xref: /linux/drivers/net/ethernet/renesas/sh_eth.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /*  SuperH Ethernet device driver
2  *
3  *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
4  *  Copyright (C) 2008-2014 Renesas Solutions Corp.
5  *  Copyright (C) 2013-2014 Cogent Embedded, Inc.
6  *  Copyright (C) 2014 Codethink Limited
7  *
8  *  This program is free software; you can redistribute it and/or modify it
9  *  under the terms and conditions of the GNU General Public License,
10  *  version 2, as published by the Free Software Foundation.
11  *
12  *  This program is distributed in the hope it will be useful, but WITHOUT
13  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  *  more details.
16  *
17  *  The full GNU General Public License is included in this distribution in
18  *  the file called "COPYING".
19  */
20 
21 #include <linux/module.h>
22 #include <linux/kernel.h>
23 #include <linux/spinlock.h>
24 #include <linux/interrupt.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/etherdevice.h>
27 #include <linux/delay.h>
28 #include <linux/platform_device.h>
29 #include <linux/mdio-bitbang.h>
30 #include <linux/netdevice.h>
31 #include <linux/of.h>
32 #include <linux/of_device.h>
33 #include <linux/of_irq.h>
34 #include <linux/of_net.h>
35 #include <linux/phy.h>
36 #include <linux/cache.h>
37 #include <linux/io.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/slab.h>
40 #include <linux/ethtool.h>
41 #include <linux/if_vlan.h>
42 #include <linux/clk.h>
43 #include <linux/sh_eth.h>
44 #include <linux/of_mdio.h>
45 
46 #include "sh_eth.h"
47 
48 #define SH_ETH_DEF_MSG_ENABLE \
49 		(NETIF_MSG_LINK	| \
50 		NETIF_MSG_TIMER	| \
51 		NETIF_MSG_RX_ERR| \
52 		NETIF_MSG_TX_ERR)
53 
54 static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
55 	[EDSR]		= 0x0000,
56 	[EDMR]		= 0x0400,
57 	[EDTRR]		= 0x0408,
58 	[EDRRR]		= 0x0410,
59 	[EESR]		= 0x0428,
60 	[EESIPR]	= 0x0430,
61 	[TDLAR]		= 0x0010,
62 	[TDFAR]		= 0x0014,
63 	[TDFXR]		= 0x0018,
64 	[TDFFR]		= 0x001c,
65 	[RDLAR]		= 0x0030,
66 	[RDFAR]		= 0x0034,
67 	[RDFXR]		= 0x0038,
68 	[RDFFR]		= 0x003c,
69 	[TRSCER]	= 0x0438,
70 	[RMFCR]		= 0x0440,
71 	[TFTR]		= 0x0448,
72 	[FDR]		= 0x0450,
73 	[RMCR]		= 0x0458,
74 	[RPADIR]	= 0x0460,
75 	[FCFTR]		= 0x0468,
76 	[CSMR]		= 0x04E4,
77 
78 	[ECMR]		= 0x0500,
79 	[ECSR]		= 0x0510,
80 	[ECSIPR]	= 0x0518,
81 	[PIR]		= 0x0520,
82 	[PSR]		= 0x0528,
83 	[PIPR]		= 0x052c,
84 	[RFLR]		= 0x0508,
85 	[APR]		= 0x0554,
86 	[MPR]		= 0x0558,
87 	[PFTCR]		= 0x055c,
88 	[PFRCR]		= 0x0560,
89 	[TPAUSER]	= 0x0564,
90 	[GECMR]		= 0x05b0,
91 	[BCULR]		= 0x05b4,
92 	[MAHR]		= 0x05c0,
93 	[MALR]		= 0x05c8,
94 	[TROCR]		= 0x0700,
95 	[CDCR]		= 0x0708,
96 	[LCCR]		= 0x0710,
97 	[CEFCR]		= 0x0740,
98 	[FRECR]		= 0x0748,
99 	[TSFRCR]	= 0x0750,
100 	[TLFRCR]	= 0x0758,
101 	[RFCR]		= 0x0760,
102 	[CERCR]		= 0x0768,
103 	[CEECR]		= 0x0770,
104 	[MAFCR]		= 0x0778,
105 	[RMII_MII]	= 0x0790,
106 
107 	[ARSTR]		= 0x0000,
108 	[TSU_CTRST]	= 0x0004,
109 	[TSU_FWEN0]	= 0x0010,
110 	[TSU_FWEN1]	= 0x0014,
111 	[TSU_FCM]	= 0x0018,
112 	[TSU_BSYSL0]	= 0x0020,
113 	[TSU_BSYSL1]	= 0x0024,
114 	[TSU_PRISL0]	= 0x0028,
115 	[TSU_PRISL1]	= 0x002c,
116 	[TSU_FWSL0]	= 0x0030,
117 	[TSU_FWSL1]	= 0x0034,
118 	[TSU_FWSLC]	= 0x0038,
119 	[TSU_QTAG0]	= 0x0040,
120 	[TSU_QTAG1]	= 0x0044,
121 	[TSU_FWSR]	= 0x0050,
122 	[TSU_FWINMK]	= 0x0054,
123 	[TSU_ADQT0]	= 0x0048,
124 	[TSU_ADQT1]	= 0x004c,
125 	[TSU_VTAG0]	= 0x0058,
126 	[TSU_VTAG1]	= 0x005c,
127 	[TSU_ADSBSY]	= 0x0060,
128 	[TSU_TEN]	= 0x0064,
129 	[TSU_POST1]	= 0x0070,
130 	[TSU_POST2]	= 0x0074,
131 	[TSU_POST3]	= 0x0078,
132 	[TSU_POST4]	= 0x007c,
133 	[TSU_ADRH0]	= 0x0100,
134 	[TSU_ADRL0]	= 0x0104,
135 	[TSU_ADRH31]	= 0x01f8,
136 	[TSU_ADRL31]	= 0x01fc,
137 
138 	[TXNLCR0]	= 0x0080,
139 	[TXALCR0]	= 0x0084,
140 	[RXNLCR0]	= 0x0088,
141 	[RXALCR0]	= 0x008c,
142 	[FWNLCR0]	= 0x0090,
143 	[FWALCR0]	= 0x0094,
144 	[TXNLCR1]	= 0x00a0,
145 	[TXALCR1]	= 0x00a0,
146 	[RXNLCR1]	= 0x00a8,
147 	[RXALCR1]	= 0x00ac,
148 	[FWNLCR1]	= 0x00b0,
149 	[FWALCR1]	= 0x00b4,
150 };
151 
152 static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
153 	[EDSR]		= 0x0000,
154 	[EDMR]		= 0x0400,
155 	[EDTRR]		= 0x0408,
156 	[EDRRR]		= 0x0410,
157 	[EESR]		= 0x0428,
158 	[EESIPR]	= 0x0430,
159 	[TDLAR]		= 0x0010,
160 	[TDFAR]		= 0x0014,
161 	[TDFXR]		= 0x0018,
162 	[TDFFR]		= 0x001c,
163 	[RDLAR]		= 0x0030,
164 	[RDFAR]		= 0x0034,
165 	[RDFXR]		= 0x0038,
166 	[RDFFR]		= 0x003c,
167 	[TRSCER]	= 0x0438,
168 	[RMFCR]		= 0x0440,
169 	[TFTR]		= 0x0448,
170 	[FDR]		= 0x0450,
171 	[RMCR]		= 0x0458,
172 	[RPADIR]	= 0x0460,
173 	[FCFTR]		= 0x0468,
174 	[CSMR]		= 0x04E4,
175 
176 	[ECMR]		= 0x0500,
177 	[RFLR]		= 0x0508,
178 	[ECSR]		= 0x0510,
179 	[ECSIPR]	= 0x0518,
180 	[PIR]		= 0x0520,
181 	[APR]		= 0x0554,
182 	[MPR]		= 0x0558,
183 	[PFTCR]		= 0x055c,
184 	[PFRCR]		= 0x0560,
185 	[TPAUSER]	= 0x0564,
186 	[MAHR]		= 0x05c0,
187 	[MALR]		= 0x05c8,
188 	[CEFCR]		= 0x0740,
189 	[FRECR]		= 0x0748,
190 	[TSFRCR]	= 0x0750,
191 	[TLFRCR]	= 0x0758,
192 	[RFCR]		= 0x0760,
193 	[MAFCR]		= 0x0778,
194 
195 	[ARSTR]		= 0x0000,
196 	[TSU_CTRST]	= 0x0004,
197 	[TSU_VTAG0]	= 0x0058,
198 	[TSU_ADSBSY]	= 0x0060,
199 	[TSU_TEN]	= 0x0064,
200 	[TSU_ADRH0]	= 0x0100,
201 	[TSU_ADRL0]	= 0x0104,
202 	[TSU_ADRH31]	= 0x01f8,
203 	[TSU_ADRL31]	= 0x01fc,
204 
205 	[TXNLCR0]	= 0x0080,
206 	[TXALCR0]	= 0x0084,
207 	[RXNLCR0]	= 0x0088,
208 	[RXALCR0]	= 0x008C,
209 };
210 
211 static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
212 	[ECMR]		= 0x0300,
213 	[RFLR]		= 0x0308,
214 	[ECSR]		= 0x0310,
215 	[ECSIPR]	= 0x0318,
216 	[PIR]		= 0x0320,
217 	[PSR]		= 0x0328,
218 	[RDMLR]		= 0x0340,
219 	[IPGR]		= 0x0350,
220 	[APR]		= 0x0354,
221 	[MPR]		= 0x0358,
222 	[RFCF]		= 0x0360,
223 	[TPAUSER]	= 0x0364,
224 	[TPAUSECR]	= 0x0368,
225 	[MAHR]		= 0x03c0,
226 	[MALR]		= 0x03c8,
227 	[TROCR]		= 0x03d0,
228 	[CDCR]		= 0x03d4,
229 	[LCCR]		= 0x03d8,
230 	[CNDCR]		= 0x03dc,
231 	[CEFCR]		= 0x03e4,
232 	[FRECR]		= 0x03e8,
233 	[TSFRCR]	= 0x03ec,
234 	[TLFRCR]	= 0x03f0,
235 	[RFCR]		= 0x03f4,
236 	[MAFCR]		= 0x03f8,
237 
238 	[EDMR]		= 0x0200,
239 	[EDTRR]		= 0x0208,
240 	[EDRRR]		= 0x0210,
241 	[TDLAR]		= 0x0218,
242 	[RDLAR]		= 0x0220,
243 	[EESR]		= 0x0228,
244 	[EESIPR]	= 0x0230,
245 	[TRSCER]	= 0x0238,
246 	[RMFCR]		= 0x0240,
247 	[TFTR]		= 0x0248,
248 	[FDR]		= 0x0250,
249 	[RMCR]		= 0x0258,
250 	[TFUCR]		= 0x0264,
251 	[RFOCR]		= 0x0268,
252 	[RMIIMODE]      = 0x026c,
253 	[FCFTR]		= 0x0270,
254 	[TRIMD]		= 0x027c,
255 };
256 
257 static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
258 	[ECMR]		= 0x0100,
259 	[RFLR]		= 0x0108,
260 	[ECSR]		= 0x0110,
261 	[ECSIPR]	= 0x0118,
262 	[PIR]		= 0x0120,
263 	[PSR]		= 0x0128,
264 	[RDMLR]		= 0x0140,
265 	[IPGR]		= 0x0150,
266 	[APR]		= 0x0154,
267 	[MPR]		= 0x0158,
268 	[TPAUSER]	= 0x0164,
269 	[RFCF]		= 0x0160,
270 	[TPAUSECR]	= 0x0168,
271 	[BCFRR]		= 0x016c,
272 	[MAHR]		= 0x01c0,
273 	[MALR]		= 0x01c8,
274 	[TROCR]		= 0x01d0,
275 	[CDCR]		= 0x01d4,
276 	[LCCR]		= 0x01d8,
277 	[CNDCR]		= 0x01dc,
278 	[CEFCR]		= 0x01e4,
279 	[FRECR]		= 0x01e8,
280 	[TSFRCR]	= 0x01ec,
281 	[TLFRCR]	= 0x01f0,
282 	[RFCR]		= 0x01f4,
283 	[MAFCR]		= 0x01f8,
284 	[RTRATE]	= 0x01fc,
285 
286 	[EDMR]		= 0x0000,
287 	[EDTRR]		= 0x0008,
288 	[EDRRR]		= 0x0010,
289 	[TDLAR]		= 0x0018,
290 	[RDLAR]		= 0x0020,
291 	[EESR]		= 0x0028,
292 	[EESIPR]	= 0x0030,
293 	[TRSCER]	= 0x0038,
294 	[RMFCR]		= 0x0040,
295 	[TFTR]		= 0x0048,
296 	[FDR]		= 0x0050,
297 	[RMCR]		= 0x0058,
298 	[TFUCR]		= 0x0064,
299 	[RFOCR]		= 0x0068,
300 	[FCFTR]		= 0x0070,
301 	[RPADIR]	= 0x0078,
302 	[TRIMD]		= 0x007c,
303 	[RBWAR]		= 0x00c8,
304 	[RDFAR]		= 0x00cc,
305 	[TBRAR]		= 0x00d4,
306 	[TDFAR]		= 0x00d8,
307 };
308 
309 static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
310 	[EDMR]		= 0x0000,
311 	[EDTRR]		= 0x0004,
312 	[EDRRR]		= 0x0008,
313 	[TDLAR]		= 0x000c,
314 	[RDLAR]		= 0x0010,
315 	[EESR]		= 0x0014,
316 	[EESIPR]	= 0x0018,
317 	[TRSCER]	= 0x001c,
318 	[RMFCR]		= 0x0020,
319 	[TFTR]		= 0x0024,
320 	[FDR]		= 0x0028,
321 	[RMCR]		= 0x002c,
322 	[EDOCR]		= 0x0030,
323 	[FCFTR]		= 0x0034,
324 	[RPADIR]	= 0x0038,
325 	[TRIMD]		= 0x003c,
326 	[RBWAR]		= 0x0040,
327 	[RDFAR]		= 0x0044,
328 	[TBRAR]		= 0x004c,
329 	[TDFAR]		= 0x0050,
330 
331 	[ECMR]		= 0x0160,
332 	[ECSR]		= 0x0164,
333 	[ECSIPR]	= 0x0168,
334 	[PIR]		= 0x016c,
335 	[MAHR]		= 0x0170,
336 	[MALR]		= 0x0174,
337 	[RFLR]		= 0x0178,
338 	[PSR]		= 0x017c,
339 	[TROCR]		= 0x0180,
340 	[CDCR]		= 0x0184,
341 	[LCCR]		= 0x0188,
342 	[CNDCR]		= 0x018c,
343 	[CEFCR]		= 0x0194,
344 	[FRECR]		= 0x0198,
345 	[TSFRCR]	= 0x019c,
346 	[TLFRCR]	= 0x01a0,
347 	[RFCR]		= 0x01a4,
348 	[MAFCR]		= 0x01a8,
349 	[IPGR]		= 0x01b4,
350 	[APR]		= 0x01b8,
351 	[MPR]		= 0x01bc,
352 	[TPAUSER]	= 0x01c4,
353 	[BCFR]		= 0x01cc,
354 
355 	[ARSTR]		= 0x0000,
356 	[TSU_CTRST]	= 0x0004,
357 	[TSU_FWEN0]	= 0x0010,
358 	[TSU_FWEN1]	= 0x0014,
359 	[TSU_FCM]	= 0x0018,
360 	[TSU_BSYSL0]	= 0x0020,
361 	[TSU_BSYSL1]	= 0x0024,
362 	[TSU_PRISL0]	= 0x0028,
363 	[TSU_PRISL1]	= 0x002c,
364 	[TSU_FWSL0]	= 0x0030,
365 	[TSU_FWSL1]	= 0x0034,
366 	[TSU_FWSLC]	= 0x0038,
367 	[TSU_QTAGM0]	= 0x0040,
368 	[TSU_QTAGM1]	= 0x0044,
369 	[TSU_ADQT0]	= 0x0048,
370 	[TSU_ADQT1]	= 0x004c,
371 	[TSU_FWSR]	= 0x0050,
372 	[TSU_FWINMK]	= 0x0054,
373 	[TSU_ADSBSY]	= 0x0060,
374 	[TSU_TEN]	= 0x0064,
375 	[TSU_POST1]	= 0x0070,
376 	[TSU_POST2]	= 0x0074,
377 	[TSU_POST3]	= 0x0078,
378 	[TSU_POST4]	= 0x007c,
379 
380 	[TXNLCR0]	= 0x0080,
381 	[TXALCR0]	= 0x0084,
382 	[RXNLCR0]	= 0x0088,
383 	[RXALCR0]	= 0x008c,
384 	[FWNLCR0]	= 0x0090,
385 	[FWALCR0]	= 0x0094,
386 	[TXNLCR1]	= 0x00a0,
387 	[TXALCR1]	= 0x00a0,
388 	[RXNLCR1]	= 0x00a8,
389 	[RXALCR1]	= 0x00ac,
390 	[FWNLCR1]	= 0x00b0,
391 	[FWALCR1]	= 0x00b4,
392 
393 	[TSU_ADRH0]	= 0x0100,
394 	[TSU_ADRL0]	= 0x0104,
395 	[TSU_ADRL31]	= 0x01fc,
396 };
397 
398 static bool sh_eth_is_gether(struct sh_eth_private *mdp)
399 {
400 	return mdp->reg_offset == sh_eth_offset_gigabit;
401 }
402 
403 static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
404 {
405 	return mdp->reg_offset == sh_eth_offset_fast_rz;
406 }
407 
408 static void sh_eth_select_mii(struct net_device *ndev)
409 {
410 	u32 value = 0x0;
411 	struct sh_eth_private *mdp = netdev_priv(ndev);
412 
413 	switch (mdp->phy_interface) {
414 	case PHY_INTERFACE_MODE_GMII:
415 		value = 0x2;
416 		break;
417 	case PHY_INTERFACE_MODE_MII:
418 		value = 0x1;
419 		break;
420 	case PHY_INTERFACE_MODE_RMII:
421 		value = 0x0;
422 		break;
423 	default:
424 		netdev_warn(ndev,
425 			    "PHY interface mode was not setup. Set to MII.\n");
426 		value = 0x1;
