth_set_rx_mode(struct net_device *ndev)
2861 {
2862 	struct sh_eth_private *mdp = netdev_priv(ndev);
2863 	u32 ecmr_bits;
2864 	int mcast_all = 0;
2865 	unsigned long flags;
2866 
2867 	spin_lock_irqsave(&mdp->lock, flags);
2868 	/* Initial condition is MCT = 1, PRM = 0.
2869 	 * Depending on ndev->flags, set PRM or clear MCT
2870 	 */
2871 	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2872 	if (mdp->cd->tsu)
2873 		ecmr_bits |= ECMR_MCT;
2874 
2875 	if (!(ndev->flags & IFF_MULTICAST)) {
2876 		sh_eth_tsu_purge_mcast(ndev);
2877 		mcast_all = 1;
2878 	}
2879 	if (ndev->flags & IFF_ALLMULTI) {
2880 		sh_eth_tsu_purge_mcast(ndev);
2881 		ecmr_bits &= ~ECMR_MCT;
2882 		mcast_all = 1;
2883 	}
2884 
2885 	if (ndev->flags & IFF_PROMISC) {
2886 		sh_eth_tsu_purge_all(ndev);
2887 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2888 	} else if (mdp->cd->tsu) {
2889 		struct netdev_hw_addr *ha;
2890 		netdev_for_each_mc_addr(ha, ndev) {
2891 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2892 				continue;
2893 
2894 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2895 				if (!mcast_all) {
2896 					sh_eth_tsu_purge_mcast(ndev);
2897 					ecmr_bits &= ~ECMR_MCT;
2898 					mcast_all = 1;
2899 				}
2900 			}
2901 		}
2902 	}
2903 
2904 	/* update the ethernet mode */
2905 	sh_eth_write(ndev, ecmr_bits, ECMR);
2906 
2907 	spin_unlock_irqrestore(&mdp->lock, flags);
2908 }
2909 
2910 static void sh_eth_set_rx_csum(struct net_device *ndev, bool enable)
2911 {
2912 	struct sh_eth_private *mdp = netdev_priv(ndev);
2913 	unsigned long flags;
2914 
2915 	spin_lock_irqsave(&mdp->lock, flags);
2916 
2917 	/* Disable TX and RX */
2918 	sh_eth_rcv_snd_disable(ndev);
2919 
2920 	/* Modify RX Checksum setting */
2921 	sh_eth_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
2922 
2923 	/* Enable TX and RX */
2924 	sh_eth_rcv_snd_enable(ndev);
2925 
2926 	spin_unlock_irqrestore(&mdp->lock, flags);
2927 }
2928 
2929 static int sh_eth_set_features(struct net_device *ndev,
2930 			       netdev_features_t features)
2931 {
2932 	netdev_features_t changed = ndev->features ^ features;
2933 	struct sh_eth_private *mdp = netdev_priv(ndev);
2934 
2935 	if (changed & NETIF_F_RXCSUM && mdp->cd->rx_csum)
2936 		sh_eth_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
2937 
2938 	ndev->features = features;
2939 
2940 	return 0;
2941 }
2942 
2943 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2944 {
2945 	if (!mdp->port)
2946 		return TSU_VTAG0;
2947 	else
2948 		return TSU_VTAG1;
2949 }
2950 
2951 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2952 				  __be16 proto, u16 vid)
2953 {
2954 	struct sh_eth_private *mdp = netdev_priv(ndev);
2955 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2956 
2957 	if (unlikely(!mdp->cd->tsu))
2958 		return -EPERM;
2959 
2960 	/* No filtering if vid = 0 */
2961 	if (!vid)
2962 		return 0;
2963 
2964 	mdp->vlan_num_ids++;
2965 
2966 	/* The controller has one VLAN tag HW filter. So, if the filter is
2967 	 * already enabled, the driver disables it and the filte
2968 	 */
2969 	if (mdp->vlan_num_ids > 1) {
2970 		/* disable VLAN filter */
2971 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2972 		return 0;
2973 	}
2974 
2975 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2976 			 vtag_reg_index);
2977 
2978 	return 0;
2979 }
2980 
2981 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2982 				   __be16 proto, u16 vid)
2983 {
2984 	struct sh_eth_private *mdp = netdev_priv(ndev);
2985 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2986 
2987 	if (unlikely(!mdp->cd->tsu))
2988 		return -EPERM;