427 		break;
428 	}
429 
430 	sh_eth_write(ndev, value, RMII_MII);
431 }
432 
433 static void sh_eth_set_duplex(struct net_device *ndev)
434 {
435 	struct sh_eth_private *mdp = netdev_priv(ndev);
436 
437 	if (mdp->duplex) /* Full */
438 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
439 	else		/* Half */
440 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
441 }
442 
443 /* There is CPU dependent code */
444 static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
445 {
446 	struct sh_eth_private *mdp = netdev_priv(ndev);
447 
448 	switch (mdp->speed) {
449 	case 10: /* 10BASE */
450 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_ELB, ECMR);
451 		break;
452 	case 100:/* 100BASE */
453 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_ELB, ECMR);
454 		break;
455 	default:
456 		break;
457 	}
458 }
459 
460 /* R8A7778/9 */
461 static struct sh_eth_cpu_data r8a777x_data = {
462 	.set_duplex	= sh_eth_set_duplex,
463 	.set_rate	= sh_eth_set_rate_r8a777x,
464 
465 	.register_type	= SH_ETH_REG_FAST_RCAR,
466 
467 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
468 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
469 	.eesipr_value	= 0x01ff009f,
470 
471 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
472 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
473 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
474 			  EESR_ECI,
475 
476 	.apr		= 1,
477 	.mpr		= 1,
478 	.tpauser	= 1,
479 	.hw_swap	= 1,
480 };
481 
482 /* R8A7790/1 */
483 static struct sh_eth_cpu_data r8a779x_data = {
484 	.set_duplex	= sh_eth_set_duplex,
485 	.set_rate	= sh_eth_set_rate_r8a777x,
486 
487 	.register_type	= SH_ETH_REG_FAST_RCAR,
488 
489 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
490 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
491 	.eesipr_value	= 0x01ff009f,
492 
493 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
494 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
495 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
496 			  EESR_ECI,
497 
498 	.apr		= 1,
499 	.mpr		= 1,
500 	.tpauser	= 1,
501 	.hw_swap	= 1,
502 	.rmiimode	= 1,
503 	.shift_rd0	= 1,
504 };
505 
506 static void sh_eth_set_rate_sh7724(struct net_device *ndev)
507 {
508 	struct sh_eth_private *mdp = netdev_priv(ndev);
509 
510 	switch (mdp->speed) {
511 	case 10: /* 10BASE */
512 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
513 		break;
514 	case 100:/* 100BASE */
515 		sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
516 		break;
517 	default:
518 		break;
519 	}
520 }
521 
522 /* SH7724 */
523 static struct sh_eth_cpu_data sh7724_data = {
524 	.set_duplex	= sh_eth_set_duplex,
525 	.set_rate	= sh_eth_set_rate_sh7724,
526 
527 	.register_type	= SH_ETH_REG_FAST_SH4,
528 
529 	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
530 	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
531 	.eesipr_value	= 0x01ff009f,
532 
533 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
534 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
535 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
536 			  EESR_ECI,
537 
538 	.apr		= 1,
539 	.mpr		= 1,
540 	.tpauser	= 1,
541 	.hw_swap	= 1,
542 	.rpadir		= 1,
543 	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
544 };
545 
546 static void sh_eth_set_rate_sh7757(struct net_device *ndev)
547 {
548 	struct sh_eth_private *mdp = netdev_priv(ndev);
549 
550 	switch (mdp->speed) {
551 	case 10: /* 10BASE */
552 		sh_eth_write(ndev, 0, RTRATE);
553 		break;
554 	case 100:/* 100BASE */
555 		sh_eth_write(ndev, 1, RTRATE);
556 		break;
557 	default:
558 		break;
559 	}
560 }
561 
562 /* SH7757 */
563 static struct sh_eth_cpu_data sh7757_data = {
564 	.set_duplex	= sh_eth_set_duplex,
565 	.set_rate	= sh_eth_set_rate_sh7757,
566 
567 	.register_type	= SH_ETH_REG_FAST_SH4,
568 
569 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
570 
571 	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
572 	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
573 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
574 			  EESR_ECI,
575 
576 	.irq_flags	= IRQF_SHARED,
577 	.apr		= 1,
578 	.mpr		= 1,
579 	.tpauser	= 1,
580 	.hw_swap	= 1,
581 	.no_ade		= 1,
582 	.rpadir		= 1,
583 	.rpadir_value   = 2 << 16,
584 };
585 
586 #define SH_GIGA_ETH_BASE	0xfee00000UL
587 #define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
588 #define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
589 static void sh_eth_chip_reset_giga(struct net_device *ndev)
590 {
591 	int i;
592 	unsigned long mahr[2], malr[2];
593 
594 	/* save MAHR and MALR */
595 	for (i = 0; i < 2; i++) {
596 		malr[i] = ioread32((void *)GIGA_MALR(i));
597 		mahr[i] = ioread32((void *)GIGA_MAHR(i));
598 	}
599 
600 	/* reset device */
601 	iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
602 	mdelay(1);
603 
604 	/* restore MAHR and MALR */
605 	for (i = 0; i < 2; i++) {
606 		iowrite32(malr[i], (void *)GIGA_MALR(i));
607 		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
608 	}
609 }
610 
611 static void sh_eth_set_rate_giga(struct net_device *ndev)
612 {
613 	struct sh_eth_private *mdp = netdev_priv(ndev);
614 
615 	switch (mdp->speed) {
616 	case 10: /* 10BASE */
617 		sh_eth_write(ndev, 0x00000000, GECMR);
618 		break;
619 	case 100:/* 100BASE */
620 		sh_eth_write(ndev, 0x00000010, GECMR);
621 		break;
622 	case 1000: /* 1000BASE */
623 		sh_eth_write(ndev, 0x00000020, GECMR);
624 		break;
625 	default:
626 		break;
627 	}
628 }
629 
630 /* SH7757(GETHERC) */
631 static struct sh_eth_cpu_data sh7757_data_giga = {
632 	.chip_reset	= sh_eth_chip_reset_giga,
633 	.set_duplex	= sh_eth_set_duplex,
634 	.set_rate	= sh_eth_set_rate_giga,
635 
636 	.register_type	= SH_ETH_REG_GIGABIT,
637 
638 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
639 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
640 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
641 
642 	.tx_check	= EESR_TC1 | EESR_FTC,
643 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
644 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
645 			  EESR_TDE | EESR_ECI,
646 	.fdr_value	= 0x0000072f,
647 
648 	.irq_flags	= IRQF_SHARED,
649 	.apr		= 1,
650 	.mpr		= 1,
651 	.tpauser	= 1,
652 	.bculr		= 1,
653 	.hw_swap	= 1,
654 	.rpadir		= 1,
655 	.rpadir_value   = 2 << 16,
656 	.no_trimd	= 1,
657 	.no_ade		= 1,
658 	.tsu		= 1,
659 };
660 
661 static void sh_eth_chip_reset(struct net_device *ndev)
662 {
663 	struct sh_eth_private *mdp = netdev_priv(ndev);
664 
665 	/* reset device */
666 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
667 	mdelay(1);
668 }
669 
670 static void sh_eth_set_rate_gether(struct net_device *ndev)
671 {
672 	struct sh_eth_private *mdp = netdev_priv(ndev);
673 
674 	switch (mdp->speed) {
675 	case 10: /* 10BASE */
676 		sh_eth_write(ndev, GECMR_10, GECMR);
677 		break;
678 	case 100:/* 100BASE */
679 		sh_eth_write(ndev, GECMR_100, GECMR);
680 		break;
681 	case 1000: /* 1000BASE */
682 		sh_eth_write(ndev, GECMR_1000, GECMR);
683 		break;
684 	default:
685 		break;
686 	}
687 }
688 
689 /* SH7734 */
690 static struct sh_eth_cpu_data sh7734_data = {
691 	.chip_reset	= sh_eth_chip_reset,
692 	.set_duplex	= sh_eth_set_duplex,
693 	.set_rate	= sh_eth_set_rate_gether,
694 
695 	.register_type	= SH_ETH_REG_GIGABIT,
696 
697 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
698 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
699 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
700 
701 	.tx_check	= EESR_TC1 | EESR_FTC,
702 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
703 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
704 			  EESR_TDE | EESR_ECI,
705 
706 	.apr		= 1,
707 	.mpr		= 1,
708 	.tpauser	= 1,
709 	.bculr		= 1,
710 	.hw_swap	= 1,
711 	.no_trimd	= 1,
712 	.no_ade		= 1,
713 	.tsu		= 1,
714 	.hw_crc		= 1,
715 	.select_mii	= 1,
716 };
717 
718 /* SH7763 */
719 static struct sh_eth_cpu_data sh7763_data = {
720 	.chip_reset	= sh_eth_chip_reset,
721 	.set_duplex	= sh_eth_set_duplex,
722 	.set_rate	= sh_eth_set_rate_gether,
723 
724 	.register_type	= SH_ETH_REG_GIGABIT,
725 
726 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
727 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
728 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
729 
730 	.tx_check	= EESR_TC1 | EESR_FTC,
731 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
732 			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
733 			  EESR_ECI,
734 
735 	.apr		= 1,
736 	.mpr		= 1,
737 	.tpauser	= 1,
738 	.bculr		= 1,
739 	.hw_swap	= 1,
740 	.no_trimd	= 1,
741 	.no_ade		= 1,
742 	.tsu		= 1,
743 	.irq_flags	= IRQF_SHARED,
744 };
745 
746 static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
747 {
748 	struct sh_eth_private *mdp = netdev_priv(ndev);
749 
750 	/* reset device */
751 	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
752 	mdelay(1);
753 
754 	sh_eth_select_mii(ndev);
755 }
756 
757 /* R8A7740 */
758 static struct sh_eth_cpu_data r8a7740_data = {
759 	.chip_reset	= sh_eth_chip_reset_r8a7740,
760 	.set_duplex	= sh_eth_set_duplex,
761 	.set_rate	= sh_eth_set_rate_gether,
762 
763 	.register_type	= SH_ETH_REG_GIGABIT,
764 
765 	.ecsr_value	= ECSR_ICD | ECSR_MPD,
766 	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
767 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
768 
769 	.tx_check	= EESR_TC1 | EESR_FTC,
770 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
771 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
772 			  EESR_TDE | EESR_ECI,
773 	.fdr_value	= 0x0000070f,
774 
775 	.apr		= 1,
776 	.mpr		= 1,
777 	.tpauser	= 1,
778 	.bculr		= 1,
779 	.hw_swap	= 1,
780 	.rpadir		= 1,
781 	.rpadir_value   = 2 << 16,
782 	.no_trimd	= 1,
783 	.no_ade		= 1,
784 	.tsu		= 1,
785 	.select_mii	= 1,
786 	.shift_rd0	= 1,
787 };
788 
789 /* R7S72100 */
790 static struct sh_eth_cpu_data r7s72100_data = {
791 	.chip_reset	= sh_eth_chip_reset,
792 	.set_duplex	= sh_eth_set_duplex,
793 
794 	.register_type	= SH_ETH_REG_FAST_RZ,
795 
796 	.ecsr_value	= ECSR_ICD,
797 	.ecsipr_value	= ECSIPR_ICDIP,
798 	.eesipr_value	= 0xff7f009f,
799 
800 	.tx_check	= EESR_TC1 | EESR_FTC,
801 	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
802 			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
803 			  EESR_TDE | EESR_ECI,
804 	.fdr_value	= 0x0000070f,
805 
806 	.no_psr		= 1,
807 	.apr		= 1,
808 	.mpr		= 1,
809 	.tpauser	= 1,
810 	.hw_swap	= 1,
811 	.rpadir		= 1,
812 	.rpadir_value   = 2 << 16,
813 	.no_trimd	= 1,
814 	.no_ade		= 1,
815 	.hw_crc		= 1,
816 	.tsu		= 1,
817 	.shift_rd0	= 1,
818 };
819 
820 static struct sh_eth_cpu_data sh7619_data = {
821 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
822 
823 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
824 
825 	.apr		= 1,
826 	.mpr		= 1,
827 	.tpauser	= 1,
828 	.hw_swap	= 1,
829 };
830 
831 static struct sh_eth_cpu_data sh771x_data = {
832 	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
833 
834 	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
835 	.tsu		= 1,
836 };
837 
838 static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
839 {
840 	if (!cd->ecsr_value)
841 		cd->ecsr_value = DEFAULT_ECSR_INIT;
842 
843 	if (!cd->ecsipr_value)
844 		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
845 
846 	if (!cd->fcftr_value)
847 		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
848 				  DEFAULT_FIFO_F_D_RFD;
849 
850 	if (!cd->fdr_value)
851 		cd->fdr_value = DEFAULT_FDR_INIT;
852 
853 	if (!cd->tx_check)
854 		cd->tx_check = DEFAULT_TX_CHECK;
855 
856 	if (!cd->eesr_err_check)
857 		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
858 }
859 
860 static int sh_eth_check_reset(struct net_device *ndev)
861 {
862 	int ret = 0;
863 	int cnt = 100;
864 
865 	while (cnt > 0) {
866 		if (!(sh_eth_read(ndev, EDMR) & 0x3))
867 			break;
868 		mdelay(1);
869 		cnt--;
870 	}
871 	if (cnt <= 0) {
872 		netdev_err(ndev, "Device reset failed\n");
873 		ret = -ETIMEDOUT;
874 	}
875 	return ret;
876 }
877 
878 static int sh_eth_reset(struct net_device *ndev)
879 {
880 	struct sh_eth_private *mdp = netdev_priv(ndev);
881 	int ret = 0;
882 
883 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
884 		sh_eth_write(ndev, EDSR_ENALL, EDSR);
885 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
886 			     EDMR);
887 
888 		ret = sh_eth_check_reset(ndev);
889 		if (ret)
890 			return ret;
891 
892 		/* Table Init */
893 		sh_eth_write(ndev, 0x0, TDLAR);
894 		sh_eth_write(ndev, 0x0, TDFAR);
895 		sh_eth_write(ndev, 0x0, TDFXR);
896 		sh_eth_write(ndev, 0x0, TDFFR);
897 		sh_eth_write(ndev, 0x0, RDLAR);
898 		sh_eth_write(ndev, 0x0, RDFAR);
899 		sh_eth_write(ndev, 0x0, RDFXR);
900 		sh_eth_write(ndev, 0x0, RDFFR);
901 
902 		/* Reset HW CRC register */
903 		if (mdp->cd->hw_crc)
904 			sh_eth_write(ndev, 0x0, CSMR);
905 
906 		/* Select MII mode */
907 		if (mdp->cd->select_mii)
908 			sh_eth_select_mii(ndev);
909 	} else {
910 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
911 			     EDMR);
912 		mdelay(3);
913 		sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
914 			     EDMR);
915 	}
916 
917 	return ret;
918 }
919 
920 #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
921 static void sh_eth_set_receive_align(struct sk_buff *skb)
922 {
923 	int reserve;
924 
925 	reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
926 	if (reserve)
927 		skb_reserve(skb, reserve);
928 }
929 #else
930 static void sh_eth_set_receive_align(struct sk_buff *skb)
931 {
932 	skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
933 }
934 #endif
935 
936 
937 /* CPU <-> EDMAC endian convert */
938 static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
939 {
940 	switch (mdp->edmac_endian) {
941 	case EDMAC_LITTLE_ENDIAN:
942 		return cpu_to_le32(x);
943 	case EDMAC_BIG_ENDIAN:
944 		return cpu_to_be32(x);
945 	}
946 	return x;
947 }
948 
949 static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
950 {
951 	switch (mdp->edmac_endian) {
952 	case EDMAC_LITTLE_ENDIAN:
953 		return le32_to_cpu(x);
954 	case EDMAC_BIG_ENDIAN:
955 		return be32_to_cpu(x);
956 	}
957 	return x;
958 }
959 
960 /* Program the hardware MAC address from dev->dev_addr. */
961 static void update_mac_address(struct net_device *ndev)
962 {
963 	sh_eth_write(ndev,
964 		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
965 		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
966 	sh_eth_write(ndev,
967 		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
968 }
969 
970 /* Get MAC address from SuperH MAC address register
971  *
972  * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
973  * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
974  * When you want use this device, you must set MAC address in bootloader.
975  *
976  */
977 static void read_mac_address(struct net_device *ndev, unsigned char *mac)
978 {
979 	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
980 		memcpy(ndev->dev_addr, mac, ETH_ALEN);
981 	} else {
982 		ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
983 		ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
984 		ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
985 		ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
986 		ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
987 		ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
988 	}
989 }
990 
991 static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
992 {
993 	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
994 		return EDTRR_TRNS_GETHER;
995 	else
996 		return EDTRR_TRNS_ETHER;
997 }
998 
999 struct bb_info {
1000 	void (*set_gate)(void *addr);
1001 	struct mdiobb_ctrl ctrl;
1002 	void *addr;
1003 	u32 mmd_msk;/* MMD */
1004 	u32 mdo_msk;
1005 	u32 mdi_msk;
1006 	u32 mdc_msk;
1007 };
1008 
1009 /* PHY bit set */
1010 static void bb_set(void *addr, u32 msk)
1011 {
1012 	iowrite32(ioread32(addr) | msk, addr);
1013 }
1014 
1015 /* PHY bit clear */
1016 static void bb_clr(void *addr, u32 msk)
1017 {
1018 	iowrite32((ioread32(addr) & ~msk), addr);
1019 }
1020 
1021 /* PHY bit read */
1022 static int bb_read(void *addr, u32 msk)
1023 {
1024 	return (ioread32(addr) & msk) != 0;
1025 }
1026 
1027 /* Data I/O pin control */
1028 static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1029 {
1030 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1031 
1032 	if (bitbang->set_gate)
1033 		bitbang->set_gate(bitbang->addr);
1034 
1035 	if (bit)
1036 		bb_set(bitbang->addr, bitbang->mmd_msk);
1037 	else
1038 		bb_clr(bitbang->addr, bitbang->mmd_msk);
1039 }
1040 
1041 /* Set bit data*/
1042 static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1043 {
1044 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1045 
1046 	if (bitbang->set_gate)
1047 		bitbang->set_gate(bitbang->addr);
1048 
1049 	if (bit)
1050 		bb_set(bitbang->addr, bitbang->mdo_msk);
1051 	else
1052 		bb_clr(bitbang->addr, bitbang->mdo_msk);
1053 }
1054 
1055 /* Get bit data*/
1056 static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1057 {
1058 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1059 
1060 	if (bitbang->set_gate)
1061 		bitbang->set_gate(bitbang->addr);
1062 
1063 	return bb_read(bitbang->addr, bitbang->mdi_msk);
1064 }
1065 
1066 /* MDC pin control */
1067 static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1068 {
1069 	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1070 
1071 	if (bitbang->set_gate)
1072 		bitbang->set_gate(bitbang->addr);
1073 
1074 	if (bit)
1075 		bb_set(bitbang->addr, bitbang->mdc_msk);
1076 	else
1077 		bb_clr(bitbang->addr, bitbang->mdc_msk);
1078 }
1079 
1080 /* mdio bus control struct */
1081 static struct mdiobb_ops bb_ops = {
1082 	.owner = THIS_MODULE,
1083 	.set_mdc = sh_mdc_ctrl,
1084 	.set_mdio_dir = sh_mmd_ctrl,
1085 	.set_mdio_data = sh_set_mdio,
1086 	.get_mdio_data = sh_get_mdio,
1087 };
1088 
1089 /* free skb and descriptor buffer */
1090 static void sh_eth_ring_free(struct net_device *ndev)
1091 {
1092 	struct sh_eth_private *mdp = netdev_priv(ndev);
1093 	int i;
1094 
1095 	/* Free Rx skb ringbuffer */
1096 	if (mdp->rx_skbuff) {
1097 		for (i = 0; i < mdp->num_rx_ring; i++)
1098 			dev_kfree_skb(mdp->rx_skbuff[i]);
1099 	}
1100 	kfree(mdp->rx_skbuff);
1101 	mdp->rx_skbuff = NULL;
1102 
1103 	/* Free Tx skb ringbuffer */
1104 	if (mdp->tx_skbuff) {
1105 		for (i = 0; i < mdp->num_tx_ring; i++)
1106 			dev_kfree_skb(mdp->tx_skbuff[i]);
1107 	}
1108 	kfree(mdp->tx_skbuff);
1109 	mdp->tx_skbuff = NULL;
1110 }
1111 
1112 /* format skb and descriptor buffer */
1113 static void sh_eth_ring_format(struct net_device *ndev)
1114 {
1115 	struct sh_eth_private *mdp = netdev_priv(ndev);
1116 	int i;
1117 	struct sk_buff *skb;
1118 	struct sh_eth_rxdesc *rxdesc = NULL;
1119 	struct sh_eth_txdesc *txdesc = NULL;
1120 	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1121 	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1122 
1123 	mdp->cur_rx = 0;
1124 	mdp->cur_tx = 0;
1125 	mdp->dirty_rx = 0;
1126 	mdp->dirty_tx = 0;
1127 
1128 	memset(mdp->rx_ring, 0, rx_ringsize);
1129 
1130 	/* build Rx ring buffer */
1131 	for (i = 0; i < mdp->num_rx_ring; i++) {
1132 		/* skb */
1133 		mdp->rx_skbuff[i] = NULL;
1134 		skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1135 		mdp->rx_skbuff[i] = skb;
1136 		if (skb == NULL)
1137 			break;
1138 		dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1139 			       DMA_FROM_DEVICE);
1140 		sh_eth_set_receive_align(skb);
1141 
1142 		/* RX descriptor */
1143 		rxdesc = &mdp->rx_ring[i];
1144 		rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1145 		rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1146 
1147 		/* The size of the buffer is 16 byte boundary. */
1148 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1149 		/* Rx descriptor address set */
1150 		if (i == 0) {
1151 			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1152 			if (sh_eth_is_gether(mdp) ||
1153 			    sh_eth_is_rz_fast_ether(mdp))
1154 				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1155 		}
1156 	}
1157 
1158 	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1159 
1160 	/* Mark the last entry as wrapping the ring. */
1161 	rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
1162 
1163 	memset(mdp->tx_ring, 0, tx_ringsize);
1164 
1165 	/* build Tx ring buffer */
1166 	for (i = 0; i < mdp->num_tx_ring; i++) {
1167 		mdp->tx_skbuff[i] = NULL;
1168 		txdesc = &mdp->tx_ring[i];
1169 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1170 		txdesc->buffer_length = 0;
1171 		if (i == 0) {
1172 			/* Tx descriptor address set */
1173 			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1174 			if (sh_eth_is_gether(mdp) ||
1175 			    sh_eth_is_rz_fast_ether(mdp))
1176 				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1177 		}
1178 	}
1179 
1180 	txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1181 }
1182 
1183 /* Get skb and descriptor buffer */
1184 static int sh_eth_ring_init(struct net_device *ndev)
1185 {
1186 	struct sh_eth_private *mdp = netdev_priv(ndev);
1187 	int rx_ringsize, tx_ringsize, ret = 0;
1188 
1189 	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1190 	 * card needs room to do 8 byte alignment, +2 so we can reserve
1191 	 * the first 2 bytes, and +16 gets room for the status word from the
1192 	 * card.