2989 
2990 	/* No filtering if vid = 0 */
2991 	if (!vid)
2992 		return 0;
2993 
2994 	mdp->vlan_num_ids--;
2995 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2996 
2997 	return 0;
2998 }
2999 
3000 /* SuperH's TSU register init function */
3001 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
3002 {
3003 	if (!mdp->cd->dual_port) {
3004 		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
3005 		sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
3006 				 TSU_FWSLC);	/* Enable POST registers */
3007 		return;
3008 	}
3009 
3010 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
3011 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
3012 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
3013 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
3014 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
3015 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
3016 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
3017 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
3018 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
3019 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
3020 	sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
3021 	sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
3022 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
3023 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
3024 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
3025 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
3026 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
3027 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
3028 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
3029 }
3030 
3031 /* MDIO bus release function */
3032 static int sh_mdio_release(struct sh_eth_private *mdp)
3033 {
3034 	/* unregister mdio bus */
3035 	mdiobus_unregister(mdp->mii_bus);
3036 
3037 	/* free bitbang info */
3038 	free_mdio_bitbang(mdp->mii_bus);
3039 
3040 	return 0;
3041 }
3042 
3043 static int sh_mdiobb_read_c22(struct mii_bus *bus, int phy, int reg)
3044 {
3045 	int res;
3046 
3047 	pm_runtime_get_sync(bus->parent);
3048 	res = mdiobb_read_c22(bus, phy, reg);
3049 	pm_runtime_put(bus->parent);
3050 
3051 	return res;
3052 }
3053 
3054 static int sh_mdiobb_write_c22(struct mii_bus *bus, int phy, int reg, u16 val)
3055 {
3056 	int res;
3057 
3058 	pm_runtime_get_sync(bus->parent);
3059 	res = mdiobb_write_c22(bus, phy, reg, val);
3060 	pm_runtime_put(bus->parent);
3061 
3062 	return res;
3063 }
3064 
3065 static int sh_mdiobb_read_c45(struct mii_bus *bus, int phy, int devad, int reg)
3066 {
3067 	int res;
3068 
3069 	pm_runtime_get_sync(bus->parent);
3070 	res = mdiobb_read_c45(bus, phy, devad, reg);
3071 	pm_runtime_put(bus->parent);
3072 
3073 	return res;
3074 }
3075 
3076 static int sh_mdiobb_write_c45(struct mii_bus *bus, int phy, int devad,
3077 			       int reg, u16 val)
3078 {
3079 	int res;
3080 
3081 	pm_runtime_get_sync(bus->parent);
3082 	res = mdiobb_write_c45(bus, phy, devad, reg, val);
3083 	pm_runtime_put(bus->parent);
3084 
3085 	return res;
3086 }
3087 
3088 /* MDIO bus init function */
3089 static int sh_mdio_init(struct sh_eth_private *mdp,
3090 			struct sh_eth_plat_data *pd)
3091 {
3092 	int ret;
3093 	struct bb_info *bitbang;
3094 	struct platform_device *pdev = mdp->pdev;
3095 	struct device *dev = &mdp->pdev->dev;
3096 	struct phy_device *phydev;
3097 	struct device_node *pn;
3098 
3099 	/* create bit control struct for PHY */
3100 	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
3101 	if (!bitbang)
3102 		return -ENOMEM;
3103 
3104 	/* bitbang init */