1193 	 */
1194 	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1195 			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1196 	if (mdp->cd->rpadir)
1197 		mdp->rx_buf_sz += NET_IP_ALIGN;
1198 
1199 	/* Allocate RX and TX skb rings */
1200 	mdp->rx_skbuff = kmalloc_array(mdp->num_rx_ring,
1201 				       sizeof(*mdp->rx_skbuff), GFP_KERNEL);
1202 	if (!mdp->rx_skbuff) {
1203 		ret = -ENOMEM;
1204 		return ret;
1205 	}
1206 
1207 	mdp->tx_skbuff = kmalloc_array(mdp->num_tx_ring,
1208 				       sizeof(*mdp->tx_skbuff), GFP_KERNEL);
1209 	if (!mdp->tx_skbuff) {
1210 		ret = -ENOMEM;
1211 		goto skb_ring_free;
1212 	}
1213 
1214 	/* Allocate all Rx descriptors. */
1215 	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1216 	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1217 					  GFP_KERNEL);
1218 	if (!mdp->rx_ring) {
1219 		ret = -ENOMEM;
1220 		goto desc_ring_free;
1221 	}
1222 
1223 	mdp->dirty_rx = 0;
1224 
1225 	/* Allocate all Tx descriptors. */
1226 	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1227 	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1228 					  GFP_KERNEL);
1229 	if (!mdp->tx_ring) {
1230 		ret = -ENOMEM;
1231 		goto desc_ring_free;
1232 	}
1233 	return ret;
1234 
1235 desc_ring_free:
1236 	/* free DMA buffer */
1237 	dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
1238 
1239 skb_ring_free:
1240 	/* Free Rx and Tx skb ring buffer */
1241 	sh_eth_ring_free(ndev);
1242 	mdp->tx_ring = NULL;
1243 	mdp->rx_ring = NULL;
1244 
1245 	return ret;
1246 }
1247 
1248 static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp)
1249 {
1250 	int ringsize;
1251 
1252 	if (mdp->rx_ring) {
1253 		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1254 		dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1255 				  mdp->rx_desc_dma);
1256 		mdp->rx_ring = NULL;
1257 	}
1258 
1259 	if (mdp->tx_ring) {
1260 		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1261 		dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1262 				  mdp->tx_desc_dma);
1263 		mdp->tx_ring = NULL;
1264 	}
1265 }
1266 
1267 static int sh_eth_dev_init(struct net_device *ndev, bool start)
1268 {
1269 	int ret = 0;
1270 	struct sh_eth_private *mdp = netdev_priv(ndev);
1271 	u32 val;
1272 
1273 	/* Soft Reset */
1274 	ret = sh_eth_reset(ndev);
1275 	if (ret)
1276 		return ret;
1277 
1278 	if (mdp->cd->rmiimode)
1279 		sh_eth_write(ndev, 0x1, RMIIMODE);
1280 
1281 	/* Descriptor format */
1282 	sh_eth_ring_format(ndev);
1283 	if (mdp->cd->rpadir)
1284 		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1285 
1286 	/* all sh_eth int mask */
1287 	sh_eth_write(ndev, 0, EESIPR);
1288 
1289 #if defined(__LITTLE_ENDIAN)
1290 	if (mdp->cd->hw_swap)
1291 		sh_eth_write(ndev, EDMR_EL, EDMR);
1292 	else
1293 #endif
1294 		sh_eth_write(ndev, 0, EDMR);
1295 
1296 	/* FIFO size set */
1297 	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1298 	sh_eth_write(ndev, 0, TFTR);
1299 
1300 	/* Frame recv control (enable multiple-packets per rx irq) */
1301 	sh_eth_write(ndev, RMCR_RNC, RMCR);
1302 
1303 	sh_eth_write(ndev, DESC_I_RINT8 | DESC_I_RINT5 | DESC_I_TINT2, TRSCER);
1304 
1305 	if (mdp->cd->bculr)
1306 		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1307 
1308 	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1309 
1310 	if (!mdp->cd->no_trimd)
1311 		sh_eth_write(ndev, 0, TRIMD);
1312 
1313 	/* Recv frame limit set register */
1314 	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1315 		     RFLR);
1316 
1317 	sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
1318 	if (start)
1319 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1320 
1321 	/* PAUSE Prohibition */
1322 	val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
1323 		ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
1324 
1325 	sh_eth_write(ndev, val, ECMR);
1326 
1327 	if (mdp->cd->set_rate)
1328 		mdp->cd->set_rate(ndev);
1329 
1330 	/* E-MAC Status Register clear */
1331 	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1332 
1333 	/* E-MAC Interrupt Enable register */
1334 	if (start)
1335 		sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1336 
1337 	/* Set MAC address */
1338 	update_mac_address(ndev);
1339 
1340 	/* mask reset */
1341 	if (mdp->cd->apr)
1342 		sh_eth_write(ndev, APR_AP, APR);
1343 	if (mdp->cd->mpr)
1344 		sh_eth_write(ndev, MPR_MP, MPR);
1345 	if (mdp->cd->tpauser)
1346 		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1347 
1348 	if (start) {
1349 		/* Setting the Rx mode will start the Rx process. */
1350 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1351 
1352 		netif_start_queue(ndev);
1353 	}
1354 
1355 	return ret;
1356 }
1357 
1358 /* free Tx skb function */
1359 static int sh_eth_txfree(struct net_device *ndev)
1360 {
1361 	struct sh_eth_private *mdp = netdev_priv(ndev);
1362 	struct sh_eth_txdesc *txdesc;
1363 	int free_num = 0;
1364 	int entry = 0;
1365 
1366 	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1367 		entry = mdp->dirty_tx % mdp->num_tx_ring;
1368 		txdesc = &mdp->tx_ring[entry];
1369 		if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
1370 			break;
1371 		/* Free the original skb. */
1372 		if (mdp->tx_skbuff[entry]) {
1373 			dma_unmap_single(&ndev->dev, txdesc->addr,
1374 					 txdesc->buffer_length, DMA_TO_DEVICE);
1375 			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1376 			mdp->tx_skbuff[entry] = NULL;
1377 			free_num++;
1378 		}
1379 		txdesc->status = cpu_to_edmac(mdp, TD_TFP);
1380 		if (entry >= mdp->num_tx_ring - 1)
1381 			txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
1382 
1383 		ndev->stats.tx_packets++;
1384 		ndev->stats.tx_bytes += txdesc->buffer_length;
1385 	}
1386 	return free_num;
1387 }
1388 
1389 /* Packet receive function */
1390 static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1391 {
1392 	struct sh_eth_private *mdp = netdev_priv(ndev);
1393 	struct sh_eth_rxdesc *rxdesc;
1394 
1395 	int entry = mdp->cur_rx % mdp->num_rx_ring;
1396 	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1397 	struct sk_buff *skb;
1398 	u16 pkt_len = 0;
1399 	u32 desc_status;
1400 
1401 	rxdesc = &mdp->rx_ring[entry];
1402 	while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
1403 		desc_status = edmac_to_cpu(mdp, rxdesc->status);
1404 		pkt_len = rxdesc->frame_length;
1405 
1406 		if (--boguscnt < 0)
1407 			break;
1408 
1409 		if (*quota <= 0)
1410 			break;
1411 
1412 		(*quota)--;
1413 
1414 		if (!(desc_status & RDFEND))
1415 			ndev->stats.rx_length_errors++;
1416 
1417 		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1418 		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1419 		 * bit 0. However, in case of the R8A7740, R8A779x, and
1420 		 * R7S72100 the RFS bits are from bit 25 to bit 16. So, the
1421 		 * driver needs right shifting by 16.
1422 		 */
1423 		if (mdp->cd->shift_rd0)
1424 			desc_status >>= 16;
1425 
1426 		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1427 				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1428 			ndev->stats.rx_errors++;
1429 			if (desc_status & RD_RFS1)
1430 				ndev->stats.rx_crc_errors++;
1431 			if (desc_status & RD_RFS2)
1432 				ndev->stats.rx_frame_errors++;
1433 			if (desc_status & RD_RFS3)
1434 				ndev->stats.rx_length_errors++;
1435 			if (desc_status & RD_RFS4)
1436 				ndev->stats.rx_length_errors++;
1437 			if (desc_status & RD_RFS6)
1438 				ndev->stats.rx_missed_errors++;
1439 			if (desc_status & RD_RFS10)
1440 				ndev->stats.rx_over_errors++;
1441 		} else {
1442 			if (!mdp->cd->hw_swap)
1443 				sh_eth_soft_swap(
1444 					phys_to_virt(ALIGN(rxdesc->addr, 4)),
1445 					pkt_len + 2);
1446 			skb = mdp->rx_skbuff[entry];
1447 			mdp->rx_skbuff[entry] = NULL;
1448 			if (mdp->cd->rpadir)
1449 				skb_reserve(skb, NET_IP_ALIGN);
1450 			dma_sync_single_for_cpu(&ndev->dev, rxdesc->addr,
1451 						mdp->rx_buf_sz,
1452 						DMA_FROM_DEVICE);
1453 			skb_put(skb, pkt_len);
1454 			skb->protocol = eth_type_trans(skb, ndev);
1455 			netif_receive_skb(skb);
1456 			ndev->stats.rx_packets++;
1457 			ndev->stats.rx_bytes += pkt_len;
1458 		}
1459 		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1460 		rxdesc = &mdp->rx_ring[entry];
1461 	}
1462 
1463 	/* Refill the Rx ring buffers. */
1464 	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1465 		entry = mdp->dirty_rx % mdp->num_rx_ring;
1466 		rxdesc = &mdp->rx_ring[entry];
1467 		/* The size of the buffer is 16 byte boundary. */
1468 		rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
1469 
1470 		if (mdp->rx_skbuff[entry] == NULL) {
1471 			skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
1472 			mdp->rx_skbuff[entry] = skb;
1473 			if (skb == NULL)
1474 				break;	/* Better luck next round. */
1475 			dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
1476 				       DMA_FROM_DEVICE);
1477 			sh_eth_set_receive_align(skb);
1478 
1479 			skb_checksum_none_assert(skb);
1480 			rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
1481 		}
1482 		if (entry >= mdp->num_rx_ring - 1)
1483 			rxdesc->status |=
1484 				cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
1485 		else
1486 			rxdesc->status |=
1487 				cpu_to_edmac(mdp, RD_RACT | RD_RFP);
1488 	}
1489 
1490 	/* Restart Rx engine if stopped. */
1491 	/* If we don't need to check status, don't. -KDU */
1492 	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1493 		/* fix the values for the next receiving if RDE is set */
1494 		if (intr_status & EESR_RDE) {
1495 			u32 count = (sh_eth_read(ndev, RDFAR) -
1496 				     sh_eth_read(ndev, RDLAR)) >> 4;
1497 
1498 			mdp->cur_rx = count;
1499 			mdp->dirty_rx = count;
1500 		}
1501 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1502 	}
1503 
1504 	return *quota <= 0;
1505 }
1506 
1507 static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1508 {
1509 	/* disable tx and rx */
1510 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
1511 		~(ECMR_RE | ECMR_TE), ECMR);
1512 }
1513 
1514 static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1515 {
1516 	/* enable tx and rx */
1517 	sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
1518 		(ECMR_RE | ECMR_TE), ECMR);
1519 }
1520 
1521 /* error control function */
1522 static void sh_eth_error(struct net_device *ndev, int intr_status)
1523 {
1524 	struct sh_eth_private *mdp = netdev_priv(ndev);
1525 	u32 felic_stat;
1526 	u32 link_stat;
1527 	u32 mask;
1528 
1529 	if (intr_status & EESR_ECI) {
1530 		felic_stat = sh_eth_read(ndev, ECSR);
1531 		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1532 		if (felic_stat & ECSR_ICD)
1533 			ndev->stats.tx_carrier_errors++;
1534 		if (felic_stat & ECSR_LCHNG) {
1535 			/* Link Changed */
1536 			if (mdp->cd->no_psr || mdp->no_ether_link) {
1537 				goto ignore_link;
1538 			} else {
1539 				link_stat = (sh_eth_read(ndev, PSR));
1540 				if (mdp->ether_link_active_low)
1541 					link_stat = ~link_stat;
1542 			}
1543 			if (!(link_stat & PHY_ST_LINK)) {
1544 				sh_eth_rcv_snd_disable(ndev);
1545 			} else {
1546 				/* Link Up */
1547 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
1548 						   ~DMAC_M_ECI, EESIPR);
1549 				/* clear int */
1550 				sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
1551 					     ECSR);
1552 				sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
1553 						   DMAC_M_ECI, EESIPR);
1554 				/* enable tx and rx */
1555 				sh_eth_rcv_snd_enable(ndev);
1556 			}
1557 		}
1558 	}
1559 
1560 ignore_link:
1561 	if (intr_status & EESR_TWB) {
1562 		/* Unused write back interrupt */
1563 		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1564 			ndev->stats.tx_aborted_errors++;
1565 			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1566 		}
1567 	}
1568 
1569 	if (intr_status & EESR_RABT) {
1570 		/* Receive Abort int */
1571 		if (intr_status & EESR_RFRMER) {
1572 			/* Receive Frame Overflow int */
1573 			ndev->stats.rx_frame_errors++;
1574 			netif_err(mdp, rx_err, ndev, "Receive Abort\n");
1575 		}
1576 	}
1577 
1578 	if (intr_status & EESR_TDE) {
1579 		/* Transmit Descriptor Empty int */
1580 		ndev->stats.tx_fifo_errors++;
1581 		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1582 	}
1583 
1584 	if (intr_status & EESR_TFE) {
1585 		/* FIFO under flow */
1586 		ndev->stats.tx_fifo_errors++;
1587 		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1588 	}
1589 
1590 	if (intr_status & EESR_RDE) {
1591 		/* Receive Descriptor Empty int */
1592 		ndev->stats.rx_over_errors++;
1593 		netif_err(mdp, rx_err, ndev, "Receive Descriptor Empty\n");
1594 	}
1595 
1596 	if (intr_status & EESR_RFE) {
1597 		/* Receive FIFO Overflow int */
1598 		ndev->stats.rx_fifo_errors++;
1599 		netif_err(mdp, rx_err, ndev, "Receive FIFO Overflow\n");
1600 	}
1601 
1602 	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1603 		/* Address Error */
1604 		ndev->stats.tx_fifo_errors++;
1605 		netif_err(mdp, tx_err, ndev, "Address Error\n");
1606 	}
1607 
1608 	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1609 	if (mdp->cd->no_ade)
1610 		mask &= ~EESR_ADE;
1611 	if (intr_status & mask) {
1612 		/* Tx error */
1613 		u32 edtrr = sh_eth_read(ndev, EDTRR);
1614 
1615 		/* dmesg */
1616 		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1617 			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1618 			   (u32)ndev->state, edtrr);
1619 		/* dirty buffer free */
1620 		sh_eth_txfree(ndev);
1621 
1622 		/* SH7712 BUG */
1623 		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1624 			/* tx dma start */
1625 			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1626 		}
1627 		/* wakeup */
1628 		netif_wake_queue(ndev);
1629 	}
1630 }
1631 
1632 static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1633 {
1634 	struct net_device *ndev = netdev;
1635 	struct sh_eth_private *mdp = netdev_priv(ndev);
1636 	struct sh_eth_cpu_data *cd = mdp->cd;
1637 	irqreturn_t ret = IRQ_NONE;
1638 	unsigned long intr_status, intr_enable;
1639 
1640 	spin_lock(&mdp->lock);
1641 
1642 	/* Get interrupt status */
1643 	intr_status = sh_eth_read(ndev, EESR);
1644 	/* Mask it with the interrupt mask, forcing ECI interrupt to be always
1645 	 * enabled since it's the one that  comes thru regardless of the mask,
1646 	 * and we need to fully handle it in sh_eth_error() in order to quench
1647 	 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1648 	 */
1649 	intr_enable = sh_eth_read(ndev, EESIPR);
1650 	intr_status &= intr_enable | DMAC_M_ECI;
1651 	if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1652 		ret = IRQ_HANDLED;
1653 	else
1654 		goto other_irq;
1655 
1656 	if (intr_status & EESR_RX_CHECK) {
1657 		if (napi_schedule_prep(&mdp->napi)) {
1658 			/* Mask Rx interrupts */
1659 			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1660 				     EESIPR);
1661 			__napi_schedule(&mdp->napi);
1662 		} else {
1663 			netdev_warn(ndev,
1664 				    "ignoring interrupt, status 0x%08lx, mask 0x%08lx.\n",
1665 				    intr_status, intr_enable);
1666 		}
1667 	}
1668 
1669 	/* Tx Check */
1670 	if (intr_status & cd->tx_check) {
1671 		/* Clear Tx interrupts */
1672 		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1673 
1674 		sh_eth_txfree(ndev);
1675 		netif_wake_queue(ndev);
1676 	}
1677 
1678 	if (intr_status & cd->eesr_err_check) {
1679 		/* Clear error interrupts */
1680 		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1681 
1682 		sh_eth_error(ndev, intr_status);
1683 	}
1684 
1685 other_irq:
1686 	spin_unlock(&mdp->lock);
1687 
1688 	return ret;
1689 }
1690 
1691 static int sh_eth_poll(struct napi_struct *napi, int budget)
1692 {
1693 	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1694 						  napi);
1695 	struct net_device *ndev = napi->dev;
1696 	int quota = budget;
1697 	unsigned long intr_status;
1698 
1699 	for (;;) {
1700 		intr_status = sh_eth_read(ndev, EESR);
1701 		if (!(intr_status & EESR_RX_CHECK))
1702 			break;
1703 		/* Clear Rx interrupts */
1704 		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1705 
1706 		if (sh_eth_rx(ndev, intr_status, &quota))
1707 			goto out;
1708 	}
1709 
1710 	napi_complete(napi);
1711 
1712 	/* Reenable Rx interrupts */
1713 	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1714 out:
1715 	return budget - quota;
1716 }
1717 
1718 /* PHY state control function */
1719 static void sh_eth_adjust_link(struct net_device *ndev)
1720 {
1721 	struct sh_eth_private *mdp = netdev_priv(ndev);
1722 	struct phy_device *phydev = mdp->phydev;
1723 	int new_state = 0;
1724 
1725 	if (phydev->link) {
1726 		if (phydev->duplex != mdp->duplex) {
1727 			new_state = 1;
1728 			mdp->duplex = phydev->duplex;
1729 			if (mdp->cd->set_duplex)
1730 				mdp->cd->set_duplex(ndev);
1731 		}
1732 
1733 		if (phydev->speed != mdp->speed) {
1734 			new_state = 1;
1735 			mdp->speed = phydev->speed;
1736 			if (mdp->cd->set_rate)
1737 				mdp->cd->set_rate(ndev);
1738 		}
1739 		if (!mdp->link) {
1740 			sh_eth_write(ndev,
1741 				     sh_eth_read(ndev, ECMR) & ~ECMR_TXF,
1742 				     ECMR);
1743 			new_state = 1;
1744 			mdp->link = phydev->link;
1745 			if (mdp->cd->no_psr || mdp->no_ether_link)
1746 				sh_eth_rcv_snd_enable(ndev);
1747 		}
1748 	} else if (mdp->link) {
1749 		new_state = 1;
1750 		mdp->link = 0;
1751 		mdp->speed = 0;
1752 		mdp->duplex = -1;
1753 		if (mdp->cd->no_psr || mdp->no_ether_link)
1754 			sh_eth_rcv_snd_disable(ndev);
1755 	}
1756 
1757 	if (new_state && netif_msg_link(mdp))
1758 		phy_print_status(phydev);
1759 }
1760 
1761 /* PHY init function */
1762 static int sh_eth_phy_init(struct net_device *ndev)
1763 {
1764 	struct device_node *np = ndev->dev.parent->of_node;
1765 	struct sh_eth_private *mdp = netdev_priv(ndev);
1766 	struct phy_device *phydev = NULL;
1767 
1768 	mdp->link = 0;
1769 	mdp->speed = 0;
1770 	mdp->duplex = -1;
1771 
1772 	/* Try connect to PHY */
1773 	if (np) {
1774 		struct device_node *pn;
1775 
1776 		pn = of_parse_phandle(np, "phy-handle", 0);
1777 		phydev = of_phy_connect(ndev, pn,
1778 					sh_eth_adjust_link, 0,
1779 					mdp->phy_interface);
1780 
1781 		if (!phydev)
1782 			phydev = ERR_PTR(-ENOENT);
1783 	} else {
1784 		char phy_id[MII_BUS_ID_SIZE + 3];
1785 
1786 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1787 			 mdp->mii_bus->id, mdp->phy_id);
1788 
1789 		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1790 				     mdp->phy_interface);
1791 	}
1792 
1793 	if (IS_ERR(phydev)) {
1794 		netdev_err(ndev, "failed to connect PHY\n");
1795 		return PTR_ERR(phydev);
1796 	}
1797 
1798 	netdev_info(ndev, "attached PHY %d (IRQ %d) to driver %s\n",