3105 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
3106 	bitbang->set_gate = pd->set_mdio_gate;
3107 	bitbang->ctrl.ops = &bb_ops;
3108 
3109 	/* MII controller setting */
3110 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
3111 	if (!mdp->mii_bus)
3112 		return -ENOMEM;
3113 
3114 	/* Wrap accessors with Runtime PM-aware ops */
3115 	mdp->mii_bus->read = sh_mdiobb_read_c22;
3116 	mdp->mii_bus->write = sh_mdiobb_write_c22;
3117 	mdp->mii_bus->read_c45 = sh_mdiobb_read_c45;
3118 	mdp->mii_bus->write_c45 = sh_mdiobb_write_c45;
3119 
3120 	/* Hook up MII support for ethtool */
3121 	mdp->mii_bus->name = "sh_mii";
3122 	mdp->mii_bus->parent = dev;
3123 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
3124 		 pdev->name, pdev->id);
3125 
3126 	/* register MDIO bus */
3127 	if (pd->phy_irq > 0)
3128 		mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
3129 
3130 	ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
3131 	if (ret)
3132 		goto out_free_bus;
3133 
3134 	pn = of_parse_phandle(dev->of_node, "phy-handle", 0);
3135 	phydev = of_phy_find_device(pn);
3136 	if (phydev) {
3137 		phydev->mac_managed_pm = true;
3138 		put_device(&phydev->mdio.dev);
3139 	}
3140 	of_node_put(pn);
3141 
3142 	return 0;
3143 
3144 out_free_bus:
3145 	free_mdio_bitbang(mdp->mii_bus);
3146 	return ret;
3147 }
3148 
3149 static const u16 *sh_eth_get_register_offset(int register_type)
3150 {
3151 	const u16 *reg_offset = NULL;
3152 
3153 	switch (register_type) {
3154 	case SH_ETH_REG_GIGABIT:
3155 		reg_offset = sh_eth_offset_gigabit;
3156 		break;
3157 	case SH_ETH_REG_FAST_RCAR:
3158 		reg_offset = sh_eth_offset_fast_rcar;
3159 		break;
3160 	case SH_ETH_REG_FAST_SH4:
3161 		reg_offset = sh_eth_offset_fast_sh4;
3162 		break;
3163 	case SH_ETH_REG_FAST_SH3_SH2:
3164 		reg_offset = sh_eth_offset_fast_sh3_sh2;
3165 		break;
3166 	}
3167 
3168 	return reg_offset;
3169 }
3170 
3171 static const struct net_device_ops sh_eth_netdev_ops = {
3172 	.ndo_open		= sh_eth_open,
3173 	.ndo_stop		= sh_eth_close,
3174 	.ndo_start_xmit		= sh_eth_start_xmit,
3175 	.ndo_get_stats		= sh_eth_get_stats,
3176 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3177 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3178 	.ndo_eth_ioctl		= phy_do_ioctl_running,
3179 	.ndo_change_mtu		= sh_eth_change_mtu,
3180 	.ndo_validate_addr	= eth_validate_addr,
3181 	.ndo_set_mac_address	= eth_mac_addr,
3182 	.ndo_set_features	= sh_eth_set_features,
3183 };
3184 
3185 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3186 	.ndo_open		= sh_eth_open,
3187 	.ndo_stop		= sh_eth_close,
3188 	.ndo_start_xmit		= sh_eth_start_xmit,
3189 	.ndo_get_stats		= sh_eth_get_stats,
3190 	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3191 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
3192 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
3193 	.ndo_tx_timeout		= sh_eth_tx_timeout,
3194 	.ndo_eth_ioctl		= phy_do_ioctl_running,
3195 	.ndo_change_mtu		= sh_eth_change_mtu,
3196 	.ndo_validate_addr	= eth_validate_addr,
3197 	.ndo_set_mac_address	= eth_mac_addr,
3198 	.ndo_set_features	= sh_eth_set_features,
3199 };
3200 
3201 #ifdef CONFIG_OF
3202 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3203 {
3204 	struct device_node *np = dev->of_node;
3205 	struct sh_eth_plat_data *pdata;
3206 	phy_interface_t interface;
3207 	int ret;
3208 
3209 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3210 	if (!pdata)
3211 		return NULL;
3212 
3213 	ret = of_get_phy_mode(np, &interface);
3214 	if (ret)
3215 		return NULL;
3216 	pdata->phy_interface = interface;
3217 
3218 	of_get_mac_address(np, pdata->mac_addr);