1799 		    phydev->addr, phydev->irq, phydev->drv->name);
1800 
1801 	mdp->phydev = phydev;
1802 
1803 	return 0;
1804 }
1805 
1806 /* PHY control start function */
1807 static int sh_eth_phy_start(struct net_device *ndev)
1808 {
1809 	struct sh_eth_private *mdp = netdev_priv(ndev);
1810 	int ret;
1811 
1812 	ret = sh_eth_phy_init(ndev);
1813 	if (ret)
1814 		return ret;
1815 
1816 	phy_start(mdp->phydev);
1817 
1818 	return 0;
1819 }
1820 
1821 static int sh_eth_get_settings(struct net_device *ndev,
1822 			       struct ethtool_cmd *ecmd)
1823 {
1824 	struct sh_eth_private *mdp = netdev_priv(ndev);
1825 	unsigned long flags;
1826 	int ret;
1827 
1828 	spin_lock_irqsave(&mdp->lock, flags);
1829 	ret = phy_ethtool_gset(mdp->phydev, ecmd);
1830 	spin_unlock_irqrestore(&mdp->lock, flags);
1831 
1832 	return ret;
1833 }
1834 
1835 static int sh_eth_set_settings(struct net_device *ndev,
1836 			       struct ethtool_cmd *ecmd)
1837 {
1838 	struct sh_eth_private *mdp = netdev_priv(ndev);
1839 	unsigned long flags;
1840 	int ret;
1841 
1842 	spin_lock_irqsave(&mdp->lock, flags);
1843 
1844 	/* disable tx and rx */
1845 	sh_eth_rcv_snd_disable(ndev);
1846 
1847 	ret = phy_ethtool_sset(mdp->phydev, ecmd);
1848 	if (ret)
1849 		goto error_exit;
1850 
1851 	if (ecmd->duplex == DUPLEX_FULL)
1852 		mdp->duplex = 1;
1853 	else
1854 		mdp->duplex = 0;
1855 
1856 	if (mdp->cd->set_duplex)
1857 		mdp->cd->set_duplex(ndev);
1858 
1859 error_exit:
1860 	mdelay(1);
1861 
1862 	/* enable tx and rx */
1863 	sh_eth_rcv_snd_enable(ndev);
1864 
1865 	spin_unlock_irqrestore(&mdp->lock, flags);
1866 
1867 	return ret;
1868 }
1869 
1870 static int sh_eth_nway_reset(struct net_device *ndev)
1871 {
1872 	struct sh_eth_private *mdp = netdev_priv(ndev);
1873 	unsigned long flags;
1874 	int ret;
1875 
1876 	spin_lock_irqsave(&mdp->lock, flags);
1877 	ret = phy_start_aneg(mdp->phydev);
1878 	spin_unlock_irqrestore(&mdp->lock, flags);
1879 
1880 	return ret;
1881 }
1882 
1883 static u32 sh_eth_get_msglevel(struct net_device *ndev)
1884 {
1885 	struct sh_eth_private *mdp = netdev_priv(ndev);
1886 	return mdp->msg_enable;
1887 }
1888 
1889 static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
1890 {
1891 	struct sh_eth_private *mdp = netdev_priv(ndev);
1892 	mdp->msg_enable = value;
1893 }
1894 
1895 static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
1896 	"rx_current", "tx_current",
1897 	"rx_dirty", "tx_dirty",
1898 };
1899 #define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
1900 
1901 static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
1902 {
1903 	switch (sset) {
1904 	case ETH_SS_STATS:
1905 		return SH_ETH_STATS_LEN;
1906 	default:
1907 		return -EOPNOTSUPP;
1908 	}
1909 }
1910 
1911 static void sh_eth_get_ethtool_stats(struct net_device *ndev,
1912 				     struct ethtool_stats *stats, u64 *data)
1913 {
1914 	struct sh_eth_private *mdp = netdev_priv(ndev);
1915 	int i = 0;
1916 
1917 	/* device-specific stats */
1918 	data[i++] = mdp->cur_rx;
1919 	data[i++] = mdp->cur_tx;
1920 	data[i++] = mdp->dirty_rx;
1921 	data[i++] = mdp->dirty_tx;
1922 }
1923 
1924 static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1925 {
1926 	switch (stringset) {
1927 	case ETH_SS_STATS:
1928 		memcpy(data, *sh_eth_gstrings_stats,
1929 		       sizeof(sh_eth_gstrings_stats));
1930 		break;
1931 	}
1932 }
1933 
1934 static void sh_eth_get_ringparam(struct net_device *ndev,
1935 				 struct ethtool_ringparam *ring)
1936 {
1937 	struct sh_eth_private *mdp = netdev_priv(ndev);
1938 
1939 	ring->rx_max_pending = RX_RING_MAX;
1940 	ring->tx_max_pending = TX_RING_MAX;
1941 	ring->rx_pending = mdp->num_rx_ring;
1942 	ring->tx_pending = mdp->num_tx_ring;
1943 }
1944 
1945 static int sh_eth_set_ringparam(struct net_device *ndev,
1946 				struct ethtool_ringparam *ring)
1947 {
1948 	struct sh_eth_private *mdp = netdev_priv(ndev);
1949 	int ret;
1950 
1951 	if (ring->tx_pending > TX_RING_MAX ||
1952 	    ring->rx_pending > RX_RING_MAX ||
1953 	    ring->tx_pending < TX_RING_MIN ||
1954 	    ring->rx_pending < RX_RING_MIN)
1955 		return -EINVAL;
1956 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1957 		return -EINVAL;
1958 
1959 	if (netif_running(ndev)) {
1960 		netif_tx_disable(ndev);
1961 		/* Disable interrupts by clearing the interrupt mask. */
1962 		sh_eth_write(ndev, 0x0000, EESIPR);
1963 		/* Stop the chip's Tx and Rx processes. */
1964 		sh_eth_write(ndev, 0, EDTRR);
1965 		sh_eth_write(ndev, 0, EDRRR);
1966 		synchronize_irq(ndev->irq);
1967 	}
1968 
1969 	/* Free all the skbuffs in the Rx queue. */
1970 	sh_eth_ring_free(ndev);
1971 	/* Free DMA buffer */
1972 	sh_eth_free_dma_buffer(mdp);
1973 
1974 	/* Set new parameters */
1975 	mdp->num_rx_ring = ring->rx_pending;
1976 	mdp->num_tx_ring = ring->tx_pending;
1977 
1978 	ret = sh_eth_ring_init(ndev);
1979 	if (ret < 0) {
1980 		netdev_err(ndev, "%s: sh_eth_ring_init failed.\n", __func__);
1981 		return ret;
1982 	}
1983 	ret = sh_eth_dev_init(ndev, false);
1984 	if (ret < 0) {
1985 		netdev_err(ndev, "%s: sh_eth_dev_init failed.\n", __func__);
1986 		return ret;
1987 	}
1988 
1989 	if (netif_running(ndev)) {
1990 		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1991 		/* Setting the Rx mode will start the Rx process. */
1992 		sh_eth_write(ndev, EDRRR_R, EDRRR);
1993 		netif_wake_queue(ndev);
1994 	}
1995 
1996 	return 0;
1997 }
1998 
1999 static const struct ethtool_ops sh_eth_ethtool_ops = {
2000 	.get_settings	= sh_eth_get_settings,
2001 	.set_settings	= sh_eth_set_settings,
2002 	.nway_reset	= sh_eth_nway_reset,
2003 	.get_msglevel	= sh_eth_get_msglevel,
2004 	.set_msglevel	= sh_eth_set_msglevel,
2005 	.get_link	= ethtool_op_get_link,
2006 	.get_strings	= sh_eth_get_strings,
2007 	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2008 	.get_sset_count     = sh_eth_get_sset_count,
2009 	.get_ringparam	= sh_eth_get_ringparam,
2010 	.set_ringparam	= sh_eth_set_ringparam,
2011 };
2012 
2013 /* network device open function */
2014 static int sh_eth_open(struct net_device *ndev)
2015 {
2016 	int ret = 0;
2017 	struct sh_eth_private *mdp = netdev_priv(ndev);
2018 
2019 	pm_runtime_get_sync(&mdp->pdev->dev);
2020 
2021 	napi_enable(&mdp->napi);
2022 
2023 	ret = request_irq(ndev->irq, sh_eth_interrupt,
2024 			  mdp->cd->irq_flags, ndev->name, ndev);
2025 	if (ret) {
2026 		netdev_err(ndev, "Can not assign IRQ number\n");
2027 		goto out_napi_off;
2028 	}
2029 
2030 	/* Descriptor set */
2031 	ret = sh_eth_ring_init(ndev);
2032 	if (ret)
2033 		goto out_free_irq;
2034 
2035 	/* device init */
2036 	ret = sh_eth_dev_init(ndev, true);
2037 	if (ret)
2038 		goto out_free_irq;
2039 
2040 	/* PHY control start*/
2041 	ret = sh_eth_phy_start(ndev);
2042 	if (ret)
2043 		goto out_free_irq;
2044 
2045 	return ret;
2046 
2047 out_free_irq:
2048 	free_irq(ndev->irq, ndev);
2049 out_napi_off:
2050 	napi_disable(&mdp->napi);
2051 	pm_runtime_put_sync(&mdp->pdev->dev);
2052 	return ret;
2053 }
2054 
2055 /* Timeout function */
2056 static void sh_eth_tx_timeout(struct net_device *ndev)
2057 {
2058 	struct sh_eth_private *mdp = netdev_priv(ndev);
2059 	struct sh_eth_rxdesc *rxdesc;
2060 	int i;
2061 
2062 	netif_stop_queue(ndev);
2063 
2064 	netif_err(mdp, timer, ndev,
2065 		  "transmit timed out, status %8.8x, resetting...\n",
2066 		  (int)sh_eth_read(ndev, EESR));
2067 
2068 	/* tx_errors count up */
2069 	ndev->stats.tx_errors++;
2070 
2071 	/* Free all the skbuffs in the Rx queue. */
2072 	for (i = 0; i < mdp->num_rx_ring; i++) {
2073 		rxdesc = &mdp->rx_ring[i];
2074 		rxdesc->status = 0;
2075 		rxdesc->addr = 0xBADF00D0;
2076 		dev_kfree_skb(mdp->rx_skbuff[i]);
2077 		mdp->rx_skbuff[i] = NULL;
2078 	}
2079 	for (i = 0; i < mdp->num_tx_ring; i++) {
2080 		dev_kfree_skb(mdp->tx_skbuff[i]);
2081 		mdp->tx_skbuff[i] = NULL;
2082 	}
2083 
2084 	/* device init */
2085 	sh_eth_dev_init(ndev, true);
2086 }
2087 
2088 /* Packet transmit function */
2089 static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2090 {
2091 	struct sh_eth_private *mdp = netdev_priv(ndev);
2092 	struct sh_eth_txdesc *txdesc;
2093 	u32 entry;
2094 	unsigned long flags;
2095 
2096 	spin_lock_irqsave(&mdp->lock, flags);
2097 	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2098 		if (!sh_eth_txfree(ndev)) {
2099 			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2100 			netif_stop_queue(ndev);
2101 			spin_unlock_irqrestore(&mdp->lock, flags);
2102 			return NETDEV_TX_BUSY;
2103 		}
2104 	}
2105 	spin_unlock_irqrestore(&mdp->lock, flags);
2106 
2107 	entry = mdp->cur_tx % mdp->num_tx_ring;
2108 	mdp->tx_skbuff[entry] = skb;
2109 	txdesc = &mdp->tx_ring[entry];
2110 	/* soft swap. */
2111 	if (!mdp->cd->hw_swap)
2112 		sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
2113 				 skb->len + 2);
2114 	txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2115 				      DMA_TO_DEVICE);
2116 	if (skb->len < ETH_ZLEN)
2117 		txdesc->buffer_length = ETH_ZLEN;
2118 	else
2119 		txdesc->buffer_length = skb->len;
2120 
2121 	if (entry >= mdp->num_tx_ring - 1)
2122 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
2123 	else
2124 		txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
2125 
2126 	mdp->cur_tx++;
2127 
2128 	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2129 		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2130 
2131 	return NETDEV_TX_OK;
2132 }
2133 
2134 /* device close function */
2135 static int sh_eth_close(struct net_device *ndev)
2136 {
2137 	struct sh_eth_private *mdp = netdev_priv(ndev);
2138 
2139 	netif_stop_queue(ndev);
2140 
2141 	/* Disable interrupts by clearing the interrupt mask. */
2142 	sh_eth_write(ndev, 0x0000, EESIPR);
2143 
2144 	/* Stop the chip's Tx and Rx processes. */
2145 	sh_eth_write(ndev, 0, EDTRR);
2146 	sh_eth_write(ndev, 0, EDRRR);
2147 
2148 	/* PHY Disconnect */
2149 	if (mdp->phydev) {
2150 		phy_stop(mdp->phydev);
2151 		phy_disconnect(mdp->phydev);
2152 	}
2153 
2154 	free_irq(ndev->irq, ndev);
2155 
2156 	napi_disable(&mdp->napi);
2157 
2158 	/* Free all the skbuffs in the Rx queue. */
2159 	sh_eth_ring_free(ndev);
2160 
2161 	/* free DMA buffer */
2162 	sh_eth_free_dma_buffer(mdp);
2163 
2164 	pm_runtime_put_sync(&mdp->pdev->dev);
2165 
2166 	return 0;
2167 }
2168 
2169 static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2170 {
2171 	struct sh_eth_private *mdp = netdev_priv(ndev);
2172 
2173 	if (sh_eth_is_rz_fast_ether(mdp))
2174 		return &ndev->stats;
2175 
2176 	pm_runtime_get_sync(&mdp->pdev->dev);
2177 
2178 	ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
2179 	sh_eth_write(ndev, 0, TROCR);	/* (write clear) */
2180 	ndev->stats.collisions += sh_eth_read(ndev, CDCR);
2181 	sh_eth_write(ndev, 0, CDCR);	/* (write clear) */
2182 	ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
2183 	sh_eth_write(ndev, 0, LCCR);	/* (write clear) */
2184 	if (sh_eth_is_gether(mdp)) {
2185 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
2186 		sh_eth_write(ndev, 0, CERCR);	/* (write clear) */
2187 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
2188 		sh_eth_write(ndev, 0, CEECR);	/* (write clear) */
2189 	} else {
2190 		ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
2191 		sh_eth_write(ndev, 0, CNDCR);	/* (write clear) */
2192 	}
2193 	pm_runtime_put_sync(&mdp->pdev->dev);
2194 
2195 	return &ndev->stats;
2196 }
2197 
2198 /* ioctl to device function */
2199 static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2200 {
2201 	struct sh_eth_private *mdp = netdev_priv(ndev);
2202 	struct phy_device *phydev = mdp->phydev;
2203 
2204 	if (!netif_running(ndev))
2205 		return -EINVAL;
2206 
2207 	if (!phydev)
2208 		return -ENODEV;
2209 
2210 	return phy_mii_ioctl(phydev, rq, cmd);
2211 }
2212 
2213 /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2214 static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2215 					    int entry)
2216 {
2217 	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2218 }
2219 
2220 static u32 sh_eth_tsu_get_post_mask(int entry)
2221 {
2222 	return 0x0f << (28 - ((entry % 8) * 4));
2223 }
2224 
2225 static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2226 {
2227 	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2228 }
2229 
2230 static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2231 					     int entry)
2232 {
2233 	struct sh_eth_private *mdp = netdev_priv(ndev);
2234 	u32 tmp;
2235 	void *reg_offset;
2236 
2237 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2238 	tmp = ioread32(reg_offset);
2239 	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2240 }
2241 
2242 static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2243 					      int entry)
2244 {
2245 	struct sh_eth_private *mdp = netdev_priv(ndev);
2246 	u32 post_mask, ref_mask, tmp;
2247 	void *reg_offset;
2248 
2249 	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2250 	post_mask = sh_eth_tsu_get_post_mask(entry);
2251 	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2252 
2253 	tmp = ioread32(reg_offset);
2254 	iowrite32(tmp & ~post_mask, reg_offset);
2255 
2256 	/* If other port enables, the function returns "true" */
2257 	return tmp & ref_mask;
2258 }
2259 
2260 static int sh_eth_tsu_busy(struct net_device *ndev)
2261 {
2262 	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2263 	struct sh_eth_private *mdp = netdev_priv(ndev);
2264 
2265 	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2266 		udelay(10);
2267 		timeout--;
2268 		if (timeout <= 0) {
2269 			netdev_err(ndev, "%s: timeout\n", __func__);
2270 			return -ETIMEDOUT;
2271 		}
2272 	}
2273 
2274 	return 0;
2275 }
2276 
2277 static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2278 				  const u8 *addr)
2279 {
2280 	u32 val;
2281 
2282 	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2283 	iowrite32(val, reg);
2284 	if (sh_eth_tsu_busy(ndev) < 0)
2285 		return -EBUSY;
2286 
2287 	val = addr[4] << 8 | addr[5];
2288 	iowrite32(val, reg + 4);
2289 	if (sh_eth_tsu_busy(ndev) < 0)
2290 		return -EBUSY;
2291 
2292 	return 0;
2293 }
2294 
2295 static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2296 {
2297 	u32 val;
2298 
2299 	val = ioread32(reg);
2300 	addr[0] = (val >> 24) & 0xff;
2301 	addr[1] = (val >> 16) & 0xff;
2302 	addr[2] = (val >> 8) & 0xff;
2303 	addr[3] = val & 0xff;
2304 	val = ioread32(reg + 4);
2305 	addr[4] = (val >> 8) & 0xff;
2306 	addr[5] = val & 0xff;
2307 }
2308 
2309 
2310 static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2311 {
2312 	struct sh_eth_private *mdp = netdev_priv(ndev);
2313 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2314 	int i;
2315 	u8 c_addr[ETH_ALEN];
2316 
2317 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2318 		sh_eth_tsu_read_entry(reg_offset, c_addr);
2319 		if (ether_addr_equal(addr, c_addr))
2320 			return i;
2321 	}
2322 
2323 	return -ENOENT;
2324 }
2325 
2326 static int sh_eth_tsu_find_empty(struct net_device *ndev)
2327 {
2328 	u8 blank[ETH_ALEN];
2329 	int entry;
2330 
2331 	memset(blank, 0, sizeof(blank));
2332 	entry = sh_eth_tsu_find_entry(ndev, blank);
2333 	return (entry < 0) ? -ENOMEM : entry;
2334 }
2335 
2336 static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2337 					      int entry)
2338 {
2339 	struct sh_eth_private *mdp = netdev_priv(ndev);
2340 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2341 	int ret;
2342 	u8 blank[ETH_ALEN];
2343 
2344 	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2345 			 ~(1 << (31 - entry)), TSU_TEN);
2346 
2347 	memset(blank, 0, sizeof(blank));
2348 	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2349 	if (ret < 0)
2350 		return ret;
2351 	return 0;
2352 }
2353 
2354 static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2355 {
2356 	struct sh_eth_private *mdp = netdev_priv(ndev);
2357 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2358 	int i, ret;
2359 
2360 	if (!mdp->cd->tsu)
2361 		return 0;
2362 
2363 	i = sh_eth_tsu_find_entry(ndev, addr);
2364 	if (i < 0) {
2365 		/* No entry found, create one */
2366 		i = sh_eth_tsu_find_empty(ndev);
2367 		if (i < 0)
2368 			return -ENOMEM;
2369 		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2370 		if (ret < 0)
2371 			return ret;
2372 
2373 		/* Enable the entry */
2374 		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2375 				 (1 << (31 - i)), TSU_TEN);
2376 	}
2377 
2378 	/* Entry found or created, enable POST */
2379 	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2380 
2381 	return 0;
2382 }
2383 
2384 static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2385 {
2386 	struct sh_eth_private *mdp = netdev_priv(ndev);
2387 	int i, ret;
2388 
2389 	if (!mdp->cd->tsu)
2390 		return 0;
2391 
2392 	i = sh_eth_tsu_find_entry(ndev, addr);
2393 	if (i) {
2394 		/* Entry found */
2395 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2396 			goto done;
2397 
2398 		/* Disable the entry if both ports was disabled */
2399 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2400 		if (ret < 0)
2401 			return ret;
2402 	}
2403 done:
2404 	return 0;
2405 }
2406 
2407 static int sh_eth_tsu_purge_all(struct net_device *ndev)
2408 {
2409 	struct sh_eth_private *mdp = netdev_priv(ndev);
2410 	int i, ret;
2411 
2412 	if (unlikely(!mdp->cd->tsu))
2413 		return 0;
2414 
2415 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2416 		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2417 			continue;
2418 
2419 		/* Disable the entry if both ports was disabled */
2420 		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2421 		if (ret < 0)
2422 			return ret;
2423 	}
2424 
2425 	return 0;
2426 }
2427 
2428 static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2429 {
2430 	struct sh_eth_private *mdp = netdev_priv(ndev);
2431 	u8 addr[ETH_ALEN];
2432 	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2433 	int i;
2434 
2435 	if (unlikely(!mdp->cd->tsu))
2436 		return;
2437 
2438 	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2439 		sh_eth_tsu_read_entry(reg_offset, addr);
2440 		if (is_multicast_ether_addr(addr))
2441 			sh_eth_tsu_del_entry(ndev, addr);
2442 	}
2443 }
2444 
2445 /* Multicast reception directions set */
2446 static void sh_eth_set_multicast_list(struct net_device *ndev)
2447 {
2448 	struct sh_eth_private *mdp = netdev_priv(ndev);
2449 	u32 ecmr_bits;
2450 	int mcast_all = 0;
2451 	unsigned long flags;
2452 
2453 	spin_lock_irqsave(&mdp->lock, flags);
2454 	/* Initial condition is MCT = 1, PRM = 0.
2455 	 * Depending on ndev->flags, set PRM or clear MCT
2456 	 */
2457 	ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
2458 
2459 	if (!(ndev->flags & IFF_MULTICAST)) {
2460 		sh_eth_tsu_purge_mcast(ndev);
2461 		mcast_all = 1;
2462 	}
2463 	if (ndev->flags & IFF_ALLMULTI) {
2464 		sh_eth_tsu_purge_mcast(ndev);
2465 		ecmr_bits &= ~ECMR_MCT;
2466 		mcast_all = 1;
2467 	}
2468 
2469 	if (ndev->flags & IFF_PROMISC) {
2470 		sh_eth_tsu_purge_all(ndev);
2471 		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2472 	} else if (mdp->cd->tsu) {
2473 		struct netdev_hw_addr *ha;
2474 		netdev_for_each_mc_addr(ha, ndev) {
2475 			if (mcast_all && is_multicast_ether_addr(ha->addr))
2476 				continue;
2477 
2478 			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2479 				if (!mcast_all) {
2480 					sh_eth_tsu_purge_mcast(ndev);
2481 					ecmr_bits &= ~ECMR_MCT;
2482 					mcast_all = 1;
2483 				}
2484 			}
2485 		}
2486 	} else {
2487 		/* Normal, unicast/broadcast-only mode. */
2488 		ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
2489 	}
2490 
2491 	/* update the ethernet mode */
2492 	sh_eth_write(ndev, ecmr_bits, ECMR);
2493 
2494 	spin_unlock_irqrestore(&mdp->lock, flags);
2495 }
2496 
2497 static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2498 {
2499 	if (!mdp->port)
2500 		return TSU_VTAG0;
2501 	else
2502 		return TSU_VTAG1;
2503 }
2504 
2505 static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2506 				  __be16 proto, u16 vid)
2507 {
2508 	struct sh_eth_private *mdp = netdev_priv(ndev);
2509 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2510 
2511 	if (unlikely(!mdp->cd->tsu))
2512 		return -EPERM;
2513 
2514 	/* No filtering if vid = 0 */
2515 	if (!vid)
2516 		return 0;
2517 
2518 	mdp->vlan_num_ids++;
2519 
2520 	/* The controller has one VLAN tag HW filter. So, if the filter is
2521 	 * already enabled, the driver disables it and the filte
2522 	 */
2523 	if (mdp->vlan_num_ids > 1) {
2524 		/* disable VLAN filter */
2525 		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2526 		return 0;
2527 	}
2528 
2529 	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2530 			 vtag_reg_index);
2531 
2532 	return 0;
2533 }
2534 
2535 static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2536 				   __be16 proto, u16 vid)
2537 {
2538 	struct sh_eth_private *mdp = netdev_priv(ndev);
2539 	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2540 
2541 	if (unlikely(!mdp->cd->tsu))
2542 		return -EPERM;
2543 
2544 	/* No filtering if vid = 0 */
2545 	if (!vid)
2546 		return 0;
2547 
2548 	mdp->vlan_num_ids--;
2549 	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2550 
2551 	return 0;
2552 }
2553 
2554 /* SuperH's TSU register init function */
2555 static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2556 {
2557 	if (sh_eth_is_rz_fast_ether(mdp)) {
2558 		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2559 		return;
2560 	}
2561 
2562 	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2563 	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2564 	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2565 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2566 	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2567 	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2568 	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2569 	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2570 	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2571 	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2572 	if (sh_eth_is_gether(mdp)) {
2573 		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2574 		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2575 	} else {
2576 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2577 		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2578 	}
2579 	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2580 	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2581 	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2582 	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2583 	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2584 	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2585 	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2586 }
2587 
2588 /* MDIO bus release function */
2589 static int sh_mdio_release(struct sh_eth_private *mdp)
2590 {
2591 	/* unregister mdio bus */
2592 	mdiobus_unregister(mdp->mii_bus);
2593 
2594 	/* free bitbang info */
2595 	free_mdio_bitbang(mdp->mii_bus);
2596 
2597 	return 0;
2598 }
2599 
2600 /* MDIO bus init function */
2601 static int sh_mdio_init(struct sh_eth_private *mdp,
2602 			struct sh_eth_plat_data *pd)
2603 {
2604 	int ret, i;
2605 	struct bb_info *bitbang;
2606 	struct platform_device *pdev = mdp->pdev;
2607 	struct device *dev = &mdp->pdev->dev;
2608 
2609 	/* create bit control struct for PHY */
2610 	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2611 	if (!bitbang)
2612 		return -ENOMEM;
2613 
2614 	/* bitbang init */
2615 	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2616 	bitbang->set_gate = pd->set_mdio_gate;