3219 
3220 	pdata->no_ether_link =
3221 		of_property_read_bool(np, "renesas,no-ether-link");
3222 	pdata->ether_link_active_low =
3223 		of_property_read_bool(np, "renesas,ether-link-active-low");
3224 
3225 	return pdata;
3226 }
3227 
3228 static const struct of_device_id sh_eth_match_table[] = {
3229 	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3230 	{ .compatible = "renesas,ether-r8a7743", .data = &rcar_gen2_data },
3231 	{ .compatible = "renesas,ether-r8a7745", .data = &rcar_gen2_data },
3232 	{ .compatible = "renesas,ether-r8a7778", .data = &rcar_gen1_data },
3233 	{ .compatible = "renesas,ether-r8a7779", .data = &rcar_gen1_data },
3234 	{ .compatible = "renesas,ether-r8a7790", .data = &rcar_gen2_data },
3235 	{ .compatible = "renesas,ether-r8a7791", .data = &rcar_gen2_data },
3236 	{ .compatible = "renesas,ether-r8a7793", .data = &rcar_gen2_data },
3237 	{ .compatible = "renesas,ether-r8a7794", .data = &rcar_gen2_data },
3238 	{ .compatible = "renesas,gether-r8a77980", .data = &r8a77980_data },
3239 	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3240 	{ .compatible = "renesas,ether-r7s9210", .data = &r7s9210_data },
3241 	{ .compatible = "renesas,rcar-gen1-ether", .data = &rcar_gen1_data },
3242 	{ .compatible = "renesas,rcar-gen2-ether", .data = &rcar_gen2_data },
3243 	{ }
3244 };
3245 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3246 #else
3247 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3248 {
3249 	return NULL;
3250 }
3251 #endif
3252 
3253 static int sh_eth_drv_probe(struct platform_device *pdev)
3254 {
3255 	struct resource *res;
3256 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3257 	const struct platform_device_id *id = platform_get_device_id(pdev);
3258 	struct sh_eth_private *mdp;
3259 	struct net_device *ndev;
3260 	int ret;
3261 
3262 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3263 	if (!ndev)
3264 		return -ENOMEM;
3265 
3266 	pm_runtime_enable(&pdev->dev);
3267 	pm_runtime_get_sync(&pdev->dev);
3268 
3269 	ret = platform_get_irq(pdev, 0);
3270 	if (ret < 0)
3271 		goto out_release;
3272 	ndev->irq = ret;
3273 
3274 	SET_NETDEV_DEV(ndev, &pdev->dev);
3275 
3276 	mdp = netdev_priv(ndev);
3277 	mdp->num_tx_ring = TX_RING_SIZE;
3278 	mdp->num_rx_ring = RX_RING_SIZE;
3279 	mdp->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
3280 	if (IS_ERR(mdp->addr)) {
3281 		ret = PTR_ERR(mdp->addr);
3282 		goto out_release;
3283 	}
3284 
3285 	ndev->base_addr = res->start;
3286 
3287 	spin_lock_init(&mdp->lock);
3288 	mdp->pdev = pdev;
3289 
3290 	if (pdev->dev.of_node)
3291 		pd = sh_eth_parse_dt(&pdev->dev);
3292 	if (!pd) {
3293 		dev_err(&pdev->dev, "no platform data\n");
3294 		ret = -EINVAL;
3295 		goto out_release;
3296 	}
3297 
3298 	/* get PHY ID */
3299 	mdp->phy_id = pd->phy;
3300 	mdp->phy_interface = pd->phy_interface;
3301 	mdp->no_ether_link = pd->no_ether_link;
3302 	mdp->ether_link_active_low = pd->ether_link_active_low;
3303 
3304 	/* set cpu data */
3305 	if (id)
3306 		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3307 	else
3308 		mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3309 
3310 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3311 	if (!mdp->reg_offset) {
3312 		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3313 			mdp->cd->register_type);
3314 		ret = -EINVAL;
3315 		goto out_release;
3316 	}
3317 	sh_eth_set_default_cpu_data(mdp->cd);
3318 
3319 	/* User's manual states max MTU should be 2048 but due to the
3320 	 * alignment calculations in sh_eth_ring_init() the practical
3321 	 * MTU is a bit less. Maybe this can be optimized some more.