2617 	bitbang->mdi_msk = PIR_MDI;
2618 	bitbang->mdo_msk = PIR_MDO;
2619 	bitbang->mmd_msk = PIR_MMD;
2620 	bitbang->mdc_msk = PIR_MDC;
2621 	bitbang->ctrl.ops = &bb_ops;
2622 
2623 	/* MII controller setting */
2624 	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2625 	if (!mdp->mii_bus)
2626 		return -ENOMEM;
2627 
2628 	/* Hook up MII support for ethtool */
2629 	mdp->mii_bus->name = "sh_mii";
2630 	mdp->mii_bus->parent = dev;
2631 	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2632 		 pdev->name, pdev->id);
2633 
2634 	/* PHY IRQ */
2635 	mdp->mii_bus->irq = devm_kmalloc_array(dev, PHY_MAX_ADDR, sizeof(int),
2636 					       GFP_KERNEL);
2637 	if (!mdp->mii_bus->irq) {
2638 		ret = -ENOMEM;
2639 		goto out_free_bus;
2640 	}
2641 
2642 	/* register MDIO bus */
2643 	if (dev->of_node) {
2644 		ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
2645 	} else {
2646 		for (i = 0; i < PHY_MAX_ADDR; i++)
2647 			mdp->mii_bus->irq[i] = PHY_POLL;
2648 		if (pd->phy_irq > 0)
2649 			mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2650 
2651 		ret = mdiobus_register(mdp->mii_bus);
2652 	}
2653 
2654 	if (ret)
2655 		goto out_free_bus;
2656 
2657 	return 0;
2658 
2659 out_free_bus:
2660 	free_mdio_bitbang(mdp->mii_bus);
2661 	return ret;
2662 }
2663 
2664 static const u16 *sh_eth_get_register_offset(int register_type)
2665 {
2666 	const u16 *reg_offset = NULL;
2667 
2668 	switch (register_type) {
2669 	case SH_ETH_REG_GIGABIT:
2670 		reg_offset = sh_eth_offset_gigabit;
2671 		break;
2672 	case SH_ETH_REG_FAST_RZ:
2673 		reg_offset = sh_eth_offset_fast_rz;
2674 		break;
2675 	case SH_ETH_REG_FAST_RCAR:
2676 		reg_offset = sh_eth_offset_fast_rcar;
2677 		break;
2678 	case SH_ETH_REG_FAST_SH4:
2679 		reg_offset = sh_eth_offset_fast_sh4;
2680 		break;
2681 	case SH_ETH_REG_FAST_SH3_SH2:
2682 		reg_offset = sh_eth_offset_fast_sh3_sh2;
2683 		break;
2684 	default:
2685 		break;
2686 	}
2687 
2688 	return reg_offset;
2689 }
2690 
2691 static const struct net_device_ops sh_eth_netdev_ops = {
2692 	.ndo_open		= sh_eth_open,
2693 	.ndo_stop		= sh_eth_close,
2694 	.ndo_start_xmit		= sh_eth_start_xmit,
2695 	.ndo_get_stats		= sh_eth_get_stats,
2696 	.ndo_tx_timeout		= sh_eth_tx_timeout,
2697 	.ndo_do_ioctl		= sh_eth_do_ioctl,
2698 	.ndo_validate_addr	= eth_validate_addr,
2699 	.ndo_set_mac_address	= eth_mac_addr,
2700 	.ndo_change_mtu		= eth_change_mtu,
2701 };
2702 
2703 static const struct net_device_ops sh_eth_netdev_ops_tsu = {
2704 	.ndo_open		= sh_eth_open,
2705 	.ndo_stop		= sh_eth_close,
2706 	.ndo_start_xmit		= sh_eth_start_xmit,
2707 	.ndo_get_stats		= sh_eth_get_stats,
2708 	.ndo_set_rx_mode	= sh_eth_set_multicast_list,
2709 	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
2710 	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
2711 	.ndo_tx_timeout		= sh_eth_tx_timeout,
2712 	.ndo_do_ioctl		= sh_eth_do_ioctl,
2713 	.ndo_validate_addr	= eth_validate_addr,
2714 	.ndo_set_mac_address	= eth_mac_addr,
2715 	.ndo_change_mtu		= eth_change_mtu,
2716 };
2717 
2718 #ifdef CONFIG_OF
2719 static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2720 {
2721 	struct device_node *np = dev->of_node;
2722 	struct sh_eth_plat_data *pdata;
2723 	const char *mac_addr;
2724 
2725 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2726 	if (!pdata)
2727 		return NULL;
2728 
2729 	pdata->phy_interface = of_get_phy_mode(np);
2730 
2731 	mac_addr = of_get_mac_address(np);
2732 	if (mac_addr)
2733 		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
2734 
2735 	pdata->no_ether_link =
2736 		of_property_read_bool(np, "renesas,no-ether-link");
2737 	pdata->ether_link_active_low =
2738 		of_property_read_bool(np, "renesas,ether-link-active-low");
2739 
2740 	return pdata;
2741 }
2742 
2743 static const struct of_device_id sh_eth_match_table[] = {
2744 	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
2745 	{ .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data },
2746 	{ .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data },
2747 	{ .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data },
2748 	{ .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data },
2749 	{ .compatible = "renesas,ether-r8a7794", .data = &r8a779x_data },
2750 	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
2751 	{ }
2752 };
2753 MODULE_DEVICE_TABLE(of, sh_eth_match_table);
2754 #else
2755 static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2756 {
2757 	return NULL;
2758 }
2759 #endif
2760 
2761 static int sh_eth_drv_probe(struct platform_device *pdev)
2762 {
2763 	int ret, devno = 0;
2764 	struct resource *res;
2765 	struct net_device *ndev = NULL;
2766 	struct sh_eth_private *mdp = NULL;
2767 	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
2768 	const struct platform_device_id *id = platform_get_device_id(pdev);
2769 
2770 	/* get base addr */
2771 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2772 	if (unlikely(res == NULL)) {
2773 		dev_err(&pdev->dev, "invalid resource\n");
2774 		return -EINVAL;
2775 	}
2776 
2777 	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2778 	if (!ndev)
2779 		return -ENOMEM;
2780 
2781 	pm_runtime_enable(&pdev->dev);
2782 	pm_runtime_get_sync(&pdev->dev);
2783 
2784 	/* The sh Ether-specific entries in the device structure. */
2785 	ndev->base_addr = res->start;
2786 	devno = pdev->id;
2787 	if (devno < 0)
2788 		devno = 0;
2789 
2790 	ndev->dma = -1;
2791 	ret = platform_get_irq(pdev, 0);
2792 	if (ret < 0) {
2793 		ret = -ENODEV;
2794 		goto out_release;
2795 	}
2796 	ndev->irq = ret;
2797 
2798 	SET_NETDEV_DEV(ndev, &pdev->dev);
2799 
2800 	mdp = netdev_priv(ndev);
2801 	mdp->num_tx_ring = TX_RING_SIZE;
2802 	mdp->num_rx_ring = RX_RING_SIZE;
2803 	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
2804 	if (IS_ERR(mdp->addr)) {
2805 		ret = PTR_ERR(mdp->addr);
2806 		goto out_release;
2807 	}
2808 
2809 	spin_lock_init(&mdp->lock);
2810 	mdp->pdev = pdev;
2811 
2812 	if (pdev->dev.of_node)
2813 		pd = sh_eth_parse_dt(&pdev->dev);
2814 	if (!pd) {
2815 		dev_err(&pdev->dev, "no platform data\n");
2816 		ret = -EINVAL;
2817 		goto out_release;
2818 	}
2819 
2820 	/* get PHY ID */
2821 	mdp->phy_id = pd->phy;
2822 	mdp->phy_interface = pd->phy_interface;
2823 	/* EDMAC endian */
2824 	mdp->edmac_endian = pd->edmac_endian;
2825 	mdp->no_ether_link = pd->no_ether_link;
2826 	mdp->ether_link_active_low = pd->ether_link_active_low;
2827 
2828 	/* set cpu data */
2829 	if (id) {
2830 		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
2831 	} else	{
2832 		const struct of_device_id *match;
2833 
2834 		match = of_match_device(of_match_ptr(sh_eth_match_table),
2835 					&pdev->dev);
2836 		mdp->cd = (struct sh_eth_cpu_data *)match->data;
2837 	}
2838 	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
2839 	if (!mdp->reg_offset) {
2840 		dev_err(&pdev->dev, "Unknown register type (%d)\n",
2841 			mdp->cd->register_type);
2842 		ret = -EINVAL;
2843 		goto out_release;
2844 	}
2845 	sh_eth_set_default_cpu_data(mdp->cd);
2846 
2847 	/* set function */
2848 	if (mdp->cd->tsu)
2849 		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
2850 	else
2851 		ndev->netdev_ops = &sh_eth_netdev_ops;
2852 	ndev->ethtool_ops = &sh_eth_ethtool_ops;
2853 	ndev->watchdog_timeo = TX_TIMEOUT;
2854 
2855 	/* debug message level */
2856 	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
2857 
2858 	/* read and set MAC address */
2859 	read_mac_address(ndev, pd->mac_addr);
2860 	if (!is_valid_ether_addr(ndev->dev_addr)) {
2861 		dev_warn(&pdev->dev,
2862 			 "no valid MAC address supplied, using a random one.\n");
2863 		eth_hw_addr_random(ndev);
2864 	}
2865 
2866 	/* ioremap the TSU registers */
2867 	if (mdp->cd->tsu) {
2868 		struct resource *rtsu;
2869 		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2870 		mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
2871 		if (IS_ERR(mdp->tsu_addr)) {
2872 			ret = PTR_ERR(mdp->tsu_addr);
2873 			goto out_release;
2874 		}
2875 		mdp->port = devno % 2;
2876 		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
2877 	}
2878 
2879 	/* initialize first or needed device */
2880 	if (!devno || pd->needs_init) {
2881 		if (mdp->cd->chip_reset)
2882 			mdp->cd->chip_reset(ndev);
2883 
2884 		if (mdp->cd->tsu) {
2885 			/* TSU init (Init only)*/
2886 			sh_eth_tsu_init(mdp);
2887 		}
2888 	}
2889 
2890 	/* MDIO bus init */
2891 	ret = sh_mdio_init(mdp, pd);
2892 	if (ret) {
2893 		dev_err(&ndev->dev, "failed to initialise MDIO\n");
2894 		goto out_release;
2895 	}
2896 
2897 	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
2898 
2899 	/* network device register */
2900 	ret = register_netdev(ndev);
2901 	if (ret)
2902 		goto out_napi_del;
2903 
2904 	/* print device information */
2905 	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
2906 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2907 
2908 	pm_runtime_put(&pdev->dev);
2909 	platform_set_drvdata(pdev, ndev);
2910 
2911 	return ret;
2912 
2913 out_napi_del:
2914 	netif_napi_del(&mdp->napi);
2915 	sh_mdio_release(mdp);
2916 
2917 out_release:
2918 	/* net_dev free */
2919 	if (ndev)
2920 		free_netdev(ndev);
2921 
2922 	pm_runtime_put(&pdev->dev);
2923 	pm_runtime_disable(&pdev->dev);
2924 	return ret;
2925 }
2926 
2927 static int sh_eth_drv_remove(struct platform_device *pdev)
2928 {
2929 	struct net_device *ndev = platform_get_drvdata(pdev);
2930 	struct sh_eth_private *mdp = netdev_priv(ndev);
2931 
2932 	unregister_netdev(ndev);
2933 	netif_napi_del(&mdp->napi);
2934 	sh_mdio_release(mdp);
2935 	pm_runtime_disable(&pdev->dev);
2936 	free_netdev(ndev);
2937 
2938 	return 0;
2939 }
2940 
2941 #ifdef CONFIG_PM
2942 static int sh_eth_runtime_nop(struct device *dev)
2943 {
2944 	/* Runtime PM callback shared between ->runtime_suspend()
2945 	 * and ->runtime_resume(). Simply returns success.
2946 	 *
2947 	 * This driver re-initializes all registers after
2948 	 * pm_runtime_get_sync() anyway so there is no need
2949 	 * to save and restore registers here.
2950 	 */
2951 	return 0;
2952 }
2953 
2954 static const struct dev_pm_ops sh_eth_dev_pm_ops = {
2955 	.runtime_suspend = sh_eth_runtime_nop,
2956 	.runtime_resume = sh_eth_runtime_nop,
2957 };
2958 #define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
2959 #else
2960 #define SH_ETH_PM_OPS NULL
2961 #endif
2962 
2963 static struct platform_device_id sh_eth_id_table[] = {
2964 	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
2965 	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
2966 	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
2967 	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
2968 	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
2969 	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
2970 	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
2971 	{ "r7s72100-ether", (kernel_ulong_t)&r7s72100_data },
2972 	{ "r8a7740-gether", (kernel_ulong_t)&r8a7740_data },
2973 	{ "r8a777x-ether", (kernel_ulong_t)&r8a777x_data },
2974 	{ "r8a7790-ether", (kernel_ulong_t)&r8a779x_data },
2975 	{ "r8a7791-ether", (kernel_ulong_t)&r8a779x_data },
2976 	{ "r8a7794-ether", (kernel_ulong_t)&r8a779x_data },
2977 	{ }
2978 };
2979 MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
2980 
2981 static struct platform_driver sh_eth_driver = {
2982 	.probe = sh_eth_drv_probe,
2983 	.remove = sh_eth_drv_remove,
2984 	.id_table = sh_eth_id_table,
2985 	.driver = {
2986 		   .name = CARDNAME,
2987 		   .pm = SH_ETH_PM_OPS,
2988 		   .of_match_table = of_match_ptr(sh_eth_match_table),
2989 	},
2990 };
2991 
2992 module_platform_driver(sh_eth_driver);
2993 
2994 MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
2995 MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
2996 MODULE_LICENSE("GPL v2");
2997