3322 	 */
3323 	ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3324 	ndev->min_mtu = ETH_MIN_MTU;
3325 
3326 	if (mdp->cd->rx_csum) {
3327 		ndev->features = NETIF_F_RXCSUM;
3328 		ndev->hw_features = NETIF_F_RXCSUM;
3329 	}
3330 
3331 	/* set function */
3332 	if (mdp->cd->tsu)
3333 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3334 	else
3335 		ndev->netdev_ops = &sh_eth_netdev_ops;
3336 	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3337 	ndev->watchdog_timeo = TX_TIMEOUT;
3338 
3339 	/* debug message level */
3340 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3341 
3342 	/* read and set MAC address */
3343 	read_mac_address(ndev, pd->mac_addr);
3344 	if (!is_valid_ether_addr(ndev->dev_addr)) {
3345 		dev_warn(&pdev->dev,
3346 			 "no valid MAC address supplied, using a random one.\n");
3347 		eth_hw_addr_random(ndev);
3348 	}
3349 
3350 	if (mdp->cd->tsu) {
3351 		int port = pdev->id < 0 ? 0 : pdev->id % 2;
3352 		struct resource *rtsu;
3353 
3354 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3355 		if (!rtsu) {
3356 			dev_err(&pdev->dev, "no TSU resource\n");
3357 			ret = -ENODEV;
3358 			goto out_release;
3359 		}
3360 		/* We can only request the  TSU region  for the first port
3361 		 * of the two  sharing this TSU for the probe to succeed...
3362 		 */
3363 		if (port == 0 &&
3364 		    !devm_request_mem_region(&pdev->dev, rtsu->start,
3365 					     resource_size(rtsu),
3366 					     dev_name(&pdev->dev))) {
3367 			dev_err(&pdev->dev, "can't request TSU resource.\n");
3368 			ret = -EBUSY;
3369 			goto out_release;
3370 		}
3371 		/* ioremap the TSU registers */
3372 		mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start,
3373 					     resource_size(rtsu));
3374 		if (!mdp->tsu_addr) {
3375 			dev_err(&pdev->dev, "TSU region ioremap() failed.\n");
3376 			ret = -ENOMEM;
3377 			goto out_release;
3378 		}
3379 		mdp->port = port;
3380 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3381 
3382 		/* Need to init only the first port of the two sharing a TSU */
3383 		if (port == 0) {
3384 			if (mdp->cd->chip_reset)
3385 				mdp->cd->chip_reset(ndev);
3386 
3387 			/* TSU init (Init only)*/
3388 			sh_eth_tsu_init(mdp);
3389 		}
3390 	}
3391 
3392 	if (mdp->cd->rmiimode)
3393 		sh_eth_write(ndev, 0x1, RMIIMODE);
3394 
3395 	/* MDIO bus init */
3396 	ret = sh_mdio_init(mdp, pd);
3397 	if (ret) {
3398 		dev_err_probe(&pdev->dev, ret, "MDIO init failed\n");
3399 		goto out_release;
3400 	}
3401 
3402 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll);
3403 
3404 	/* network device register */
3405 	ret = register_netdev(ndev);
3406 	if (ret)
3407 		goto out_napi_del;
3408 
3409 	if (mdp->cd->magic)
3410 		device_set_wakeup_capable(&pdev->dev, 1);
3411 
3412 	/* print device information */
3413 	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3414 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3415 
3416 	pm_runtime_put(&pdev->dev);
3417 	platform_set_drvdata(pdev, ndev);
3418 
3419 	return ret;
3420 
3421 out_napi_del:
3422 	netif_napi_del(&mdp->napi);
3423 	sh_mdio_release(mdp);
3424 
3425 out_release:
3426 	/* net_dev free */
3427 	free_netdev(ndev);
3428 
3429 	pm_runtime_put(&pdev->dev);
3430 	pm_runtime_disable(&pdev->dev);
3431 	return ret;
3432 }
3433 
3434 static void sh_eth_drv_remove(struct platform_device *pdev)
3435 {
3436 	struct net_device *ndev = platform_get_drvdata(pdev);
3437 	struct sh_eth_private *mdp = netdev_priv(ndev);
3438 
3439 	unregister_netdev(ndev);
3440 	netif_napi_del(&mdp->napi);
3441 	sh_mdio_release(mdp);
3442 	pm_runtime_disable(&pdev->dev);
3443 	free_netdev(ndev);
3444 }
3445 
3446 #ifdef CONFIG_PM
3447 #ifdef CONFIG_PM_SLEEP
3448 static int sh_eth_wol_setup(struct net_device *ndev)
3449 {
3450 	struct sh_eth_private *mdp = netdev_priv(ndev);
3451 
3452 	/* Only allow ECI interrupts */
3453 	synchronize_irq(ndev->irq);
3454 	napi_disable(&mdp->napi);
3455 	sh_eth_write(ndev, EESIPR_ECIIP, EESIPR);
3456 
3457 	/* Enable MagicPacket */
3458 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3459 
3460 	return enable_irq_wake(ndev->irq);
3461 }
3462 
3463 static int sh_eth_wol_restore(struct net_device *ndev)
3464 {
3465 	struct sh_eth_private *mdp = netdev_priv(ndev);
3466 	int ret;
3467 
3468 	napi_enable(&mdp->napi);
3469 
3470 	/* Disable MagicPacket */
3471 	sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0);
3472 
3473 	/* The device needs to be reset to restore MagicPacket logic
3474 	 * for next wakeup. If we close and open the device it will
3475 	 * both be reset and all registers restored. This is what
3476 	 * happens during suspend and resume without WoL enabled.
3477 	 */
3478 	sh_eth_close(ndev);
3479 	ret = sh_eth_open(ndev);
3480 	if (ret < 0)
3481 		return ret;
3482 
3483 	return disable_irq_wake(ndev->irq);
3484 }
3485 
3486 static int sh_eth_suspend(struct device *dev)
3487 {
3488 	struct net_device *ndev = dev_get_drvdata(dev);
3489 	struct sh_eth_private *mdp = netdev_priv(ndev);
3490 	int ret;
3491 
3492 	if (!netif_running(ndev))
3493 		return 0;
3494 
3495 	netif_device_detach(ndev);
3496 
3497 	if (mdp->wol_enabled)
3498 		ret = sh_eth_wol_setup(ndev);
3499 	else
3500 		ret = sh_eth_close(ndev);
3501 
3502 	return ret;
3503 }
3504 
3505 static int sh_eth_resume(struct device *dev)
3506 {
3507 	struct net_device *ndev = dev_get_drvdata(dev);
3508 	struct sh_eth_private *mdp = netdev_priv(ndev);
3509 	int ret;
3510 
3511 	if (!netif_running(ndev))
3512 		return 0;
3513 
3514 	if (mdp->wol_enabled)
3515 		ret = sh_eth_wol_restore(ndev);
3516 	else
3517 		ret = sh_eth_open(ndev);
3518 
3519 	if (ret < 0)
3520 		return ret;
3521 
3522 	netif_device_attach(ndev);
3523 
3524 	return ret;
3525 }
3526 #endif
3527 
3528 static int sh_eth_runtime_nop(struct device *dev)
3529 {
3530 	/* Runtime PM callback shared between ->runtime_suspend()
3531 	 * and ->runtime_resume(). Simply returns success.
3532 	 *
3533 	 * This driver re-initializes all registers after
3534 	 * pm_runtime_get_sync() anyway so there is no need
3535 	 * to save and restore registers here.
3536 	 */
3537 	return 0;
3538 }
3539 
3540 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3541 	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3542 	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3543 };
3544 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3545 #else
3546 #define SH_ETH_PM_OPS NULL
3547 #endif
3548 
3549 static const struct platform_device_id sh_eth_id_table[] = {
3550 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3551 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3552 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3553 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3554 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3555 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3556 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3557 	{ }
3558 };
3559 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3560 
3561 static struct platform_driver sh_eth_driver = {
3562 	.probe = sh_eth_drv_probe,
3563 	.remove_new = sh_eth_drv_remove,
3564 	.id_table = sh_eth_id_table,
3565 	.driver = {
3566 		   .name = CARDNAME,
3567 		   .pm = SH_ETH_PM_OPS,
3568 		   .of_match_table = of_match_ptr(sh_eth_match_table),
3569 	},
3570 };
3571 
3572 module_platform_driver(sh_eth_driver);
3573 
3574 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3575 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3576 MODULE_LICENSE("GPL v2");
3577